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Abstract

Large differences in mortality rates across those with different levels of education are a
well-established fact. Cognitive ability may be affected by education so that it becomes a
mediating factor in the causal chain. In this paper we estimate the impact of education
on mortality using inverse probability weighted (IPW) estimators. We develop an IPW
estimator to analyse the mediating effect in the context of survival models. Our estimates
are based on administrative data, on men born between 1944-1947 who were examined for
military service in the Netherlands between 1961-1965, linked to national death records.
For these men we distinguish four education levels and we make pairwise comparisons.
The results show that levels of education have hardly any impact on the mortality rate.
Using the mediation method we only find a significant effect of education on mortality
running through cognitive ability, for the lowest education group that amounts to a 15%
reduction in the mortality rate. For the highest education group we find a significant
effect of education on mortality through other pathways of 12%.
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1 Introduction

Traditionally, causal mediation analysis has been formulated within the framework of linear
structural models (Baron and Kenny 1986). These models are difficult to extend to inhe-
rently non-linear duration outcomes such as the mixed proportional hazard model. Recent
papers have placed causal mediation analysis within the counterfactual/potential outcomes
framework (Imai et al. 2010; Imai et al. 2010; Huber 2014, VanderWeele 2015) all assuming
sequential unconfoundedness. Tchetgen Tchetgen (2013) also introduced a weighting method
by for mediation analysis in a Cox proportional hazard model. His method implies estimating
a regression model for the mediator conditional on the treatment and pre-treatment covari-
ates, while our method is based on estimating the propensity score (with and without the
mediator). In general it is more difficult to formulate a suitable model for the mediator than
for the propensity score.

Our outcome, the age at death is a duration variable and the mortality hazard rate, the
instantaneous probability that an individual dies at a certain age conditional on surviving up
to that age, is modelled. Accounting for right-censoring, when the individual is only known
to have survived up to the end of the observation window, and left-truncation, when only
those individuals are observed who were alive at a certain time, are easy to handle in hazard
models (Van den Berg 2001). A common way to accommodate the presence of observed
characteristics is to specify a proportional hazard model, in which the hazard is the product
of the baseline hazard, the age dependence, and a log-linear function of covariates. Neglecting
confounding in inherently non-linear models, such as proportional hazard models, leads to
biased inference.

Propensity score methods are increasingly used to take account of confounding in obser-
vational studies, e.g. see Caliendo and Kopeinig (2008) for a survey. The advantage of the
propensity score is that it enables us to summarize the many possible confounding covariates
as a single score (Rosenbaum and Rubin 1983). With a duration outcome, right censoring
makes inference of differences in means, as is standard in treatment analysis, unreliable. Pro-
pensity score methods for hazard models have been introduced for duration data that account
for censoring, truncation and dynamic selection issues (Cole and Hernán 2004; Austin 2014).
We apply inverse probability weighting (IPW) methods using the propensity score (Hirano
et al. 2003), which belongs to the larger class of marginal structural models that account for
time-varying confounders when estimating the effect of time-varying covariates (Robins et al.
2000).

Cognitive ability can be considered a principal source of education selection and, an endo-
wment that determines success at school. Then intelligence precedes education in the causal
path to health and mortality. However, cognitive ability, at least as measured by standard
IQ-tests, is likely to change with the education attained. Recent research (Falch and Massih
2011; Banks and Mazzonna 2012; Schneeweis et al. 2014; Carlsson et al. 2015; Dahmann
2017) has shown that additional education improves cognitive ability. In that case, cognitive
ability is a mediator in the causal path from education to health. Ideally, we would have con-
tinuous measurement of the (development) of cognitive ability over the life cycle, to account
for both the selection and mediation of cognitive ability in the causal path from education to
mortality. However, in our data, we only observe cognitive ability at late adolescence when
measured intelligence can be either the result of the attained education or a proxy of early
childhood intelligence which influences education choice. When cognitive ability is a medi-
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ator we can decompose the effect of education on mortality into an effect running through
improvement of cognitive ability and an effect through other pathways. An effect of education
through improvement of cognitive ability is likely if education raises cognitive ability that aids
disease management and in seeking appropriate treatment where necessary. Other possible
pathways from education to mortality emerge if higher education leads to improvement in
socioeconomic status later in life, such as labour market signals, non-cognitive skills and peer
effects, which influence health and mortality.

In our empirical analyses we use administrative data on Dutch men who were examined
for military service in the Netherlands between 1961-1965 after completing their secondary
schooling. We followed 39,803 men selected from the national birth cohorts 1944-1947. These
examinations are based on yearly listings of all Dutch male citizens aged 18 years in the
national population registers. The sampled examination records were linked by Statistics
Netherlands to recent national death records (up till the end of 2015). The records include
a standardized recording of demographic and socioeconomic characteristics such as educa-
tion, father’s occupation, religion, family size, and birth order, along with a standardized
psychometric test battery. The educational level was classified in four categories: primary
school, lower vocational education, lower secondary education, and intermediate vocational
education, general secondary education, higher non-university and university education.

Under the assumption that cognitive ability is a mediator of the education effect on morta-
lity we also extend the IPW methods to mediation analysis for a (mixed) proportional hazard
(MPH) model, the common model for econometric duration analysis. The main methodo-
logical contribution of this paper is that we disentangle the total effect of a treatment on a
duration into an effect that runs through the mediator and an effect through other pathways.
We derive and implement an IPW estimator for such a decomposition of the total effects in
MPH models. The estimator identifies causal mechanisms given that a sequential unconfoun-
dedness condition holds. This is a strong assumption and nonrefutable. We therefore carry
out a set of sensitivity analyses to quantify the robustness of our empirical findings to viola-
tion of the sequential ignorability assumption. We focus, in particular, on how the possibility
of selection into education based on cognitive ability may influence our results.

The empirical results show that improving education has hardly any impact on the mor-
tality rate when accounting for cognitive ability. Using the mediation method we only find
a significant effect of education on mortality running through cognitive ability, for the lowest
education group that amounts to a 15% reduction in the mortality rate. For the highest
education group we find a significant effect of education on mortality through other pathways
of 12%.
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2 Methods

2.1 The mortality hazard rate

We seek to find the impact of education level on the mortality risk for the men in our sam-
ple of conscripts. However, mortality may be influenced by factors that also determine the
education choice. This may render education a selective choice and makes it endogenous
to mortality later in life. We follow a propensity score method to account for selection on
observed characteristics and estimate the effect of education on the mortality rate. Figure 1
provides a graphical illustration of the relationship between cognitive ability, education and
mortality later in life using a directed acyclic graph, where each arrow represents a causal
path (Pearl 2000; Pearl 2012). It states that early childhood characteristics X, such as paren-
tal background and family size, influence the education choice D, the unmeasured childhood
(pre-age 18) factors, U0, and the cognitive ability at age 18, Q18. The latter is also influenced
by other childhood factors, which may include early life cognitive ability, and the education
followed up to age 18. In our data we do not observe these childhood factors (U0).

❣
U0 ✲

✻

❥
✇

X

✇

D

✇
Q18

✇ λ✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

✲

✻

✲

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❥
✟✟✯

Figure 1: Directed acyclic graph of mediation through Q18 conditional on X

We define the treatment effect, of moving up one education level, in terms of a propor-
tional change in the (mortality) hazard rate. First, we discuss the assumptions, common in
the potential outcomes literature that uses propensity score methods, to identify the impact
of education on the mortality risk. In Section 2.2 we extend this to decompose the effect
of education on the mortality rate into an effect running through improvement in cognitive
ability and an effect running through other pathways. The main difference with standard
propensity score methods is that we use potential hazard rates, the hazard rate that would
be observed if the individual was untreated, λ(t|0), or treated λ(t|1). Let Di = 1 be the treat-
ment, moving up one education level. We observe pre-treatment (educational level) covariates
X that influence the education choice.

Assumption 1. Unconfoundedness: λ(t|d)⊥ D|X for d = 0, 1
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where ⊥ denotes independence. The unconfoundedness assumption (Rubin 1974, Rosenbaum
and Rubin 1983) asserts that, conditional on covariates X, treatment assignment (education
level) is independent of the potential outcomes. This assumption requires that all variables
that affect both the mortality and the education choice are observed. Note that this does not
imply that we assume all relevant covariates are observed. Any missing factor is allowed to
influence either the outcome or the education choice, not both. We check the robustness of our
estimates to this, rather strong, unconfoundedness assumption by assessing to what extent
the estimates are robust to violations of this assumption induced by including an additional
simulated binary variable to capture unobservables (Nannicini 2007; Ichino et al. 2008).

The overlap, or common support assumption requires that the propensity score, the con-
ditional probability to choose a higher education given covariates X, is bounded away from
zero and one. In our data we distinguish four (ordered) education levels in line with the con-
temporary Dutch education system (see Section 3). By comparing only adjacent education
levels we remove the overlap problems.

Rosenbaum and Rubin (1983) show that if the potential outcomes are independent of
treatment conditional on covariates X, they are also independent of treatment conditional on
the propensity score, p(x) = Pr(D = 1|X = x). Hence if unconfoundedness holds, all biases
due to observable covariates can be removed by conditioning on the propensity score (Imbens
2004). The average effects can be estimated by matching or weighting on the propensity score.
Here we use weighting on the propensity score. Inverse probability weighting based on the
propensity score creates a pseudo-population in which the education choice is independent of
the measured confounders. The pseudo-population is the result of assigning to each individual
a weight that is proportional to the inverse of their propensity score. Inverse probability
weighting (IPW) estimation is usually based on normalized weights that add to unity.

Wi =

[

Di

p̂(Xi)

/

n
∑

j=1

Dj

p̂(Xj)

]

+

[

(1−Di)

1− p̂(Xi)

/

n
∑

j=1

1−Dj

1− p̂(Xj)

]

(1)

In survival analysis it is standard to compare the (non-parametric) Kaplan-Meier curves
for the treated and the controls. The unadjusted survival curves may be misleading due
to confounding. Cole and Hernán (2004) describe a method to estimate the IPW adjusted
survival curves. Biostatisticians usually focus on Cox regression models and Cole and Hernán
(2004) describe how Cox proportional hazard models can be weighted by the inverse propensity
score to estimate causal effects of treatments. This method is related to the g-computation
algorithm of Robins and Rotnitzky (1992) and Robins et al. (2000).

In economics the interest is often also in the duration dependence of the hazard. The Gom-
pertz hazard, which assumes that the hazard increases exponentially with age, λ0(t) = eα0+α1t,
is known to provide accurate mortality hazards (Gavrilov and Gavrilova 1991). However, it
is hardly ever possible to include all relevant factors, either because the researcher does not
know all the relevant factors or because it is not possible to measure then. Ignoring such
unobserved heterogeneity or frailty may have a huge impact on inference in proportional ha-
zard models, see e.g. Van den Berg (2001). A common solution is to use a Mixed Proportional
Hazard (MPH) model, in which it is assumed that all unmeasured factors and measurement
error can be captured in a multiplicative random term V . The hazard rate becomes

λ(t|D,V ) = V λ0(t) exp(γD), (2)
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The (random) frailty V > 0 is time-invariant and independent of the observed characteristics
X and treatment D. Note that independence of V and D is crucial, otherwise Assumption 1
would be violated. So, we assume that some factors influencing the mortality rate are not
observed and that these factors do not influence the education choice. In the empirical ap-
plication it is assumed that V has a gamma-distribution; a common assumption used in the
empirical literature.

To adjust for confounding we estimate a standard MPH model, that does not include
the measured confounders as covariates, using the re-weighted pseudo-population. Fitting a
(mixed) proportional hazard model in the pseudo-population is equivalent to fitting a weighted
MPH model in the original sample. The parameters of such weighted MPH models can be
used to estimate the causal effects of education on mortality in the original sample. The
IPW estimator in the (M)PH model is equivalent to solving the weighted derivatives of the
log-likelihood:

L(θ) =

N
∑

i=1

Wi

[

δi
∂ log λ(ti|·)

∂θ
−
∂Λ(ti|·)

∂θ

]

(3)

where θ is the vector of parameters of the hazard in (2), Λ(t|·) =
∫ t
0 λ(s|·) ds, the integrated

hazard and δ indicates whether the duration for individual i is censored δi = 0 or not.1

2.2 Mediation analysis for the mortality hazard rate

In this section we discuss a model in which cognitive ability measured at age 18 mediates the
impact of education on mortality. Mediation analysis aims to unravel the underlying causal
mechanism into an effect running through changes of an intermediate variable, the mediator,
and through other pathways. The counterfactual notation for average treatment effects can
be extended to define causal mediation, (see Huber 2014). We are particularly interested in
the mediating effect of cognitive ability on mortality. It has been proven that high levels
of cognitive ability is positively associated with high education, (Ceci 1991; Hansen et al.
2004). Recent research (Falch and Massih 2011; Banks and Mazzonna 2012; Schneeweis et al.
2014; Carlsson et al. 2015; Dahmann 2017) has shown that one additional year of education
improves intelligence up to 0.3 standard deviations, both for the US and for some European
countries. We use Qi to denote the observed cognitive ability (IQ-score), which is measured
around age 18 when the men had their military examination and after they had completed
secondary schooling. The mediation model we assume is illustrated by the DAG in Figure 1.

