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Abstract 24 

The MW 7.8 14 November 2016 Kaikoura earthquake generated more than 10000 landslides over 25 

a total area of about 10000 km2, with the majority concentrated in a smaller area of about 3600 26 

km2. The largest landslide triggered by the earthquake had an approximate volume of 20 (±2) M 27 

m3, with a runout distance of about 2.7 km, forming a dam on the Hapuku River. In this paper, 28 

we present version 1.0 of the landslide inventory we have created for this event. We use the 29 

inventory presented in this paper to identify and discuss some of the controls on the spatial 30 

distribution of landslides triggered by the Kaikoura earthquake. Our main findings are (1) the 31 

number of medium to large landslides (source area ≥10000 m2) triggered by the Kaikoura 32 

earthquake is smaller than for similar sized landslides triggered by similar magnitude 33 

earthquakes in New Zealand; (2) seven of the largest eight landslides (from 5 to 20 x 106 m3) 34 

occurred on faults that ruptured to the surface during the earthquake; (3) the average landslide 35 

density within 200 m of a mapped surface fault rupture is three times that at a distance of 2500 m 36 

or more from a mapped surface fault rupture ; (4) the “distance to fault” predictor variable, when 37 

used as a proxy for ground-motion intensity, and when combined with slope angle, geology and 38 

elevation variables, has more power in predicting landslide probability than the modelled peak 39 

ground acceleration or peak ground velocity; and (5) for the same slope angles, the coastal slopes 40 

have landslide point densities that are an order of magnitude greater than those in similar 41 

materials on the inland slopes, but their source areas are significantly smaller. 42 

Introduction 43 

The MW 7.8 14 November 2016 Kaikoura earthquake in New Zealand occurred at 12:03 am local 44 

time (Kaiser et al. 2017). The epicentre was located about 4 km from the rural town of Waiau 45 

(population 250) in North Canterbury (Figure 1), with rupture initiation at a shallow depth of 46 
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14.1 km (Nicol et al., this issue). Large, shallow earthquakes in mountain chains typically trigger 47 

substantial numbers of landslides (Hovius et al., 1997; Parker, 2013; Hancox et al., 2014; 2016; 48 

Xu et al., 2016).  The Kaikoura earthquake (Dellow et al., 2017) triggered more than 10000 49 

landslides over an area of about 10000 km2, with the majority being focused in an area of about 50 

3600 km2 (Figure 1). Fortunately, the area affected by landslides is comparatively remote and 51 

sparsely populated such that only a few dwellings were impacted by landslides, and there were 52 

no recorded landslide-related fatalities (Stevenson, 2017). However, the landslides dammed 53 

rivers, blocked roads and railways, and disrupted agricultural land throughout this region. 54 

Landslides along the coast caused substantial damage to both State Highway (SH) 1 and the 55 

northern section of the South Island Main Trunk Railway, blocking both in multiple locations 56 

(Davies, 2017). At the time of writing, the section of SH1 north of Kaikoura is due to reopen on 57 

15 December 2017, over a year after the earthquake.  58 

The long-term stability of damaged but as yet unfailed slopes is a cause for concern in light of 59 

the risk of future strong earthquakes and significant precipitation events. This has been 60 

exemplified by debris flows and floods that occurred during rain associated with cyclones 61 

Debbie (23 March to 7 April 2017) and Cook (14 April 2017), which caused several of the dams 62 

to breach, releasing debris flows and floods that travelled several kilometres downstream. Debris 63 

flows were also triggered on the steep coastal cliffs north and south of Kaikoura, leading to the 64 

intermittent closures of the reopened portion of SH1 south of Kaikoura. 65 

Both the number of landslides and the area affected are much less than expected based on 66 

worldwide observations for an earthquake of this magnitude (Keefer, 2002; Malamud et al. 67 

2004).  To investigate the reason for this, we analyse an inventory we are creating of landslides 68 

triggered by this earthquake; our analysis relates the spatial distribution and size characteristics 69 
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of the triggered landslides to geology, topography, strong shaking, and other geologic factors. 70 

The objective of this paper is to describe these characteristics of the triggered landslides and 71 

quantify their relationship to the various causative factors. 72 

A broad-based investigation of the triggered landslides began immediately following the 73 

earthquake.  Dellow et al. (2017) provide a preliminary description of the landslides triggered by 74 

this earthquake and the immediate response to document them and evaluate related hazards.  75 

Jibson et al. (2017) give an overview of landslide types and distribution accompanied by 76 

illustrations of the triggered landslides. In this paper, we present version 1.0 of the landslide 77 

inventory we have created for this event, which builds on the earlier preliminary inventories 78 

presented by Rathje et al. (2016) and Dellow et al. (2017). Refer to the Data and Resources 79 

section of this paper for instructions about how to access this dataset. We present these findings 80 

as a preliminary account of the potential controls we have observed on the landslide distribution 81 

triggered by this event. It is version 1.0, because mapping is ongoing in those areas where the 82 

landslide distribution was initially mapped from satellite images. The high-resolution 83 

orthorectified aerial photographs that have been used to map much of the distribution were not 84 

available in these areas at the time of publication.  85 

Detailed Landslide Inventory from Mapping 86 

Previous studies of worldwide earthquakes have related earthquake magnitude to the number of 87 

landslides. For a MW 7.8 earthquake, the relationship of Malamud et al. (2004) predicts about 88 

