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Key Points:

e Increased carbon dioxide consistently drives reduced eastdrcentral Amazonian
precipitation in global climate models.

e Projected Amazonian precipitation changes are dominatetkelgarbon dioxide
physiological effect.

e Highlights importance of reducing uncertainties associatddwegetation schemes.
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Abstract

Future projections of east Amazonian precipitation indidageng, but they are uncertain and
poorly understood. In this study we analyse the Amazoniafpjiegon response to individual
atmospheric forcings using a number of global climate nso@ck carbon is found to drive
reduced precipitation over the Amazon due to temperature-drik@ration changes, but the
magnitude is uncertain. G@rives reductions in precipitation concentrated ineidwgt, mainly
due to a robustly negative, but highly variable in magnitude résgtonse. We find that the
physiological effect of C®on plant stomata is the dominant driver of the fagiaese due to
reduced latent heating, and also contributes to the laogelmspread. Using a simple model
we show that C@ physiological effects dominate future multi-model meaeacipitation
projections over the Amazon. However, in individual nisdemperature-driven changes can
be large, but due to little agreement, they largely candgehdhe model-mean.

1 Introduction

The Amazon rainforest accounts for 40% of global trofmadst area [Aragéo et al.
2014] and plays an important role in the global carbofedydalhi et al., 2006]. Amazonian
vegetation and carbon balance are sensitive to changescipitation patterns [Phillips et al.
2009; Gatti et al., 2014; Hilker et al., 2014]. However, observed trendsitaine projections
of Amazonian precipitation are highly uncertain [Fu et a013; Joetzjer et al., 2013;
Orlowsky and Seneviratne, 2013; Duffy et al., 2015]

Observations suggest an increasing trend in drought conditioes L, 2008], and
lengthening of the dry season [Fu et al., 2013], but also agsiravet season [Gloor et al.
2013]. Futureprojections from the Coupled Model Intercomparison Prdfese 5 (CMIP5)
indicate drying [Boisier et al., 2015], but the inter-model spredatge [Joetzjer et al., 2013]
It is difficult to disentangle which drivers are respoiteifor the projected changes and
associated uncertainties. Various factors could influencezAnian precipitation, including
rising temperatures [Joetzjer et al., 2013; Boisier et al., 2015]usamdhange [Spracklen and
Garcia-Carreras, 2015; Alves et al., 2017] and fast responsemdepderic forcing agents
[Andrews et al., 2010a; Samset et al., 2016]. Fast precipitat&pomses can occur on
timescales of days to weeks due to the near-instantaneoud omptde atmospheric energy
budget [Mitchell et al., 1987; Lambert and Faull, 2007; Andrews et al., 20a64d] can
produce significant regional changes [Bony et al., 2013; Richardsdn 2016; Samset et al.
2016].

CO; causes fast precipitation changes not only due to radeffivets, but also due to
effects on plant stomata [Cao et al., 2009; Andrews e2@10a]. Higher C@concentrations
reduce stomatal opening, decreasing evapotranspiration. Thigown as the C®
physiological effect [Field et al., 1995; Betts, A R. et al., 1987und 30% of Amazonian
precipitation is thought to be fuelled by terrestrial evapspmation [Brubaker et al., 1993;
Van Der Ent et al., 2010]. Given the high level of vegetasiod water recycling, the GO
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physiological effect could strongly affect Amazonian preafjon, as highlighted in previous
studies [Andrews et al., 2010a; Pu and Dickinson, 2014; Abe et al., 2015; Chat\aick
2017; Skinner et al., 2017]. However, the precipitation respons@certain and poorly
understood.

To improve understanding of Amazonian precipitation we analyssnge of climate
simulations from the Precipitation Driver Response Mdatercomparison Project (PDRMIP)
and CMIP5 isolating the response to a variety of forcing agen@(CHs, SOQu, black carbon
(BC) and insolation (SOL)) and examining the role of v@ssus slow responses. Using CMIP5
simulations we isolate the physiological effects of2G@ Amazonian precipitation from a
multi-model perspectiv@Ve construct a simple model for estimating Amazonian ptation
change to establish the main driver of projected changele@nd of the Zicentury.

