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Bayesian Probabilistic Power Flow Analysis Using
Jacobian Approximate Bayesian Computation

Carlos D. Zuluaga and Mauricio A.́Alvarez

Abstract—A probabilistic power flow (PPF) study is an es-
sential tool for the analysis and planning of a power system
when specific variables are considered as random variables
with particular probability distributions. The most widely used
method for solving the PPF problem is Monte Carlo simulation
(MCS). Although MCS is accurate for obtaining the uncertainty
of the state variables, it is also computationally expensive, since
it relies on repetitive deterministic power flow solutions. In this
paper, we introduce a different perspective for the PPF problem.
We frame the PPF as a probabilistic inference problem, and
instead of repetitively solving optimization problems, we use
Bayesian inference for computing posterior distributions over
state variables. Additionally, we provide a likelihood-free method
based on the Approximate Bayesian Computation philosophy,
that incorporates the Jacobian computed from the power flow
equations. Results in three different test systems show that the
proposed methodologies are competitive alternatives for solving
the PPF problem, and in some cases, they allow for reduction in
computation time when compared to MCS.

Index Terms—Approximate Bayesian Computation, Bayesian
inference, Power system, Probabilistic power flow.

I. I NTRODUCTION

Probabilistic approaches have gained considerable attention
within power flow analysis due to the uncertainty which is
naturally present in power systems (PS). Such uncertainty
appears due variability in power generation, variation in the
demand, and changes in the network configuration. The first
methods proposed to approach power flow analysis under
a probabilistic formulation appeared in Borkowska [1] and
Dopazo et. al [2] in the mid-1970s. From these studies,
two philosophies have been used to analyze the uncertainty
in a PS: the probabilistic power flow (PPF) [1] and the
stochastic load flow (SLF) [2]. SLF uses a regression model
together with a white Gaussian noise to model the uncertainty
in the power flow equations [2]. PPF assumes that specific
variables in the PS can be considered as random variables
with particular probability distributions. The goal is then to
obtain probability distributions for all the other variables in
the system, particularly for voltages, angles and power flows
between nodes [3]. In this paper, we consider the approach
used in PPF towards uncertainty quantification in PS.

Different methods have been proposed to address the PPF
problem. They can broadly be classified in three main cate-
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gories: analytical, approximate and simulation-based methods
[4]. Analytical methods are based on convolution processes
which use a fast Fourier transform and linearized power
flow equations [5]; or work with a multilinear model to
deal with the power system nonlinearities [6]. Approximate
methods replace the probability distributions of the random
variables by their statistical moments [7]. They include the
point estimate method [7] and the unscented transformation
methods [6]. Finally, simulation-based methods are based on
statistical sampling of input random variables (active and
reactive powers injected) and the propagation of these samples
through repetitive deterministic power flow (DPF) solutions
[4]. Statistical sampling of the input random variables can
be accomplished using different methods including Latin hy-
percube, uniform design sampling or Monte Carlo simulation
(MCS) [6], which is the most popular. Other methods also
use simulation for analytical or approximate representations
of the power system, including the linear MCS [6] and the
Taguchi method [8]. Although, analytical and approximate
methods are computationally more effective than simulation-
based methods, they require mathematical assumptions or
approximations for obtaining feasible solutions [4]. Hence, the
analytical methods may offer less accurate solutions than MCS
[4].

MCS combines sampling approaches of input random vari-
ables with deterministic optimization [4]. Input random vari-
ables are assumed to follow particular probability distributions
that model the uncertainty in the PS. Samples from these
probability distributions are used to solve a DPF problem that
computes the corresponding values of state variables, (angles
at PV and PQ nodes, and voltages at PQ nodes). The process is
repeated several times, until sufficient samples from the state
variables are obtained in order to build an estimator for the
marginal distributions of the state variables.

The process described above has its shortcomings. On one
hand, it does not take into account the fact that previous
knowledge of state variables might be available in terms of
probability distributions, for example: from normal operating
conditions of a PS, the magnitude of the voltage variables
is close to one per unit, therefore, we can define a specific
probability distribution for these variables. That is, MCSdoes
not consider the state variables as random variables within
the PPF problem before observing different configurations of
the input random variables. On the other hand, this sampling
approach is computationally expensive, since it relies on
repetitive DPF solutions.

In this paper, we address these shortcomings by formu-
lating the PPF problem as a Bayesian inference problem.
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Using Bayesian inference requires the specification of prior
distributions for the state variables, and a likelihood function
that relates the observations to the state variables. We apply
Bayes theorem to obtain the posterior distribution over the
state variables. By including prior distributions over thestate
variables into the PPF problem, it will be possible to exploit
an additional source of information that has not been used in
simulation methods before, like MCS. In principle, using this
extra source of information allow us to reduce the computation
time to solve the PPF problem. Furthermore, the way in
which the Bayesian inference method is applied requires
solving a forward computation problem, rather than an inverse
optimization problem as needed in MCS. This means that
we will not need to solve heavy computational optimization
methods, every time we generate a new sample.

