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Bayesian Probabilistic Power Flow Analysis Using
Jacobian Approximate Bayesian Computation

Carlos D. Zuluaga and Mauricio Adlvarez

Abstract—A probabilistic power flow (PPF) study is an es- gories: analytical, approximate and simulation-basechou
sential tool for the analysis and planning of a power system [4]. Analytical methods are based on convolution processes

when specific variables are considered as random variables \yhicy yse a fast Fourier transform and linearized power
with particular probability distributions. The most widely used fl i 5l K with il del t
method for solving the PPF problem is Monte Carlo simulation ow equations [[5]; or work with a multilinear model to

(MCS). Although MCS is accurate for obtaining the uncertainty deal with the power system nonlinearities [6]. Approximate
of the state variables, it is also computationally expensive, since methods replace the probability distributions of the rando

it relies on repetitive deterministic power flow solutions. In this  variables by their statistical momenfs [7]. They include th
paper, we introduce a different perspective for the PPF problem — qint estimate method [7] and the unscented transformation

We frame the PPF as a probabilistic inference problem, and o . .
instead of repetitively solving optimization problems, we use methods [[B]. Finally, simulation-based methods are based o

Bayesian inference for computing posterior distributions over Statistical sampling of input random variables (active and
state variables. Additionally, we provide a likelihood-free method reactive powers injected) and the propagation of these lsamp
based on the Approximate Bayesian Computation philosophy, through repetitive deterministic power flow (DPF) soluton

that incorporates the Jacobian computed from the power flow [4]. Statistical sampling of the input random variables can

equations. Results in three different test systems show that the b lished using diff t thods includina Latin h
proposed methodologies are competitive alternatives for solving °€ acCOMpliShed using direrent methods Including LatiR ny

the PPF problem, and in some cases, they allow for reduction in Percube, uniform design sampling or Monte Carlo simulation

computation time when compared to MCS. (MCS) [8], which is the most popular. Other methods also
Index Terms—Approximate Bayesian Computation, Bayesian US€ simulation for ana_lytical_ or appr_oximate represeoisti
inference, Power system, Probabilistic power flow. of the power system, including the linear MCS [6] and the

Taguchi method[[8]. Although, analytical and approximate
methods are computationally more effective than simufatio
based methods, they require mathematical assumptions or
Probabilistic approaches have gained considerable @itentapproximations for obtaining feasible solutions [4]. Henihe
within power flow analysis due to the uncertainty which ignalytical methods may offer less accurate solutions thaSMC
naturally present in power systems (PS). Such uncertairm].
appears due variability in power generation, variationhia t  MCS combines sampling approaches of input random vari-
demand, and changes in the network configuration. The figgles with deterministic optimization![4]. Input randonriva
methods proposed to approach power flow analysis und@iles are assumed to follow particular probability disttiitns
a probabilistic formulation appeared in Borkowska [1] anghat model the uncertainty in the PS. Samples from these
Dopazo et. all[?] in the mid970s. From these studies,probability distributions are used to solve a DPF probleat th
two philosophies have been used to analyze the uncertaiBhmputes the corresponding values of state variables|e@ng
in a PS: the probabilistic power flow (PPF)I[1] and th@t pv and PQ nodes, and voltages at PQ nodes). The process is
stochastic load flow (SLF)[2]. SLF uses a regression mod@peated several times, until sufficient samples from thte st
together with a white Gaussian noise to model the unceytaiffariables are obtained in order to build an estimator for the
in the power flow equations [2]. PPF assumes that specififarginal distributions of the state variables.
variables in the PS can be considered as random Variab|e$he process described above has its Shortcomings' On one
with particular probability distributions. The goal is théo hand, it does not take into account the fact that previous
Obtain probablhty diStributionS fOI’ a” the Other Variabl in knowledge Of state Variables m|ght be ava”ab'e in terms Of
the system, particularly for voltages, angles and powerdlowrobability distributions, for example: from normal opina
between nodes [3]. In this paper, we consider the approaghditions of a PS, the magnitude of the voltage variables
used in PPF towards uncertainty quantification in PS. is close to one per unit, therefore, we can define a specific
Different methods have been proposed to address the Ritbbability distribution for these variables. That is, M@6es
problem. They can broadly be classified in three main caigot consider the state variables as random variables within
C. Zuluaga is with the Department of Electrical EngineeriRgculty of the _PPF problem bEf_ore observing different Conﬂg.uratldns.o
Engineering, Universidad Tecrémica de Pereira, 660003, Colombia, e-mailthe input random variables. On the other hand, this sampling
cardazu@utp.edu.co approach is computationally expensive, since it relies on

M. Alvarez is with the Department of Computer Science, Faculty O(fepetitive DPF solutions.

Engineering, University of Sheffield, S1 4DP, United Kinguoe-mail: . .
mauricio.alvarez@sheffield.ac.uk In this paper, we address these shortcomings by formu-

Manuscript received -; revised -. lating the PPF problem as a Bayesian inference problem.