2 Data and M ethods

2.1 Precipitation Responseto Forcing

Using output from ten climate models participating in PDRMkige ($able S1-3 and
[Myhre et al.,, 2017]) we analyse the precipitation respdaséve abrupt global forcing
scenarios: doubling Groncentration (2xC0O2), tripling methane concentration (3xCté4h)
times BC concentration or emissions (10xBC), fiveesnsulphate concentration or emissions
(5xS04), and a two percent increase in insolation (2%S@eijturbations are relative to
present-day or pre-industrial values. Simulations werfeipeed with sea surface temperatures
(SSTs) fixed for 15 years, and with a coupled oceath@0ryears. Responses are calculated by
subtracting a control run from perturbed ruihe PDRMIP models include stomatal
conductance sensitivity to GO

We separate the precipitation response into a fordémendent fast component and a
temperature-driven slow component [Andrews et al., 2010b]. Tecdamponent is taken as
the mean response in fixed-SST simulations, in which teatyre-driven feedbacks are
inhibited. The slow response is calculated using equation 1:

8Pg10w = OPor — 6Pfast (1)
wheredPsiow is the slow componendPyt is the total response (taken as the mean response in
the final 50 years of the ocean-coupled simulations) g&ne is the fast component.

2.2 Energy and Moisture Budget Changes

To understand the precipitation responses we analyse #ietawspheric energy and
moisture budgets which provide constraints on precipitasshawn in equation 2:

L6P = 6LWC — 6SWA — 6SH + 6H = 6§LH + L6M, 2

where L is the latent heat of condensation, P is Ipmdipitation, LWC is net atmospheric
longwave radiative cooling, SWA is net atmospheric shorvaosorption, SH is sensible heat
flux from the surface, H is dry static energy (DSE) ftlixergencel H is latent heat flux from
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the surface, M is moisture convergence, amdpresents a perturbation between climaias.
andoM are calculated as residudtkis driven by changes in horizontal and vertical winds and
DSE gradients. In the tropics horizontal DSE gradientsal, therefore changes in H are
indicative of changes in vertical motions or the icatttemperature profile of the atmosphere
[Muller and O’Gorman, 2011].

2.3 CO2 Physiological Effect

Output from 12 CMIP5 models (Table S5) is used to isolate thepbgsiological
effect on precipitation. Two sets of experiments (T&0¢ are analysed in which SSTs are
fixed, and atmospheric GQuadrupled. One set includes physiological effects (sst@fdh
sstClim4xCO2) and one set does not (amip and amip4xCO2) [Taygor 2011]. The sstClim
simulations include a sensitivity of stomatal conduatame CQ concentration which
determines the evapotranspiration flux (Tablg.  amip simulations either the terrestrial
carbon cycle is switched off eegetation does not see the increase in.CO

The response for each set of experiments is calcutgtdiferencing the perturbed run
(sstClim4xCO2 or amip4xC0O2) and respective control ruiC{sstor amip). We then isolate
the physiological effects by differencing the two sets)gferiments. Although baseline SSTs
also differ between experiments, the precipitationngea are shown to be driven locally,
suggesting SSTs have little effect. Not all models performeth I3stClim and amip
experiments. Consistent results are obtained when usiggrmdels which performed both
(Fig. S1).

2.4 Projected Precipitation Change

Based on the PDRMIP 2xCO2 simulations, we construct a simpldel to estimate
the contribution of C@ and increasing temperature to projected Amazonian precipitatio
change by the end of the 21st century (2081-21afY) each PDRMIP model we compute an
R factor for CQ, which is the fast precipitation response per unit giofeean TOA forcing,
and a hydrological sensitivityHS), which is the slow precipitation response per unit global
mean temperature change, as shown in equations 3 and 4:

R = 6Psast/Feo2 )
HS = 5Pslow/(5Ttot - 5Tfsst) (4)

where, 0Prst and dPsiow are the fast and slow precipitation responses to douBliidg(see
section 2.1 for fast, slow and total definitionsgokis global-mean TOA C®forcing, o7t IS

the total global-mean surface temperature responsegBadis the global-mean surface
temperature response in the fixed-SST simulations (dueantb durface)We then use the
PDRMIP multi-model mearR and HS to estimate precipitation change following two
Representative Concentration Pathways, RCP4.5 and RGR&Bown in equation 5:

SP(t) = (Rpprumip X Fco2(8)) + (HSppruip X 6T (1)), (5)

where 0P is precipitation change at time tefme is the PDRMIP multi-model mean R factor,
Fcoz is global-mean TOACO; forcing at time tHSprwip is the PDRMIP multi-model mean
HS, andoT is global-mean surface temperature change at tifeot values are taken from
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Meinshausen et al. [2011], aédl is taken as the CMIP5 multi-model mean for the y2as -
2100. CMIP5 precipitation and temperature projectionscaleulated using output from 15
models (Table S5) which include €@hysiological effects. Equation 5 is used to estimate
precipitation change for the region-mean shown in Figareand spatially by calculating R
andHS for each gridpoint.

3 Resaults and Discussion

3.1 Precipitation response to forcing

We first look at the Amazonian precipitation responsaddvidual forcings using the
PDRMIP model ensemble (Fig. 1). Doubling £€@duces precipitation over much of the
Amazon, in particular the central and eastern regibigs 1a). Conversely, along the north-
western edge of South America precipitation increaas . models exhibit good agreement on
reduced precipitation in the northeast. However, thenihagde of change, and how far it
extends west is variable.

Increasing BC also drives considerable drying over the Am@zagn1d), with 80% of
models agreeing on reductions over much of northern Shukrica. 3XCH4, 5xS0O4 and
2%SOL produce only small changes in the central and ea&teazon (Fig. 1b, 1c, le).
Sulphate and solar forcing affect precipitation mioréhe west, with increased insolation
enhancing precipitation, and increased sulphate causinggdryi

Figure 1f shows the mean precipitation responses forrdg®n outlined in 1la,
encompassing eastern and central Amazonia (ECA). Thenssspare split into contributions
from the forcing-dependent fast response, and temperaitives slow response (temperature
responses shown in Fig. S2). The ECA region-mean resptm8xCH4, 5xS0O4 and 2%SOL
are small, though inter-model spread is large. The netgigitecipitation response to $é@nd
solar forcing arises due to opposing fast and slow tdmoseased S©Oproduces a negative
fast response, mainly due to reduced DSE flux divergence (&a). Bhis can be explained by
reduced downwelling shortwave radiation at the surface, which esdtite land-sea
temperature contrast, reducing convection and precipitatienland [Chadwick et al., 2014;
Richardson et al., 2016]. The opposite effect occurs for sotamfy. The slow response
counteracts these changes; increasing precipitatioobal ¢d¢ mperatures decrease due te, SO
and decreasing precipitation as the climate warms due tofgodarg. The model-mean slow
response is negative per unit temperature change forealhgos except 3xCH4, but the
magnitude varies (Fig S3b).

Increased C@drives a large reduction in precipitation over the EC#diae The
response is dominated by the fast component (-91.1 + 90.6/mcgmpared to the slow (-
19.9 + 104.4mm yf). Despite considerable model spread, the negative fgsbnise is very
consistent, with 90% of models agreeing on sign. AlthougHast component dominates the
model-mean, the slow component often contributes signtfican individual models. In 50%
of models the temperature-driven responses are largerthie fast component, but there is
little agreement on sign.
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Increased BC drives reduced precipitation over the E€fion. The model-mean
response to 10xBC is dominated by the temperature-driven respafas.3 + 122.3mm ¥,
rather than the fast component (-44.0 + 45.3mM).yFhe inter-model spread is large, but the
sign of change is robust across models.

Figure 1g shows the seasonal breakdown of the ECA region-2x€x02 precipitation
response. The slow response causes reduced SON precipitadicating a strengthening of
the late dry season. Previous studies have shown fortojections suggest a strengthened and
longer dry season [Joetzjer et al., 2013; Boisier et al., 2015]. Howkeeslpw response also
enhances JJA precipitation, resulting in little annualimegfgange. The fast response drives
reduced precipitation throughout the year, with the langekiction during the wet season

BC drives larger reductions in precipitation during thesgigson (Fig. 1h), when higher
levels of biomass burning occur in South America. Hodnebrog €Gl6] similarly found
that BC most strongly affects precipitation in South Afrituring the dry season.