Traditionally, causal mediation analysis has been formulated with the framework of linear
structural models (Baron and Kenny 1986). Recent papers have placed causal mediation
analysis within the counterfactual/potential outcomes framework (Imai et al. 2010; Imai
et al. 2010; Huber 2014). In the previous section the potential outcome was solely a function
of the treatment, e.g. education choice, but in mediation analysis the potential outcomes also
depend on the mediator. Because cognitive ability can be affected by the education attained2,
there exist two potential values, Qi(1) and Qi(0), only one of which will be observed, i.e.
Qi = Di · Qi(1) + (1 − Di) · Qi(0). For example, if individual i actually attained education

1In Appendix A we provide a counting process interpretation and prove consistency.
2For example, Jones et al. (2011) discuss how performance in IQ tests could be influenced by coaching

received by primary school pupils to prepare them for entrance tests for secondary school.
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level 1, we would observe Qi(1) but not Qi(0). Next we use λi
(

t|d, q(d)
)

to denote the
potential mortality hazard that would result from education equals d and cognitive ability
equals q. For example, in the conscription data, λi

(

t|1, 110
)

represents the mortality hazard
that would have been observed if individual i had education level 1 and a measured IQ-score
of 110. As before, we only observe one of the multiple hazards λi = λi

(

t|Di, Qi(Di)
)

.
Because we base our treatment effect on (mixed) proportional hazard models, it is again

natural to define the mediator effects proportionally. Abbring and van den Berg (2003) also
define, in a different setting with a dynamic treatment, a proportional treatment effect for a
duration outcome. In other non-linear settings, such as count data regression, a proportional
treatment effect has been defined (Lee and Kobayashi 2001). We define the average effect of
other pathways, depending on treatment status d:

Assumption 2.Proportional decomposition

θ(d) =
E
[

λ
(

t|1, Q(d)
)

]

E
[

λ
(

t|0, Q(d)
)

] (4)

This framework enables us to disentangle the underlying causal pathway from education
to mortality into an effect of education through improvement of cognitive ability and an effect
through other pathways. We assume conditional independence (given X) of the treatment
and the mediator:

Assumption 3. Sequential ignorablility: {λ(t|d′, q), Q(d)}⊥D|X and λ(t|d′, q)⊥Q|D = d,X,
∀d, d′ = 0, 1 and q in the support of Q.

The first condition of Assumption 3 implies that, conditional on observed covariates X,
no unobserved confounder exists that jointly affects the education choice, the cognitive ability
and the mortality. The second condition implies that, conditional on observed covariates X
and the education attained, no unobserved confounder exists that jointly affects cognitive
ability and mortality. This would imply that X explains all the variation in U0 or that U0

does not (directly) affect education, the dashed line in Figure 1 Huber (2014) and Imai et al.
(2010) make the same assumptions for identification of the direct and indirect effects in a
linear model. Assumption 3 is a strong assumption and nonrefutable. We therefore carry out
a set of sensitivity analyses to quantify the robustness of our empirical findings to violation
of the sequential ignorability assumption based on an extension of the sensitivity analyses of
Nannicini (2007) and Ichino et al. (2008). We focus, in particular, on how the possibility of
selection into education based on cognitive ability may influence our results. We also have a
common support restriction for the propensity score including the mediator.

In addition we assume independent censoring3 and a proportional mediator effect θ(d):

Assumption 4. Independent censoring:

Censoring is, conditional on the treatment D, independent of the covariates X, the outcome

3In principle it is possible to extend the method to the assumption that censoring is independent of the
outcome conditional on the treatment, the covariates and the mediator using a similar weighting for the
censoring.
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T and the mediator Q.

Assumption 5. Proportional mediator effect: λ
(

t|1, Q(d)
)

= eθ(d)λ
(

t|0, Q(d)
)

.

This is equivalent to assuming that the effect of the treatment, D, is not moderated by the
value of the mediator. Thus, we assume no interaction effect, D · Q, in the hazard. Note
that Assumption 5 does not rule out an MPH model. It only assumes that the unobserved
heterogeneity is independent of the treatment D (as before) and the mediator Q. This leads
to the following identification theorem for the effect of a treatment on the hazard running
through other pathways (holding the mediator constant):

Theorem 1: Identification of other pathways effect θ(d).
Under Assumptions 1 to 5 the other pathways effect is identified through a weighted MPH
regression with weights:

W (d) =
Pr(D = d|Q,X)

Pr(D = d|X)

(

D

Pr(D = 1|Q,X)
+

1−D

Pr(D = 0|Q,X)

)

(5)

with weight W (d) for θ(d), for d = 0, 1.
(See Appendix A for the proof.)

The ‘total effect’ of education on the mortality rate, from an IPW estimation in which the
mediator is excluded from the propensity score, can be decomposed into an effect of education
running through the mediator η(·) and an effect of education running through other pathways
θ(·) using assumption 2:

λ
(

t|D = 1, Q(1)
)

λ
(

t|D = 0, Q(0)
) =

λ
(

t|D = 1, Q(1)
)

λ
(

t|D = 0, Q(1)
) ·

λ
(

t|D = 0, Q(1)
)

λ
(

t|D = 0, Q(0)
) = exp

(

θ(1) + η(0)
)

(6)

=
λ
(

t|D = 1, Q(1)
)

λ
(

t|D = 1, Q(0)
) ·

λ
(

t|D = 1, Q(0)
)

λ
(

t|D = 0, Q(0)
) = exp

(

η(1) + θ(0)
)

(7)

The effect running through other pathways (holding the mediator constant) can be estimated
solving (3), using W (d) from (5) as weights. The effect running through the mediator can
be obtained from the log-difference of the estimated total and the estimated effect running
through other pathways, using (6) or (7). The first effect represents the effect of education
on the mortality hazard while holding cognitive ability constant at the level that would have
been realized for chosen education level d. The second effect represents the effect of education
on mortality if one changes cognitive ability from the value that would have been realized
for education level 0 to the value that would have been observed for education level 1, while
holding the education level at level d.

For estimation we use normalized versions of the sample implied by the weights in (5), such
that the weights in either treatment or control groups add up to unity, as advocated earlier.
We estimate the additional propensity scores conditional on the pre-treatment covariates and
the mediator, Pr(D = 1|Xi, Qi), by probit specifications.

A nice feature of Theorem 1 is that it is straightforward to implement, and only invol-
ves estimation of two propensity scores and plugging them into standard mixed proportional
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hazard estimation. No parametric restriction is imposed on the model of the mediator. Tchet-
gen Tchetgen (2013) also defines mediation analysis in (Cox) proportional hazard models. His
method, which is also based on proportional decomposition, sequential ignorability, indepen-
dent censoring and a proportional mediator effect, implies estimating a regression model for
the mediator conditional on the treatment and pre-treatment covariates f(Q|D,X), while
our method is based on estimating the propensity score (with and without the mediator). In
general it is more difficult to formulate a suitable model for the mediator than for the propen-
sity score. VanderWeele (2011) also derived a mediation estimator for the Cox proportional
hazards model. Although his method does not need assumption 5, a proportional mediator
effect, it requires an additional assumption that the outcome is rare over the entire follow-up
period.

3 Data

Data from a large sample from the nationwide Dutch Military Service Conscription Register
for the years 1961-1965 and male birth cohorts 1944-1947 are analysed. All men, except those
living in psychiatric institutions or in nursing institutes for the blind or for the deaf-mute,
were called to a military service induction exam. The majority attended the conscription
examination around age 18.4 We have information from the military examinations for 45,037
men. The data were described elsewhere, (Ekamper et al. 2014), here we provide the main
characteristics. These data were linked to the Dutch death register through to the end of
2015 using unique personal identification numbers. Follow-up status was incomplete (due to
emigration and other right-censoring events) for 1,316 (2.9%) and entirely unknown for 2,626
(8.3%) men.5 The latter were removed from the data. These data allow us to follow a large
group of men from age 18 until age 68–72 or until death. At the military examination a
standardized recording of demographic and socioeconomic characteristics such as education,
father’s occupation, religion, family size, region of birth, and birth order is recorded. We
exploit the information on education attained at age 18 and the age at death to investigate
the mortality difference while accounting for other factors that influence both educational
level and mortality.

The educational level is classified in four categories6, (Doornbos and Kromhout 1990):
primary school (age 6-12 years); lower vocational education (two years post primary school);
lower secondary education (four years post primary school); and higher education (intermedi-
ate vocational education, general secondary education, higher non-university and university
education , i.e. at least six years post primary school). For this study, we excluded partly
institutionalized conscripts who had attended special schools for those with disabilities or le-
arning difficulties and conscripts who had not completed 6 years of schooling. After exclusion
of these 2,608 conscripts, 39,803 men remain for analysis.

4Many men who continued to higher education were examined in their 20s.
5Table B.1 in the Appendix shows that some of differences between the sample we used and those that were

removed is significant. We address this issue in Section 3.3, see Table B.4.
6Education in the Netherlands is characterized by years of education and by school level. There are two

parallel streams in the educational system: general academic and vocational. Streaming choices are made at
the end of primary school. Students in the vocational stream cannot directly enter university. Students with
more than twelve years of education will nearly always be in the academic stream (Schröder and Ganzeboom
2014; Vrooman and Dronkers 1986).
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A standardized psychometric test battery is included: comprising Raven Progressive Ma-
trices, a nonverbal untimed test that requires inductive reasoning about perceptual patterns,
the Bennett Mechanical Comprehension test, and tests for Clerical Aptitude, Language Com-
prehension, Arithmetic and a Global comprehensive score, that combines all five tests. All
tests were administered to over 95% of the population who were examined at induction. Sco-
res for all tests were grouped in six levels from 1 (highest) to 6 (lowest). The test scores are
highly correlated with Pearson’s r values in the range of .63 to .76. Here, we only focus on
the scores of the comprehensive test.

Selected demographic and socioeconomic characteristics at the time of military exami-
nations by education level are given in Table 1. First born conscripts tend to have higher
education. Father’s occupation was classified into five categories: professional and managerial
workers; clerical, self-employed and skilled workers; farmers; semi-skilled workers including
operators, process workers and shop assistants; and labourers and miners. Fathers with
unknown occupations were classified separately. Education level is also strongly related to
father’s occupation; men with the highest education tend to have fathers in professional or
managerial occupations. Religion was classified into five categories. The place of birth was ca-
tegorized in six regions. The combined cognition measure is the Global comprehensive score.
Not surprisingly, men with the highest education tend to do best on the comprehensive IQ
test. Our principal measure of health is mortality with ages of death ranging from 18 up to
68–72. The lowest education group has a 70% higher mortality.

The Kaplan-Meier survival curves for the four education categories are shown in Figure 2
and reflect these mortality differences. Survival increases with the education level and the
differences between the education levels increase with age. The curves differ significantly (χ2 =
180.76 for a log-rank test with 3 degrees of freedom). In subgroup analyses, survival differences
comparing adjacent education levels are also statistically significant (χ2 = 54.79, 9.97, 29.80).
This mortality difference by education is not necessarily due to education per se. It could
be that the higher cognitive ability of higher educated people causes the difference. For
example, understanding a doctor’s advice and adhering to complex treatments may be driven
by cognitive ability rather than education. From Table 1 we have seen already that education
and IQ are highly correlated. Figure 3 shows that survival also increases with IQ and the
differences are statistically significant (χ2 = 277.72 for a log-rank test with 5 degrees of
freedom). For all, except the two lowest, adjacent IQ levels the differences in the Kaplan-
Meier survival curves are significant. Within each education level the Kaplan-Meier curves
also differ significantly by IQ-level (not shown here).

