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Abstract I outline some of my work and results (some dating back to 1998, some

more recent) on my matter-gravity entanglement hypothesis, according to which the

entropy of a closed quantum gravitational system is equal to the system’s matter-gravity

entanglement entropy. The main arguments presented are: (1) that this hypothesis is

capable of resolving what I call the second-law puzzle, i.e. the puzzle as to how the

entropy increase of a closed system can be reconciled with the asssumption of uni-

tary time-evolution; (2) that the black hole information loss puzzle may be regarded

as a special case of this second law puzzle and that therefore the same resolution

applies to it; (3) that the black hole thermal atmosphere puzzle (which I recall)

can be resolved by adopting a radically different-from-usual description of quantum

black hole equilibrium states, according to which they are total pure states, entangled

between matter and gravity in such a way that the partial states of matter and gravity

are each approximately thermal equilibrium states (at the Hawking temperature); (4)

that the Susskind–Horowitz–Polchinski string-theoretic understanding of black hole

entropy as the logarithm of the degeneracy of a long string (which is the weak string

coupling limit of a black hole) cannot be quite correct but should be replaced by a

modified understanding according to which it is the entanglement entropy between

a long string and its stringy atmosphere, when in a total pure equilibrium state in a

suitable box, which (in line with (3)) goes over, at strong-coupling, to a black hole in

equilibrium with its thermal atmosphere. The modified understanding in (4) is based

on a general result, which I also describe, which concerns the likely state of a quantum

system when it is weakly coupled to an energy-bath and the total state is a random
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pure state with a given energy. This result generalizes Goldstein et al.’s ‘canonical

typicality’ result to systems which are not necessarily small.

Keywords Matter-gravity entanglement · Information loss · String theory approach

to black hole entropy · Gravitational decoherence · Second law of thermodynamics ·

Canonical typicality

1 The Second Law Puzzle

Let me begin my talk1 by recalling one version of the second law of thermodynamics:

The entropy of the universe begins low and increases monotonically.

There are long-established and well-known arguments—see the discussion of ‘branch

systems’ in [1] as also reviewed e.g. in [2])—that other statements of the second law,

in terms of what can and cannot happen with heat engines, refrigerators etc. follow

from the above statement. As also explained in these references, the above statement

leads to an explanation of time asymmetry; i.e. why, for example, it is commonplace

to observe wine-glasses fall off tables and smash into pieces, but we never see lots of

smashed pieces assemble themselves into wine-glasses and jump onto tables (Fig. 1).

But how do we define the entropy of a closed system? And why does it increase?

A standard way of answering this (essentially due to Boltzmann around 1870)

might be to consider for example what will happen if one starts with a system of N

gas molecules in the left half of a box (see Fig. 2) and removes a partition, allowing

the particles to diffuse into the right half of the box.

In a classical discussion, one describes the states of this system with some given

energy in terms of a 6N − 1 dimensional phase space, the points of which are called

‘microstates’ and (see Fig. 3) one imagines this phase space to be divided up into

cells—called ‘macrostates’—with the property that we cannot in practice distinguish

between any pair of microstates in any single macrostate. One then defines the (‘coarse-

grained’) entropy, S, of a microstate by

S = k log W (1)

where k is Boltzmann’s constant and W is the volume of the macrostate containing

that given microstate.

The standard argument then is that (see Fig. 3) the macrostate corresponding to “all

the particles are in the left half of the box” will have a vastly smaller volume in phase

space than the large macrostate which corresponds to “the molecules fill the box with

roughly uniform density”. Hence, as time goes on and the state of the system wanders

around the phase space accordingly, it is highly likely that the entropy—as defined by

(1) will get bigger and stay bigger.

1 This article is a written version of a talk given at the 18th UK and European Conference on Foundations

of Physics (16–18 July 2016, LSE, London)
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Fig. 1 Schematic diagram of

the universe showing how its

radius increases with time

Planck epoch

GUT epoch
..
.

photon epoch

Fig. 2 A box of gas molecules,

initially confined to the left half

molecules

molecules all in left of box

48% of molecules in left,
52% in right fill box with roughly

uniform density

Fig. 3 The phase space for the gas in the box, indicating some possible macrostates

However, this definition of entropy and this argument for its increase depends,

unsatisfactorily, on the need to make judgments about what we can distinguish. For

example, if (see again Fig. 3) after previously ignoring such fine distinctions, we were

to take the view that we can distinguish a state where, say, 48% of the particles are in

the left half of the box and 52% in the right half from a state with roughly equal propor-

tions2 then, at times for which the system’s microstate lies in the accordingly-defined

new macrostate (obviously a subregion of the previously discussed large macrostate)

then Eq. (1) would ascribe a different value to the entropy.