Different studies have used Bayesian methods to consider
the uncertainty in a PS. For example: in [9], [10], the authors
employed a Gaussian mixture model to approximate non-
Gaussian distributions of loads in a PS. The authors put
prior distributions over the parameters (mean, covarianceand
mixing coefficients) of each Gaussian distribution. In this
mixture model, the likelihood function is defined using mea-
surements of loads (observations) given the parameters of each
Gaussian distribution. The goal of this Bayesian modeling is
to obtain the posterior distribution of the parameters given the
observations, where the parameters can be estimated by using
the Expectation Maximization algorithm [9] or variational
Bayesian inference [10]. These methods focus on modeling
the uncertainty of the loads in a PPF problem. We are inter-
ested in using Bayesian inference as an holistic approach for
uncertainty quantification in the random variables associated
to a PS. Our aim goes beyond modeling uncertainty in the
loads.

In a classical Bayesian inference problem, we would know
beforehand the likelihood function. Since likelihood functions
for power systems have not been discussed properly in the
literature, we discuss alternatives for likelihood functions, but
mainly appeal to likelihood-free methods for obtaining poste-
rior distributions. In particular, we use Approximate Bayesian
Computation (ABC) philosophy that replaces the calculation
of the likelihood function by comparisons between simulated
and observed data [11]. ABC methods have been applied
in several fields of science and engineering for Bayesian
inference. They have been employed for statistical inference
in systems biology [12], ecological models [13] and were also
applied by [14] in problems of parameter inference and model
selection for dynamical models.

The ABC approach for analyzing PPF problems was orig-
inally proposed by the authors of [15]. They introduced an
ABC approach based on Markov Chain Monte Carlo, capable
of including prior distributions over the state variables into
the PPF problem. However, their work suffers from three
important limitations. First, their method has low acceptance
rates when the prior distribution over the state variables is not
close to the posterior distribution. Second, their approximate
approach may get accepted samples with low probability.
The third limitation is that their method obtains less accurate
solutions than MCS.

Here, we propose a new ABC method tailored to power
systems, in which the Jacobian of the power flow equations
of the PS is used to guide the search for more probable
samples from the posterior distribution over the state variables,
overcoming the limitations of the approach introduced by [15].
We refer to this method as the Jacobian ABC or simply JABC.
An additional advantage of JABC in the PPF context is that, in
contrast to MCS, we do not need to solve costly optimization
problems. We only need to compute several classical forward
solutions of the PS, leading to an important decrease in
computational complexity.

In this paper, we evaluate the performance of four
likelihood-free methods, namely, ABC [11], JABC, ABC SMC
[14] and JABC SMC for three test systems: IEEE{6, 39, 118}.
ABC based on sequential Monte Carlo (SMC) is a modifica-
tion of ABC that obtains an approximation of the true posterior
using a series of sequential steps [14]. JABC SMC refers to
an extension of ABC SMC that we also propose in this paper,
and that uses the Jacobian for the power flow equations. The
main contributions of this paper include the following:

1) A Bayesian inference perspective for addressing the
Probabilistic power flow problem is introduced.

2) We discuss alternatives for likelihood functions. We also
propose prior probability distributions over the state
variables.

3) We also provide a Bayesian methodology that incorpo-
rates the Jacobian computed from the power flow equa-
tions for enhancing the posterior distribution estimation
of the state variables.

4) We also propose ABC methods in combination with
sequential Monte Carlo methods applied to the PPF
problem.

II. BAYESIAN MODELING FOR PROBABILISTIC POWER

FLOW PROBLEMS

According to Su in [7] and given a network configuration,
the power flow equations can be written as follows,

b = g (x) , (1)

z = h (x) , (2)

where g and h are nonlinear power flow equations. The
vector x ∈ R

Nx includes the state variables, angles and
voltages. If we assumeN nodes andNg nodes in PV nodes,
hence, Nx = 2N − Ng − 2, being the number of the
unknown angles and voltages equal toNθ = N − 1 and
NV = N − Ng − 1, respectively [16]. The vectorz has
elements given by the power flows through lines; andb is a
vector with entries given by the net active and reactive powers
injected, which are known. Besides,b depends on the powers
generated (Pg) and loads (Pd). In PPF studies,Pg and Pd

are modeled through probability distributions. It is common
to use Gaussian, discrete and Weibull distributions to model
the uncertainty over the loads and powers generated [4].

In contrast to Eq. (1), authors in [17] proposed to model the
PPF problem assuming thaty = f (x), wherex is the input
variable vector that contains loads, network configurationand
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powers generated by distributed generation;y is the output
vector that includes voltage magnitudes, angles and some
powers generated; andf (x) determines the state of the system
as a function of the input variables.

In [18], the authors used the model of Eq. (1), and assumed
that b is the vector of input random variables andx is the
vector of state variables;b is modeled by a multivariate
Gaussian distribution. The mean vector and the covariance
matrix for b are assumed known. Based on these assump-
tions, the mean vector forx can be computed through DPF
methods and its covariance matrix,Σx, can be obtained as
Σx = diag

(

J⊤Σ−1
b J

)

, whereJ is the Jacobian of the power
flow equations; andΣb is the covariance matrix of the power
injected,b. According to the authors,x can be assumed to
follow a multivariate Gaussian distribution. Such assumption
is valid if all random variables are Gaussian distributed and
the power flow equations are linearized around an operation
pointx0 [2]. However, if the PS includes renewable energy, for
example wind or solar energy, the random variables associated
to these energies are non-Gaussian anymore [17], and the
assumption aboutx is not necessarily Gaussian.