3.2 Energy and moisture budget changes

To understand the mechanisms driving the ECA region-meaipjpation response to
CO, and BC we analyse the energy and moisture budgets (Figh@)negative C®fast
response arises mainly due to repartitioning of sensible aedt laeat fluxes, as well as
reduced LW cooling (Fig. 2a). CGstrongly affects surface heat fluxes, reducing LH and
increasing SH. The changes in surface fluxes are caugglybilogical effects (see section
3.3). The changes in horizontal heat and moisturefoat)sassociated with circulation, are
very uncertain. The LH response also exhibits condikeiiater-model spread, and is highly
correlated with the fast precipitation response intedehspread (r = 0.92). Given that both
evapotranspiration and precipitation decrease, thegeharsurface runoff (P-E, equivalent to
M) is relatively small (-21.8 + 51.1mm ).

The negative fast precipitation response to BC is drlwgnncreased atmospheric
shortwave absorption (Fig. 2c). The uncertainty largelea from the circulation response,
with changes in moisture convergence contributing stydieginter-model spread{r 0.90.

The slow response to 2xCO2 is small due to counteracting\ebadgpet feedbacks
(Fig. 2b). LW cooling increases with warming, which is cevetl by increased SW absorption,
increased SH, and reduced divergence of DSE flux. The LV\eWhdadiative feedbacks per
unit Kelvin are fairly consistent across forcing scermar{&ig. S3). The different slow
precipitation responses across forcings largely ariga the SH feedbacks.

For 2xCO2, changes in horizontal DSE and moisture fluxesemeuncertain (Fig.
2b), and contribute strongly to inter-model spread irstbe precipitation response? (¢ 0.92
and ¢ = 0.85). Therefore, although the model-mean slow respenseall, in individual
models temperature-driven circulation changes can drikge l@hanges in precipitation.
However, the slow response shows little agreement inasigmagnitude. Circulation changes
are known to be important for tropical precipitation pagdf@hou et al., 2009; Seager et al.
2010; Chadwick et al., 2013]. Future circulation changes aretaicand may be strongly
influenced by chaotic natural variability and model erf{8tepherd, 2014]
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Despite causing a weak global temperature response, 10xBC gsallazge negative
slow precipitation response over the Amazon. The sleparse is robustly negative, but
variable in magnitude. This is mainly driven by circulatidrarges, indicated by reduced
divergence of DSE flux and moisture convergence (Fig. 2d) h8Cbeen shown to drive

northward shifts in the inter-tropical convergence Zdh€Z) in models [Chung and Seinfeld
2005; Jones et al., 2007; Kovilakam and Mahajan, 2015], due to the fosgimynetry. The
ITCZ shift is evident in the slow precipitation response spatial pat{&ig. S4). These

circulation changes, combined with a repartitioning of LH 8kt drive the negative slow
precipitation response. However, it should be noted tbat@RBC perturbation is large. If the
total precipitation response is linearly scaled based ©A Torcing to present-day levels

(1981-2000) relative to pre-industrial, the response reduces +33mm yr'.
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The largest increases in BC occur over Asia [Myhrd.e2817]. However, the large
changes in BC over Asia drive very little change in Amaaomnprecipitation (Fig. S5),
indicating local biomass burning emissions drive the response

3.3 CO2 physiological effect

Figure 3 shows the role of physiological effects on pglamt driving the fast
precipitation response t€0, by comparing CMIP5 sstClim4xCO2 simulations (include
physiological effects) and amip4xCO2 simulations (do nolughe physiological effects). In
the amip4xCO2 simulations multi-model mean precipitaiftcreases over most of tropical
South America. In contrast, in the sstClim4xCO2 satiahs drying extends much further
inland from the east. Figure 3c shows the differencevd®t scenarios. Over much of the
Amazon, particularly in the east, @@hysiological effects drive considerable drying. In
contrast, along the west coast precipitation is enlthntiee multi-model mean response is
generally in agreement with previous single-model studieslféws et al., 2010a; Pu and
Dickinson, 2014; Abe et al., 2015; Skinner et al., 2017].