Moreover, this unsatisfactory arbitrariness and vagueness in the definition of

entropy is even more of a problem if we want to account for the version of the second

law with which we began. For we are not even present to make any distinctions in the

early universe!

Turning to the quantum setting, von Neumann gave us long ago a quantum trans-

lation of Boltzmann’s equation (1). Given a description of our system in terms of

a density operator, ρ acting on the system’s Hilbert space H, one defines its von

Neumann entropy, SvN(ρ), by

2 These numbers were not entirely randomly chosen, the talk being given shortly after the June 2016 Brexit

referendum.
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SvN(ρ) = −ktr(ρ log ρ). (2)

But if we were to equate the physical entropy, Sphysical, with SvN(ρ) and if ρ satisfies

the usual unitary time evolution rule

ρ(t) = U (t)ρ(0)U (t)−1

then we would conclude that

Sphysical(ρ(t)) = constant.

in contradiction with the second law. We shall call this the second law puzzle. One

can overcome this difficulty by defining quantum counterparts to the above classical

coarse-graining, but of course one then would have the same unsatisfactory vagueness

and subjectivity as we discussed above in the classical case.

More interestingly, one can seek to exploit a feature of quantum mechanics which

has no classical counterpart: If we have a pure state, described by a density operator,

ρ = |Ψ 〉〈Ψ |, which is a projector onto a vector, Ψ , in a Hilbert space, Htotal, which

arises as the tensor product,

Htotal = HA ⊗ HB

of two Hilbert spaces, HA and HB, then the reduced density operator, ρA on HA,

defined as the partial trace, trHB
(ρ), of ρ over HB, will typically have SvN(ρA)>0.

We remark that

– This partial trace is characterized by the property that, if O is a (self-adjoint)

operator on HA, then

tr(ρA O)HA
= 〈Ψ (O ⊗ I )|Ψ 〉Htotal

.

– Both reduced density operators have equal von Neumann entropies:

SvN(ρA) = SvN(ρB) (3)

and this common value is often known as the A–B entanglement entropy of the

total state-vector Ψ .

In a variant of the ‘environment paradigm for decoherence’ or, from another point of

view, a variant of a possible approach to quantum statistical mechanics, this formalism

is often applied in the case that A is interpreted as standing for some ‘system’ and B

for the system’s ‘environment’ or ‘energy bath’ and SvN(ρA) is then interpreted as the

entropy of the system due to entanglement with the environment.

So the environment paradigm gives us an objective notion of entropy. However,

there remain problems:

– It only offers a notion of entropy for open systems.
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– There are lots of ways of decomposing a given H as HA ⊗HB. How we choose to

decompose it depends on subjective choices and, again, we are not around in the

early universe to make those choices.

What I’d like to point out is that one can envisage an alternative physical use of

this mathematical fact: Suppose there’s some decomposition that’s physically natural,

then maybe we could define the entropy of a total closed system by

Stotal = SvN(ρA) (= SvN(ρB)) (= A–B entanglement entropy) (4)

rather than interpreting this mathematical quantity as the entropy of the A-subsystem!

We propose that the identification:

A = matter; B = gravity,

is the right choice. This is our matter-gravity entanglement hypothesis. (See [3–5]

for early papers, and [6] and the remainder of the present article for recent partial

overviews and further references.)

In support of this, we note that the decomposition has to be meaningful throughout

the entire history of the universe: E.g. we could not identify A with photons and B

with nuclei + electrons because these notions are not even meaningful until the photon

epoch. We content ourselves, though, with going back to just after the Planck epoch; we

assume that a low-energy quantum gravity theory holds there and throughout the entire

subsequent history of the universe and that this is a conventional (unitary) quantum

theory with H = Hmatter ⊗ Hgravi t y . We will also assume that the initial degree of

matter-gravity entanglement is low. (We leave it for a future theory of the pre-Planck

era to explain that.)