In this paper, we also use Eq. (1) for obtaining an approx-
imation of the probability distribution over the voltages and
angles, given that the input random variables are modeled by
particular probability distributions. We use Bayesian inference
for estimating an approximate probability distribution over x
given powers injected. Using Bayes theorem,

p (x| D) =
p (D|x) p (x)

p (D)
, (3)

where p (x) is the prior distribution (prior) forx, that
encodes prior assumptions overx; the termp (D|x) is the
likelihood function (likelihood) that expresses how probable
the observed data set is for different settings ofx; andp (x| D)
is the posterior probability distribution (posterior) of the state
variablex given observed dataD. For the PPF problem, the
modeling of the particular input random variables can be
included into the likelihood. In this paper,D refers to the
reactive and active powers injected (b in Eq. (1)). The pos-
terior quantifies the knowledge about the unknown variables
and evaluate the uncertainty inx after observingD [19]. The
term p (D) is a normalization constant for ensuring that the
posterior is a valid probability distribution. It is often called
the evidence and it is given byp (D) =

∫

p (D|x) p (x) dx
[19].

It can be noticed from Eq. (3) that a likelihood is necessary
to compute the posterior and the evidence. In a typical
regression problem, a common likelihood assumes that the
relationship betweenb andx is linear, and that the observation
noise follows a Gaussian distribution [2]. However, for real PS,
the relationship betweenb andx is not linear. Also, one may
argue that the observation noise is far from being Gaussian,
particularly when the PS includes renewable energy.

Rather than attempting to build a likelihood for the PPF
problem, we use likelihood-free methods for computing the
posterior. We employ ABC methods, that define the likelihood
using simulator outputs. For the PPF problem, the simulator

corresponds to expressiong (x) in Eq. (1). ABC methods
have gained attention in the last years due to their flexibility,
easiness of implementation, and the fact that they can be
applied to any model for which forward simulation is possible.
In the next section, we explain the ABC methods and how to
apply them to solve the Bayesian PPF problem.

III. A PPROXIMATE BAYESIAN COMPUTATION METHODS

Given a prior p (x), the goal in ABC is to approximate
the posteriorp (x| D) by using simulator outputsD′ localized
in the same space asD. Hence, assuming that we have an
auxiliary variableD′, Eq. (3) can be rewritten as,

p (x| D) ≈
p (x)

∫

pǫ (D|g (x) = D′) p (D′|x) dD′

∫

p (x)
∫

pǫ (D|g (x) = D′) p (D′|x) dD′dx
,

(4)

where p (D′|x) is the probabilistic simulator, which for
the PPF problems isg (x); and pǫ (D|g (x) = D′) is a
distribution that measures how similarD′ is to D. This
distribution depends onǫ and controls the acceptable dis-
crepancy betweenD and D′. To measure the similarity be-
tween D and D′, it is common to use a distance measure
d (D,D′). From Eq. (4), the principle behind ABC is to
approximate the likelihood

∫

pǫ (D|g (x) = D′) p (D′|x) dD′

by p (d (D,D′) ≤ ǫ|x) using a comparison between the ob-
served dataD, and the simulated dataD′, which implies that
the posterior is given by

p (x| D) ∝ p (d (D,D′) ≤ ǫ|x) p (x) . (5)

To obtain samples from the posterior shown in the Eq. (5),
the ABC rejection sampler [20] can be used. This sampler is
the most common ABC method and is shown in algorithm 1.

Algorithm 1: ABC rejection

1 Draw x from p (x)
2 SimulateD′ usingp (D′|x)
3 Acceptx if d (D,D′) ≤ ǫ

In the algorithm above,ǫ determines the accuracy of the
algorithm. In this paper, algorithm 1 will be referred to as
ABC. It is important to mention that the empirical distribution
over accepted samples forx is an approximation that can
be expressed by Eq. (5). For the ideal case ofǫ = 0, the
samples that we draw will come from the true posterior.
However, the algorithm would need to perform a large amount
of simulations for accepting any sample [11]. As for a distance
measured, several alternatives can be used in practice, includ-
ing the Euclidean or Mahalanobis distance, or the root mean
squared error (RMSE). In this paper, we use RMSE. In the
next sections, we explain how we extend the ABC method to
incorporate information from the PS. We will also describe
how to embed these ideas in other ABC algorithms.
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IV. JACOBIAN ABC FOR PPFPROBLEMS

When using algorithm 1, it is possible to have low ac-
ceptance rates when the prior is not close to the posterior.
This problem is addressed by an ABC extension presented in
[15], which is based on Markov Chain Monte Carlo (MCMC)
[21]. ABC MCMC randomly explores the state space by
modifying the current accepted samples. It uses a proposal
distribution q (x∗|xi) and the Hasting correction given by

α = min
(

1, p(x∗)q(xi|x
∗)

p(xi)q(x∗|xi)

)

to move from the i-th state

acceptedxi to a new statex∗. Wherep (x∗) andp (xi) is the
prior distribution evaluated atx∗ and xi, respectively. ABC
MCMC also obtains samples from an approximated posterior
over x. However, according to [14], ABC MCMC may get
accepted samples with low probability. To deal with the
problems mentioned before, we propose to use the Jacobian
of the power flow equations as part of the ABC MCMC
method. If we assume a symmetric proposal distribution, that
is, q (x∗|xi) = q (xi|x∗), the Hasting correction is given by