I. INTRODUCTION
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Using Bayesian inference requires the specification ofrprio Here, we propose a new ABC method tailored to power
distributions for the state variables, and a likelihoodction systems, in which the Jacobian of the power flow equations
that relates the observations to the state variables. Wiy appf the PS is used to guide the search for more probable
Bayes theorem to obtain the posterior distribution over treamples from the posterior distribution over the stateavdess,
state variables. By including prior distributions over #tate overcoming the limitations of the approach introduced/15].[1
variables into the PPF problem, it will be possible to exploWe refer to this method as the Jacobian ABC or simply JABC.
an additional source of information that has not been usedAm additional advantage of JABC in the PPF context is that, in
simulation methods before, like MCS. In principle, usingsth contrast to MCS, we do not need to solve costly optimization
extra source of information allow us to reduce the compaoati problems. We only need to compute several classical forward
time to solve the PPF problem. Furthermore, the way Bolutions of the PS, leading to an important decrease in
which the Bayesian inference method is applied requiresmputational complexity.
solving a forward computation problem, rather than an iswer In this paper, we evaluate the performance of four
optimization problem as needed in MCS. This means thidtelihood-free methods, namely, ABC [11], JABC, ABC SMC
we will not need to solve heavy computational optimizatioffl4] and JABC SMC for three test systems: IEEE 39, 118}.
methods, every time we generate a hew sample. ABC based on sequential Monte Carlo (SMC) is a modifica-
Different studies have used Bayesian methods to considien of ABC that obtains an approximation of the true posteri
the uncertainty in a PS. For example: [in [9].][10], the authousing a series of sequential steps|[14]. JABC SMC refers to
employed a Gaussian mixture model to approximate noan extension of ABC SMC that we also propose in this paper,
Gaussian distributions of loads in a PS. The authors pand that uses the Jacobian for the power flow equations. The
prior distributions over the parameters (mean, covariam@ main contributions of this paper include the following:

mixing Coefﬁcients) of each Gaussian distribution. In this 1) A Bayesian inference perspective for addressing the

mixture model, the likelihood function is defined using mea- Probabilistic power flow problem is introduced.
surements Qf Iqadg (observations) givgn the pqrametem:pf € 2) We discuss alternatives for likelihood functions. Wepals
Gaussian distribution. The goal of this Bayesian modeIEng I propose prior probab|||ty distributions over the state
to obtain the posterior distribution of the parameters mjitree variables.

observations, where the parameters can be estimated by using) \We also provide a Bayesian methodology that incorpo-
the Expectation Maximization algorithm |[9] or variational rates the Jacobian computed from the power flow equa-

Bayesian inference_[10]. These methods focus on modeling tions for enhancing the posterior distribution estimation
the uncertainty of the loads in a PPF problem. We are inter-  of the state variables.

ested in using Bayesian inference as an holistic approach fo4) we also propose ABC methods in combination with

uncertainty quantification in the random variables assedia sequential Monte Carlo methods applied to the PPF
to a PS. Our aim goes beyond modeling uncertainty in the problem.
loads.

In a classical Bayesian inference problem, we would know || B avESIAN MODELING FOR PROBABILISTIC POWER
beforehand the likelihood function. Since likelihood ftinos FLOW PROBLEMS

for power systems have not been discussed properly in the . - : ) .
literature, we discuss alternatives for likelihood funaos, but According to Su |n_I_7] and given a network configuration,
mainly appeal to likelihood-free methods for obtaining tees the power flow equations can be written as follows,
rior distributions. In particular, we use Approximate Baian
Computation (ABC) philosophy that replaces the calcutatio b=g(x), (1)
of the likelihood function by comparisons between simudate z=h(x), )
and observed data [11]. ABC methods have been applied ’
in several fields of science and engineering for Bayesianwhere g and h are nonlinear power flow equations. The
inference. They have been employed for statistical infegenvector x € R¥x includes the state variables, angles and
in systems biology [12], ecological models [13] and wer@als/oltages. If we assum& nodes andV, nodes in PV nodes,
applied by [14] in problems of parameter inference and mode¢nce, Ny = 2N — N, — 2, being the number of the
selection for dynamical models. unknown angles and voltages equal dp = N — 1 and
The ABC approach for analyzing PPF problems was orig¢vyy = N — N, — 1, respectively [[16]. The vectoz has
inally proposed by the authors df [15]. They introduced aslements given by the power flows through lines; &nd a
ABC approach based on Markov Chain Monte Carlo, capablector with entries given by the net active and reactive pewe
of including prior distributions over the state variabledgoi injected, which are known. Besidds,depends on the powers
the PPF problem. However, their work suffers from thregenerated £,) and loads ;). In PPF studiesp, and Py
important limitations. First, their method has low acceptg are modeled through probability distributions. It is commo
rates when the prior distribution over the state variatdesot to use Gaussian, discrete and Weibull distributions to rhode
close to the posterior distribution. Second, their appmate the uncertainty over the loads and powers generated [4].
approach may get accepted samples with low probability.In contrast to Eq.[{1), authors in_[17] proposed to model the
The third limitation is that their method obtains less aater PPF problem assuming thgt= f (x), wherex is the input
solutions than MCS. variable vector that contains loads, network configuratind
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powers generated by distributed generatignis the output corresponds to expressiafn(x) in Eq. (1). ABC methods
vector that includes voltage magnitudes, angles and somm/e gained attention in the last years due to their flekybili
powers generated; arfdx) determines the state of the systeneasiness of implementation, and the fact that they can be
as a function of the input variables. applied to any model for which forward simulation is possibl