Next we investigate the relationship between IQ and educational attainment. The IQ
scores are measured on a six-point ordinal scale. Comparing individuals on the extremes of
the education level is not helpful as these individuals differ too much in many respects. We
focus on adjacent education levels only and estimate separate ordered probit models for the
IQ-score in relation to the highest education level in each pair and other observed individual
characteristics. The results of ordered probit analyses reveal a strong association between
education and IQ.7

7The results are available upon request.
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Figure 2: Kaplan-Meier survival curves, by education level
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Figure 3: Kaplan-Meier survival curves, by IQ level (overall level)
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Table 1: Sample distribution by education level

Primary Lower Lower Higher All
education vocational secondary education levels

Birth order:
1 27.8 32.1 39.3 42.6 35.5
2 27.1 30.3 30.7 29.9 29.9
3 18.7 18.4 16.3 15.4 17.3
4 11.3 9.2 6.9 7.0 8.4
≥ 5 14.9 10.0 6.7 5.1 8.8
Region of birth:
North 2.9 4.2 3.2 2.3 3.4
South 8.3 7.2 4.9 5.0 6.4
East 4.8 6.0 3.8 3.6 4.7
North-Holland 35.2 31.8 35.6 38.2 34.2
South-Holland 38.2 43.5 44.7 42.0 43.0
Utrecht 10.7 7.4 8.0 9.0 8.4
Religion:
Catholic 40.3 32.5 30.3 31.4 32.7
Dutch Reformed 25.5 31.2 31.3 30.2 30.2
Calvin 3.6 7.5 8.6 9.3 7.3
Other religion 0.6 0.5 0.8 1.0 0.8
No religion 30.1 28.2 29.0 28.1 28.8

Father’s occupation:
Professional 8.7 10.2 17.2 39.0 17.0
White collar 19.7 29.7 42.8 42.9 34.8
Farm owner 3.0 5.7 2.2 1.7 3.5
Skilled 38.4 33.3 23.1 9.2 26.7
Unskilled 22.5 14.9 9.4 3.4 12.3
Unknown 7.7 6.2 5.3 3.9 5.7

Global comprehensive IQ score:
1 (highest) 0.1 6.3 19.8 54.6 17.6
2 3.8 27.5 47.9 37.7 32.5
3 13.7 30.3 20.9 4.0 20.6
4 28.3 22.7 7.2 0.6 14.9
5 39.5 10.6 1.7 0.1 10.1
6 (lowest) 11.5 0.8 0.1 0.02 2.0
missing 3.1 1.7 2.4 3.0 2.4

Total # of deaths 1,404 2,918 2,403 953 7,678
% died 25.2 20.5 18.8 15.4 19.8

Sample size 5, 713 14, 574 13, 125 6, 391 39, 803
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3.1 Results

3.2 Hazard models and mediation analysis

Table 2 presents the estimated effect on the mortality hazard of moving up one educational
level and its decomposition. We conclude from these analyses that for the lower educated,
with only primary education, and for the lower secondary educated obtaining more education
reduces their mortality rate (around 25%). Moving from lower vocational education to lower
secondary education only reduces the mortality rate by 9%.8

Table 2: Impact of education levels on the mortality rate using a Gompertz-gamma MPH
model and its decomposition

total effect other pathways cognitive ability

Unadjusted IPW θ(1) θ(0) η(0) η(1)

Primary to −0.250∗∗ −0.222∗∗ −0.060 −0.093+ −0.162+ −0.128+

lower vocational (0.038) (0.034) (0.067) (0.045) (0.075) (0.056)
Lower vocational to −0.089∗∗ −0.086∗∗ 0.006 0.014 −0.092+ −0.100+

lower secondary (0.029) (0.029) (0.033) (0.039) (0.044) (0.048)
Lower secondary to −0.229∗∗ −0.206∗∗ −0.127+ −0.097 −0.079 −0.109

higher (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)

+p < 0.05 and ∗∗p < 0.01

The last four columns in Table 2 present the decomposition of the effects of education
on the mortality rate. The effect of education through other pathways is only significant for
the highest education group while holding cognitive ability at the level of those with high
education and for the lowest education group while holding cognitive ability at the level of
those with primary education. About two-thirds of the mortality reduction for men moving
from lower secondary to higher education runs through other pathways, such as, for example,
an increase in income. For the lowest education groups the impact of education on mortality
mainly runs through the increase in cognitive ability induced by the additional education.
For these men 90% of the reduction in mortality is explained by the effect running through
cognitive ability.

3.3 Robustness checks

Throughout we have assumed that the propensity scores are estimated consistently. Misspe-
cification of the propensity score will generally produce bias. An approach to improve the
robustness of the proposed methodology can be obtained using a doubly robust estimator
which also includes a regression adjustment. Rotnitzky and Robins (1995) point out that if
either the regression adjustment or the propensity score is correctly specified the resulting
estimator will be consistent. Thus we also estimate doubly robust estimators of the models,
including the observed characteristics and the IQ-test both in the propensity score and in
the hazard regression, see Table 3. Including regression covariates hardly changes the IPW
estimates (compare column 2 of Table 3 and of Table 2). Not surprisingly, including the

8The estimates of the probit propensity score used to calculate the weights can be found in Table B.2 and
B.3 in the Appendix.
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covariates does change the ”unadjusted” results a little (compare column 1 of Table 3 and of
Table 2).

Table 3: Double robust estimation of the total effect of education on the mortality rate and
its decomposition using an IPW Gompertz-gamma MPH

total effect other pathways cognitive ability

Unadjusted IPW θ(1) θ(0) η(0) η(1)

Primary to −0.227∗∗ −0.247∗∗ −0.061 −0.093+ −0.166+ −0.133+

lower vocational (0.038) (0.039) (0.068) (0.045) (0.077) (0.059)
Lower vocational to −0.086∗∗ −0.090∗∗ 0.007 0.014 −0.093+ −0.100+

lower secondary (0.029) (0.029) (0.033) (0.039) (0.044) (0.049)
Lower secondary to −0.204∗∗ −0.200∗∗ −0.128+ −0.096 −0.077 −0.108

higher (0.047) (0.045) (0.053) (0.071) (0.071) (0.085)

The unadjusted robust estimator includes all the variables used for the propensity score as control variables
in the Gompertz-gamma MPH model. +p < 0.05 and ∗∗p < 0.01

The individuals who were removed from the analysis, because their survival status is
unknown, may be a selective sample, see Table B.1 in the Appendix. To account for possible
sample selection bias we estimated the propensity score of an individual being removed, using
a probit model for each level of education separately.9 Based on this probability of removal
we impose additional weighting of all observations in our estimation sample using the inverse
of the probability of inclusion in the sample and we re-estimate the total effect and its de-
composition. The results after imposing this additional weighting show very little difference
from the original results, see Table B.4 in the Appendix.

Another issue is that childhood health problems may influence both education choice and
mortality later in life. We perform a robustness analysis by adding health indicators to the
educational propensity score. Our data are limited and only include health measurements
at the military examination so these can only be used to proxy childhood health. We used
indicators for height < 170cm; height > 185cm; overweight(bmi > 25), poor general health;
poor hearing; poor sight and poor psychological assessment, and re-estimated the propensity
scores, both without IQ, to estimate the total effect of education and, with IQ measurements
to decompose the total effect into an effect running through changes in cognitive ability and
an effect running through other pathways. The estimated impact of education on mortality
changes slightly when accounting for health problems, see Table 4, but only for the lowest
education group.

9The estimation results are available upon request.
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Table 4: Impact of education on the mortality rate and its decomposition using an IPW
Gompertz-gamma MPH, including health at age 18 indicators in the propensity score

Total other pathways cognitive ability

θ(1) θ(0) η(0) η(1)

Primary to −0.194∗∗ −0.044 −0.079 −0.151+ −0.115+

lower vocational (0.034) (0.064) (0.045) (0.073) (0.057)
Lower vocational to −0.089∗∗ −0.005 0.005 −0.085 −0.094

lower secondary (0.029) (0.033) (0.039) (0.043) (0.048)
Lower secondary to −0.213∗∗ −0.140∗∗ −0.108 −0.073 −0.105

higher (0.049) (0.054) (0.072) (0.073) (0.087)

+p < 0.05 and ∗∗p < 0.01
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3.4 Sensitivity analyses

The critical assumption in propensity score weighting is that of no selection on unobserva-
bles. To test the sensitivity of the estimates to the unconfoundedness assumption we build
on the sensitivity analyses of Nannicini (2007) and Ichino et al. (2008). We extend these
analyses to the mixed proportional hazard model. The Ichino et al. (2008) sensitivity analy-
sis assumes that the possible unobserved confounding factors can be summarised in a binary
variable, U , and that the unconfoundedness assumption holds conditional on X and U , i.e.
λ(t|0) ⊥ D|X,U . Given the values of the probabilities that characterize the distribution of
U we can simulate a value of the unobserved confounding factor for each individual and re-
estimate the IPW-MPH. The probabilities of the distribution of U depend on the value of the
treatment and the outcome. The Ichino et al. (2008) sensitivity analysis assumes that the
potential outcomes are binary, but Nannicini (2007) shows how to extend this to continuous
outcomes by imposing a binary transformation. In survival analysis we have a natural binary
transformation, the censoring indicator δi = 1 if individual i is still alive at the end of the
observation period. Then, the distribution of the unobserved binary confounding factor U
can be characterised by specifying the probabilities in each of the four groups.

pij = Pr(U = 1|D = i, δ = j,X) = Pr(U = 1|D = i, δ = j) (8)

for i, j = 0, 1.
A measure of how the different configurations of pij, chosen to simulate U , translate into

associations of U with the outcome is ω, the coefficient of U in a MPH model for the control
group (D = 0) using U and X as covariates. Ichino et al. (2008) call this (exponentiated)
coefficient the ‘outcome effect’. A measure of the effect of U on the relative probability to be
assigned to the treatment is ξ, with ξ the coefficient of U in a logit model on the treatment
assignment (D = 1) using U andX as covariates. Ichino et al. (2008) call this (exponentiated)
coefficient the ‘selection effect’.

For identification of the mediation effects we also impose sequential ignorability (Assump-
tion 2). We therefore also assume that conditional on the binary (unobserved) factor the fol-
lowing two conditions hold (i) {λ(t|d′,m), Q(d)}⊥D|X,U and (ii) λ(t|d′, q)⊥Q|D = d,X,U
for ∀d, d′ = 0, 1 and q in the support of Q. A new measure, the mediator-effect, is ψ, the
coefficient of U in an ordered logit model on the IQ-test values for the control group using U
and X as covariates.

The probability values of the distribution for U are chosen so that they mimic the dis-
tribution for each included binary variable. For example, consider the probability that an
individual in the lowest education group (primary and lower vocational education) is catholic.
Then, p00 is this probability for catholics with primary education who died before the end
of the observation period, p01 is the probability for catholics with primary education who
survived till the end, p10 is the probability for catholics with lower vocational education who
died before the end, and p11 is the probability for catholics with lower vocational education
who survived till the end. For each probability configuration of U we repeat the simulation
of U , the estimation of the outcome effect, the selection effect and the IPW-MPH treatment
effects M = 100 times and obtain the average of these 100 simulations. The total variance of
these averages can be estimated from (see Ichino et al. (2008)):

Varf = 1
M

M
∑

m=1

s2m + M−1
M(M−1)

M
∑

m=1

(f̂m − f̄)2 (9)
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with f ∈ {ω, ξ} of each pairwise education comparison, f̂m is the estimated f in each simula-
tion sample m and s2m is its estimated variance.

Next we re-estimate the total effect of education on mortality using an IPW Gompertz-
gamma MPH model including U in the propensity score and the decomposition of the effect
using an IPW Gompertz-gamma MPH including U and the IQ-measurements in the propen-
sity score.

An issue with our empirical application is that early childhood IQ (one of the possible
factors of U0 in Figure 1) might be a selection variable, explaining selection into education
(rather than a mediation variable).10 We, therefore, focus on the results of the sensitivity
analysis when assuming U mimics the observed distribution of the IQ-measurements, i.e.
the observed education choice and censoring probability are equal to the observed education
choice and censoring prevalence for individuals with a given IQ level. We find the largest
outcome, selection and mediation effects when the distribution of U mimics the impact of IQ
on education and censoring.11 Table 5 reports the simulated total effect and its decomposition
into an effect running through cognitive ability and an effect running through other pathways
including U in the IPW that mimics the distribution of the education choice and mortality
for each IQ-level.12 We find the largest changes in our IPW estimates when U mimics the
education-mortality distribution of those with the highest IQ-level. These differences are,
however, not statistically significant.

10We estimated the selection version of the model (despite the date of measurement on IQ) and that we
got similar results for total effect of IQ and education suggesting that selection (only) is another plausible
hypothesis, see Bijwaard and Jones (2016).