α = min
(

1, p(x∗)
p(xi)

)

. We note that ifx∗ is more probable than
xi, we definitely acceptx∗. For this, we employ the Jacobian
matrix information to do an improved state space exploration.
Specifically, we use a multivariate Gaussian distribution as
symmetric proposal distributionq, where its mean value is
updated as follows [22],

xi+1 = x∗ + J−1
i (D −D′) , (6)

where the matrixJi : R
Nx → R

Nx is the Jacobian ofg (x),

that is, Ji = ∂g(x)
∂x

∣

∣

∣

x=xi

[16]; and D − D′ is a vector of

relative errors between observed and simulated data. Eq. (6)
can be seen as a correction step, which searches thatD′ = D
throughx∗. We also need to define the covariance matrix for
the distributionq, Σx. In this paper, we use a diagonal matrix
with Nθ elementsσ2

θq
for angles andNV diagonal entriesσ2

vq

for voltages. The basic idea of using Eq. (6) is to move from a
current statexi to a more probable new statex∗. We refer to
this new ABC algorithm as JABC. The JABC algorithm can
be summarized as follows,

Algorithm 2: JABC

1 Draw x∗ from q (x|xi,Σx)
2 SimulateD′ usingp (D′|x)
3 if d (D,D′) ≤ ǫ

4 xi+1 = x∗ + J−1
i (D −D′)

5 Otherwise rejectx∗

For using algorithm 2, it is necessary to adequately choose
the initial conditionx0. In this paper, we take an all-ones
vector for voltages, and the solution of the DC power flow
algorithm for angles.

Another point to mention is that when using ABC, one
needs to specify a suitable value forǫ. The optimal value forǫ
depends on the similarity between the prior and the posterior,
which is difficult to know beforehand. One way to avoid the
manual selection ofǫ is to use an ABC algorithm coupled with
sequential Monte Carlo (ABC SMC) [23], where the value for

ǫ is specified adaptively with each iteration of the algorithm.
The goal of ABC SMC is to obtain an approximation of the
true posterior using a series of sequential steps, expressed by
p (θ| d (D,D′) ≤ ǫt), for t = 1, · · · , T , whereǫt is a threshold
that decreases at each step (ǫ1, >, . . . , > ǫT ), refining the
approximation towards the target distribution. ABC SMC is
computationally much more efficient than ABC, however the
computation time depends on the number of the sequential
steps [14]. ABC SMC has a first stage based on ABC. We
can replace this stage with JABC, leading to what we call in
the paper as the JABC SMC. Details of the ABC SMC method
can be found in [14].

V. EXPERIMENTAL EVALUATION

In this section, we present several experiments that illustrate
different aspects of this new approach for tackling the PPF
problem. In the first experiment, we show an example where
the likelihood functions are actually known and compare the
performance between MCS, Hamiltonian Monte Carlo, and
ABC in an IEEE 6-bus test system. For the second experiment,
we evaluate how the ABC algorithms work, including the
sequential Monte Carlo variants, compare with MCS, the
point-estimation method and the Taguchi method in terms of
the number of nodes of a PS. We use the IEEE{6, 118}-
bus test systems. For the third experiment, we show the
performance of the ABC methods when including renewable
sources of energy in the IEEE 39-bus test system.

A. PPF analysis using MCS and Bayesian inference

In this experiment, we compared Bayesian inference meth-
ods and MCS for solving PPF problems, assuming a particular
form for the likelihood. For this we used the IEEE6-bus
system and assumed to know the true posterior ofx. To
define such posterior, we use the input random variables
as in [7] (no uncertainty in line parameters) and employ
MCS for obtaining the probability distribution ofx, that
we use as the true posterior ofx. We initially drew 1000
samples from this posterior and computed{bi}

1000
i=1 through

Eq. (1). 1 To calculatebi, which corresponds toD for the
ABC methods, we used two different likelihood functions:
a multivariate Gaussian likelihood function (MGLF) with
mean g (x) and covariance matrixΣ = 3 × 10−4I, that
is, p (b|x) =

∏1000
i=1 N (bi|g (x) ,Σ); and a multivariatet

likelihood function (MTLF) with meang (x), precision matrix
Λ = Σ−1 and 5 degrees of freedom (ν = 5), that is,
p (b|x) =

∏1000
i=1 S (bi|g (x) ,Λ, ν). 2

From the PPF perspective, the MGLF means that eachbi is
modeled by Gaussian distributions (input Gaussian variables).

1We have used a number of samples of1000 for our experiments with
the goal of ensuring a coefficient of variation of2% (for more details see
[7]). The coefficient of variation is defined as the ratio between the standard
deviation and mean value.

2The MGLF is given by N (b|g (x) ,Σ) =
1

(2π)Nx/2|Σ|1/2
exp

(

− 1
2
∇2

)

, where ∇2 =

(b− g (x))⊤Σ−1 (b− g (x)). The MTLF is given by

S (b|g (x) ,Λ, ν) =
Γ(ν/2+Nx/2)

Γ(ν/2)
|Λ|1/2

(νπ)Nx/2

[

1 + ∆
2

ν

]−ν/2−1/2
,

where∆2 = (b− g (x))⊤Λ (b− g (x)) andΓ (x) is the gamma function
defined byΓ (x) ≡

∫∞
0 ux−1e−udu.
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If we assume that the relationship betweenbi andx is linear,
we can have a similar likelihood used by [2]. On the other
hand, a MTLF can be considered as a probabilistic model
from the observations that it is tolerant to the negative effect
of outliers, for example: due to a measurement equipment
malfunction of the input variables.