25000 landslides; Keefer’s (2002) relation predicts about 60000 landslides.  Both relations are 89 

based solely on magnitude and do not consider other factors such as earthquake depth, distance 90 

to fault, topography, rock type, climate, and vegetation that contribute to landslide occurrence. 91 
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These estimates based on worldwide earthquakes are two to six times higher than the 92 

approximate 10000 landslides mapped thus far from the Kaikoura earthquake. 93 

The Version 1.0 landslide inventory contains 10195 coseismic landslides (Figures 1 and 2). 94 

These landslides are inferred to have been triggered by the Kaikoura earthquake and associated 95 

aftershocks as no major rain events occurred in the period between the earthquake and the first 96 

low-level aerial photograph survey after the earthquake, dated December 2016, used to map the 97 

distribution.  98 

To map the distribution, we have primarily used post-earthquake 0.3 m ground resolution 99 

orthorectified air photographs, and digital surface models derived from them, alongside digital 100 

elevation models from post-earthquake airborne Light Detection and Ranging (lidar) surveys, 101 

and other pre- and post- Kaikoura earthquake imagery and lidar data (these data sets are 102 

described in Table A1). Landslides were manually digitised directly into a GIS. This was done 103 

because the outputs from the automated landslide detection tools we ran generally performed 104 

poorly. They: 1) wrongly identified areas of high albedo (in the images) as landslide sources e.g., 105 

identified bare farmland; 2) created multiple landslide source regions for individual landslide 106 

sources and vice versa where large sources were in fact multiple individual landslides; and 3) 107 

required significant time to manually edit. Several authors have shown how landslide mapping 108 

can influence an inventory and therefore the results of any analyses of it. For example, Parker et 109 

al. (2011) report more than 56000 landslides for the MW 7.9 2008 Wenchuan earthquake, China, 110 

but Xu et al. (2014; 2016) report 196007 mapped landslides and Li et al. (2014) report 57150 111 

landslides. Li et al. (2014) attribute their increase in numbers over Parker et al. (2011) to them 112 

separating individual landslides from amalgamated clusters. This change increased the number of 113 

mapped landslides but decreased the total volume reported, e.g., see Li et al. (2014). Because of 114 
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such issues, we did not use the results of any of the automated landslide-detection algorithms. 115 

Low-level orthorectified aerial photographs taken in 2015, before the earthquake, were used to 116 

identify the many pre-earthquake landslides in the region, to ensure that such landslides were not 117 

attributed to the earthquake. We also relied on the geotagged oblique air photos taken from 118 

multiple post-earthquake helicopter reconnaissance missions to support and verify mapping in 119 

areas of complex terrain. The landslide mapping was carried out by experienced landslide 120 

researchers using the scheme outlined by Dellow et al. (2017). Where possible, we have 121 

separated the landslide source area from the debris trail to allow more accurate estimates of 122 

landslide size. This was done using a combination of aerial images, pre-and post-earthquake 123 

ground surface difference models derived from lidar and photogrammetry, and shade models 124 

generated from them, which helped to define landslide morphology. We used the scheme of 125 

Hungr et al. (2014) to classify the landslides by their mechanism and dominant material type. To 126 

date, the smallest mapped landslide source area is about 5 m2 and the largest about 550,000 m2. 127 

Refinement of the inventory, in particular at the lower end of the size range, is ongoing. The 128 

number of mapped landslides (frequency) with source areas of a given size has been binned 129 

using source area bin widths that are equal in logarithmic space (Figure 2a). As expected, the 130 

areas of the landslide sources generated by this event exhibit characteristic power-law scaling 131 

(Figure 2b) (e.g., Hovius et al., 1997; Guzetti et al., 2002; Malamud et al., 2004; Parker et al., 132 

2015), defined by: 133 

௅ሻܣሺ݌ ൌ  ଵேಽ೅  Ǥ ఋேಽఋ஺ಽ          (1) 134 

where p(AL) is the probability density of a given area within a near complete inventory—defined 135 

as the frequency density of landslides of a given source area bin (AL), divided by the total 136 
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number of landslides in the inventory—NLT is the total number of landslides in the inventory, and 137 

hNL is the number of landslides with areas between AL and AL + hAL. For the landslide area bins, 138 

we adopted bin widths (hAL) that increased with increasing landslide source area (AL), so that bin 139 

widths were equal in logarithmic space. The position of the characteristic rollover (Figure 2b), 140 

for smaller landslides occurs at a landslide source area of about 50-100 m2. The frequency-area 141 

distributions of most landslide inventories exhibit a rollover at smaller landslide sizes for various 142 

reasons, one of which is mapping resolution (Stark and Hovius, 2001). 143 

The power-law scaling exponent (g) of 1.88, fitted to the Kaikoura landslide distribution using 144 

the method of Clauset et al. (2009), with ݔmin = 500 m2, falls within the range of previously 145 

observed values of landslide inventories (1.4 to 3.4), but it is below the central tendency of 2.3 to 146 

2.5 (Van Den Eeckhaut et al., 2007; Stark and Guzzetti, 2009).  Figure 2 shows the landslide 147 

frequency and probability density versus area distributions for comparable inventories of 148 

landslides triggered by other notable earthquakes in New Zealand. These are: 1) the 1929 MW 7.8 149 

Murchison earthquake (Hancox et al., 2016), where NLT = 6104, ݔmin = 10000 m2 and g = 2.62; 150 

and 2) the 1968 MW 7.1 Inangahua earthquake (Hancox et al., 2014), where NLT = 1199, ݔmin = 151 