In [18], the authors used the model of Hg. (1), and assumkdthe next section, we explain the ABC methods and how to
that b is the vector of input random variables ardis the apply them to solve the Bayesian PPF problem.
vector of state variablesb is modeled by a multivariate
Gaussian distribution. The mean vector and the covariance
matrix for b are assumed known. Based on these assumﬂ“'
tions, the mean vector_fmt can be computed throu_gh DPF  Given a prior p (x)
methods and its covariance matriX,, can be obtained as
3, = diag (JT,"J), whereJ is the Jacobian of the power
flow equations; andy, is the covariance matrix of the power
injected, b. According to the authorsx can be assumed to
follow a multivariate Gaussian distribution. Such assuaorpt

A PPROXIMATE BAYESIAN COMPUTATION METHODS

, the goal in ABC is to approximate
the posteriop (x| D) by using simulator output®’ localized

in the same space &@B. Hence, assuming that we have an
auxiliary variableD’, Eq. [3) can be rewritten as,

is valid if all random variables are Gaussian distributed an DY ~ p(x) [p. (D|g(x)=D')p(D'|x)dD’
the power flow equations are linearized around an operatio?i’(XI )~ f (x) fpe (D|g(x) =D')p(D'|x)dD'dx’
pointxg [2]. However, if the PS includes renewable energy, for (4)

example wind or solar energy, the random variables assutiat
to these energies are non-Gaussian anymoré [17], and thwhere p (D’|x) is the probabilistic simulator, which for
assumption about is not necessarily Gaussian. the PPF problems ig(x); and p.(D|g(x)=D’) is a

In this paper, we also use EJ (1) for obtaining an approgistribution that measures how simild?’ is to D. This
imation of the probability distribution over the voltagesda distribution depends or and controls the acceptable dis-
angles, given that the input random variables are modeled ¢rgpancy betwee® and D’. To measure the similarity be-
particular probability distributions. We use Bayesiareigihce tweenD and 7', it is common to use a distance measure
for estimating an approximate probability distributioneox d (D,D’). From Eq. [#), the principle behind ABC is to

given powers injected. Using Bayes theorem, approximate the likelihood p. (D| g (x) = D’) p (D'| x) dD’
by p(d(D,D’) < €| x) using a comparison between the ob-
D served dat&, and the simulated dat®’, which implies that
p(x|D) = W, (3) the posterior is given by
where p (x) is the prior distribution (prior) forx, that
encodes prior assumptions over the termp (D|x) is the p(x|D) xp(d(D,D') <e€|lx)p(x). (5)

likelihood function (likelihood) that expresses how prblea
the observed data set is for different settingspéndp (x| D) ~ To obtain samples from the posterior shown in the Ely. (5),
is the posterior probability distribution (posterior) dietstate the ABC rejection samplef [20] can be used. This sampler is
variablex given observed dat®. For the PPF problem, the the most common ABC method and is shown in algorifim 1.
modeling of the particular input random variables can be
included into the likelihood. In this papeD) refers to the Algorithm 1: ABC rejection
rea_lctlve anq.acuve powers injected {n Eq. (1)). The POS- " "Draw x from p (x)
terior quantifies the knowledge about the unknown varlablgssimulatepl using p (D'| x)
and evaluate the uncertainty inafter observingD [19]. The ; /
; o ; 3 Acceptx if d(D,D’) <e

term p (D) is a normalization constant for ensuring that the
posterior is a valid probability distribution. It is ofteralted
the evidence and it is given by(D) = [ p(D|x)p(x)dx In the algorithm above¢ determines the accuracy of the
[19]. algorithm. In this paper, algorithiol 1 will be referred to as

It can be noticed from Eq[{3) that a likelihood is necessaABC. It is important to mention that the empirical distrilmrt
to compute the posterior and the evidence. In a typicaver accepted samples for is an approximation that can
regression problem, a common likelihood assumes that the expressed by Eq(5). For the ideal caseec of 0, the
relationship betweeb andx is linear, and that the observationsamples that we draw will come from the true posterior.
noise follows a Gaussian distributidn [2]. However, forlfe&, However, the algorithm would need to perform a large amount
the relationship betweebh andx is not linear. Also, one may of simulations for accepting any samgle[[11]. As for a dis&n
argue that the observation noise is far from being Gaussianeasurel, several alternatives can be used in practice, includ-
particularly when the PS includes renewable energy. ing the Euclidean or Mahalanobis distance, or the root mean

Rather than attempting to build a likelihood for the PPBquared error (RMSE). In this paper, we use RMSE. In the
problem, we use likelihood-free methods for computing theext sections, we explain how we extend the ABC method to
posterior. We employ ABC methods, that define the likelihoddcorporate information from the PS. We will also describe
using simulator outputs. For the PPF problem, the simulatoow to embed these ideas in other ABC algorithms.
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IV. JacoBiaAN ABC FORPPFPROBLEMS e is specified adaptively with each iteration of the algorithm

When using algorithnil1, it is possible to have low aclhe goal of ABC SMC is to obtain an approximation of the
ceptance rates when the prior is not close to the posterii€ posterior using a series of sequential steps, exprdgse
This problem is addressed by an ABC extension presentedif?| d (D, D) <), fori = 1,--- , T, wheree, is a threshold
[15], which is based on Markov Chain Monte Carlo (MCMcfhat decreases at each step, {,...,> er), refining the
[21]. ABC MCMC randomly explores the state space b@PProximation towards the target distribution. ABC SMC is
modifying the current accepted samples. It uses a propo§gMmputationally much more efficient than ABC, however the
distribution ¢ (x*|x;) and the Hasting correction given bycomputation time depends on the number of the sequential
o = min (1 w) to move from thei-th state StePS[1#4]. ABC SMC has a first stage based on ABC. We

T plxa)a(x*[xi) can replace this stage with JABC, leading to what we call in

aqcep;gdc'ibto'a new IStatej' V\{khere(jp (x*) andp (Xil) iSAtE% the paper as the JABC SMC. Details of the ABC SMC method
prior distribution evaluated at* and x;, respectively. can be found in[[14].