Once we generated the different datasets using these two
likelihood functions, we used the Bayesian inference frame-
work described above to make inference for the posterior
of x =

[

θ2 θ3 θ4 θ5 θ6 V4 V5 V6

]⊤
given b,

p (x|b). For each voltage, we use Gaussian distributions as
prior distributions with mean equal to one, and varianceσ2

v =
0.0015. We use uniform distributions as prior distributions for
each angle, i. e.,θi ∼ U (ai, bi). Parametersai and bi are
computed asai = θDC

i −∆θ andbi = θDC
i +∆θ, whereθDC

i

is the ith DC power flow solution [18]; and∆θ quantifies
the error present in the solution obtained by the DC power
flow algorithm with respect to the AC power flow solution
(Eq. (1)). We chose∆θ equal to0.07. We employed ABC and
MCS to infer the posterior ofx. For ABC, we putǫ = 0.7, the
simulation function was set asg (x) and we ran one simulation
by eachbi. We used MATPOWER to implement MCS.3 We
also compared these two methods against the most popular
likelihood-based Bayesian method, Hamiltonian Monte Carlo
(HMC) [19]. Fig 1 shows the probability distribution ofV6

generated by the MCS, ABC and HMC, when we assumed a
MGLF (see Fig. 1(a)) and a MTLF (see Fig. 1(b)).
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Fig. 1. Posterior forV6 when two likelihood functions are considered. The
dashed red, blue and black lines are the responses obtained by MCS, ABC
and HMC. The solid red lines are the true posteriors. Figs 1(a) and 1(b) show
the posterior forV6 by using a MGLF and a MTLF, respectively.

Fig. 1(a) shows the posteriors inferred when a MGLF
was assumed. We observe that MCS, ABC and HMC obtain
satisfactory posteriors. When we used a MTLF (see Fig. 1(b)),
which is an intractable likelihood, we note that MCS did
not infer appropriately the posterior forV6, however, ABC
and HMC properly estimated the posterior ofV6. From this
results, we see that the MCS is affected by outliers, obtaining
bad convergence properties and high variability. In contrast to
HMC, ABC did not need a particular form for the likelihood
to obtain the posterior ofV6. On the other hand, these results
confirm the importance of including additional source of
information (a prior overx) to analyze the uncertainty ofx.

3It is available athttp://www.pserc.cornell.edu/matpower/

We observed the results for other variables ofx, and they are
very similar to the results ofV6.

B. PPF analysis with different sample sizes and number of
nodes

We evaluated the performance of the different methods
when the sample size for the input random variables and
the number of the nodes of the PS were increased. We
considered two case studies: in the first case, we analyzed
the PPF problem for the IEEE6-bus system assuming that
the true posterior ofx was also known and then observed
how the simulation methods worked with different sample
sizes. For the second case, we examined classic PPF problems
in terms of the sample and system size. For classic PPF
problems, we generatedNs samples from the input random
variables to obtain{bi}

Ns

i=1 from Eq. (1). We then inferred the
posteriorp (x|b) using all methods over the IEEE{6, 118}
bus systems.

For the first case, we used the input random variables shown
in [7] and we increased the number of samples of these
variables from500 to 10000 samples, in steps of250 samples.
For each step, we ran ABC, JABC, ABC SMC JABC SMC,
MCS and computed the Bhattacharyya distance (BD) [24] to
measure the similarity between the true distribution overx

and the distribution computed by each method. For ABC and
JABC, we usedǫ = 0.7. For ABC SMC and JABC SMC,
we used{ǫt}

T
t=1 = {3.0, 2.0, 1.0, 0.9, 0.7}. From now on, we

will continue to employ Gaussian and uniform distributionsas
prior distributions for each voltage and angle, respectively, as
it was described in the previous subsection. For ABC SMC,
we employed a multivariate Gaussian distribution as proposal
distribution for x, with a covariance matrix that depends on
σ2
vq

= 10−6 andσ2
θq

= 10−7 as diagonal entries for voltages
and angles, respectively.

For JABC and JABC SMC, we employed a multivariate
Gaussian distribution as symmetric proposal distribution, q ∼
N (xi,Σx), wherexi and Σx are the mean and covariance
matrix for the proposal distribution. The meanxi can be
computed using Eq. (6). The covarianceΣx is assumed to be a
diagonal matrix with parameters,σ2

vq
= 10−5 andσ2

θq
= 10−6.

For x0, we used a vector of ones for voltages, and the DC
power flow solution for angles.