11The results can be found in Table B.5 in Appendix B.
12The results when U is based on the distribution of eduction choice and mortality for the other included

variables can be found in Tables B.6 and B.7 in Appendix B.
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Table 5: Sensitivity analysis : effect running through cognitive ability and running through
other pathways (U based on IQ-levels)

Primary to lower vocational Lower vocational to lower secondary Lower secondary to higher
Total effect Total effect Total effect

original −0.222∗∗ −0.086∗∗ −0.206∗∗

(0.034) (0.029) (0.048)
IQ

1 (highest) −0.222∗∗ −0.053 −0.124+

(0.140) (0.030) (0.057)
2 −0.160∗∗ −0.068+ −0.196∗∗

(0.058) (0.030) (0.049)
4 −0.225∗∗ −0.056 −0.204∗∗

(0.035) (0.031) (0.067)
5 −0.179∗∗ −0.055 −0.207∗∗

(0.041) (0.033) (0.053)
6 (lowest) −0.198∗∗ −0.081∗∗ −0.206∗∗

(0.039) (0.029) (0.048)
missing −0.220∗∗ −0.086∗∗ −0.208∗∗

(0.035) (0.029) (0.048)

other pathways other pathways other pathways

θ(1) θ(0) θ(1) θ(0) θ(1) θ(0)
original −0.060 −0.093+ 0.006 0.014 −0.127+ −0.097

(0.067) (0.045) (0.033) (0.039) (0.053) (0.070)
IQ

1 (highest) 0.061 −0.087 0.040 0.049 −0.044 −0.009
0.379) (0.130) (0.035) (0.041) (0.062) (0.099)

2 0.085 −0.028 0.023 0.032 −0.117+ −0.086
0.260) (0.063) (0.035) (0.041) (0.054) (0.074)

4 −0.064 −0.097+ 0.037 0.049 −0.125 −0.082
0.068) (0.045) (0.036) (0.046) (0.072) (0.202)

5 −0.010 −0.047 0.038 0.052 −0.128+ −0.095
0.093) (0.053) (0.037) (0.053) (0.059) (0.113)

6 (lowest) −0.033 −0.062 0.011 0.021 −0.127+ −0.097
0.074) (0.067) (0.033) (0.050) (0.053) (0.070)

missing −0.058 −0.091+ 0.006 0.014 −0.129+ −0.099
0.067) (0.045) (0.033) (0.039) (0.053) (0.070)

cognitive ability cognitive ability cognitive ability

η(0) η(1) η(0) η(1) η(0) η(1)
original −0.162+ −0.128+ −0.092+ −0.100+ −0.079 −0.109

(0.075) (0.056) (0.044) (0.048) (0.071) (0.085)
IQ

1 (highest) −0.283 −0.134 −0.092+ −0.102+ −0.081 −0.115
(0.405) (0.191) (0.046) (0.051) (0.084) (0.114)

2 −0.246 −0.132 −0.091+ −0.101+ −0.079 −0.110
(0.267) (0.086) (0.046) (0.051) (0.073) (0.088)

4 −0.161+ −0.129+ −0.093 −0.105 −0.079 −0.122
(0.076) (0.057) (0.047) (0.055) (0.098) (0.213)

5 −0.169 −0.132 −0.093 −0.107 −0.079 −0.111
(0.101) (0.067) (0.049) (0.062) (0.079) (0.125)

6 (lowest) −0.166+ −0.137 −0.092+ −0.102 −0.079 −0.109
(0.083) (0.077) (0.044) (0.058) (0.071) (0.085)

missing −0.161+ −0.129+ −0.092+ −0.100+ −0.079 −0.108
(0.076) (0.057) (0.044) (0.048) (0.071) (0.085)

Based on adding U to propensity score with probabilities of U from observed probabilities for each IQ value.
+p < 0.05 and ∗∗p < 0.01
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Next we search for the existence of ‘killer’-confounders, i.e. the existence of a set of
probabilities pij such that if U were observed the estimated effects would be driven to zero.
The reason for doing this is to assess the plausibility of the resulting configuration of U and
how comparable this is to the distribution of observed confounders. In order to reduce the
dimensionality of the characterisation of the ‘killer’-confounders we follow the suggestion of
Nannicini (2007) and fix the probability of Pr(U = 1) to 0.4 and the difference p11 − p10 to
zero. Now the simulated confounders U can be fully described by two differences d = p01−p00
and s = p1. − p0., with pi. = Pr(U = 1|D = i) = pi1 ·Pr(δ1 = 1|D = i)+ pi0 ·Pr(δ1 = 0|D = i)
for i = 0, 1, the fraction of individuals with U = 1 by education level. Nannicini (2007) argues
that d is an (inconsistent) measure of the effect of U on the outcome (mortality, censoring
probability) for the untreated (lower education level), while s is an (inconsistent) measure of
the selection into treatment (higher education level). Both d and s are inconsistent measures
because they do not account for the association between U and W , while our outcome effect,
Ω, selection effects, ξ and mediation effects ψ, account for this.

Table 6 reports the simulated total effect and its decomposition when the distribution of U
is defined by d, s with d, s = 0.1, . . . , 0.5.13 Indeed, by using these killer-confounders we do find
some large deviations from the original results for the impact of moving from primary to lower
vocational education, while the estimates for higher levels of education remain remarkably
stable. However these differences apply for combinations of d and s that lie well away from
the values implied by our observed confounders. Note that the largest values for d and s we
found when the distribution of U mimics the education-censoring distribution of the observed
variables was d = 0.03 and s = 0.06 when using the education-censoring distribution of the
highest IQ-level.

13The simulated outcome-, selection and mediation effects can be found in Table B.8 in Appendix B.
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Table 6: Sensitivity analysis characterizing ‘killer’ confounders (mediator): effect running
through cognitive ability and running through other pathways

Primary to lower vocational Lower vocational to lower secondary Lower secondary to higher
Total other pathways Total other pathways Total other pathways

effect θ(1) θ(0) effect θ(1) θ(0) effect θ(1) θ(0)

original −0.222∗∗ −0.060 −0.093+ −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.127+ −0.097
(0.034) (0.067) (0.045) (0.029) (0.033) (0.039) (0.048) (0.053) (0.070)

d = 0.1 & s = 0.1 −0.207∗∗ −0.043 −0.078 −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.127+ −0.097
(0.035) (0.068) (0.045) (0.029) (0.033) (0.039) (0.048) (0.053) (0.070)

d = 0.1 & s = 0.2 −0.175∗∗ −0.003 −0.046 −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.127+ −0.097
(0.037) (0.076) (0.046) (0.029) (0.033) (0.039) (0.048) (0.053) (0.071)

d = 0.1 & s = 0.3 −0.128∗∗ 0.057 0.001 −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.127+ −0.097
(0.040) (0.098) (0.050) (0.029) (0.033) (0.039) (0.048) (0.053) (0.071)

d = 0.1 & s = 0.4 −0.039 0.195 0.091 −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.126+ −0.096
(0.046) (0.142) (0.055) (0.029) (0.033) (0.039) (0.048) (0.053) (0.072)

d = 0.1 & s = 0.5 0.228∗∗ 0.637∗∗ 0.360∗∗ −0.086∗∗ 0.005 0.014 −0.206∗∗ −0.127+ −0.097
(0.052) (0.212) (0.062) (0.029) (0.033) (0.040) (0.048) (0.054) (0.073)

d = 0.2 & s = 0.1 −0.183∗∗ −0.018 −0.056 −0.082∗∗ 0.010 0.018 −0.208∗∗ −0.129+ −0.100
(0.035) (0.068) (0.045) (0.029) (0.033) (0.039) (0.048) (0.053) (0.071)

d = 0.2 & s = 0.2 −0.159∗∗ 0.011 −0.031 −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.127+ −0.097
(0.037) (0.071) (0.046) (0.029) (0.033) (0.039) (0.048) (0.053) (0.071)

d = 0.2 & s = 0.3 −0.082+ 0.108 0.047 −0.386∗∗ 0.006 0.014 −0.206∗∗ −0.127+ −0.097
(0.038) (0.083) (0.048) (0.029) (0.033) (0.039) (0.048) (0.053) (0.071)

d = 0.2 & s = 0.4 0.048 0.286∗∗ 0.177∗∗ −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.126+ −0.096
(0.040) (0.104) (0.050) (0.029) (0.033) (0.039) (0.048) (0.053) (0.072)

d = 0.2 & s = 0.5 0.253∗∗ 0.586∗∗ 0.382∗∗ −0.086∗∗ 0.005 0.014 −0.206∗∗ −0.127+ −0.097
(0.040) (0.119) (0.051) (0.029) (0.033) (0.040) (0.048) (0.054) (0.073)

d = 0.3 & s = 0.1 −0.149∗∗ 0.016 −0.025 −0.077∗∗ 0.014 0.023 −0.221∗∗ −0.142∗∗ −0.113
(0.036) (0.069) (0.046) (0.029) (0.033) (0.039) (0.049) (0.054) (0.073)

d = 0.3 & s = 0.2 −0.117∗∗ 0.056 0.009 −0.079∗∗ 0.012 0.021 −0.207∗∗ −0.128+ −0.098
(0.036) (0.071) (0.046) (0.029) (0.033) (0.039) (0.048) (0.053) (0.070)

d = 0.3 & s = 0.3 −0.069 0.117 0.059 −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.127+ −0.097
(0.036) (0.075) (0.047) (0.029) (0.033) (0.039) (0.048) (0.053) (0.071)

d = 0.3 & s = 0.4 0.084+ 0.314∗∗ 0.211∗∗ −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.126+ −0.096
(0.037) (0.082) (0.048) (0.029) (0.033) (0.039) (0.048) (0.053) (0.072)

d = 0.3 & s = 0.5 0.207∗∗ 0.488∗∗ 0.335∗∗ −0.086∗∗ 0.005 0.014 −0.206∗∗ −0.127+ −0.097
(0.038) (0.094) (0.049) (0.029) (0.033) (0.040) (0.048) (0.054) (0.073)

d = 0.4 & s = 0.1 −0.106∗∗ 0.059 0.014 −0.071+ 0.018 0.027 −0.245∗∗ −0.167∗∗ −0.139
(0.036) (0.070) (0.046) (0.029) (0.033) (0.039) (0.050) (0.055) (0.077)

d = 0.4 & s = 0.2 −0.061 0.113 0.061 −0.070+ 0.021 0.030 −0.216∗∗ −0.137+ −0.108
(0.036) (0.072) (0.047) (0.029) (0.033) (0.039) (0.048) (0.054) (0.071)

d = 0.4 & s = 0.3 −0.010 0.181 0.115+ −0.077∗∗ 0.014 0.023 −0.205∗∗ −0.126+ −0.096
(0.036) (0.074) (0.047) (0.029) (0.033) (0.039) (0.048) (0.053) (0.070)

d = 0.4 & s = 0.4 0.066 0.277∗∗ 0.193∗∗ −0.086∗∗ 0.006 0.014 −0.206∗∗ −0.126+ −0.096
(0.036) (0.074) (0.047) (0.029) (0.033) (0.039) (0.048) (0.05; ) (0.072)

d = 0.4 & s = 0.5 0.160∗∗ 0.408∗∗ 0.288∗∗ −0.086∗∗ 0.005 0.014 −0.206∗∗ −0.127+ −0.097
(0.037) (0.082) (0.048) (0.029) (0.033) (0.040) (0.048) (0.054) (0.073)

d = 0.5 & s = 0.1 −0.048 0.116 0.066 −0.063+ 0.024 0.033 −0.285∗∗ −0.207∗∗ −0.181+

(0.037) (0.071) (0.047) (0.030) (0.034) (0.040) (0.052) (0.058) (0.082)

d = 0.5 & s = 0.2 0.007 0.185+ 0.125∗∗ −0.058+ 0.031 0.041 −0.239∗∗ −0.160∗∗ −0.131
(0.037) (0.072) (0.047) (0.029) (0.034) (0.040) (0.049) (0.055) (0.074)

d = 0.5 & s = 0.3 0.069 0.263∗∗ 0.190∗∗ −0.063+ 0.028 0.038 −0.212∗∗ −0.133+ −0.104
(0.037) (0.073) (0.047) (0.029) (0.033) (0.039) (0.048) (0.053) (0.071)

d = 0.5 & s = 0.4 0.097∗∗ 0.303∗∗ 0.221∗∗ −0.077∗∗ 0.015 0.024 −0.205∗∗ −0.126+ −0.095
(0.036) (0.073) (0.047) (0.029) (0.033) (0.039) (0.048) (0.053) (0.071)

d = 0.5 & s = 0.5 0.110∗∗ 0.332∗∗ 0.238∗∗ −0.086∗∗ 0.005 0.014 −0.206∗∗ −0.127+ −0.097
(0.036) (0.076) (0.047) (0.029) (0.033) (0.040) (0.048) (0.054) (0.073)

Based on adding U to propensity score under the assumption that Pr(U = 1) = 0.4 and p11 − p10 = 0, the differences d = p01 − p00

and s = p1. − p0..
+p < 0.05 and ∗∗p < 0.01
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Table 6: Sensitivity analysis characterizing ‘killer’ confounders (continued)

Primary to lower vocational Lower vocational to lower secondary Lower secondary to higher
cognitive ability cognitive ability cognitive ability

η(0) η(1) η(0) η(1) η(0) η(1)
original −0.162+ −0.128+ −0.092+ −0.100+ −0.079 −0.109