10000 m2 and g = 2.71. 152 

Our results suggest that the number of large landslides >10000 m2 generated by this earthquake 153 

are less than those generated by the similar magnitude MW 7.8 1929 Murchison earthquake in 154 

New Zealand, but are instead more comparable to those triggered by the smaller magnitude MW 155 

7.1 1968 Inangahua, New Zealand earthquake. (Figure 2a). Nevertheless, the lower g-value 156 

suggests that a higher number of larger landslides were triggered than would typically be 157 

expected given the number of smaller landslides. Such comparisons, however, do not consider 158 

differences in the physiographic setting, which could affect the numbers of landslides generated. 159 
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Although a more detailed comparison of the landslides from these different earthquakes is 160 

warranted, it is currently outside the scope of this paper. 161 

The Geology and Topography of the Study Area 162 

The region in which most of the landslides occurred can be subdivided into four main geological 163 

units (Figure 1b and Table 1). These are described by Rattenbury et al. (2006), and their 164 

descriptions are summarised here in order of oldest to youngest: 1) Lower Cretaceous Torlesse 165 

(Pahau terrane) “basement” rocks formed primarily of greywacke; 2) Upper Cretaceous and 166 

Paleogene limestones, siltstones, conglomerates and minor volcanic rocks; 3) Neogene 167 

limestones, sandstones and siltstones; and 4) Quaternary sands, silts and gravels. These materials 168 

and their properties tend to control the types of landslides that occurred within them. For 169 

example, the greywacke is highly jointed, and most landslides appear to be debris avalanches, 170 

controlled by multiple intersecting joint blocks, which limit the volume of such failures. 171 

Conversely the Upper Cretaceous and Neogene sandstones and siltstone tend to be massive with 172 

highly persistent bedding planes and clay seams, which allow the development of large 173 

translational debris slides and slumps. These relationships are explained further in Table 1. 174 

The earthquake mainly affected the northeastern portion of New Zealand’s South Island. This 175 

area is dominated by the Kaikoura Ranges, which rise from sea level to a maximum elevation of 176 

2885 m above mean sea level (AMSL) at Mount Tapuae-o-Uenuku. The Kaikoura Ranges are 177 

predominantly formed of greywacke and are dissected by several large rivers. The long, straight 178 

Clarence River valley separates the Seaward Kaikoura Ranges from the longer and steeper 179 

Inland Kaikoura Ranges, including Mount Tapuae-o-Uenuku. Beyond the Inland Kaikoura 180 

Range is the valley of the Awatere River, which runs parallel to that of the Clarence River. As 181 

these rivers approach the coast, the slopes reduce in gradient, where they are predominantly 182 
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formed of faulted slivers of Neogene rocks and Quaternary gravel, sand and silt. The township of 183 

Kaikoura is the largest town in the area and is located on a rocky peninsula formed of Cretaceous 184 

to Neogene sedimentary rocks and Quaternary marine terraces, about 70 km northeast of the 185 

earthquake epicentre (Figure 1). The topography south and west of Kaikoura is relatively gentle 186 

compared to the Inland and Seaward Kaikoura Ranges. The slopes have mainly been formed by 187 

tectonically driven uplift and fluvial incision through the Neogene sandstones and siltstones, 188 

which forms the main bedrock unit in the area. The climate across much of the area is temperate 189 

and it typically experiences dry, cold winters.. 190 

Controls on the Spatial Distribution of Landslides 191 

The landslide distribution does not represent a homogenous mass of landslides clustered around 192 

the earthquake epicentre. Instead, the mapped distribution shows a long, generally linear pattern, 193 

with many landslides occurring on either side of the faults that ruptured to the ground surface 194 

(Figure 1), to the northeast of the earthquake epicentre. Many smaller landslides concentrate 195 

along the coast and in discrete clusters on either side of the faults that ruptured. Many of the 196 

larger landslides occurred on faults with surface ruptures that passed through their source areas 197 

(Figure 3). Interestingly, the larger landslides, whilst also occurring in clusters along the faults, 198 

do not appear to occur at the same locations as the clusters of smaller landslides. A comparison 199 

of the mapped distribution with the bedrock geology shows that landslide occurrence is a 200 

function of lithological variations across the area, and field observations suggest that such 201 

variations control the nature and type of landslides triggered by the earthquake (Figure 1b, Table 202 

1). For example, the landslide point density in the massive, but weaker Neogene sandstones and 203 

siltstones is 5.5 landslides km-2, compared to 2.5 landslides km-2 in the stronger but closely 204 

jointed greywacke (Table 1).  205 
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The dynamic response of a slope during an earthquake is not controlled solely by lithology but 206 

comprises a complex interaction between seismic waves and the hillslope (e.g., Ashford et al., 207 

1997; Sepulveda et al., 2005; 2011; Massey et al., 2016; Rai et al., 2016). We have used our 208 

mapped landslide distribution to explore the relationships between the occurrence of a landslide 209 

and the variables that may control its occurrence (Table 2), which we have broadly grouped into: 210 

1) predominantly landslide forcing variables representing the intensity of the event-specific 211 

seismic ground motions and their proxies, for the Kaikoura earthquake; and 2) predominantly 212 

landslide susceptibility variables that capture the strength of the hillslope materials at a regional 213 

scale and the static shear stresses at the slope scale.  214 

We used logistic regression (e.g., Von Ruette et al., 2011; Parker et al., 2015) to investigate the 215 

influence that the variables listed in Table 2 have on the spatial distribution of coseismic 216 

landslides attributed to the Kaikoura earthquake. The method models the influence of multiple 217 

predictor variables on a categorical response variable Y (with possible values 0 or 1) using: 218 