In Fig. 2, we present the BD in terms of the number of
samples. We show the BD for voltages (see Fig. 2(a)) and
angles (see Fig. 2(b)). From Fig. 2(a), we observe that the
BD obtained by MCS is the most steady. We also see that
JABC and JABC SMC compute better BD than MCS, ABC
and ABC SMC; being the BD computed by JABC SMC, the
lowest. For angles, we note that the BD calculated by ABC
is the most steady, but the BD achieved by JABC SMC is
the lowest. BD values are summarized in the Table I. These
results validate our hypothesis of using the Jacobian of the
power flow equations into the ABC algorithm to search more
probable samples forx. As can be seen in Fig. 2, the JABC
SMC is a proper estimator of the posterior overx in terms
of the number of samples. From Fig. 2, ABC and ABC SMC
computed better BDs for angles than the BDs for voltages, this
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is due to the information included by DC power flow solution
in the prior over angles. These results show that it is necessary
(for the ABC and ABC SMC) to use an improved prior for
the voltages, that is, the ABC and ABC SMC performance
could be enhanced by using an informative prior overx, for
example: to use a multivariate Gaussian distribution overx,
where the mean vector depends on a previous DPF solution
and the covariance matrix could be assumed known.
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Fig. 2. BD for voltages and angles for different number of samples. The
circles, plus signs, cross, stars and the squares representthe BD obtained by
MCS, ABC, JABC, ABCMCS and JABCSMC, respectively. Figs. 2(a) and
2(b) show the BD for voltages and angles.

Method BDV BDθ

MCS 0.0248 ± 0.0009 0.0389 ± 0.0027
ABC 0.1404 ± 0.0049 0.0136 ± 0.0011

ABCSMC 0.0690 ± 0.0126 0.0121 ± 0.0054
JABC 0.0174 ± 0.0022 0.0225 ± 0.0037

JABCSMC 0.0117 ± 0.00240.0117 ± 0.00240.0117 ± 0.0024 0.0117 ± 0.00510.0117 ± 0.00510.0117 ± 0.0051
TABLE I

BD OBTAINED BY ALL ABC METHODS AND MCS.

For the second case study, we solved two classic PPF
problems with different number of nodes. In particular, we
analyzed the IEEE6 and118 bus systems using input Gaussian
variables [7]. Due to the ABC and ABC SMC obtain poor
results, we applied JABC, JABC SMC and MCS to these
two systems to infer the posteriorp (x|b) over Ns = 1000
samples from the input random variables. For comparison
purposes, we also applied the point-estimation method based
on two points (PEM) [7] and the Taguchi method (TM) [8]
to analyze these two PPF problems. For the PEM, due to
this method must be combined with some series expansion
to acquire the probability distribution of the PPF results,we
used a Gram-Charlier series expansion [25]. For the TM, we
employed a nonparametric density estimator [26] to obtain
the probability distributions of the PPF results. We used the
parameters mentioned in the previous experiment for the IEEE
6 bus system. For the IEEE118 bus system, we usedǫ = 4.0
in the JABC algorithm. For JABC SMC, we have reduced the
sequential steps with regarding to the previous experiment,
we specifically used{ǫt}

T
t=1 = {6.0, 5.0, 4.0}. For JABC and

JABC SMC, we employedσ2
vq

= 10−5 and σ2
θq

= 10−6 as
parameters of the proposal distributions. Figs. 3 and 4 compare
each method against the MCS when some variables of these
systems are inferred. Specifically, we show the probability
distribution overV6 (see Fig. 3) for the6 bus system and the
distribution forθ108 (see Fig. 4) for the118 bus system, since

the results for other variables inx are similar to the results
shown in Figs. 3 and 4. From Figs. 3(a) and 4(a), we observe
that the PEM does not infer appropriately the probability
distributions of both variables. We also note that the samples
obtained by the TM in both variables (see Figs 3(b) and 4(b))
are around the DPF solution (see the blue vertical solid line),
however the shapes of the probability distributions obtained
by this method are not similar to the probability distributions
obtained by MCS. However, JABC and JABC SMC provide
results close to the distributions obtained by MCS (see Figs.
3(c), 4(c), 3(d) and 4(d)), confirming the importance of the
improved state space exploration ofx in the Jacobian ABC-
type methods.

We also recorded the computation time (CT) required for
each method to solve the PPF problems shown in Figs. 3 and 4.
All simulations were conducted on an Intel Core i7 PC with a
2.1GHz processor. Table II lists the CTs took for the different
methods. Notice that the CTs, for JABC and JABC SMC, are
lower than the CT took by MCS. From Table II, we also note
that the proposed methods require more CT compared to the
PEM and TM. However, the proposed methods do not require
DPF solutions to obtain the probability densities shown in
Figs. 3 and 4.4

MCS PEM TM JABC JABC SMC

CT [s]
IEEE-6 13.540 0.1248 0.0936 0.6365 1.7156

IEEE-118 17.097 6.0528 5.2884 5.8464 16.757
TABLE II

COMPUTATION TIME (CT), IN SECONDS[S], REQUIRED BY MCS AND ALL

ABC METHODS TO SOLVE TWOPPFPROBLEMS WHEN ASSUMING INPUT

GAUSSIAN VARIABLES.

Considering input Gaussian variables, we compared the
DPF solution and the estimated posterior mean using the rela-
tive error (RE),5 for each variable using the different solution
methods. In what follows, the numerical analysis is only done
for the state variables (state variables can be used to compute
other variables, i.e. active and reactive power flows between
buses). For the comparison, we drew25 subsets of input
random variables, we then applied PEM, TM, JABC, JABC
SMC and MCS to obtain25 REs for angles and voltages.
With these errors, we computed the mean value and an one
standard deviation for each method. We used the{6, 118}-bus
systems and1000 samples for all input random variables. We
slightly changed the application of ABC methods. Here we ran
1000 simulations for the ABC methods by each input random
variable configuration, since in the previous experiments,we
used one simulation by eachbi. Due to the ABC methods
are approximate inference approaches, we wanted to show if
it was possible to obtain REs close to the results using MCS.
Table III presents the RE obtained by MCS and ABC methods.