(0.075) (0.056) (0.044) (0.048) (0.071) (0.085)

d = 0.1 & s = 0.1 −0.164+ −0.128+ −0.092+ −0.100+ −0.079 −0.109
(0.076) (0.057) (0.044) (0.048) (0.071) (0.085)

d = 0.1 & s = 0.2 −0.172+ −0.129+ −0.092+ −0.100+ −0.079 −0.109
(0.084) (0.059) (0.044) (0.048) (0.071) (0.085)

d = 0.1 & s = 0.3 −0.185 −0.129+ −0.092+ −0.100+ −0.079 −0.109
(0.106) (0.064) (0.044) (0.048) (0.072) (0.086)

d = 0.1 & s = 0.4 −0.233 −0.130 −0.092+ −0.100+ −0.079 −0.110
(0.150) (0.071) (0.044) (0.049) (0.072) (0.086)

d = 0.1 & s = 0.5 −0.409 −0.132 −0.092+ −0.100+ −0.079 −0.109
(0.219) (0.081) (0.044) (0.049) (0.072) (0.087)

d = 0.2 & s = 0.1 −0.165+ −0.127+ −0.091+ −0.100+ −0.079 −0.109
(0.077) (0.057) (0.044) (0.048) (0.071) (0.085)

d = 0.2 & s = 0.2 −0.170+ −0.128+ −0.092+ −0.100+ −0.079 −0.109
(0.080) (0.059) (0.044) (0.048) (0.071) (0.085)

d = 0.2 & s = 0.3 −0.190+ −0.128+ −0.092+ −0.100+ −0.079 −0.109
(0.091) (0.061) (0.044) (0.048) (0.072) (0.086)

d = 0.2 & s = 0.4 −0.238+ −0.128+ −0.092+ −0.100+ −0.079 −0.110
(0.111) (0.064) (0.044) (0.049) (0.072) (0.086)

d = 0.2 & s = 0.5 −0.333∗∗ −0.129+ −0.092+ −0.100+ −0.079 −0.109
(0.125) (0.065) (0.044) (0.049) (0.072) (0.087)

d = 0.3 & s = 0.1 −0.166+ −0.124+ −0.091+ −0.099+ −0.079 −0.108
(0.078) (0.058) (0.044) (0.049) (0.073) (0.087)

d = 0.3 & s = 0.2 −0.172+ −0.126+ −0.091+ −0.100+ −0.079 −0.109
(0.080) (0.058) (0.044) (0.048) (0.071) (0.085)

d = 0.3 & s = 0.3 −0.186+ −0.128+ −0.092+ −0.100+ −0.079 −0.109
(0.083) (0.059) (0.044) (0.048) (0.072) (0.086)

d = 0.3 & s = 0.4 −0.231∗∗ −0.128+ −0.092+ −0.100+ −0.079 −0.110
(0.090) (0.051) (0.044) (0.049) (0.072) (0.086)

d = 0.3 & s = 0.5 −0.281∗∗ −0.128+ −0.092+ −0.100+ −0.079 −0.109
(0.101) (0.062) (0.044) (0.049) (0.072) (0.087)

d = 0.4 & s = 0.1 −0.165+ −0.120+ −0.089+ −0.098+ −0.079 −0.109
(0.079) (0.059) (0.044) (0.049) (0.075) (0.091)

d = 0.4 & s = 0.2 −0.174+ −0.123+ −0.091+ −0.100+ −0.079 −0.108
(0.081) (0.059) (0.044) (0.049) (0.072) (0.086)

d = 0.4 & s = 0.3 −0.191+ −0.125+ −0.091+ −0.100+ −0.079 −0.109
(0.082) (0.059) (0.044) (0.048) (0.071) (0.085)

d = 0.4 & s = 0.4 −0.212+ −0.127+ −0.092+ −0.100+ −0.079 −0.110
(0.083) (0.059) (0.044) (0.049) (0.072) (0.086)

d = 0.4 & s = 0.5 −0.248∗∗ −0.127+ −0.092+ −0.100+ −0.079 −0.109
(0.090) (0.061) (0.044) (0.049) (0.072) (0.087)

d = 0.5 & s = 0.1 −0.154 −0.114 −0.087 −0.096+ −0.078 −0.104
(0.080) (0.060) (0.045) (0.049) (0.078) (0.097)

d = 0.5 & s = 0.2 −0.178+ −0.118+ −0.089+ −0.099+ −0.079 −0.107
(0.081) (0.060) (0.045) (0.049) (0.074) (0.089)

d = 0.5 & s = 0.3 −0.194+ −0.121+ −0.091+ −0.101+ −0.079 −0.108
(0.082) (0.060) (0.044) (0.049) (0.072) (0.086)

d = 0.5 & s = 0.4 −0.206+ −0.124+ −0.092+ −0.100+ −0.079 −0.109
(0.082) (0.059) (0.044) (0.049) (0.072) (0.086)

d = 0.5 & s = 0.5 −0.222∗∗ −0.127+ −0.092+ −0.100+ −0.079 −0.109
(0.084) (0.050) (0.044) (0.049) (0.072) (0.087)

Based on adding U to propensity score under the assumption that Pr(U = 1) = 0.4 and p11 − p10 = 0, the differences
d = p01 − p00 and s = p1. − p0..

+p < 0.05 and ∗∗p < 0.0120



3.5 Implied gain in life-expectancy

From the Gompertz-hazards we can estimate the median survival age of the recruits and their
post 18 life expectancy. The median survival age is the age at which half of the people have
died (conditional on survival up to age 18). Assuming that the estimated Gompertz hazard
holds, the life expectancy at age t0 = 18 can be very well approximated by (see Lenart (2014)):

LE(t0) = − exp
(

eα0+α1t0
)

(α0 − ln(α1) + α1t0 + 0.5772)/α1 (10)

where 0.5772 is the Euler constant. For the unadjusted Gompertz model the estimated re-
maining life expectancies are 59.8 (primary); 62.6 (lower vocational); 63.7 (lower secondary)
(64.2 based on last two education groups) and 66.7 (higher). Leading to educational gains
of 2.8, 1.0 and 2.5 in life expectancy. The median survival ages are 80.1 (primary); 82.9
(lower vocational); 84.1 (lower secondary) (84.6) and 87.1 (higher). Thus leading to the same
educational gains.

In Table 7 we report the gains in life expectancy. The lower panel of Table 7 reports
the gains in life expectancy based on the mediation analysis and decomposes the effects of
education into an effect running through cognitive ability and an effect running through other
pathways. Based on the IPW estimates we can conclude that if an individual had improved
his education from primary to lower vocational he would have gained 2.5 additional years (and
his median age also would have improved by 2.5 years), of which 1.8 years are attributable to
cognitive ability and 0.7 years to other changes induced by other pathways. If an individual
had improved from lower vocational to lower secondary the gain in life expectancy is 1.0 year
(1.1 attributable to cognitive ability and an negative impact of other pathways). The gain in
life expectancy if an individual had improved his education from lower secondary to higher
education is 2.2 years. For those who attained higher education this gain in life expectancy is
mainly attributable to the other pathways (1.2 years), while for those with lower secondary
education the effect running through cognitive ability is larger (1.3 years) than effect running
through other pathways.

Table 7: Gain in life expectancy

Primary to Lower vocational to Lower secondary to
lower vocational lower secondary higher

Unadjusted 2.8 1.0 2.5

IPW mediation

total 2.5 1.0 2.2
Other pathways

θ(1) 0.7 −0.1 1.3
θ(0) 1.1 −0.2 1.0
Cognitive ability

η(0) 1.8 1.1 0.9
η(1) 1.5 1.1 1.2
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4 Discussion

A large literature documents that higher levels of education are positively associated with a
longer life. Possible mechanisms include occupational risks, health behavior, the ability to
process information and cognitive ability (Cutler and Lleras-Muney 2008). It is commonly
acknowledged that education and cognitive ability are correlated. Cognitive ability may cause
differences in educational outcomes or education may cause differences in cognitive ability.
Most of the economics literature on the causal effect of education on health focuses on ac-
counting for endogenous selection into education due to confounding factors, such as cognitive
ability, either by exploiting natural experiments in education due to changes in compulsory
schooling laws (Mazumder 2012) or by defining a structural model (Conti et al. 2010; Bij-
waard et al. 2015). The estimates based on natural experiments find little to no effect of
education on health, while the studies based on structural models find that around half of
the difference in health by education is due to selection. An alternative perspective is that
cognitive ability is part of the causal pathway from education to mortality. For instance, it
has been proven that high scores on intelligence tests are positively associated with schooling
level, (Ceci 1991; Hansen et al. 2004; Carlsson et al. 2015).

We assume that IQ measured at age 18 is affected by educational attainment and has a
mediating effect on the mortality difference across education groups. We developed an inverse
probability weighting (IPW) method for hazard models to estimate the impact of education
on the mortality rate. We use conscription data of Dutch men born between 1944-1947 who
were examined for military service between 1961-1965, and linked to national death records,
in which we identified four education groups. Using the IPW methods we estimate, for each
adjacent education group, the impact of improving education on the mortality risk. We
decompose the impact of education into an effect running through cognitive ability and an
effect running through other pathways.

The results show that controlling for cognitive ability, as a mediating factor, leaves only
limited evidence of an educational gain in mortality. When accounting for cognitive ability
as a mediator in the causal pathway from education to mortality we find that cognitive
ability plays an important role in explaining the educational gradient. For men with primary
school we find that the effect of education running through an increase in cognitive ability
significantly reduces the mortality risk (about 15% reduction in the mortality rate), which is
equivalent to 1.6 years longer life expectancy. For the middle group, with lower vocational
education, cognitive ability explains most of the educational gradient of a 10% reduction in the
mortality rate. For the highest education group, only the effect of education running through
other pathways, such as income effects of education, is significant (about 13% reduction in
the mortality rate), leading to 1.3 additional years of life.

A limitation of our data, based on military entrance examination, is that we only observe
men and no information on women is available. Bijwaard et al. (2015) found that educational
gains for women appear to be higher than for men, in spite of the higher survival difference
of women with lower versus higher education. These findings are based on much smaller
numbers than the current study however and therefore need to be interpreted with caution.
Another issue is that in the 1960s a major change occurred in the education system in the
Netherlands and some of the specific education strata in this study no longer exist. In addi-
tion, the percentage of people with more than six years of post-primary school education is
currently much higher compared to the past. These changes are not likely to affect our gene-
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ral conclusion that increased education only has a small effect on survival, but further long
term studies will be needed to quantify these effects for contemporary school types. The issue
of reverse causality that early childhood health affects educational attainment might distort
our analyses (Case et al. 2005; Currie 2009). We have limited information about childhood
health status. However, adding health measurements from the military examination to the
propensity score did not change our conclusion that education has only limited impact on
mortality.
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Appendix A Counting processes and proofs

To prove the consistency and the properties of our estimation strategy we rely on counting
process theory for duration models. In a Mixed Proportional Hazard (MPH) model the
waiting time to some event T has a conditional distribution given observed X, treatment D,
mediator Q and unobserved heterogeneity V with hazard rate

λ(t|D,X,Q, V ) = V λ0(t) exp(β
′X + γD), (A.1)

The cdf and pdf of the distribution of the duration T can be expressed as functions
of the hazard rate. The counting process approach has increasingly become the standard
framework for analysing duration data and Andersen et al. (1993) have provided an excellent
survey of this literature. Less technical surveys have been given by Klein and Moeschberger
(1997), Therneau and Grambsch (2000), and Aalen et al. (2009). The main advantage of this
framework is that it allows us to express the duration distribution as a regression model with
an error term that is a martingale difference. Regression models with martingale difference
errors are the basis for inference in time series models with dependent observations. Hence, it
is not surprising that inference is much simplified by using a similar representation in duration
models.

To start the discussion, we first introduce some notation. A counting process {N(t); t ≥ 0}
is a stochastic process describing the number of events in the interval [0, t] as time proceeds.
The process contains only jumps of size +1. For single duration data, the event can only
occur once, because the units are observed until the event occurs. Therefore we introduce
the observation indicator Y (t) = I(T ≥ t) that equal to 1 if the unit is under observation
at time t and zero after the event has occurred. The counting process is governed by its
random intensity process Y (t)λ(t), with λ(t) is the hazard in (A.1). If we consider a small
interval (t− dt, t] of length dt, then Y (t)λ(t) is the conditional probability that the increment
dN(t) = N(t)−N(t− dt) jumps in that interval given all that has happened until just before
t. By specifying the intensity as the product of this observation indicator and the hazard rate
we effectively limit the number of occurrences of the event to one. It is essential that the
observation indicator only depends on events up to time t.