MCMC also obtains samples from an approximated posterior
over x. However, according to_[14], ABC MCMC may get V. EXPERIMENTAL EVALUATION

accepted samples with low probability. To deal with the thi i ¢ | . ts that iltast

problems mentioned before, we propose to use the Jacobi IS Section, we present several expenments thatf

of the power flow equations as part of the ABC MCM ifferent aspects_ of this new approach for tackling the PPF

method. If we assume a symmetric proposal distributiort, t rob!em.. In the fII‘S.t experiment, we show an example where
the likelihood functions are actually known and compare the

is, *1x;) = ;| x*), the Hasting correction is given b ) .
q(x, % )p(x?) xi| x7) . 9 9 yperformance between MCS, Hamiltonian Monte Carlo, and
o = min (rl . We note that ifx*

7 p(xi) i is more probable thgn ABC in an IEEE 6-bus test system. For the second experiment,
x;, we definitely accepk”. For this, we employ the Jacobianye evaluate how the ABC algorithms work, including the
matrix information to do an improved state space explomatiogequential Monte Carlo variants, compare with MCS, the
Specifically, we use a multivariate Gaussian distributien @oint-estimation method and the Taguchi method in terms of
symmetric proposal distributiop, where its mean value is the number of nodes of a PS. We use the IERE118}-

updated as follows [22], bus test systems. For the third experiment, we show the
performance of the ABC methods when including renewable
X =x"+J371(D-D), (6) sources of energy in the IEEE 39-bus test system.
where the maat(rb)di : R — R is the Jacobian of (x), A PPF analysis using MCS and Bayesian inference
i L= g(x . _ /i
that is, Ji = =55 ) [16]; and D — D" is a vector of In this experiment, we compared Bayesian inference meth-

relative errors between observed and simulated data.[§tq. §fis and MCS for solving PPF problems, assuming a particular
can be seen as a correction step, which searchethatD  form for the likelihood. For this we used the IEEEbus
thl’OUghX*. We also need to define the covariance matrix f(yystem and assumed to know the true posteriorxoﬂ'o
the distributiong, 3. In this paper, we use a diagonal matrixjefine such posterior, we use the input random variables
with Ny elementss7 for angles andVy diagonal entries?  as in [7] (no uncertainty in line parameters) and employ
for voltages. The basic idea of using Eg. (6) is to move fromp@cs for obtaining the probability distribution of, that
current statex; to a more probable new state. We refer to we use as the true posterior af We initially drew 1000

this new ABC algorithm as JABC. The JABC algorithm Ca@amp|es from this posterior and CompUtEdi}ggolO through

be summarized as follows, Eq. [).0 To calculateb;, which corresponds t@® for the
ABC methods, we used two different likelihood functions:

Algorithm 2: JABC a multivariate Gaussian likelihood function (MGLF) with

1 Draw x* from ¢ (x| x;, Xx) mean g (x) and covariance matri® = 3 x 107'I, that

2 SimulateD’ usingp (D’| x) is, p(b|x) = H}ioloj\/'(bi\g(x) ,X); and a multivariatet

3if d(D,D') <e likelihood function (MTLF) with mearg (x), precision matrix

4 x4 =x"+J;1(D-D) A = ¥7! and 5 degrees of freedomy( = 5), that is,

5 Otherwise rejeck* p(b|x) = HgiﬂOS(bﬂ g(x),A,v).H

From the PPF perspective, the MGLF means that éadh

. . - modeled by Gaussian distributions (input Gaussian vagbl
For using algorithni 2, it is necessary to adequately choose y aussl IStribut (inpu ussian vassy

the initial conditionxg. In this paper, we take an all-ones we have used a number of samples1600 for our experiments with
vector for voltages, and the solution of the DC power flowe goal of en_s_uring a co_efficie_nt of yariation 2% (f_or more details see
algorithm for angles. geiz/.ia-l;izi %?]%ﬁﬁggg c\))‘a\l/l?er{anon is defined as the ratio beéw the standard

Another point to mention is that when using ABC, one 2the  MGLF is given by AN (blg(x),X) -
needs to specify a suitable value forThe optimal value foe W exp (—5V?), where v? =
depends on the similarity between the prior and the posterido —g(x)) ' =" (b—g(x)). The MTLF is given by
which is difficult to know beforehand. One way to avoid the (b|g(x),A,v) = F<V§2(j/1;§/2> (V\;&)\K/Q [1+ AJ]’ 2
manual selection of is to use an ABC algorithm coupled with, ;oo a2 — (b—g(x)TA (b

: — g (x)) andT (z) is the gamma function
sequential Monte Carlo (ABC SMC) [23], where the value fodefined byl (z) = [5° u*~le “du
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If we assume that the relationship betwdgnandx is linear, We observed the results for other variablexpfind they are
we can have a similar likelihood used by [2]. On the otherery similar to the results of.
hand, a MTLF can be considered as a probabilistic model
from the observations that it is tolerant to the negativeatff L . .
of outliers, for example: due to a measuremen? equipment PPF analysis with different sample sizes and number of
malfunction of the input variables. nodes