For the6-bus system, notice that the REs obtained by JABC
and JABC SMC are lower than the REs computed by MCS,
PEM and TM for voltages and angles. For the118-bus system,

4It is necessary to comment that the goal of the PEM and TM is to reduce
of the number of simulations in MCS, therefore the number of samples is
also reduced. From this point of view, a fair comparison between these two
methods and the remaining methods applied would not be possible.

5The RE is computed asRE =
∣

∣

∣

xds−xps

xds

∣

∣

∣
, where xds is the DPF

solution, andxps is the estimated posterior mean obtained by each method.
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Fig. 3. Posterior forV6. The dashed red line is the responses obtained by MCS. The solid black lines are the probability densities calculated by PEM, TM,
JABC and JABC SMC. The blue vertical solid line is the DPF solution. Figs. 3(a) to 3(d) show the posteriors forV6, obtained by PEM, TM, JABC and
JABC SMC, respectively.
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Fig. 4. Posterior forθ108. The dashed red line is the responses obtained by MCS. The solid black lines are the probability densities calculated by PEM,
TM, JABC and JABC SMC. The blue vertical solid line is the DPF solution. Figs. 3(a) to 3(d) show the posteriors forV6, obtained by PEM, TM, JABC and
JABC SMC, respectively.

Index Method IEEE 6 IEEE 118

REθ [%]

MCS 1.5190 ± 0.8843 3.7290 ± 1.9822
PEM 1.5268 ± 0.8923 3.7841 ± 2.0324
TM 1.5494 ± 0.9092 3.7674 ± 2.0281

JABC 1.5073 ± 0.87931.5073 ± 0.87931.5073 ± 0.8793 2.3344 ± 1.0952
JABC SMC 1.5149 ± 0.8813 2.3341 ± 1.09512.3341 ± 1.09512.3341 ± 1.0951

REV [%]

MCS 0.0598 ± 0.0302 0.0212 ± 0.00540.0212 ± 0.00540.0212 ± 0.0054
PEM 0.0603 ± 0.0300 0.0213 ± 0.0055
TM 0.0605 ± 0.0300 0.0212 ± 0.0054

JABC 0.0585 ± 0.03020.0585 ± 0.03020.0585 ± 0.0302 0.0234 ± 0.0019
JABC SMC 0.0596 ± 0.0302 0.0235 ± 0.0019

TABLE III
RELATIVE ERROR (RE) FOR ANGLES AND VOLTAGES USING ALL

METHODS WHEN USING INPUTGAUSSIAN VARIABLES.

the REs computed by JABC and JABC SMC are lower than
the results calculated by MCS, PEM and TM for angles. We
also note that MCS and TM computed the lowest RE for the
voltages, however the REs from JABC and JABC SMC are
close to the results achieved by MCS.6

After showing the results when we had1000 samples from
the input random variables, we repeated the experiment of
Table III with 100, 500, 1000 and 2000 samples. For this
experiment, we only used the MCS, JABC and JABC SMC.
Figs 5 and 6 report the RE, for angles and voltages, versus
the number of samples.

Figs 5 and 6 show that the RE decreases when the number
of samples increases in both systems. From Figs 5(a), 6(a)
and 6(b) the REs obtained by JABC and JABC SMC tend
to REs computed by MCS. However from Fig 5(b), the REs

6Although, we have included averaged results, a close inspection of the
individual performance on every variable confirms our analysis, in the sense
that the errors obtained by JABC and JABC SMC are lower than orequal the
errors computed by MCS.
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Fig. 5. REs for angles in terms of the number of samples. Blue, green and
brown bars are the RE obtained by MCS, JABC and JABC SMC, respectively.
The vertical line is one standard deviation for each variable.
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obtained by JABC and JABC SMC are lower than the REs
using MCS. These high REs of MCS are due to poor estimates
for the angle at node26, causing high variability (see the
standard deviation in each scenario). These results confirmthat
the ABC methods, which are approximate Bayesian inference
approaches, provide satisfactory results with respect to the
optimization-based simulation methods.

C. PPF analysis with renewable energy

We now perform an experiment where we consider renew-
able energy in a IEEE39-bus test system. In this case, we
model all input random variables as in [4], but we do not
consider correlated loads. We add a wind farm at bus32, where
the output power from one wind turbine,Pw, in terms of the
wind speedvw, is given by

Pw (vw) =











0 vw ≤ vcin,

0.5ρAwCpv
3
w vcin < vw ≤ vr,

Pr vcout < vw,

(7)

where vcin is the cut-in wind speed;ρ is the air density;
Aw = πR2 is the area of the wind turbine rotor;R is the
radius of the rotor;Cp is a coefficient of power, at which the
wind turbine generator starts generating power [4];vr is the
nominal rotational speed;Pr is the nominal wind power; and
vcout is the cut-out wind speed, at which the wind turbine
generator is shut down for safety reasons [4]. Furthermore,
we assumed thatvw followed a Weibull distribution and we
adopted the parameters used by [4].7 We also modeled the
wind farm output power as a Gaussian random variable. The
output power can be modeled asPwt (vw) = Pw (vw) + ω,
wherePwt (vw) is the wind turbine output power;Pw (vw) is
the deterministic output power expressed by Eq. (7); andω is
a white Gaussian noise with varianceσ2