Usually, some of the observations are right-censored T̃ = min(T,Cr). By defining the
observation indicator as the product of the indicator I(t ≤ T ) and, if necessary, an indicator of
the observation plan, we capture when a unit is at risk for the event. A related concept is left-
truncation. Left truncation occurs when individuals are only observed conditional on survival
up till some duration Cl, the age of military examination in our application. In the case of
right censoring and left-truncation the at-risk indicator: Y (t) = I(t ≤ T )I(t ≤ Cr)I(t ≥ Cl).
We assume that Cr, Cl and T are conditionally independent given X. The history up to t,
Y (t) is assumed to be a left continuous function of t. The history of the whole process also
includes the (history of the) the covariates, treatment and mediator. Thus, we have

Pr
(

dN(t) = 1|Y (t),D,X,Q, V
)

= Y (t)λ(t|X,D,Q, V ) (A.2)

A fundamental result in the theory of counting processes, the Doob-Meyer decomposition14 ,

14Doob (1953) published the Doob decomposition theorem which gives a unique decomposition for certain
discrete time martingales. Meyer (1963) proved a continuous time version of the theorem, which became known
as the Doob-Meyer decomposition. Both Andersen et al. (1993) and Aalen et al. (2009) provide a thorough
discussion of this theorem.
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allows us to write
dN(t) = Y (t)λ(t|X(t)D,X,Q)dt+ dM(t) (A.3)

with M(t), t ≥ 0 a martingale with conditional mean and variance

E
(

dM(t)|Y (t),D,X,Q
)

= 0 (A.4)

Var
(

dM(t)|Y (t),D,X,Q
)

= Y (t)λ(t|D,X,Q, V )dt (A.5)

The (conditional) mean and variance of the counting process are equal, so that the disturban-
ces in (A.3) are heteroscedastic. The probability in (A.2) is 0, if the unit is no longer under
observation. A counting process can be considered as a sequence of Bernoulli experiments
because, if dt is small, (A.4) and (A.5) give the mean and variance of a Bernoulli random
variable. The relation between the counting process and the sequence of Bernoulli experi-
ments is given in (A.3), which can be considered as a regression model with an additive error
that is a martingale difference. This equation resembles a time-series regression model. The
Doob-Meier decomposition is the key to the derivation of the distribution of the estimators,
because the asymptotic behavior of partial sums of martingales is well-known.

We begin with a proof of the unbiased of the inverse probability weighted Gompertz PH-
model estimator given in equation (3). This applies for the model in which the hazard function
does not include a mediator Q.

Proof of equation (3): IPW Gompertz is unbiased

In a parametric PH model the log-likelihood in counting process notation is (Andersen and
Borgan 1985):

lnLi =

∫

[

lnλ0(ti;α) + γDi

]

dN(ti)−

∫ 1

0
Yi(s)λ0(s;α)e

γDi ds (A.6)

where λ0(t;α) is the baseline hazard with parameters α, e.g. for a Gompertz baseline hazard
λ0(t;α) = eα0+α1t. Standard maximum likelihood estimation solves the roots of the derivatives
of the log-likelihood:

Lα(θ) =

N
∑

i=1

[

∫

∂λ0(ti;α)/∂α

λ0(ti;α)
dN(ti)−

∫ 1

0
Yi(s)

∂λ0(s;α)
∂α eγDi ds

]

(A.7)

Uγ(θ) =

N
∑

i=1

[

∫

Di dN(ti)−Di

∫ 1

0
Yi(s)λ0(s;α)e

γDi ds
]

(A.8)

with θ = (α, γ)′ and Lα(θ) and Lγ(θ) are the gradients of the log-likelihood w.r.t. α and
γ. The IPW version includes the weights W in equation (A.7) and (A.8). Because our main
parameter of interest is γ we only focus on Lγ(θ).

First we derive E
[

WDdN(t)
]

. Redefine the propensity score p(d) = Pr(Di = d|Xi), with
d = 0, 1. Note that the integral of the sum is equal to the sum of the integrals. First, we
derive E[WDdN(t)] and E[

∑

Y (t)λ0(t;α)e
γDWD].

E
[

WDdN(t)
]

= E
[

λ(t|D,X)S(t|D,X)WDdt
]

=

∫

∑

d

p(d)E
[

f(t|D = d,X = x)
d

p(d)

]

dtfX(x)dx (A.9)

= f(t|D = 1)dt
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E
[

∑

Y (t)Wλ0(t;α)e
γDD

]

= E
[

λ0(t;α)e
γDS(t|D,X)WD

]

(A.10)

=

∫

∑

d

p(d)E
[

λ0(t;α)e
γDS(t|D = d,X = x)

deγd

p(d)

]

fX(x)dx

= eγλ0(t;α)S(t|D = 1)

= f(t|D = 1)

From (A.9) we have E[WDdN(t)] = f(t|D = 1)dt. Thus, if we assume the right parametric
model this implies that Lγ(θ) has zero mean.

Proof of equation (3): IPW Gamma-Gompertz is unbiased

In a MPH model with a parametric baseline hazard and a unit-mean Gamma-distributed
unobserved heterogeneity with variance σ2 the (unconditional) hazard is:

λ(t|D) =
λ0(t;α)e

γD

1 + σ2
∫ t
0 λ0(s;α)e

γD ds

and the likelihood (in counting process notation) is:

Li =
[ λ0(t;α)e

γD

1 + σ2
∫

Yi(s)λ0(s;α)eγD ds

]dNi(t)[

1 + σ2
∫

Yi(s)λ0(s;α)e
γD ds

]−1/σ2

(A.11)

IPW solves the roots of the weighted derivatives of the log-likelihood. The weighted derivative
w.r.t. γ is:

Lγ(θ) =
N
∑

i=1

[

∫

WiDi

1 + σ2
∫

Yi(s)λ0(s;α)eγD ds
dNi(t)−

WiDi

∫

Yi(t)λ0(t;α)e
γD dt

1 + σ2
∫

Yi(s)λ0(s;α)eγD ds

]

(A.12)

To prove (3) we use similar reasoning as above. First, we derive

E
[ WD

1 + σ2
∫

Y (s)λ0(s;α)eγD ds
dN(t)

]

= E
[ WDλ0(t;α)e

γDY (t)dt

1 + σ2
∫ t
0 λ0(s;α)e

γD ds

]

(A.13)

=

∫

∑

d

p(d)E
[λ0(t;α)e

γDS(t|D = d,X = x)

1 + σ2
∫ t
0 λ0(s;α)e

γD ds

deγd

p(d)

]

dtfX(x)dx

=
λ0(t;α)e

γD

1 + σ2
∫ t
0 λ0(s;α)e

γD ds
S(t|D = 1)dt

= f(t|D = 1)dt

and

E
[

∑ WDY (t)λ0(t;α)e
γD

1 + σ2
∫

Y (s)λ0(s;α)eγD ds

]

= (A.14)

=

∫

∑

d

p(d)E
[λ0(t;α)e

γDS(t|D = d,X = x)

1 + σ2
∫ t
0 λ0(s;α)e

γD ds

deγd

p(d)

]

fX(x)dx

= f(t|D = 1)
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Thus, if we assume the right parametric model for the baseline hazard and a Gamma distri-
bution for the unobserved heterogeneity (A.13) has mean zero.15

We now turn our attention to specifications that include a mediator Q and provide a proof
for Theorem 1 on the identification of the decomposition.

Proof Theorem 1 and equation (5):

The direct effect θ(d) solves E
[

L(θ(d))
]

= 0 with L(θ(d)) as in (A.12) with Wi =Wi(d).

E
[ W (d)D

1 + σ2
∫

Y (s)λ0(s;α)eθ(d)D ds
dN(t)

]

= E
[W (d)Dλ0(t;α)e

θ(d)DY (t)dt

1 + σ2
∫ t
0 λ0(s;α)e

θ(d)D ds

]

=

∫

E
[λ0(t;α)e

θ(d)S(t|D = 1, Q = q,X = x)

1 + σ2
∫ t
0 λ0(s;α)e

θ(d) ds

Pr(D = d|Q,X)fQ(q|x)

Pr(D = d|X)

]

dqfX(x)dx

=
λ0(t;α)e

θ(d)

1 + σ2
∫ t
0 λ0(s;α)e

θ(d) ds
S(t|D = 1, Q(d))dt = f(t|D = 1Q(d))dt (A.15)

and

E
[

∑ W (d)DY (t)λ0(t;α)e
θ(d)D

1 + σ2
∫

Y (s)λ0(s;α)eθ(d)D ds

]

=

=

∫

E
[λ0(t;α)e

θ(d)S(t|D = 1, Q = q,X = x)

1 + σ2
∫ t
0 λ0(s;α)e

θ(d) ds

Pr(D = d|Q,X)fQ(q|x)

Pr(D = d|X)

]

fX(x)dx

= f(t|D = 1, Q(d)) (A.16)

15The proof for any other MPH model with known functional form of the baseline hazard and given distri-
bution of the unobserved heterogeneity is essentially the same.
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Appendix B Additional Tables and Figures

Table B.1: Sample distribution by education level (selection for unknown mortality status)

mortality status
unknown known difference

Education level :
Primary 12.3 14.4 −2.1+

(0.7) (0.2) (0.7)
Lower vocational 32.5 36.6 −4.2+

(1.0) (0.2) (1.0)
Lower secondary 35.7 33.0 2.7+

(0.7) (0.2) (1.0)
Higher 19.6 16.1 3.5+

(0.7) (0.2) (0.8)

Birth order 2.35 2.41 0.06
(0.01) (0.03) (0.03)

Region of birth:
North 6.1 3.7 2.4+

(0.7) (0.2) (0.4)
South 4.6 6.2 −1.6+

(0.7) (0.2) (0.5)
East 2.9 4.7 −1.8+

(0.7) (0.2) (0.4)
North-Holland 30.2 34.5 −4.3+

(0.7) (0.2) (1.0)
South-Holland 34.7 42.8 −8.0+

(0.7) (0.2) (1.0)
Utrecht 21.6 8.3 13.3+

(0.7) (0.2) (0.6)

+p < 0.05
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Table B.1: (continued)

mortality status
unknown known difference

Religion:
Catholic 34.4 32.8 1.6

(0.7) (0.2) (1.0)
Dutch Reformed 30.5 30.2 0.3

(0.7) (0.2) (0.9)
Calvin 6.5 7.6 −1.0

(0.7) (0.2) (0.5)
Other religion 1.8 0.7 1.1+

(0.7) (0.2) (0.2)
No religion 26.7 28.7 −2.0

(0.7) (0.2) (1.2)

Father’s occupation:
Professional 21.2 16.7 4.5+

(0.7) (0.2) (0.8)
White collar 28.5 28.3 0.2

(0.7) (0.2) (0.5)
Self-employed 6.1 6.5 −0.4

(0.7) (0.2) (0.9)
Skilled 25.0 26.9 −2.8+

(0.7) (0.2) (0.9)
Unskilled 9.6 12.4 −2.8+

(0.7) (0.2) (0.7)
Unknown 10.5 9.1 1.4

(0.7) (0.2) (0.8)

Global comprehensive IQ score:
1 (highest) 21.3 17.6 3.6+

(0.7) (0.2) (0.8)
2 33.4 32.5 0.9

(0.7) (0.2) (1.0)
3 20.2 20.6 −0.4

(0.7) (0.2) (0.8)
4 12.1 14.9 −2.8+

(0.7) (0.2) (0.7)
5 8.9 10.1 −1.2

(0.7) (0.2) (0.6)
6 (lowest) 1.6 2.0 −0.4

(0.7) (0.2) (0.3)
missing 2.6 2.3 0.3

(0.7) (0.2) (0.3)

Sample size 2,626 39,803 42,303

+p < 0.05
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Table B.2: Probit estimates of propensity scores, pairwise comparisons

Primary to Lower vocational to Lower secondary to
lower vocational lower secondary higher

Father’s occupation:
Professional −0.244∗∗ 0.154∗∗ 0.463∗∗

Self-employed −0.367∗∗ −0.040 −0.282∗∗

Clerical − − −
Skilled −0.405∗∗ −0.392∗∗ −0.584∗∗

Unskilled −0.590∗∗ −0.447∗∗ −0.620∗∗

Missing −0.473∗∗ −0.309∗∗ −0.214∗∗

Family size 0.222∗∗ 0.186∗∗ 0.007
Born in Utrecht −0.255∗∗ 0.048 0.079+

Religion:
Catholic −0.077∗∗ −0.053 0.044
Dutch Reformed 0.163∗∗ −0.021 −0.049
Calvinist 0.436∗∗ 0.035 0.028
Other religion 0.016 0.213+ 0.088
None − − −
Famine exposure:
postnatal 0.025 0.142∗∗ 0.003
third trimester 0.048 0.041 −0.032
second trimester −0.033 0.068∗∗ −0.054
first trimester −0.043 0.048 0.042
just before conception −0.029 0.158∗∗ −0.017

+p < 0.05 and ∗∗p < 0.01
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Table B.3: Probit estimates of propensity scores, pairwise comparisons including IQ

Primary to Lower vocational to Lower secondary to
lower vocational lower secondary higher