These assumptions then appear to be capable of offering an explanation of the

second law in the form stated at the outset since one can argue that an initial state with a

low degree of matter-gravity entanglement will, because of matter-gravity interaction,

get more entangled, plausibly monotonically, as time increases. At least the question of

whether the second law holds becomes a question which, in principle, can be answered

mathematically once we specify the (low-energy) quantum gravity Hamiltonian (i.e.

the generator of the unitary time-evolution) and the initial state. What we have called

the second law puzzle would then be resolved because once we define entropy as

matter-gravity entanglement entropy (rather than as the von Neumann entropy of the

total state) there is no conflict between its increase and a unitary time-evolution.

2 The Information Loss Puzzle (Hawking 1976)

The celebrated result of Hawking [7] is that a black hole formed by the dynamical

collapse of a star will emit thermal radiation at the Hawking temperature, given, in

the case of a spherically symmetric electrically neutral black hole (Fig. 4) by

kTHawking =
1

8πG M
(5)
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Fig. 4 A schematic picture of

the spacetime of a star which

collapses to a black hole and

then Hawking-evaporates. The

thick brown lines represent the

boundary of the surface of a

collapsing star, the green lines

the horizon, the blue wiggly line

the future spacetime singularity.

The thin yellow wiggles indicate

the Hawking radiation predicted

in [7] (Color figure online)

t

Collapsing star

where M is the black hole mass (and we take c = h̄ = 1).

As Hawking explained in that work, one expects that such a radiating black hole

will lose mass, increasing further its temperature, and eventually evaporate.

During this whole process of collapse to a black hole and subsequent evaporation,

one expects the entropy of the total system to increase monotonically.3

The version of the information loss puzzle [8] that I shall adopt here is the puzzle

as to how this entropy increase can be reconciled with an assumption of unitary time

evolution.

Stated in this way, I think it is clear that the information loss puzzle is nothing but

a special case of our Second Law Puzzle; we recall here that this is the puzzle that, if

one equates Sphysical with SvN(ρtotal), then Sphysical must be constant.

I suggested in [3,4] that the resolution to the information loss puzzle is simply

the special case of the above proposed resolution to the second law puzzle. Namely,

Sphysical is not SvN(ρtotal). Rather Sphysical is the total state’s matter-gravity entangle-

ment entropy. As I already said in the more general context in Sect. 1, this is not a

unitary invariant and—it is reasonable to assume—would increase, thus offering to

resolve the puzzle. That it also offers this resolution to the information loss puzzle

lends, is, in my view, further evidence that our matter-gravity entanglement hypothesis

is on the right track.

3 The Thermal Atmosphere Puzzle

A black hole in a box in equilibrium with its thermal atmosphere (see Fig. 5) is

traditionally taken to be in a total Gibbs state (in particular a total mixed state) at the

Hawking temperature.

3 Without wishing to imply that they are necessarily exactly additive, we note that while the entropy of the

black hole (given by (6)) will decrease because the horizon area will decrease, one expects that this will

be more than compensated by the increased entropy of the sphere of emitted Hawking radiation which is

growing in size at the speed of light and within which, moreover, the later radiation will be hotter than that

emitted earlier.
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Fig. 5 A schematic picture of a

black hole in equilibrium with

its thermal atmosphere in a box

BLACK

THERMAL ATMOSPHERE

HOLE

Everyone agrees that the entropy of this system has (at least up to small corrections)

the value

SHawking = 4πkG M2 = k A/4G. (6)

where A is the surface area of the event horizon (= 16πG2 M2). The thermal atmo-

sphere puzzle [9,10] is that one can give seemingly convincing arguments for each of

the following three, at first sight seemingly mutually contradictory, statements about

the nature and origin of this entropy:

– It is the entropy of the gravitational field (so mostly ‘residing’ in the black hole).

– It is the entropy of the thermal atmosphere (so apart from the graviton component,

consisting mainly of matter).

– It is the sum of the above two entropies.