ω = 10−6.
In this experiment, we drew1000 samples from the input

random variables and we used the same prior distributions over
x as it was mentioned in the first experiment. However, we
increased the variance in the Gaussian prior for each voltage
to σ2

v = 0.005. We only compared the MCS, JABC and JABC
SMC. We usedǫ = 2.0 in the JABC algorithm. For JABC
SMC, we used{ǫt}

T
t=1 = {3.0, 2.75, 2.5, 2.25, 2.0}. For JABC

and JABC SMC, we employedσ2
vq

= 10−5 andσ2
θq

= 10−6 as
parameters of the proposal distributions. Fig. 7 compares the
posterior distributions forV15 andP39−9 obtained by MCS,
JABC and JABC SMC.8 From this figure, we notice that
the posterior forV15 (see Fig. 7(a)) obtained by JABC is
closer to the distributions obtained by MCS, than the posterior
computed by JABC SMC.

From Fig. 7(b), notice that the posterior forP39−9 has two
modes, despite this, the distributions obtained by JABC and
JABC SMC are consistent with the distribution forP39−9

using MCS. MCS, JABC and JABC SMC took15.0853s,

7For our experiments, we useda = 15 and b = 2.5. For the Eq. (7), we
usedvcin = 3 m/s, vcout = 25m/s, vr = 10.28m/s, Cp = 0.473 and
R = 45m.

8After obtaining samples from the posterior ofx, we employ the Eq. (2)
for computing the posterior overP39−9.
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Fig. 7. Posterior forV15 andP39−9. The dashed red line, solid blue line
and solid black line are the posteriors calculated by MCS, JABC and JABC
SMC, respectively. Figs. 7(a) and 7(b) show the posteriors for V15 andP39−9,
respectively, obtained by each method.

1.5288s and5.3040s, respectively, for solving this PPF prob-
lem. These results show how the Bayesian inference is an
alternative for solving the PPF problems, allowing a non-
linear relationship betweenb and x, and dealing with input
non-Gaussian variables. We also analyzed the results for the
remaining variables, and they are similar to the results shown
in Fig. 7.

Since we do not have a ground-truth solution, we observed
how close the mean and standard deviation of angles and
voltages obtained by the ABC methods are to the values
computed by MCS, that is, we used the mean and standard
deviation obtained by MCS as reference values. Using these
values, we computed the relative error for ABC methods.9 We
generated25 different sets of input random variables, with
1000 samples for each variable. We then applied the JABC
and JABC SMC to infer the posterior mean and standard
deviation of each input random variable configuration. Finally,
we computed25 relative errors using the previous information.
Table IV lists the mean and one standard deviation for the
relative errors that compare the reference values obtained
by MCS, and the estimated values using the ABC methods.
Notice that JABC gives better estimated results than JABC
SMC, since in some cases the estimates obtained from JABC
SMC have a large variance. However, the errors obtained by
JABC SMC do not exceed3%.

IEEE 39 εθ[%] εV [%]
JABC µ 0.6866 ± 0.0768 0.1251 ± 0.0026

σ 0.2017 ± 0.1254 0.3751 ± 0.1300
JABC SMC µ 2.6610 ± 1.8072 0.1173 ± 0.0375

σ 2.0547 ± 1.6072 2.3299 ± 1.0785
TABLE IV

RELATIVE ERROR FOR VOLTAGES AND ANGLES USINGIEEE 39-BUS

SYSTEM.

Table IV clearly shows that the JABC and JABC SMC
methods proposed here, consistently outperforms the approach
presented in [15].

9We compute relative errors with respect to the values calculated by MCS,
that is, we employεµx =

∣

∣

∣

µx−µ∗

x
µx

∣

∣

∣
and εσx =

∣

∣

∣

σx−σ∗

x
σx

∣

∣

∣
[7], whereεµx and

εσx are relative errors for the mean and standard deviation values; µx andσx

are the mean and standard deviation obtained using MCS;µ∗
x andσ∗

x are the
mean and standard deviation computed with the ABC methods proposed.
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VI. CONCLUSIONS

In this paper, we introduced an alternative for solving PPF
problems using the approximate Bayesian computation method
and the Jacobian of the power flow equations. We also pro-
posed priors for voltages and angles for the PPF problem under
Bayesian inference perspective. We demonstrated that ABC
and ABC SMC can work for an small power system using
input Gaussian variables. However, it is necessary to define
an informative prior over the state variables, for example,
to use a multivariate Gaussian distribution where the mean
vector depends on a previous AC power flow solution. We
also showed that the posteriors of the state variables obtained
by JABC and JABC SMC are close to the results using
MCS, similarly JABC took less computation time for obtaining
the PPF solution with respect to MCS. As future works, it
would be possible to consider: uncertainty in line parameters,
correlated random variables, likelihood functions that combine
continuous and discrete random variables, and the application
of the proposed methods to analyze distribution systems.
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