Once we generated the different datasets using these twdVe evaluated the performance of the different methods
likelihood functions, we used the Bayesian inference fram@hen the sample size for the input random variables and
work described above to make inference for the posteriile number of the nodes of the PS were increased. We
of x — [ 0y 60s 0, 05 05 Vi Vi Vi }T given b, considered two case studies: in the first case, we analyzed

p(x|b). For each voltage, we use Gaussian distributions §& PPF problem for the IEEE-bus system assuming that
prior distributions with mean equal to one, and variange= the true posterior ofkx was also known and then observed

0.0015. We use uniform distributions as prior distributions fofOW the simulation methods worked with different sample
each angle, i. e.§; ~ U (a;,b;). Parameters;; and b; are Sizes. For the second case, we examined classic PPF problems

computed as; = #PC — A andb; = 6P + A9, wheredPC in terms of the sample and system size. For classic PPF
is the ith DC power flow solution[[8]; and\@ quantifies Problems, we ggnerat]%aNs samples from the input random
the error present in the solution obtained by the DC pow¥@riables to obtairib;},, from Eq. [1). We then inferred the
flow algorithm with respect to the AC power flow solutiorPOSteriorp (x| b) using all methods over the IEEES, 118}

(Eq. [@)). We chosé\d equal t00.07. We employed ABC and Pus systems. _ _

MCS to infer the posterior af. For ABC, we pute = 0.7, the For the first case, we used the input random variables shown
simulation function was set as(x) and we ran one simulation N [7] and we increased the number of samples of these
by eachb;. We used MATPOWER to implement MSwe variables fromb00 to 10000 samples, in steps @&b0 samples.
also compared these two methods against the most popifigf €ach step, we ran ABC, JABC, ABC SMC JABC SMC,
likelihood-based Bayesian method, Hamiltonian Monte €arMCS and computed the Bhattacharyya distance (BD) [24] to
(HMC) [19]. Fig [ shows the probability distribution df, Mmeasure the similarity between the true distribution axer
generated by the MCS, ABC and HMC, when we assumedfgd the distribution computed by each method. For ABC and

we used{et}tT:1 = {3.0,2.0,1.0,0.9,0.7}. From now on, we

will continue to employ Gaussian and uniform distributi@ss

15 ) — 14 S— prior distributions for each voltage and angle, respelytiaes
i - --ABC| 1 --ecl jt was described in the previous subsection. For ABC SMC,
10 | —True| 0 —me]  we employed a multivariate Gaussian distribution as prabos
i G s distribution for x, with a covariance matrix that depends on
8, \ \ 8¢ o;, =107% andoj =107 as diagonal entries for voltages
‘\E 4 and angles, respectively.
2 A N For JABC and JABC SMC, we employed a multivariate
8s 09 1 11 12 857 08 09 1 11 12 Gaussian distribution as symmetric proposal distribytipn
Voltage [pu] Voltage [pul]

N (x;,Xx), wherex; and X, are the mean and covariance
matrix for the proposal distribution. The mean can be
Fig. 1. Posterior fos when two likelihood functions are considered. ThecpmpmEd usmg E_q[KG)' The CO\ga”arEQ ;)S assuzmed to tée a
dashed red, blue and black lines are the responses obtajnstCs, ABC ~ diagonal matrix with parameters, = 10~ andoeq =10"°.
and HMC. The solid red lines are the true posteriors. Fig§ arfe[I(b) show For x(, we used a vector of ones for voltages, and the DC
the posterior folVs by using a MGLF and a MTLF, respectively. power flow solution for angles
_ ) _ In Fig. [, we present the BD in terms of the number of
Fig. [1(a) shows the posteriors inferred when a MGLEamples. We show the BD for voltages (see Fig.]2(a)) and
satisfactory posteriors. When we used a MTLF (see[Fig] 1(0Bp obtained by MCS is the most steady. We also see that
which is an intractable likelihood, we note that MCS didaBc and JABC SMC compute better BD than MCS, ABC
not infer appropriately the posterior fdrs, however, ABC and ABC SMC; being the BD computed by JABC SMC, the
and HMC properly estimated the posterior idf. From this |owest. For angles, we note that the BD calculated by ABC
results, we see that the MCS is affected by outliers, obtginijs the most steady, but the BD achieved by JABC SMC is
bad convergence properties and high variability. In cattf@  the |owest. BD values are summarized in the Table 1. These
HMC, ABC did not heed a particular form for the likelihoodyesyits validate our hypothesis of using the Jacobian of the
to obtain the posterior ofs. On the other hand, these resultower flow equations into the ABC algorithm to search more
confirm the importance of including additional source Oﬁrobable samples fat. As can be seen in Figl 2, the JABC
of the number of samples. From Fig. 2, ABC and ABC SMC
3It is available atht t p: / / waw. pser c. cornel | . edu/ mat power/  computed better BDs for angles than the BDs for voltages, thi

(a) Posterior forVs using a MGLF  (b) Posterior forls using a MTLF
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is due to the information included by DC power flow solutiotthe results for other variables i are similar to the results

in the prior over angles. These results show that it is necgssshown in Figs[B anfl4. From Fids. 3(a) 4nd 4(a), we observe
(for the ABC and ABC SMC) to use an improved prior fothat the PEM does not infer appropriately the probability
the voltages, that is, the ABC and ABC SMC performanadistributions of both variables. We also note that the saspl
could be enhanced by using an informative prior oxerfor obtained by the TM in both variables (see Higs B(b) [and] 4(b))
example: to use a multivariate Gaussian distribution owver are around the DPF solution (see the blue vertical solid,line
where the mean vector depends on a previous DPF solutltoowever the shapes of the probability distributions oladin
and the covariance matrix could be assumed known. by this method are not similar to the probability distrilous
obtained by MCS. However, JABC and JABC SMC provide
results close to the distributions obtained by MCS (see.Figs
[3(c), [4(c),[3(d) and 4(d#)), confirming the importance of the
improved state space exploration xfin the Jacobian ABC-
type methods.