(a) amip4xCO2 (b) sstClimdxCO2

200 10N
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108 108
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-200 208 §
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Figure 3: CMIP5 multi-model mean precipitation response to quadruplingi@€C) amip and (b’
sstClim simulations and (c) the difference. Hatching shows w8@¥e of models agree on sign
change (not applicable in panel (c)). Panel (d) shows thereliffe between sstClim and amip ene
and moisture budget responses for the ECA region. Error bars deaateodel spread standa
deviation.
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Figure 3d shows the physiological effects on energy andtomeibudgets for the ECA
region. The reduced precipitation due toQiysiological forcing is almost entirely due to
repartitioning of sensible and latent heat fluxes. In@d&0O, reduces stomatal conductance
[Field et al., 1995], reducing evapotranspiration. In the Amandrere water recycling is
important [Zemp et al., 2014], the reduction in evapotranspiralivves considerable drying.
Surface energy balance is maintained through increaselliSH here is very little change in
horizontal heat and moisture fluxes, indicating the irtgoece of local changes.

The strongest reductions in precipitation odauhe eastern and central Amazon. This
may be because the evaporation recycling ratio (fractidocal evaporation which returns as
local precipitation) is higher in the east [Van Der Hrele 2010]. The increase in precipitation
along the west coast is consistent with Skinner et al. [2017), fotind that decreased
evapotranspiration warms the land-surface and drawstum®isrom the nearby ocean,
increasing convective instability and heavy rainfall events.

The CO. physiological effect also drives a large fractiontleé fast precipitation
response uncertainty for the ECA region. The inter-rhastandard deviation in the
sstClim4xCO2 simulations (109mm™ris over double that for amip4xCO2 (42mnityr
Including CQ physiological effects considerably increases the unogytan latent and
sensible heat flux responses (Fig. S6), which contrisumoagly to the large model spread. In
addition, the uncertain response of surface heat flle@ds to more uncertainty in the
horizontal transport of energy and moisture. This isisb@nt with studies which have shown
uncertainty in transpiration sensitivity contributé®sgly to uncertainty in the global-mean
fast precipitation response to e€fDeAngelis et al., 2016] and future projections of terrestrial
precipitation [Mengis et al., 2015].

3.4 Projected precipitation change

We have shown that the reduction in precipitation @estral and eastern Amazonia
in response to CQs dominated by the fast component, which is driven by plogical effects
on evapotranspiration. Therefore, given that@@cing increasingly dominates in future
emission scenarios [van Vuuren et al., 2011}, the pi@siological effect could play a key
role in projections. To quantify the potential contribataf CO to precipitation change over
the Amazon by the end of the 21st century we construct@esimodel based on the PDRMIP
results. Precipitation change over the Amazon is egiirtay scaling the fast component based
on CO, TOA forcing for the end of the century, and scaling tleevstomponent based on
global-mean surface temperature change (Eq. 5). Thdesimgulel is compared with CMIP5
multi-model mean projections, calculated using 15 modeBbléT S5 which include
physiological effects [Collins et al., 2013], in Figure 4.

The CMIP5 projections indicate drying over large areah@fAmazon particularly in
the east, south and north. In contrast, along the westt o South America precipitation
increases. Changes are larger for RCP8.5, following anésssias usual emissions scenario,
but the spatial pattern is very similar. Despite the largdicted changes, there is considerable
variation across models. Over tropical South Americeethee very few regions in which more

10
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296 than 80% of models agree on the sign of change. Althougemgnt on the spatial pattern is
297 low, models consistently project large changes [Chadwiak €2015]

298 The simple model predicts a similar drying (-151.1 + 82mm) gver the ECA region
299 asCMIP5 projections (-160.9 + 241mm¥Yrfollowing RCP8.5, driven almost entirely by the
300 fast response to GOFor RCP4.5 the simple model predicts more drying (-84 Tmm yrt)