Our proposed resolution of the puzzle begins by postulating that it is not actually

the case that the total state is a Gibbs state; rather, we propose, the total state is pure,

but entangled between gravity (≃ the black hole) and matter (≃ its atmosphere) in

such a way that each are approximately Gibbs states (at the Hawking temperature).

We further suggest, in line with our matter-gravity entanglement hypothesis, that

SHawking is really this state’s matter-gravity entanglement entropy. This offers to

resolve the puzzle in the following way: The first entropy can be regarded, according

to the environment paradigm, as the entropy of the open system consisting of the grav-

itational field due to its matter environment; the second the entropy of the open system

consisting of the matter due to its gravity environment. But, by (3), these are actually

equal and so, in this environment-paradigm sense, both statements are therefore true,

without contradiction. On the other hand, there is no reason why the third statement

should be true in any sense and in fact, on our hypothesis it is clearly not true—the

total entropy being, by (4) not the sum of the first two, but rather, equal to each of

them.

The fact that it seems capable of providing this resolution to the thermal atmosphere

puzzle provides further support for the validity of our matter-gravity entanglement

hypothesis.
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Fig. 6 The weak

string-coupling limit of a black

hole is a long string BLACK

HOLE

Scale g down and s up

keeping G = g2 2

s
fixed

4 The Weak String-Coupling Limit of Black-Hole Equilibrium States
and Black Hole Entropy

Some of the most interesting work towards computing (in certain cases) or, at least,

gaining a better understanding of, black hole entropy has been within string theory.

Here I shall briefly recall the basic idea due to Susskind [11] and one particular line

of development by Horowitz and Polchinski [12,13] which leads to an explanation of

how the entropy of spherically symmetric black holes scales with M2 (the square of

the black-hole mass), albeit the argument is semi-qualitative and does not tell us the

constant term (so does not explain the factor of 1/4 in (6)).

First I will outline the Susskind–Horowitz–Polchinski (SHP) argument. Then I will

criticize it. Then I will propose a modification of the SHP argument which is free from

the criticisms I raise and is consistent with the understanding of black-hole equilibrium

states on the matter-gravity entanglement hypothesis that I outlined in Sect. 3.

The SHP argument [12,13] is in two steps4: First (see Fig. 6) one argues that, as

one scales the string coupling-constant, g, down and the string length, ℓs up, keeping

Newton’s constant G = g2ℓ2
s fixed, a black hole goes over to a long string. This will

have density of states (i.e. number of states per unit energy, where we use ǫ to denote

energy) σlongstring(ǫ) approximately of the form of a constant times eℓsǫ .

Secondly, one equates the entropy, Sblackhole, with “k log(σlongstring(ǫ))” = kℓsǫ at

ǫ = constant times M when ℓs = constant times G M whereupon Sblackhole = constant

times kG M2.

Our criticism of this is that it is not correct to equate an entropy with the logarithm

of a density of states. (Nor indeed, in other string theory work, with the logarithm

of a degeneracy—see [6,15].) Indeed it only ever makes sense in physics to take

the logarithm of a dimensionless quantity but a density of states has of course the

dimensions of inverse energy!

Our proposed modification of the SHP scenario [14,15] is to consider, in place of

the limit

black hole → long string,

the limit

black hole in equilibrium with thermal atmosphere in a box →

long string in equilibrium with atmosphere of small strings in a suitably rescaled box.

4 We adopt similar simplifications to those adopted in [12,13]. Thus the spacetime dimension is taken to be

4 and the power-law prefactors in the densities of states are ignored. See however [14] for the importance

of those prefactors in my proposed modification of the SHP argument.
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BLACK

THERMAL

HOLE

Scale g down and s up

keeping G = g2
s
2 fixed

ATMOSPHERE

Fig. 7 The weak string-coupling limit of a black hole in equilibrium with its atmosphere in a suitable box

is a long string in equilibrium with its stringy atmosphere in another box

The key fact [12,13] about a string equilibrium state of this latter type is that (in a

certain approximation where we ignore certain power-law prefactors—see Footnote 4)

the long string and its stringy atmosphere will have densities of states of the exponential

form:

σlongstring(ǫ) ∼ ceℓsǫ, σstringyatmosphere(ǫ) ∼ c′eℓsǫ (7)

where the constants c and c′ may be different, but, importantly the exponents are the

same.