Father’s occupation:
Professional −0.236∗∗ 0.138∗∗ 0.477∗∗

Self-employed −0.328∗∗ 0.040 −0.181∗∗

Clerical − − −
Skilled −0.277∗∗ −0.300∗∗ −0.512∗∗

Unskilled −0.387∗∗ −0.292∗∗ −0.479∗∗

Missing −0.277∗∗ −0.205∗∗ −0.139∗∗

Family size 0.166∗∗ 0.178∗∗ 0.082+

Born in Utrecht −0.136∗∗ 0.117∗∗ 0.139∗∗

Religion:
Catholic −0.112∗∗ −0.054∗∗ 0.068+

Dutch Reformed 0.163∗∗ −0.027 −0.051
Calvinist 0.326∗∗ −0.036 −0.011
Other religion 0.031 0.259∗∗ 0.287∗∗

None − − −
Famine exposure:
postnatal −0.086∗∗ 0.093∗∗ −0.027
third trimester −0.020 0.004 −0.061+

second trimester −0.108∗∗ 0.019 −0.106∗∗

first trimester −0.127∗∗ 0.009 0.028
just before conception −0.152∗∗ 0.093∗∗ −0.051
Comprehensive IQ :
1 (highest) 1.316∗∗ 0.884∗∗ 1.525∗∗

2 0.581∗∗ 0.556∗∗ 0.779∗∗

3 − − −
4 −0.585∗∗ −0.453∗∗ −0.388∗∗

5 −1.263∗∗ −0.838∗∗ −0.472∗∗

6 (lowest) −2.076∗∗ −0.944∗∗ 0.054
missing −0.866∗∗ 0.412∗∗ 1.028∗∗

+p < 0.05 and ∗∗p < 0.01
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Table B.4: Impact of education on the mortality rate and its decomposition using an IPW
Gompertz-gamma MPH, IPW accounting for selective unknown status

Total other pathways cognitive ability

θ(1) θ(0) η(0) η(1)

Primary to −0.223∗∗ −0.061 −0.093+ −0.162+ −0.130+

lower vocational (0.034) (0.066) (0.045) (0.075) (0.056)
Lower vocational to −0.086∗∗ 0.006 0.016 −0.091+ −0.102+

lower secondary (0.029) (0.033) (0.039) (0.044) (0.048)
Lower secondary to −0.206∗∗ −0.127+ −0.098 −0.079 −0.107

higher (0.048) (0.053) (0.069) (0.071) (0.084)

+p < 0.05 and ∗∗p < 0.01
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Table B.5: Sensitivity analysis : outcome, selection and mediator effects
Primary to lower vocational Lower vocational to lower secondary Lower secondary to higher
ω ξ ψ ω ξ ψ ω ξ ψ

Father’s occupation:

Professional −0.147 0.169+ −0.064 −0.026 0.592∗∗ −0.180∗∗ −0.062 1.106∗∗ −0.547∗∗

(0.140) (0.077) (0.059) (0.089) (0.049) (0.044) (0.079) (0.050) (0.044)
Self-employed 0.106 −0.033 0.015 0.102 0.211∗∗ −0.061 0.022 −0.421∗∗ 0.116

(0.155) (0.091) (0.072) (0.108) (0.070) (0.062) (0.120) (0.098) (0.073)
Skilled −0.010 −0.205∗∗ 0.071 −0.088 −0.510∗∗ 0.145∗∗ 0.001 −1.089∗∗ 0.264∗∗

(0.082) (0.048) (0.039) (0.060) (0.039) (0.032) (0.072) (0.071) (0.048)
Unskilled 0.074 −0.523∗∗ 0.200∗∗ 0.016 −0.531∗∗ 0.155∗∗ 0.059 −1.050∗∗ 0.250∗∗

(0.097) (0.058) (0.047) (0.076) (0.054) (0.044) (0.100) (0.110) (0.070)
Missing −0.006 −0.229∗∗ 0.091 0.290∗∗ −0.212∗∗ 0.068 0.149 −0.300∗∗ 0.082

(0.145) (0.055) (0.072) (0.102) (0.075) (0.067) (0.133) (0.116) (0.059)
Family size 0.176 0.333∗∗ −0.105 0.178 0.277∗∗ −0.023 0.102 −0.080 0.029

(0.166) (0.099) (0.070) (0.101) (0.066) (0.064) (0.109) (0.084) (0.058)

Born in Utrecht 0.246+ −0.413∗∗ 0.164+ 0.203+ 0.087 −0.125+ 0.177 0.143 −0.037
(0.121) (0.079) (0.065) (0.098) (0.065) (0.064) (0.109) (0.082) (0.070)

Religion:
Catholic 0.011 −0.334∗∗ 0.117∗∗ −0.113 −0.110∗∗ 0.168∗∗ 0.000 0.052 −0.021

(0.080) (0.047) (0.039) (0.060) (0.037) (0.030) (0.069) (0.048) (0.042)

Dutch Reformed −0.014 0.278∗∗ −0.098+ 0.032 0.013 −0.011 0.051 −0.052 0.010
(0.094) (0.053) (0.040) (0.060) (0.037) (0.031) (0.067) (0.049) (0.042)

Calvinist −0.216 0.808∗∗ −0.244∗∗ −0.012 0.127+ −0.327∗∗ −0.233 0.082 −0.028
(0.236) (0.111) (0.068) (0.103) (0.064) (0.057) (0.127) (0.079) (0.068)

Other religion −0.050 −0.009 0.019 −0.022 0.381 −0.289 −0.320 0.261 −0.071
(0.548) (0.309) (0.241) (0.361) (0.225) (0.170) (0.448) (0.235) (0.197)

Famine exposure:

postnatal 0.109 0.053 −0.017 0.142+ 0.147∗∗ −0.041 0.157+ −0.026 0.010
(0.107) (0.062) (0.046) (0.069) (0.044) (0.038) (0.079) (0.058) (0.049)

third trimester 0.177 0.089 −0.030 0.097 0.099+ −0.030 0.064 −0.083 0.024
(0.106) (0.062) (0.046) (0.069) (0.043) (0.038) (0.082) (0.059) (0.050)

second trimester 0.115 −0.060 0.023 0.106 0.051 −0.015 0.050 −0.063 0.020
(0.109) (0.065) (0.049) (0.075) (0.048) (0.041) (0.090) (0.062) (0.052)

first trimester 0.108 −0.123 0.046 0.053 0.145∗∗ −0.044 0.006 0.111 −0.032
(0.125) (0.076) (0.061) (0.091) (0.058) (0.050) (0.104) (0.072) (0.061)

pre-conception −0.046 −0.050 0.015 −0.065 0.208∗∗ −0.067 −0.102 0.050 −0.018
(0.113) (0.063) (0.048) (0.077) (0.045) (0.039) (0.087) (0.060) (0.050)

Comprehensive IQ

1 (highest) −1.280 3.962∗∗ −0.508∗∗ −0.393∗∗ 1.292∗∗ −0.376∗∗ −0.188+ 1.557∗∗ −0.494∗∗

(4.701) (0.607) (0.079) (0.131) (0.059) (0.046) (0.087) (0.050) (0.041)

2 −0.359 2.296∗∗ −0.522∗∗ −0.118+ 0.883∗∗ −0.268∗∗ −0.065 −0.419∗∗ 0.118∗∗

(0.250) (0.103) (0.042) (0.063) (0.036) (0.031) (0.065) (0.047) (0.037)

4 −0.131 −0.298∗∗ 0.107+ 0.098 −1.326∗∗ 0.354∗∗ 0.267+ −2.508∗∗ 0.400∗∗

(0.090) (0.052) (0.042) (0.063) (0.056) (0.040) (0.109) (0.240) (0.082)

5 0.151 −1.709∗∗ 0.701∗∗ 0.179+ −1.959∗∗ 0.444∗∗ 0.426 −2.804∗∗ 0.406+

(0.080) (0.055) (0.047) (0.084) (0.103) (0.061) (0.216) (0.586) (0.176)

6 (lowest) 0.159 −2.772∗∗ 1.045∗∗ 0.335 −2.190∗∗ 0.460+ 0.275 −0.913 0.358
(0.120) (0.153) (0.085) (0.268) (0.461) (0.218) (2.611) (1.137) (0.771)

missing 0.206 −0.612∗∗ 0.249+ −0.064 0.326∗∗ −0.092 0.143 0.245 −0.064
(0.216) (0.136) (0.125) (0.230) (0.123) (0.106) (0.201) (0.136) (0.127)

Based on adding U to propensity score with probabilities of U from observed probabilities for each covariate.
No effect would give ω = 0, ξ = 0 and ψ = 0. +p < 0.05 and ∗∗p < 0.01
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Table B.6: Sensitivity analysis total effect

Primary to Lower vocational to Lower secondary to
lower vocational lower secondary higher

original −0.222∗∗ −0.086∗∗ −0.206∗∗

(0.034) (0.029) (0.048)
Father’s occupation:
Professional −0.220∗∗ −0.083∗∗ −0.200∗∗

(0.034) (0.029) (0.052)
Self-employed −0.221∗∗ −0.087∗∗ −0.204∗∗

(0.034) (0.029) (0.045)
Skilled −0.223∗∗ −0.085∗∗ −0.189∗∗

(0.035) (0.029) (0.054)
Unskilled −0.218∗∗ −0.082∗∗ −0.195∗∗

(0.036) (0.029) (0.051)
Missing −0.220∗∗ −0.084∗∗ −0.204∗∗

(0.034) (0.029) (0.048)
Family size −0.225∗∗ −0.088∗∗ −0.205∗∗

(0.034) (0.029) (0.048)
Born in Utrecht −0.214∗∗ −0.087∗∗ −0.208∗∗

(0.035) (0.029) (0.048)
Religion:
Catholic −0.224∗∗ −0.087∗∗ −0.207∗∗

(0.036) (0.029) (0.048)
Dutch Reformed −0.222∗∗ −0.086∗∗ −0.206∗∗

(0.036) (0.029) (0.048)
Calvinist −0.217∗∗ −0.085∗∗ −0.205∗∗

(0.036) (0.029) (0.048)
Other religion −0.222∗∗ −0.085∗∗ −0.205∗∗

(0.034) (0.029) (0.048)
Famine exposure:
postnatal −0.222∗∗ −0.089∗∗ −0.206∗∗

(0.034) (0.029) (0.048)
third trimester −0.224∗∗ −0.087∗∗ −0.206∗∗

(0.034) (0.029) (0.048)
second trimester −0.221∗∗ −0.088∗∗ −0.206∗∗

(0.034) (0.029) (0.048)
first trimester −0.221∗∗ −0.086∗∗ −0.206∗∗

(0.034) (0.029) (0.048)
pre-conception −0.222∗∗ −0.083∗∗ −0.206∗∗

(0.034) (0.029) (0.048)

Based on adding U to propensity score with probabilities of U from observed probabilities
for observed variables. +p < 0.05 and ∗∗p < 0.01
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Table B.7: Sensitivity analysis (mediator): effect running through cognitive ability and running through other pathways

Primary to lower vocational Lower vocational to lower secondary Lower secondary to higher
other pathways cognitive ability other pathways cognitive ability other pathways cognitive ability

θ(1) θ(0) η(0) η(1) θ(1) θ(0) η(0) η(1) θ(1) θ(0) η(0) η(1)

original −0.060 −0.093+ −0.162+ −0.128+ 0.006 0.014 −0.092+ −0.100+ −0.127+ −0.097 −0.079 −0.109
(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)

Father’s occupation:
Professional −0.058 −0.092+ −0.163+ −0.128+ 0.009 0.017 −0.092+ −0.100+ −0.120+ −0.091 −0.080 −0.109

(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.049) (0.057) (0.081) (0.077) (0.096)
Self-employed −0.059 −0.093+ −0.162+ −0.128+ 0.005 0.013 −0.092+ −0.100+ −0.125+ −0.095 −0.079 −0.109

(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.048) (0.053) (0.071) (0.072) (0.086)
Skilled −0.061 −0.094+ −0.162+ −0.129+ 0.007 0.016 −0.092+ −0.100+ −0.110 −0.083 −0.079 −0.106

(0.068) (0.045) (0.076) (0.057) (0.033) (0.040) (0.044) (0.049) (0.059) (0.094) (0.080) (0.108)
Unskilled −0.056 −0.089 −0.162 −0.129 0.010 0.018 −0.092 −0.100 −0.115+ −0.085 −0.079 −0.110

(0.070) (0.046) (0.078) (0.058) (0.033) (0.039) (0.044) (0.049) (0.056) (0.084) (0.075) (0.098)
Missing −0.059 −0.092+ −0.162+ −0.128+ 0.008 0.016 −0.092+ −0.100+ −0.125+ −0.095 −0.079 −0.109

(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.048) (0.053) (0.071) (0.071) (0.085)