We also recorded the computation time (CT) required for
each method to solve the PPF problems shown in Eigs. Bland 4.
B — = .« All simulations were conducted on an Intel CoreHC with a
% 2000 4000 6000 8000 10000 % 2000 4000 000 sooo 10000 2.1GHZ processor. TabE]” lists the CTs took for the different

Samples Samples methods. Notice that the CTs, for JABC and JABC SMC, are
(b) BD for angles lower than the CT took by MCS. From Talilé I, we also note
that the proposed methods require more CT compared to the
PEM and TM. However, the proposed methods do not require
DPF solutions to obtain the probability densities shown in
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(a) BD for voltages

Fig. 2. BD for voltages and angles for different number of sasplThe
circles, plus signs, cross, stars and the squares repitegeBD obtained by
MCS, ABC, JABC, ABCMCS and JABCSMC, respectively. Fifjs.)Péad

[2(b] show the BD for voltages and angles. Figs.[3 and]4[3
MCS PEM ™ JABC | JABC SMC
Method BDy BDy CT[s] [ IEEE6 13.540 | 0.1248 | 0.0936 | 0.6365 1.7156
MCS 0.0248 + 0.0009 0.0389 + 0.0027 [ IEEE-118 17.097 6.0528 5.2884 5.8464 16.757
ABC 0.1404 £ 0.0049 | 0.0136 £ 0.0011 TABLE Il
ABCSMC | 0.0690 £ 0.0126 | 0.0121 £0.0054 COMPUTATION TIME (CT), IN SECONDS[S], REQUIRED BY MCS AND ALL
JABC 0.0174 £ 0.0022 | 0.0225 £ 0.0037 ABC METHODS TO SOLVE TWOPPFPROBLEMS WHEN ASSUMING INPUT
JABCSMC | 0.0117 £0.0024 | 0.0117 £ 0.0051 GAUSSIAN VARIABLES.

BD OBTAINED BY ALL ABC METHODS AND MCS.

TABLE |

two systems to infer the posteripr(x|b) over Ny = 1000

Considering input Gaussian variables, we compared the
DPF solution and the estimated posterior mean using the rela
For the second case study, we solved two classic PR error (RE)f for each variable using the different solution
problems with different number of nodes. In particular, Wgethods. In what follows, the numerical analysis is onlyelon
analyzed the IEE[E and118 bus systems using input Gaussiafr the state variables (state variables can be used to dempu
variables [[7]. Due to the ABC and ABC SMC obtain poopther variables, i.e. active and reactive power flows betwee
results, we applied JABC, JABC SMC and MCS to thesgyses). For the comparison, we dré§ subsets of input
random variables, we then applied PEM, TM, JABC, JABC
samples from the input random variables. For comparis@pc and MCS to obtair25 REs for angles and voltages.

purposes, we also applied the point-estimation methoddbasgith these errors, we computed the mean value and an one
on two points (PEM)I[7] and the Taguchi method (TM) [8ktandard deviation for each method. We used{the 18}-bus

to analyze these two PPF problems. For the PEM, due dpstems and000 samples for all input random variables. We
this method must be combined with some series expansigiyhtly changed the application of ABC methods. Here we ran
to acquire the probability distribution of the PPF result® 10 simulations for the ABC methods by each input random
used a Gram-Charlier series expansion [25]. For the TM, Wgriable configuration, since in the previous experiments,
employed a nonparametric density estimaforl [26] to obtajzed one simulation by eadh;. Due to the ABC methods
the probability distributions of the PPF results. We useel thyre approximate inference approaches, we wanted to show if
parameters mentioned in the previous experiment for th&IEf \yas possible to obtain REs close to the results using MCS.
6 bus system. For the IEEEI8 bus system, we used= 4.0  Taple[I] presents the RE obtained by MCS and ABC methods.
in the JABC algorithm. For JABC SMC, we have reduced the For the6-bus system, notice that the REs obtained by JABC
sequential steps with regarding to the previous experimeghg JABC SMC are lower than the REs computed by MCS,

- T
we specifically usede},_; = {6.0,5.0,4.0}. For JABC and pgM and TM for voltages and angles. For the-bus system,

JABC SMC, we employed; = 10~ andoj = 107° as

parameters of the proposal distributions. Figs. 3[@nd 4 emenp “Itis neczssar¥ to Colmment that the gﬁal Off the EEM ank;i TMfiS tuosd
: : e number of simulations in MCS, therefore the number of samj

each method _agamSt the M?S when some variables of t_h,gégreduced. From this point of view, a fair comparison betwthese two

systems are inferred. Specifically, we show the probabilifyethods and the remaining methods applied would not be possible

distribution overVs (see Fig[B) for the& bus system and the 5The RE is computed aRE — , where 245 is the DPF

distribution forf;0s (see Fig[¥%) for the 18 bus system, since solution, andz, is the estimated posterzigF mean obtained by each method.