I have demonstrated (see Sect. 5 for a discussion of the proof) that:

Theorem 1 For any pair of weakly coupled systems (to be called here ‘system’ and

‘bath’) with densities of states as in (7) a randomly chosen pure equilibrium state

with total energy E will, with very high probability, have a system-bath entanglement

entropy approximately equal to kℓs E/4. It will also be such that the reduced states of

system and bath separately each have energy E/2 and are each approximately thermal

at temperature T = 1/kℓs

Applying this theorem and reading ‘long string’ for ‘system’ and ‘stringy atmo-

sphere‘ for ‘bath’ (or vice versa) and equating the black hole mass, M , with a constant

times E and the entanglement entropy of this theorem with the matter-gravity entan-

glement entropy of the black hole equilibrium state at ℓs = constant times G M (as in

the unmodified argument) the latter entropy will thus be a constant times kG M2. Thus

we achieve a corrected string explanation of this formula for the black hole entropy

which is not subject to the criticism we made of the original SHP approach. Moreover

making the same substitution, ℓs = constant times G M , the temperature formula for

the reduced states of the long string and of its stringy atmosphere goes over to the

temperature formula T = a constant times 1/kG M , which agrees with the Hawking

temperature formula (5) (up to a constant).5

That ends my discussion of my matter-gravity entanglement hypothesis and of

how it offers a resolution to the three puzzles: the second law puzzle, the black hole

information loss puzzle, and the thermal atmosphere puzzle and, finally, in this section,

5 Intriguingly, as pointed out in [15], if one equates M with E/2 and equates ℓs with 8πG M , then one

gets the right value both for the Hawking temperature and the Hawking entropy. However, as explained in

[14,15] this numerical coincidence should be interpreted with caution.
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of how it enables a modification of the SHP string approach to black hole entropy which

is free from the criticism6 which I made of the original SHP approach.

In the remainder of the talk I would like to supply some of the details about how I

proved the above theorem.

5 Explanations of Thermality: Traditional and Modern

Theorem 1 in fact relies on a general theorem—which is stated below as Theorem 2—

which I obtained [16] in a general setting where one has a total system (in [16] I

abbreviate this with the the term ‘totem’ and I shall follow that terminology here)

consisting of a (quantum) system weakly coupled to an energy bath.

Such a totem will have a Hamiltonian of form

H = Hsystem + Hbath + Hinteraction

on

Hsystem ⊗ Hbath

where Hinteraction is assumed to be sufficiently weak that it can be ignored for the

purposes of counting energy levels; Hsystem and Hbath each have positively supported,

locally finite, discrete spectrum with monotonically increasing densities of states,

σsystem(ǫ) and σbath(ǫ).

Theorem 2 may be considered to generalize a result of Goldstein, Lebowitz,

Tumulka and Zanghi (GLTZ) [17] (see also [18]) which explains why it is that a

small system in contact with a large energy bath will typically be in an (approximate)

thermal equilibrium state. So I will first briefly recall that result.

5.1 Thermality in the Case the System is Small

The GLTZ explanation is itself a modern replacement for the earlier traditional expla-

nation of the thermality of a small system in contact with a heat bath, so let me recall

that first (Fig. 8).

6 To provide further perspective on that criticism, let us recall that the attempt to provide a microscopic

explanation of thermodynamical behaviour in terms of a classical statistical mechanics has often been

criticized because it requires the introduction of an ad hoc quantity with the dimensions of action in order

to provide a unit of volume in phase space. It has been said that this shortcoming of classical statistical

mechanics is overcome in quantum statistical mechanics where a suitable power of the quantity h̄ effectively

provides the right volume element. One might re-express the main thesis of this section by saying that, in

a similar way, the need to introduce an ad hoc dimensionful quantity as in the SHP approach to black hole

entropy and the resolution of that difficulty along the lines explained in the main text indicates that, to have

a satisfactory microscopic explanation of thermodynamical behaviour, a quantum statistical mechanics is

also insufficient and what is needed, instead, is a quantum-gravitational statistical mechanics based on our

matter-gravity entanglement hypothesis.
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The traditional explanation is based on a mathematical theorem which tells us that

if the totem is in a microcanonical ensemble with energy in a narrow band around

some total energy E , then the small system will be approximately in a thermal equi-

librium state with temperature, Tsystem given by the formula (note that the dimensionful

argument of the logarithm is innocuous here because the logarithm is differentiated):