Family size −0.062 −0.097+ −0.163+ −0.129+ 0.003 0.011 −0.092 −0.100+ −0.126+ −0.096 −0.079 −0.109
(0.067) (0.045) (0.076) (0.057) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)

Born in Utrecht −0.051 −0.086 −0.163+ −0.128+ 0.005 0.013 −0.092 −0.100+ −0.129+ −0.099 −0.079 −0.109
(0.068) (0.045) (0.076) (0.057) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)

Religion:
Catholic −0.061 −0.095+ −0.163+ −0.129+ 0.005 0.013 −0.092 −0.100+ −0.128+ −0.098 −0.079 −0.109

(0.069) (0.045) (0.078) (0.058) (0.033) (0.039) (0.044) (0.045) (0.053) (0.070) (0.071) (0.055)
Dutch Reformed −0.059 −0.093+ −0.163 −0.128 0.006 0.014 −0.092 −0.100 −0.127+ −0.098 −0.079 −0.109

(0.068) (0.045) (0.077) (0.057) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)
Calvinist −0.050 −0.088 −0.167+ −0.129+ 0.007 0.015 −0.092 −0.100+ −0.126+ −0.096 −0.079 −0.109

(0.072) (0.046) (0.081) (0.058) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)
Other religion −0.060 −0.093+ −0.162+ −0.128+ 0.007 0.015 −0.092 −0.100+ −0.126+ −0.096 −0.079 −0.109

(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)
Famine exposure:
postnatal −0.061 −0.094+ −0.162+ −0.128+ 0.003 0.010 −0.092+ −0.099+ −0.127+ −0.097 −0.079 −0.109

(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)
third trimester −0.062 −0.095+ −0.162+ −0.128+ 0.005 0.013 −0.092+ −0.100+ −0.126+ −0.097 −0.079 −0.108

(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)
second trimester −0.059 −0.093+ −0.162+ −0.128+ 0.006 0.014 −0.092+ −0.100+ −0.127+ −0.097 −0.079 −0.109

(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)
first trimester −0.058 −0.092+ −0.162 −0.128 0.006 0.014 −0.092 −0.100 −0.127+ −0.097 −0.079 −0.109

(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)
pre-conception −0.060 −0.094+ −0.162+ −0.128+ 0.008 0.016 −0.092+ −0.100+ −0.127+ −0.097 −0.079 −0.109

(0.067) (0.045) (0.075) (0.056) (0.033) (0.039) (0.044) (0.048) (0.053) (0.070) (0.071) (0.085)

Based on adding U to propensity score with probabilities of U from observed probabilities for each covariate. +p < 0.05 and ∗∗p < 0.01
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Table B.8: Sensitivity analysis characterizing ‘killer’ confounders: outcome, selection and
mediator effects

Primary to lower vocational Lower vocational to lower secondary
ω ξ ψ ω ξ ψ

d = 0.1 & s = 0.1 −0.409∗∗ 0.232∗∗ −0.085+ 0.003 0.097∗∗ −0.032∗∗

(0.088) (0.046) (0.037) (0.055) (0.035) (0.031)
d = 0.1 & s = 0.2 −0.467∗∗ 0.667∗∗ −0.237∗∗ 0.004 0.194∗∗ −0.062∗∗

(0.099) (0.045) (0.037) (0.055) (0.034) (0.031)
d = 0.1 & s = 0.3 −0.579∗∗ 1.151∗∗ −0.385∗∗ 0.004 0.295∗∗ −0.092∗∗

(0.116) (0.052) (0.035) (0.056) (0.035) (0.031)
d = 0.1 & s = 0.4 −0.859∗∗ 1.733∗∗ −0.537∗∗ 0.004 0.398∗∗ −0.122∗∗

(0.146) (0.058) (0.034) (0.055) (0.035) (0.031)
d = 0.1 & s = 0.5 −2.524∗∗ 2.541∗∗ −0.691∗∗ 0.004 0.514∗∗ −0.155∗∗

(0.405) (0.071) (0.033) (0.054) (0.037) (0.030)

d = 0.2 & s = 0.1 −0.782∗∗ 0.268∗∗ −0.112∗∗ −0.255∗∗ 0.067∗∗ −0.031∗∗

(0.092) (0.044) (0.035) (0.055) (0.034) (0.031)
d = 0.2 & s = 0.2 −0.889∗∗ 0.464∗∗ −0.174∗∗ 0.004 0.194∗∗ −0.062∗∗

(0.107) (0.046) (0.036) (0.055) (0.034) (0.031)
d = 0.2 & s = 0.3 −1.121∗∗ 0.913∗∗ −0.320∗∗ 0.004 0.295∗∗ −0.092∗∗

(0.125) (0.049) (0.035) (0.056) (0.035) (0.031)
d = 0.2 & s = 0.4 −1.723∗∗ 1.427∗∗ −0.469∗∗ 0.004 0.398∗∗ −0.122∗∗

(0.175) (0.053) (0.034) (0.055) (0.035) (0.031)
d = 0.2 & s = 0.5 −23.794∗∗ 2.024∗∗ −0.612∗∗ 0.004 0.514∗∗ −0.155∗∗

(0.507) (0.060) (0.033) (0.054) (0.037) (0.030)

d = 0.3 & s = 0.1 −1.159∗∗ 0.318∗∗ −0.139∗∗ −0.512∗∗ 0.073∗∗ −0.042∗∗

(0.093) (0.045) (0.034) (0.056) (0.035) (0.031)
d = 0.3 & s = 0.2 −1.328∗∗ 0.485∗∗ −0.192∗∗ −0.241∗∗ 0.132∗∗ −0.050∗∗

(0.109) (0.044) (0.034) (0.056) (0.033) (0.031)
d = 0.3 & s = 0.3 −1.702∗∗ 0.701∗∗ −0.257∗∗ 0.004 0.295∗∗ −0.092∗∗

(0.136) (0.047) (0.035) (0.056) (0.035) (0.031)
d = 0.3 & s = 0.4 −3.054∗∗ 1.170∗∗ −0.404∗∗ 0.004 0.398∗∗ −0.122∗∗

(0.292) (0.049) (0.035) (0.055) (0.035) (0.031)
d = 0.3 & s = 0.5 −25.194∗∗ 1.634∗∗ −0.531∗∗ 0.004 0.514∗∗ −0.155∗∗

(0.765) (0.054) (0.033) (0.054) (0.037) (0.030)

d = 0.4 & s = 0.1 −1.560∗∗ 0.375∗∗ −0.171∗∗ −0.771∗∗ 0.079∗∗ −0.053∗∗

(0.093) (0.045) (0.034) (0.054) (0.036) (0.030)
d = 0.4 & s = 0.2 −1.795∗∗ 0.533∗∗ −0.220∗∗ −0.500∗∗ 0.139∗∗ −0.060∗∗

(0.113) (0.045) (0.034) (0.057) (0.034) (0.030)
d = 0.4 & s = 0.3 −2.378∗∗ 0.704∗∗ −0.270∗∗ −0.229∗∗ 0.200∗∗ −0.068∗∗

(0.151) (0.044) (0.033) (0.056) (0.035) (0.031)
d = 0.4 & s = 0.4 −30.981∗∗ 0.930∗∗ −0.336∗∗ 0.004 0.398∗∗ −0.122∗∗

(4.634) (0.045) (0.034) (0.055) (0.035) (0.031)
d = 0.4 & s = 0.5 −27.204∗∗ 1.321∗∗ −0.453∗∗ 0.004 0.514∗∗ −0.155∗∗

(0.862) (0.049) (0.033) (0.054) (0.037) (0.030)

d = 0.5 & s = 0.1 −1.996∗∗ 0.445∗∗ −0.211∗∗ −1.052∗∗ 0.066∗∗ −0.067∗∗

(0.097) (0.044) (0.034) (0.052) (0.036) (0.030)
d = 0.5 & s = 0.2 −2.325∗∗ 0.594∗∗ −0.255∗∗ −0.765∗∗ 0.151∗∗ −0.073∗∗

(0.123) (0.044) (0.035) (0.054) (0.035) (0.030)
d = 0.5 & s = 0.3 −3.358∗∗ 0.750∗∗ −0.302∗∗ −0.491∗∗ 0.212∗∗ −0.082∗∗

(0.227) (0.044) (0.034) (0.057) (0.036) (0.030)
d = 0.5 & s = 0.4 −36.698∗∗ 0.552∗∗ −0.335∗∗ −0.218∗∗ 0.270∗∗ −0.088∗∗

(4.947) (0.044) (0.033) (0.055) (0.035) (0.031)
d = 0.5 & s = 0.5 −30.374∗∗ 1.054∗∗ −0.378∗∗ 0.004 0.514∗∗ −0.155∗∗

(3.770) (0.045) (0.033) (0.054) (0.037) (0.030)

Based on adding U to propensity score under the assumption that Pr(U = 1) = 0.4 and
p11 − p10 = 0, the differences d = p01 − p00 and s = p1. − p0.. No effect would give
ω = 0, ξ = 0 and ψ = 0. +p < 0.05 and ∗∗p < 0.01
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Table B.8: (continued)

Lower secondary to higher
ω ξ ψ

d = 0.1 & s = 0.1 0.004∗∗ 0.062∗∗ −0.020∗∗

(0.065) (0.046) (0.037)
d = 0.1 & s = 0.2 0.005∗∗ 0.121∗∗ −0.037∗∗

(0.067) (0.046) (0.037)
d = 0.1 & s = 0.3 0.005∗∗ 0.182∗∗ −0.054∗∗

(0.066) (0.046) (0.038)
d = 0.1 & s = 0.4 0.004∗∗ 0.258∗∗ −0.076∗∗

(0.066) (0.047) (0.038)
d = 0.1 & s = 0.5 0.004∗∗ 0.355∗∗ −0.103∗∗

(0.069) (0.052) (0.040)

d = 0.2 & s = 0.1 −0.225∗∗ −0.131∗∗ 0.031∗∗

(0.065) (0.045) (0.038)
d = 0.2 & s = 0.2 0.005∗∗ 0.121∗∗ −0.037∗∗

(0.067) (0.046) (0.037)
d = 0.2 & s = 0.3 0.005∗∗ 0.182∗∗ −0.054∗∗

(0.066) (0.046) (0.038)
d = 0.2 & s = 0.4 0.004∗∗ 0.258∗∗ −0.076∗∗

(0.066) (0.047) (0.038)
d = 0.2 & s = 0.5 0.004∗∗ 0.355∗∗ −0.103∗∗

(0.069) (0.052) (0.040)

d = 0.3 & s = 0.1 −0.495∗∗ −0.370∗∗ 0.095∗∗

(0.068) (0.046) (0.038)
d = 0.3 & s = 0.2 −0.173∗∗ −0.029∗∗ 0.003∗∗

(0.067) (0.046) (0.037)
d = 0.3 & s = 0.3 0.005∗∗ 0.18,∗∗ −0.054∗∗

(0.066) (0.046) (0.038)
d = 0.3 & s = 0.4 0.004∗∗ 0.258∗∗ −0.076∗∗

(0.066) (0.047) (0.038)
d = 0.3 & s = 0.5 0.004∗∗ 0.355∗∗ −0.103∗∗

(0.069) (0.052) (0.040)

d = 0.4 & s = 0.1 −0.756∗∗ −0.613∗∗ 0.162∗∗

(0.069) (0.047) (0.039)
d = 0.4 & s = 0.2 −0.450∗∗ −0.270∗∗ 0.069∗∗

(0.069) (0.047) (0.038)
d = 0.4 & s = 0.3 −0.123∗∗ 0.075∗∗ −0.026∗∗

(0.066) (0.047) (0.037)
d = 0.4 & s = 0.4 0.004∗∗ 0.258∗∗ −0.076∗∗

(0.066) (0.047) (0.038)
d = 0.4 & s = 0.5 0.004∗∗ 0.355∗∗ −0.103∗∗

(0.069) (0.052) (0.040)

d = 0.5 & s = 0.1 −1.037∗∗ −0.874∗∗ 0.236∗∗

(0.064) (0.047) (0.039)
d = 0.5 & s = 0.2 −0.723∗∗ −0.525∗∗ 0.141∗∗

(0.071) (0.047) (0.039)
d = 0.5 & s = 0.3 −0.412∗∗ −0.173∗∗ 0.041∗∗

(0.069) (0.048) (0.039)
d = 0.5 & s = 0.4 −0.071∗∗ 0.196∗∗ −0.059∗∗

(0.065) (0.047) (0.038)
d = 0.5 & s = 0.5 0.004∗∗ 0.355∗∗ −0.103∗∗

(0.069) (0.052) (0.040)

Based on adding U to propensity score under the
assumption that Pr(U = 1) = 0.4 and p11 − p10 = 0,
the differences d = p01 − p00 and s = p1. − p0.. No
effect would give ω = 0, ξ = 0 and ψ = 0. +p < 0.05
and ∗∗p < 0.01 40