௅ܲௌሺܻ ൌ ͳሻ ൌ ଵଵାୣ୶୮ ሺିሺ௕బା௕భ௫భା௕మ௫మା௕య௫యǥ௕೙௫೙ሻሻ      (2) 219 

where logistic regression is used to estimate the coefficients ሺܾǡ ܾ௡ ǥ ሻ for predicting the 220 

probability (PLS) that Y = 1, given the values of one or more predictor variables (ݔǡ ௡ݔ ǥ ሻ. The 221 

condition Y = 1 corresponds to the occurrence of a landslide within a sample grid cell. The 222 

regression coefficients are estimated using a maximum likelihood criterion. 223 

To undertake logistic regression, we have defined a sample grid at 32 m resolution, based upon 224 

an 8 m ground resolution digital elevation model, resampled from the 2012 version of the Land 225 

Information New Zealand (LINZ) digital elevation model for New Zealand. The 32 m grid mesh 226 

is much less than the typical hillslope lengths in the region, which can vary from 100 to >>1000 227 
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m. For this assessment, we have used only landslide source areas and not the debris trails. 228 

Landslides with areas less than 50 m2 were removed from our data set to eliminate sample bias, 229 

because landslides smaller than this have not been systematically mapped and may be 230 

underrepresented in the inventory. Thus we have assumed that Y = 1 for any given sample grid 231 

cell in which its centroid falls within a landslide source area, even if the grid cell is not fully 232 

occupied by a landslide source. 233 

The predictor variables used in this assessment were chosen based on variables previously found 234 

to influence landslide occurrence (listed in Table 2 and shown in Figures 1b, 4, 5 and 6a to d). To 235 

represent the landslide forcing variables, we adopted: 1) peak ground velocity models (PGV); 2) 236 

peak ground acceleration models (PGA); 3) the proximity of a landslide to a coseismic fault 237 

rupture; 4) permanent coseismic “fault” displacement derived from InSAR and GPS 238 

measurements (Hamling et al., 2017) (Figure 5); and 5) local slope relief (LSR). We adopted 239 

variables 1) and 2) as proxies for ground shaking, and variables 3) and 4) as less direct proxies 240 

for ground shaking. The permanent coseismic displacement variable also serves as a proxy for 241 

other susceptibility factors such as rock mass damage and steeper and higher relief. This is 242 

because displacement can lead to rock mass deformation and displacement in a vertical sense 243 

(uplift) is usually associated with reverse fault hanging walls, which in the Kaikoura region are 244 

where the steeper slopes are located. The proximity to a fault is inherently included in the 245 

estimation of PGV and PGA; however, we included it separately to examine the influence of 246 

local ground deformation and other near-field effects that might not be fully taken into account 247 

in the ground-motion models. To include this in the model, we determined the horizontal 248 

distance of each sample grid cell to the surface projection of the nearest fault that ruptured to the 249 

surface. Note that these faults are different than the locations of the simplified faults used in the 250 
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Hamling et al. (2017) fault model, and its variations, which was used in the ground motion 251 

modelling of PGA and PGV. It should also be noted that the proximity to fault variable does not 252 

account for faults that did not rupture to the surface, but which also contribute to the shaking 253 

intensity. The location of those faults that ruptured to the surface during the earthquake were 254 

taken from the GNS Science Active Faults database (Langridge et al., 2016; Stirling et al., 2017; 255 

Litchfield et al., this issue). Local slope relief (LSR) was defined as the maximum height 256 

difference within a fixed 80 m radius of the centroid of a given grid cell. It represents a proxy for 257 

slopes that could amplify ground shaking due to their “larger-scale relief” (larger than just a 258 

sample grid cell-size), where larger values of LSR represent the steeper and higher slopes of the 259 

region, which can amplify ground shaking more than lower-in-height and less steep slopes 260 

(Ashford et al. 1997; Massey et al., 2016; Rai et al., 2016; see Table 2 for details). We also used 261 

slope aspect to investigate directivity effects caused by the earthquake-rupture sequence on 262 

landslide occurrence, refer to Table 2 for details. 263 

To estimate the PGV and PGA variables, we have used three different ground motion models, as 264 

follows: 1) PGVBRADLEY from Bradley et al. (2017); 2) PGVLF, which is low-frequency (long 265 

period) PGV calculated up to 0.33 Hz, and derived using the method described by Holden et al. 266 

(2017); 3) PGASM and PGVSM from ShakeMap NZ (listed in the Data and Resources section of 267 

this paper), developed by the USGS (Wald et al., 1999; Worden et al., 2012), and calibrated for 268 

New Zealand by Horspool et al. (2015) (Figure 4c and d). The first two models incorporate 269 

directivity and basin amplification effects using 3D velocity models and account for along-strike 270 

variations in fault slip, whereas the third does not directly account for any of those effects except 271 

where they are captured by felt reports or seismic data. All three ground motions models are 272 

based on the fault-source model of Hamling et al. (2017). All models use the strong motion data 273 
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for the earthquake recorded by the GeoNet strong motion stations located within the area 274 

affected (Figures 1 and 4). However, there were only four stations within the 3600 km2 main area 275 

that was affected by landslides, about one station for every 900 km2, and 13 in the wider area 276 

affected (10000 km2), about one station for every 800 km2. The minimum, maximum and mean 277 

distance between these stations was 6.5, 51.3 and 23.6 km, respectively, indicating a sparse 278 

coverage of stations for the main area affected by landslides.  279 

We used landslide susceptibility variables of: 1) elevation; 2) slope curvature; and 3) geology. 280 