1

kTsystem
=

d

dǫ
log σbath(ǫ)|ǫ=E . (8)

The modern explanation (Fig. 9) [17] is based on a mathematical theorem (proven

in [17]) that if the totem state is a pure state, randomly chosen from the set of all

pure states with totem energy in a narrow band around E (where the random choice

is with respect to a natural measure on the set of all these pure states) then the small

system will very probably be very close to the same thermal equilibrium state with a

temperature given by the same formula (8).

The advantage of the “modern” over the “traditional” point of view is that it

bases a theory of how systems get themselves into (approximate) Gibbs states on

the same foundational assumption that we usually make for the foundations of quan-

tum mechanics—namely that the total state of a full closed system is a pure (vector)

state.

5.2 What Happens When System and Energy Bath are of Comparable Size?

One might think that one could apply the GLTZ result directly to the case our totem is

the string equilibrium state illustrated in Fig. 7, identifying, say, the long string with

our ‘system’ and the stringy atmosphere with our ‘energy bath’. However, neither of

these can be regarded as small with respect to the other. Here we should clarify that

‘small’ in this context would mean having much more widely spaced energy levels,

i.e. having a much lower density of states. Instead both densities of states are (ignoring

the power-law prefactors I mentioned earlier) of the exponentially increasing form (7).

It turns out in general, that when the system and the energy bath are of comparable

size, then—on both the traditional assumption of a totem microcanonical ensemble

and the modern assumption of a random total pure state with energy in a small band—

it is no longer necessarily the case that either system or energy bath will probably be

in a thermal equilibrium state. However, I have shown [16] with regard to the modern

approach:

Theorem 2 There is a special density operator (see the Appendix for details)

ρ
modapprox
system on Hsystem (9)

such that, given a random vector, Ψ ∈ Hsystem ⊗Hbath, with energy in a narrow band

around E, then the partial trace of |Ψ 〉〈Ψ | over Hbath is very probably very close to

ρ
modapprox
system .

(And similarly with system ↔ energy bath).
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SYS

ENERGY BATH

MICROCANONICAL

⇒ THERMAL
ENSEMBLE AT ENERGY E

1
kTSYS

= d

dǫ
log σBATH (ǫ)|ǫ=E

Fig. 8 The traditional explanation of the thermality of a small system

SYS

ENERGY BATH

RANDOM PURE STATE

⇒ THERMAL
WITH ENERGY IN A
NARROW BAND
AROUND E

Fig. 9 The modern explanation of the thermality of a small system

But it is important to realize that when system and energy bath are of comparable

size, ρ
modapprox
system is not always thermal. (And neither, by the way, is the reduced state of

the system thermal when the total state is in a traditional microcanonical ensemble.)

E.g. if σsystem(ǫ) and σbath(ǫ) take, respectively, the power law forms σsystem(ǫ) =

ASǫNS , σbath(ǫ) = ASǫNS (the typical behaviour of ordinary matter when NA and

NB are comparable in size to Avogadro’s number) then the system ‘energy probability

density’, Psystem(ǫ) [16] will be a Gaussian (in fact the same Gaussian on both tradi-

tional and modern assumptions) rather than the Gibbsian distribution characteristic of

a thermal state. See Figs. 10 and 11.

5.3 The Special Nature of Exponential Densities of States

However, it is shown in [16], regarding the modern approach7

Theorem 3 When system and energy-bath densities of states both take the exponential

form of Eq. (7):

– ρ
modapprox
system and ρ

modapprox
bath are (close to8) thermal at temperature T = 1/kℓs . (And

each have mean energy E/2.)

7 A similar result to Theorem 3 holds for the traditional (microcanonical) approach, except that (now

neglecting logarithmic terms) in place of kℓs E/4 one finds [16] that the system and the energy bath have

entropy kℓs E/2. The difference between these two results is interesting since it demonstrates that, in general,

the traditional and modern approaches do not give the same results. (It is also interesting since the “right

value for the Hawking entropy” mentioned in Footnote 5 depends on the denominator being 4—rather

than 2).