Tds —Tps
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40 40 40 40
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(a) PEM (b) T™M (c) JABC (d) JABCSMC

Fig. 3. Posterior fols. The dashed red line is the responses obtained by MCS. Thiktldatk lines are the probability densities calculated BVP TM,
JABC and JABC SMC. The blue vertical solid line is the DPF solu Figs.[3(d) td 3(d) show the posteriors fi, obtained by PEM, TM, JABC and
JABC SMC, respectively.

---MCS ---MCS ---MCS ---MCS
5 —PEM 20 —TM 5 —JABC 5] \ |— JABCSMC
— DetSol| — DetSol| — DetSol — DetSol
=24 2 2 24
D B8 3 B
c3 c c3 c3
& A1o a a
2 2 2|
1 5 1 1
== 0.2 0 -0.4 0.2 Sy 0.2 0 -0.4 0.2

-0.2 0
Angle [rad]
(d) JABCSMC

-0.2 0
Angle [rad]
(c) JABC

-0.2 0
Angle [rad]
(b) T™M

-0.2 0
Angle [rad]
(a) PEM

Fig. 4. Posterior forf1ps. The dashed red line is the responses obtained by MCS. Tieldatk lines are the probability densities calculated M
TM, JABC and JABC SMC. The blue vertical solid line is the DRffusion. Figs[3(d) t§_3(d) show the posteriors fdy, obtained by PEM, TM, JABC and
JABC SMC, respectively.

Index Method IEEE 6 IEEE 118
MCS 1.5190 & 0.8843 | 3.7290 + 1.9822
PEM 1.5268 4+ 0.8923 | 3.7841 + 2.0324
REy [%] ™ 1.5494 + 0.9092 | 3.7674 -+ 2.0281 12
JABC 1.5073 £+ 0.8793 | 2.3344 + 1.0952 10
JABC SMC | 1.5149 +0.8813 | 2.3341 + 1.0951 10
MCS 0.0598 £ 0.0302 | 0.0212 £ 0.0054 8 —=cs. _ g —cs.
PEM 0.0603 %+ 0.0300 0.0213 4+ 0.0055 X o I JABCSMC = I JABCSMC
REy [%] ™ 0.0605 + 0.0300 | 0.0212 = 0.0054 iy i
JABC 0.0585 + 0.0302 | 0.0234 + 0.0019 E 4 &
JABC SMC | 0.0596 + 0.0302 | 0.0235 4 0.0019
TABLE Il 2 2
RELATIVE ERROR (RE) FOR ANGLES AND VOLTAGES USING ALL . .

METHODS WHEN USING INPUTGAUSSIAN VARIABLES.

100

500
Samples

1000

2000

(a) 6 Bus system

100

500 1000
Samples

(b) 118 Bus system

2000

the REs computed by JABC and JABC SMC are lower thdrg. 5. REs for angles in terms of the number of samples. Bluengand

also note that MCS and TM computed the lowest RE for the
voltages, however the REs from JABC and JABC SMC are

the results calculated by MCS, PEM and TM for angles. V\B%OW” bars are the RE obtained by MCS, JABC and JABC SMC, otispdy.

e vertical line is one standard deviation for each vaeiabl

close to the results achieved by MdSs.

After showing the results when we had00 samples from
the input random variables, we repeated the experiment
Table I with 100, 500, 1000 and 2000 samples. For this
experiment, we only used the MCS, JABC and JABC SMCxs |
Figs[B and’b report the RE, for angles and voltages, verswy
the number of samples.

Figs[® and b show that the RE decreases when the numk
of samples increases in both systems. From Figg 6( "o
and[6(b) the REs obtained by JABC and JABC SMC tena
to REs computed by MCS. However from Fig 3(b), the REs

0.15]

I vics
| —N7:Te
I ABCSMC

I vics
[CJunasC
I ABCSMC

RE, (%]
2

0.05

2000

500 1000
Samples Sampl

2000 100 500

1000
es

(a) 6 Bus system (b) 118 Bus system

8Although, we have included averaged results, a close itigpeof the Fig. 6. REs for voltages in terms of the number of samples. Bliegrgand
individual performance on every variable confirms our analyisi the sense brown bars are the RE obtained by MCS, JABC and JABC SMC, ctispdy.
that the errors obtained by JABC and JABC SMC are lower thaggoal the  Vertical lines are one standard deviation for each variable
errors computed by MCS.
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obtained by JABC and JABC SMC are lower than the RE~

using MCS. These high REs of MCS are due to poor estimatt e ! e
for the angle at nod&6, causing high variability (see the — JaBoSMC o8 f — JaBoSMC
standard deviation in each scenario). These results cotffatn 24, i Zos
the ABC methods, which are approximate Bayesian inferenc §20 §04
approaches, provide satisfactory results with respecthéo t '
optimization-based simulation methods. 10 02

) . Sos 0w \oltage [pif> "% I Adtive power fpu
C. PPF anaIySIs with renewable energy (a) Posterior forl;5 (b) Posterior forP3g9_go

We now perform an experiment where we consider renew-
able energy in a IEEB9-bus test system. In this case, Werig. 7. Posterior forV5 and Psg_o. The dashed red line, solid blue line
model all input random variables as inl [4], but we do ngaind solid black line are the posteriors calculated by MC®BQAnd JABC
consider correlated loads. We add a wind farm atiysvhere Z"gpcégg\fgicg‘ﬁghgg%?ci%fﬁgjhOW the posteramr¥fs andPso o,
the output power from one wind turbiné,,, in terms of the ' '
wind speedv,,, is given by