301 than CMIP5 projections (-34.5 = 120mm*yr The comparison suggests that projected drying
302 inthe ECA region is predominantly driven by £ahysiological forcing. Therefore, projected
303 drying is independent of increasing temperatures, as supportece bgcth of correlation
304 Dbetween global-mean warming and precipitation change aCitd#35 models (r = 0.16 and -
305 0.09 for RCP4.5 and RCP$.5

306
(a) RCP4.5 CMIP5 (b) RCP4.5 CO2 Model (c) RCIG4.5 Region
gy ean
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(d) RCP8.5 CMIP5 (e) RCP8.5 CO2 Model (f) RCPB 5 Region
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Figure 4: Projected precipitation change for 2081-2100 relative to pugstnidl, following (a, b, ¢)
RCP4.5 and (d, e, f) RCP8.5, calculated using (a, d) GMiRti-model mean (only models whic
include CQ physiological effects) and (b, €) the simple model given lmakon 5. Hatching denote
where 80% of models agree on sign of change. Panels (c) asitb(f) mean change for the EC
region. Total change in blue, the fast component in greglamdcomponent in red. Error bars den
the standard deviation of CMIP5 model spread, and the stamdardfthe simple model.
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Spatially there are very similar features between theplsirmodel and CMIP5
projections. These include significant drying over the easseuthern and northern Amazon,
and increased precipitation in the west, all of which @edominantly driven by the fast
response to C&Fig. S7). There are some notable differences, suichtae western Amazon
where enhanced precipitation extends further east in Cidi&iBctions. This may be due to
drivers not included in the simple model, such as land:baage, aerosols, and greenhouse
gases other than GQ.and-use change is likely to be the most influential figeiot included
[Spracklen and Garcia-Carreras, 2015], and may account for tleeedifE between the
simple model and CMIP5 projections for the ECA regioramender RCP4.5.

The simple model indicates that €ghysiological forcing could dominate multi-model
mean future projections of precipitation change over lamgas of the Amazon. Howeyer
individual models show that temperature-driven circulatitanges can be large, but are highly
uncertain and show little agreement.

4 Conclusions

We have presented the Amazonian precipitation responselitadual atmospheric
forcings using the PDRN? model ensemble. Precipitation changes exhibit considerabte
model spread, but there are some robust signals. Incre@sddv@s a robust drying over the
Amazon, however the magnitude of change varies across snodibe reduction in
precipitation is largely due to temperature-driven ciréoifatchanges, associated with a
northward shift in the ITCZ. The fast precipitation resp®to BC also contributes to drying
due to enhanced SW absorption.

Increased C®concentrations drive reduced Amazonian precipitation,qudatiy in
the east. The model-mean drying is dominated by the fagtamant, for which 90% of models
agree on reduced precipitation over the ECA region.dJSMIP5 model output we find that
physiological effects dominate the fast response tod¥@r the Amazon, through a change in
partitioning of sensible and latent heat fluxes. Higher. €@ncentrations reduce stomatal
opening and consequently evapotranspiration. This limits umeistavailability and
precipitation over much of the Amazon, particularlyhia east. Physiological effects also drive
increased precipitation along the west coast. Physi@bgitects contribute strongly to the
uncertainty in Amazonian precipitation changes, over dioglhe inter-model spread for the
ECA region.

Using a simple model based on €D0A forcing and global-mean surface temperature
change we quantify the potential contribution of@®@precipitation changes over the Amazon
by the end of the century (2081-2100) relative to pre-indusfria@ simple model suggests
that CMIP5 multi-model mean projected drying over the E€dian is predominantly driven
by CO. physiological effects. This implies projected Amazoniaacjpitation change is
independent of rising temperatures, being mainly driven by sgihesic CQ concentration.
However, it should be noted that temperature-driven charagele large in individual models,
but show little agreement. Our findings illustrate the imgnace of short-timescale processes
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350 on long-term precipitation change in this region, and flgghthe need to reduce uncertainties
351 associated with vegetation schemes.
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