8 See [16] for the sense in which these states are close to thermal.
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Fig. 10 Plot of the energy probability density, Psystem(ǫ), when system and energy bath have the same

power-law density of states σ(ǫ) = AǫN for the (‘unusually’ small) value N = 10

Fig. 11 Plot of the energy probability density, PGibbs
system,β

(ǫ) for the thermal state at inverse temperature,

β, on our system with density of states σ(ǫ) = AǫN , for the same (‘unusually’ small) value N = 10 and

for β = 22/E (i.e. the value of β for which the mean energy is E/2)
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– Also, the system-energy bath entanglement entropy, S, (= SvN(ρ
modapprox
system )

= SvN(ρ
modapprox
bath )) is approximately kℓs E/4.9

Theorem 1 of Sect. 4 clearly follows immediately from Theorems 2 and 3.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Details on ρ
modapprox
system

In this appendix we give the detailed formula for the special density operator (9).

Define the (M-dimensional) Hilbert space, HM (M assumed large) consisting of

elements with total energy in a narrow band [E, E + Δ] to be the closed span of

eigenstates of the total Hamiltonian with energies, ǫ ∈ [E, E + Δ].

For convenience, replace the system of interest by a system with equally spaced

energy levels with spacing equal to Δ—each energy level, ǫ, having degeneracy,

n(ǫ) = σ(ǫ)Δ (so that the new system will have the same density of states, σ(ǫ) as

the original system).

(Note that then M =
∑E

ǫ=Δ nsystem(ǫ)nbath(E − ǫ).)

We note first that the traditional microcanonical density operator,∑
basis for HM

|ψi 〉〈ψi | is then easily seen to have reduced density operator on Hsystem

equal to

ρmicroc
system = M−1

E∑

ǫ=Δ

nbath(E − ǫ)

nsystem(ǫ)∑

i=1

|ǫ, i〉〈ǫ, i |

where |ǫ, i〉 denotes a basis for the nsystem(ǫ)-dimensional degeneracy subspace of

Hsystem with energy ǫ (assumed to be a multiple of Δ) and the sum over ǫ is over

multiples of Δ.

The modern replacement for this result is that a random pure density operator,

|Ψ 〉〈Ψ |, on HM will have a reduced density operator on Hsystem which (as is argued

in [16]) is very probably very close to ρ
modapprox
system where

ρ
modapprox
system = M−1 times

Ec∑

ǫ=Δ

nbath(E − ǫ)

nsystem(ǫ)∑

i=1

|ǫ, i〉〈ǫ, i | +

E∑

ǫ=Ec+Δ

nsystem(ǫ)

nbath(E−ǫ)∑

i=1

|ǫ̃, i〉〈ǫ̃, i |

where Ec is the energy at which σsystem(ǫ) = σbath(E − ǫ) and the |ǫ̃, i〉 span

an orthonormal basis of an nBath(E − ǫ)-dimensional subspace of the nSystem(ǫ)-

9 The exact result [16, Endnote 29] is kℓs E/4 + k log(cScB E2)/2 − k(log(cS/cB))2/4E .
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dimensional) energy-ǫ subspace of HSystem which depends on Ψ in a way explained

in detail in [16].

Afterword

To end, let me mention some related aspects of the matter-gravity entanglement hypoth-

esis that we have not had time to discuss. One is an extension of the theory beyond

closed systems to include open systems. For this, we refer to [5, Endnote (xii)] or

[6]. Another concerns the relevance of the matter-gravity entanglement hypothesis

to the measurement problem in quantum mechanics and a possible resolution to the

Schrödinger Cat puzzle. For this, see [3–5]. Finally, the papers [19,20] (see also [6] for

a brief outline of this work) include a discussion of a possible mechanism whereby,

when one passes from a quantum field theory in curved spacetime description to a

description in which the backreaction of the stress-energy tensor on the metric is

taken into account, the horizon of an enclosed (say Kruskal) black hole becomes

unstable with the consequence that entanglement between the right and left Kruskal

wedges in a quantum theory in curved spacetime context transmutes into entangle-

ment between matter and gravity—in support of the solution to the thermal atmosphere

puzzle presented in Sect. 3.