1.5288s and5.3040s, respectively, for solving this PPF prob-
0 Ve < Vgin,s lem. These results show how the Bayesian inference is an
Py (v) = $ 0.5pA0Cpt3,  vein < vy < vy @) a'llternative'for solving the PPF problems, allowing a non-
v ’ ’ linear relationship betweebh andx, and dealing with input
non-Gaussian variables. We also analyzed the results éor th
wherev,;, is the cut-in wind speedp is the air density; remaining variables, and they are similar to the resultsvsho
A, = mR? is the area of the wind turbine rotof is the in Fig.[4.
radius of the rotor(, is a coefficient of power, at which the Since we do not have a ground-truth solution, we observed
wind turbine generator starts generating poviér {4]is the how close the mean and standard deviation of angles and
nominal rotational speed?, is the nominal wind power; and voltages obtained by the ABC methods are to the values
Veout 1S the cut-out wind speed, at which the wind turbineomputed by MCS, that is, we used the mean and standard
generator is shut down for safety reasons [4]. Furthermorgviation obtained by MCS as reference values. Using these
we assumed that,, followed a Weibull distribution and we values, we computed the relative error for ABC meth8dale
adopted the parameters used by @MWe also modeled the generated?5 different sets of input random variables, with
wind farm output power as a Gaussian random variable. Theé00 samples for each variable. We then applied the JABC
output power can be modeled &%,; (v,) = Py, (vy) +w, and JABC SMC to infer the posterior mean and standard
where P,; (v,,) is the wind turbine output power?, (v,,) is deviation of each input random variable configuration. Fna
the deterministic output power expressed by Eb. (7);arisl  we compute@®5 relative errors using the previous information.
a white Gaussian noise with varianeg = 107°. Table[IM lists the mean and one standard deviation for the
In this experiment, we drewt000 samples from the input relative errors that compare the reference values obtained
random variables and we used the same prior distributioas oby MCS, and the estimated values using the ABC methods.
x as it was mentioned in the first experiment. However, weotice that JABC gives better estimated results than JABC
increased the variance in the Gaussian prior for each wltagMC, since in some cases the estimates obtained from JABC
to o2 = 0.005. We only compared the MCS, JABC and JABGSMC have a large variance. However, the errors obtained by
SMC. We usedc = 2.0 in the JABC algorithm. For JABC JABC SMC do not exceed%.
SMC, we usede; };_, = {3.0,2.75,2.5,2.25,2.0}. For JABC )
and JABC SMC, we employeef, = 107" andoj = 107° as e = O.GSG?L%O]D?GB 0.12561V¢[/6].0026
parameters of the proposal distributions. [Elg. 7 compdres t 0.2017 +0.1254 | 0.3751 & 0.1300
posterior distributions fofl;5 and Pso_o obtained by MCS, 20O E B2 | D 11T8 2 0.0375
JABC and JABC SMCP From this figure, we notice that TABLE IV
the posterior forV;; (see Fig.[__T@)) obtained by JABC is RELATIVE ERROR FOR VOLTAGES AND ANGLES USINAEEE 39-BUS
. . . . . SYSTEM.
closer to the distributions obtained by MCS, than the paster
computed by JABC SMC.

From Fig.[7(B), notice that the posterior f6%y_ has tWo 4416 [Ty clearly shows that the JABC and JABC SMC

modes, despite this, the distributions obtained by JABC afthods proposed here, consistently outperforms the apiro
JABC SMC are consistent with the distribution fdg_g presented in [15].

using MCS. MCS, JABC and JABC SMC to0k5.0853s,

Pr Veout < Vs

JABC SMC

SRICRS

7For our experiments, we used= 15 andb = 2.5. For the Eq.[l), we SWe compute relative errors ¥vith respect to the \ialues célediay MCS,
usedvein, = 3 MIS, veout = 25Mis, v, = 10.28m/s, C, = 0.473 and that is, we employ} = )“’% ande? = % [7], wheree® and
R = 45m. €9 are relative errors for the mean and standard deviation salueando,

8After obtaining samples from the posterior »f we employ the Eq[{2) are the mean and standard deviation obtained using MCSindo % are the
for computing the posterior ovePsg_g. mean and standard deviation computed with the ABC methods gedpo




IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. XX, NO. XX, XX

VI. CONCLUSIONS [12]

In this paper, we introduced an alternative for solving PR
problems using the approximate Bayesian computation rdetho
and the Jacobian of the power flow equations. We also pro-
posed priors for voltages and angles for the PPF problemrungg
Bayesian inference perspective. We demonstrated that ABC
and ABC SMC can work for an small power system using
input Gaussian variables. However, it is necessary to defi[qgej
an informative prior over the state variables, for example,
to use a multivariate Gaussian distribution where the meHS!
vector depends on a previous AC power flow solution. We
also showed that the posteriors of the state variablesr@utai [17]
by JABC and JABC SMC are close to the results using
MCS, similarly JABC took less computation time for obtaigin
the PPF solution with respect to MCS. As future works, |t8]
would be possible to consider: uncertainty in line paransete
correlated random variables, likelihood functions thahbme
continuous and discrete random variables, and the applicat[20]
of the proposed methods to analyze distribution systems.
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