Curvature was used as a proxy to represent potential slope-scale patterns of topographic 281 

amplification that tend to occur at breaks in slope (Ashford et al., 1997; Rai et al. 2016) and 282 

localised slope morphology that could represent pre-earthquake landslide scarps and therefore 283 

potentially unstable slopes, thus representing both a susceptibility and earthquake forcing 284 

variable. Curvature is scale dependent and will vary as a result of both the size of the landslide 285 

and the slope. For this paper, curvature was calculated using ArcGIS and taken from the 286 

curvature of the surface on a cell-by-cell basis, as fitted through that cell and its eight 287 

surrounding neighbours. This appeared to best capture the more significant breaks in slope 288 

relative to the scale of the morphology of the slopes along the coast and inland, but not the 289 

higher peaks of the Kaikoura Ranges. Further work is needed to investigate the scale dependency 290 

of slope curvature and its effects on landslide occurrence. Slope gradient and elevation of each 291 

32 m sample grid cell were measured by taking the mean values from the n=16, 8 x 8 m grid 292 

cells that fell within it. Table 2 details how these variables were calculated. We used a 293 

categorical variable to represent the main geological units present in the area (Table 1 and 294 

summarised in Table 2), adopting four categories. 295 
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Model fitting was done manually using the Statistica software (Statistica, 2017). For a predictor 296 

variable to be included in the model, it must have a logical and statistically significant influence 297 

on ܲ ௅ௌ. We used a significance level (p-value) of p < 0.05 (using the Wald statistic) as the 298 

threshold for inclusion in the model. During model fitting, multiple variable combinations were 299 

iteratively tested. To ensure that the predictor variables included in the model do not exhibit 300 

multicollinearity, we used a variance inflation factor matrix (VIF), given as: 301 

ܨܫܸ ൌ ଵଵିோమ           (3) 302 

where R2 is the linear coefficient of determination of the relationship between any pair of 303 

predictor variables. Pairs with VIF >10, indicating a high level of multicollinearity, are avoided 304 

in our models (Kutner et al., 2004; Parker et al., 2015), (Table A2). The final models represent 305 

those variables that produced the best fit whilst meeting the significance level and 306 

multicollinearity criteria.  307 

Results 308 

We independently derived two models—one adopting PGASM and one adopting PGVSM as the 309 

ground motion parameter—to hindcast the probability of a landslide occurring in each grid cell. 310 

Landslide probability (PLS) is given by the following equation for PGA: 311 

௅ܲௌ ൌ ଵଵାୣ୶୮൭ିቆ஼಺೙೟೐ೝ೎೐೛೟ା஼ುಸಲೄಾ Ǥ௉ீ஺ೄಾା஼ಷೌೠ೗೟ವ೔ೞ೟Ǥி௔௨௟௧஽௜௦௧ା஼ಶ೗೐ೡಾಶಲಿ Ǥா௟௘௩ಾಶಲಿା஼ೄ೗೚೛೐ಾಶಲಿ Ǥௌ௟௢௣௘ಾಶಲಿା஼ಽೄೃǤ௅ௌோା஼ಸ೐೚೗೚೒೤೉ ቇ൱   (4) 312 

where the regression coefficients are denoted by c. The regression coefficients and goodness of 313 

fit statistics are shown in Tables 3 and 4 for models adopting PGASM and PGVSM as the ground 314 

motion predictor variables. We found that the best combination of predictor variables used to 315 
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estimate landslide probability were regional ground motion models (PGASM or PGVSM), distance 316 

to the surface expression of a fault that ruptured, slope gradient, elevation, local slope relief, and 317 

geology. All the other variables tested during model fitting were found to be less effective 318 

predictors than those included in the models, or they failed either the statistical significance test 319 

(p < 0.05) or the variance inflation factor test.  320 

Figures 6E and 6F show the spatial distribution of PLS calculated using the two regression 321 

models (Tables 3 and 4). The only difference between the combinations of variables used in each 322 

model is the ground motion parameter (PGASM and PGVSM). The results show that there is little 323 

statistical (Tables 3 and 4) or spatial (Figures 6e and f) difference between the model outputs of 324 

PLS. There was also little difference in the modelled PLS, when substituting other ground motion 325 

variables (PGVBRADLEY, PGVLF and PGVMEAN) independently in the model, whilst keeping the 326 

other variables fixed. To further investigate the explanatory power of the other variables on PLS, 327 

we have adopted a model that uses PGVSM (Table 4), because the model results have a 328 

marginally higher coefficient of determination—pseudo R2 adopting Nagelkerke's R2 method—329 

than those when the other PGV or PGA ground motion variables were adopted. Although the 330 

pseudo R2 of this model is relatively low, it is comparable to other similar studies on landslide 331 

data sets from New Zealand (Parker et al., 2015).  332 

Although the predictive power of the model on PLS is low, it has no apparent biases in any part of 333 

its range. Figure 7 presents a comparison of observed versus predicted PLS. This relationship was 334 

calculated by accumulating (adding) the predicted PLS values for each sample grid cell from 335 

smallest to largest, along with the corresponding observed Y value for the same grid cell. For the 336 