References

1. Reichenbach, H.: The Direction of Time. University of California Press, Berkeley (1971)

2. Davies, P.C.W.: The Physics of Time Asymmetry. University of California Press, Berkeley (1977)

3. Kay, B.S.: Entropy defined, entropy increase and decoherence understood, and some black-hole puzzles

solved. arXiv:hep-th/9802172 (1998)

4. Kay, B.S.: Decoherence of macroscopic closed systems within Newtonian quantum gravity. Class.

Quant. Grav. 15, L89–L98 (1998). arXiv:hep-th/9810077

5. Kay, B.S., Abyaneh, V.: Expectation values, experimental predictions, events and entropy in quantum

gravitationally decohered quantum mechanics. arXiv:0710.0992 (2007)

6. Kay, B.S.: Entropy and quantum gravity. Entropy 17, 8174 (2015). arXiv:1504.00882

7. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

8. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473

(1976)

9. Page, D.: Hawking radiation and black hole thermodynamics. New J. Phys. 7, 203 (2005).

arXiv:hep-th/0409024

10. Wald, R.M.: The thermodynamics of black holes. Living Rev. Relat. 4, 1 (2001)

11. Susskind, L.: Some speculations about black hole entropy in string theory. arXiv:hep-th/9309145

(1993)

12. Horowitz, G., Polchinski, J.: A correspondence principle for black holes and strings. Phys. Rev. D 55,

6189–6197 (1997)

13. Horowitz, G.: Quantum states of black holes. In: Wald, R.M. (ed.) Black Holes and Relativistic Stars.

University of Chicago Press, Chicago (1998). arXiv:gr-qc/9704072

14. Kay, B.S.: More about the stringy limit of black hole equilibria. arXiv:1209.5110 (2012)

15. Kay, B.S.: Modern foundations for thermodynamics and the stringy limit of black hole equilibria.

arXiv:1209.5110 (2012)

16. Kay, B.S.: On the origin of thermality. arXiv:1209.5215 (2012)

17. Goldstein, S., Lebowitz, J.L., Tumulka, R., Zanghi, N.: Canonical typicality. Phys. Rev. Lett. 96,

050403 (2006). arXiv:cond-mat/0511091

18. Popescu, S., Short, A.J., Winter, A.: The foundations of statistical mechanics from entanglement:

individual states vs. averages. Nat. Phys. 2, 754 (2006). arXiv:quant-ph/0511225

123

http://arxiv.org/abs/hep-th/9802172
http://arxiv.org/abs/hep-th/9810077
http://arxiv.org/abs/0710.0992
http://arxiv.org/abs/1504.00882
http://arxiv.org/abs/hep-th/0409024
http://arxiv.org/abs/hep-th/9309145
http://arxiv.org/abs/gr-qc/9704072
http://arxiv.org/abs/1209.5110
http://arxiv.org/abs/1209.5110
http://arxiv.org/abs/1209.5215
http://arxiv.org/abs/cond-mat/0511091
http://arxiv.org/abs/quant-ph/0511225


Found Phys (2018) 48:542–557 557

19. Kay, B.S.: Instability of enclosed horizons. Gener. Relat. Gravit. 47, 31 (2015). arXiv:1310.7395

20. Kay, B.S., Lupo, U.: Non-existence of isometry-invariant Hadamard states for a Kruskal black hole

in a box and for massless fields on 1+1 Minkowski spacetime with a uniformly accelerating mirror.

Class. Quantum Grav. 33, 215001 (2016) arXiv:1502.06582

123

http://arxiv.org/abs/1310.7395
http://arxiv.org/abs/1502.06582

	The Matter-Gravity Entanglement Hypothesis
	Abstract
	1 The Second Law Puzzle
	2 The Information Loss Puzzle (Hawking 1976)
	3 The Thermal Atmosphere Puzzle
	4 The Weak String-Coupling Limit of Black-Hole Equilibrium States and Black Hole Entropy
	5 Explanations of Thermality: Traditional and Modern
	5.1 Thermality in the Case the System is Small
	5.2 What Happens When System and Energy Bath are of Comparable Size?
	5.3 The Special Nature of Exponential Densities of States

	Appendix: Details on ρmodapproxsystem
	Afterword
	References