PGASM and PGVSM models, the observed and predicted probabilities display a good fit to the line 337 

of equality. This shows that the modelled probabilities are broadly consistent with the data. The 338 
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low pseudo R2 of the model indicates that there are many landslides in cells with low values of 339 

PLS. For example, the model adopting PGVSM has about 43100 cells that are classified as being 340 

landslides (Y = 1) where the modelled landslide probability is ≤10%. However, there are over 341 

3.4M cells where the modelled probability of a landslide occurring is less than 10%, resulting in 342 

a landslide pixel density of about 0.005 landslides per cell. Conversely, there are only 228 pixels 343 

where the modelled landslide probability is >50%, of which 26 are classified as being landslides, 344 

resulting in a landslide pixel density of 0.11. 345 

Figure 8 shows the predictor variables in rank order of significance, which we determined by 346 

sequentially removing each of the predictor variables that contribute least to the fit of the models. 347 

In each model, and in order of importance, the slope angle, distance to fault, elevation and 348 

geology variables contribute most to the fit of the models, followed by PGVSM (or PGASM when 349 

substituted for PGVSM in the model) and local slope relief. Notably, distance to the surface 350 

expression of a fault that ruptured has more explanatory power in the regression model than 351 

PGASM or PGVSM ground motion models or any of the other modelled PGV variables when 352 

tested independently within the regression model. This variable may be capturing: 1) additional 353 

ground motion parameters such as high-frequency ground motions that are not captured by the 354 

current PGA and PGV models, but which will sharply decay with distance from a fault; 2) the 355 

complex nature of the multi-fault rupture, and the multi-frequency ground motion intensity—and 356 

not just the higher frequency ground motions—better than the current PGA and PGV models 357 

even though it doesn’t take into account the shaking contributed by those faults that did not 358 

rupture to the surface; and 3) the influence of rock mass damage on the rock mass strength, 359 

where rock masses closer to faults are likely to be more jointed or “damaged” and have lower 360 

mass strengths than those less damaged rock masses, formed in similar materials, located farther 361 
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away from faults. In addition, preexisting persistent discontinuities such as faults and permanent 362 

tectonic surface deformation along some of them could have been important in triggering several 363 

of the large landslides located directly on or close to faults that ruptured to the surface. 364 

The relatively low pseudo R2 value of the model might be taken to suggest that variables not 365 

considered in the presented models might be important for predicting PLS. For example, only four 366 

main geological units have been adopted even though there are significant differences in rock 367 

type and their associated physical properties within these four broad groups.  Such differences in 368 

their properties have not yet been determined in sufficient detail to be included in the models. 369 

Also, the northwestern part of the main area affected by landslides contains a cluster of many 370 

small landslides (west-southwest of Ward, Figure 1), situated in areas of Neogene mudstone. 371 

This area does not “stand out” in the models as having a high PLS, and ground shaking (Figure 4) 372 

was relatively low in this area during the Kaikoura earthquake with no nearby faults rupturing, 373 

which suggests that some other variable may be needed to explain this distribution. This area was 374 

affected by the MW 6.5 16 August 2013 Lake Grassmere earthquake, and to a lesser extent by the 375 

MW 6.6 21 July 2013 Cook Strait earthquake (Figure 1) (Van Dissen et al. 2013). The Lake 376 

Grassmere earthquake generated landslides in this area, and it induced slope cracking. Thus, the 377 

Lake Grassmere earthquake may have preconditioned the slopes in the area to fail in the 378 

subsequent Kaikoura earthquake (as described by Parker et al., 2015). Alternatively, the 379 

mismatch between modelled and observed landsliding could be due to the high amplitude of the 380 

shaking in this area from the large amount of slip on the Kekerengu fault (Litchfield et al., this 381 

issue), which may not be captured by the current ground motion models. 382 
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Discussion 383 

Kaikoura earthquake landslide numbers and their size 384 

Our results suggest that the number of large landslides >10000 m2 generated by this earthquake 385 

is fewer than the number generated by the similar magnitude MW 7.8 1929 Murchison earthquake 386 

in New Zealand and similar to the number triggered by the smaller magnitude MW 7.1 1968 387 

Inangahua earthquake. One reason for this might be that the area affected by strong shaking and 388 

landslides is topographically constrained. Specifically, several of the faults that ruptured to the 389 

surface extended off shore, leading to the triggering of many submarine landslides (Mountjoy et 390 

al., this issue), which are not taken into account in the terrestrial landslide distribution examined 391 

in this paper. Another reason for this difference may be that the Kaikoura earthquake involved 392 

the rupture of more than 20 faults that broke to the land surface over a fault-zone length of more 393 

than 100 km, suggesting that the earthquake comprised numerous “sub-events” (Kaiser et al., 394 

2017; Stirling et al., 2017) of lower magnitude (Hamling et al., 2017). For each fault that 395 

ruptured, an equivalent magnitude can be calculated based on fault dimensions and estimated 396 

total slip (estimated either from geodetic and/or seismic data inversion). Hamling et al. (2017) 397 

estimated that the cumulative moment from the faults that ruptured south of Kaikoura equates to 398 

a MW 7.5 earthquake. Even though the cumulative moment from the northern faults is larger than 399 

from the southern faults, the moment from some of the individual smaller faults that ruptured to 400 

the north of Kaikoura was equivalent to a MW 7.1 earthquake (Hamling et al. 2017). This would 401 

conceptually result in the shaking energy being distributed over a larger area but at a smaller 402 

amplitude and, possibly, duration. Large landslides are possibly more sensitive to shaking in the 403 

range of frequencies that often control the ground motion PGV. If the moment release was 404 

distributed across many faults, the shaking duration and frequency content would reflect rupture 405 
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from many smaller faults rather than a single large fault.  Thus, the shaking would not have the 406 

same intensity as would be produced by a single fault rupturing with MW 7.8. With this in mind, 407 

it will be important to update the landslide regression models as improved ground motion 408 

modelling for the earthquake becomes available. 409 

Possible controls on the size of the landslides triggered by the earthquake: 410 

The strength of the dominant rock type in the area that was strongly shaken was mainly 411 

greywacke, and it accounts for 60% of the rocks in the main area affected by landslides. The 412 

coseismic landslide distribution in greywacke is dominated by many small landslides with few 413 

very large ones. Non-earthquake induced landslides in such materials have in the past been 414 

limited in size as greywacke tends to be highly jointed, favouring smaller failures (Hancox et al., 415 

2015). Previous work on fracture spacing in Torlesse Schist of the Southern Alps, suggests that 416 

its properties are highly influential in geomorphic response (Hales and Roering, 2009). 417 

Additional work is required to assess the landslide distribution source areas and volumes with 418 

regards to the main geological materials in which they occurred, and the role of rock mass 419 

conditioning of landslide source areas/volumes. Such an assessment is outside the scope of this 420 

current paper. 421 

Another contributing factor might be that high-frequency energy radiation during the Kaikoura 422 

earthquake is inferred by some researchers as smaller than during other landslide-triggering 423 

crustal earthquakes of a similar magnitude. While the energy magnitude (Me) of the Kaikoura 424 

and MW 7.8 2008 Wenchuan, China earthquakes derived from low-frequency (0.5 – 70 s) 425 

waveforms (IRIS DMC, 2013a) are similar (Me = 7.93 and 8.06, respectively), there is a 426 

significant difference in the energy magnitudes estimated from higher frequency (0.5 – 2 s) 427 

waveforms (Me = 7.59 and 8.05, respectively) (IRIS DMC, 2013b).  428 
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The role of distance from the surface fault rupture 429 

To explore the relationship between landslide occurrence and proximity to a surface fault 430 

rupture, we have plotted the landslide point and area densities as a function of the distance from 431 

the surface expression of the nearest fault that ruptured (Figure 9). We did this by creating 432 

successive buffer zones around the mapped fault traces that ruptured to the surface (Litchfield et 433 

al., this issue; Nicol et al., this issue). We then computed the number and total area of landslide 434 

source areas within each successive 200 m buffer to a distance of 3000 m on either side of the 435 

mapped fault trace as well as those landslide source areas through which faults pass. The density 436 

of landsliding in areas outside the fault buffers was also calculated for comparison. The results 437 

show that the landslide densities (both point and area) within 200 m of a fault are as much as 438 

three times greater than densities outside the 3000 m buffers. The results also show a general 439 

decrease in landslide density with increasing distance from a fault. At a distance of about 2500 to 440 

3000 m, the background landslide density (termed “rest of area” in Figure 9) is reached. This 441 

finding may be the result of: a) high-frequency shaking, which declines rapidly with distance 442 

from a fault, being an important control on the density of landslides triggered by the Kaikoura 443 

earthquake; b) the rock masses close to faults being weaker because of damage from previous 444 

fault rupture events; and c) slopes nearer faults often exhibit greater relief and are steeper than 445 

those farther away, which is the case for those slopes in the Kaikoura region. Others have 446 

reported similar findings, for example, Scheingrosset al. (2013) hypothesized that earthflows 447 

tend to cluster near the creeping San Andreas Fault because of a fault-induced zone of reduced 448 

bulk-rock strength that increases hillslope susceptibility to failure. Meunier et al. (2007) also 449 

suggested that near-field (near-fault), high-frequency shaking is likely to have been an important 450 

control on the density of landslides triggered by earthquakes. 451 
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Only 44 of the mapped landslide source areas are directly intersected by faults that ruptured to 452 

the surface, but this number includes seven of the eight largest landslides triggered by the 453 

Kaikoura earthquake. This would suggest that the initiation of these large landslides might have 454 

been due to a combination of preexisting discontinuities such as faults and rock mass damage, 455 

dynamic strong shaking and permanent tectonic displacement of the fault as it ruptured to the 456 

surface within the source area.  457 

Earthquake ground motion frequency, slope amplification and landsliding 458 

As noted above, our logistic regression analysis indicates that PGA (or PGV when substituted for 459 

PGA in the model) from the ShakeMap NZ models performs best, but overall the PGA (or PGV) 460 

variable has low explanatory power on predicting landslide occurrence. Distance to fault, which 461 

may capture additional ground motion parameters, has a much higher explanatory power.  462 

Generally, the shaking nearer the source contains a lot more high-frequency energy than farther 463 

away (e.g., Davies, 2015), suggesting that ground motion frequency may play a key role in 464 

determining slope response. Therefore, slopes that are near faults that rupture are more likely to 465 

experience such high-frequency ground motions. If the fundamental frequency of the slope is 466 

similar to the dominant frequency of the ground motion, amplification of shaking may also occur 467 

(Geli et al., 1988). 468 

Ashford et al. (1997) showed that the fundamental frequency (f) of a slope behind the crest can 469 

be estimated using the following equation: 470 

݂ ൌ ସൈு௏ೄ    (5a)  471 

and a slope/topographic frequency: 472 
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݂ ൌ ହൈு௏ೄ    (5b) 473 

where H is the slope height (or relief) and VS is the shear wave velocity of the material forming 474 

the slope. More recently, Rai et al. (2016) have developed a model to predict the effects of 475 

topography on earthquake ground motions, adopting the relative relief of a slope (like the LSR 476 

used in this paper). For slopes in the main area affected by landslides, the mean and modal 477 

values for slope relief are 135 m and 85 m for coastal slopes, and for inland slopes they are 588 478 

m and 103 m, respectively. The mean VS30 of the rock forming the coastal and inland slopes is 479 

estimated by Perrin et al. (2015) as 1000 m/s. Equation (5a) yields fundamental frequencies of 480 

the coastal slopes ranging from 1.9 to 2.9 Hz, and of the inland slopes from 0.4 to 2.4 Hz, for the 481 

mean and modal slope relief, respectively. Such fundamental frequencies are relatively high, 482 

suggesting that the combination of high-frequency shaking at close proximity to the faults, and 483 

amplification of shaking caused by the slopes responding to such high-frequency shaking, may 484 

explain why so many landslides occurred on slopes adjacent to faults. It should be noted that it is 485 

not just the fundamental frequency of the hillslope that matters, which will scale with slope 486 

morphology and relief, but also the fundamental frequency of the potential failure mass, which is 487 

likely to be shallower, and therefore have a higher fundamental frequency than the overall slope. 488 

However, such a difference may only be distinguishable from the rest of the slope if there is 489 

some preexisting plane or damage resulting in a contrast of density/shear wave velocity between 490 

the potential failure mass and the slope (e.g., Massey et al., 2016). 491 

Landslide slope angle and elevation 492 

We have explored the higher density of landslides on the coastal slopes by attributing the 493 

centroid of each landslide source area with its mean slope angle and elevation. We split the 494 
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landslide distribution into coastal and non-coastal slopes—where costal slopes are defined as 495 

those that extend from the sea to the first main inland ridge line, an approximate strip about 1 km 496 

wide—and calculated the area of coastal/non-coastal slope within each slope angle bin (Figure 497 

10). The results show that coastal slopes consistently have more landslides for a given slope 498 

angle than corresponding inland slopes, but that the mean size of the landslide sources on the 499 

inland slopes is larger than those on coastal slopes. Variations in slope angle and geology cannot 500 

explain this difference because the proportion of inland slopes in the steeper slope angle bins 501 

(Figure 10b, inset) is larger than the proportion of slopes on the coast within the same 502 

corresponding slope angle bins. The coastal slopes are primarily formed from greywacke, which 503 

is also the dominant rock type forming the slopes inland. A possible explanation for these 504 

smaller landslides on the coastal slopes is that their size has been limited by the topography, as 505 

the coastal slopes have a lower relief (i.e., elevations less than 500 m AMSL) compared to the 506 

higher relief slopes inland. 507 

The results of the logistic regression model show that landslide probability increases with 508 

decreasing elevation and coastal slopes are at lower elevations. This finding could be due to the 509 

coastal-slope geometry and materials (and contrasting materials caused by coastal weathering 510 

processes and products), and their effects on amplifying the ground shaking. Studies of similar 511 

coastal slopes (Massey et al., 2016), albeit in different materials, have shown that 512 

amplification—between the peak acceleration of the free field earthquake motion and the 513 

average peak acceleration of the slope—of shaking between the base and crest of a slope could 514 

be up to 2.5 times, with a mean of 1.6 times, higher at the crest than the base of the slope. Such 515 

values are comparable to the amplification factors reported by Ashford et al. (1997). It is also 516 

possible that the predominantly greywacke coastal slopes are more weathered than their inland 517 
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counterparts. Such hypotheses are likely to form the basis of future research on the landslides 518 

generated by the Kaikoura earthquake.  519 

Conclusions  520 

Our main findings are: (1) the number of large landslides (with source areas ≥10000 m2) 521 

triggered by the Kaikoura earthquake is fewer than the number of similar sized landslides 522 

triggered by other similar magnitude earthquakes in New Zealand; (2) the largest landslides 523 

(with source volumes from 5 to 20 M m3) occurred either on or within 2500 m of the more than 524 

20 mapped faults that ruptured to the surface; (3) the landslide density within 200 m of a mapped 525 

surface fault rupture is as much as three times higher than those densities farther than 2500 m 526 

from a ruptured fault; (4) for the same slope angles, coastal slopes have landslide point densities 527 

that are an order of magnitude greater than those in similar materials on the inland slopes, but 528 

their source areas are significantly smaller, possibly indicating that these slopes locally amplified 529 

ground shaking, and (5) the “distance to fault” predictor variable, when used as a proxy for 530 

ground motion intensity, has more explanatory power in predicting landslide probability than the 531 

modelled PGA or PGV variables adopted in the logistic regression modelling, even though this 532 

variable does not account for faults that did not rupture to the surface, but which also contribute 533 

to the shaking intensity. This relationship might be because the distance to fault variable 534 

captures: (a) the high-frequency ground motions and their attenuation with distance from a fault 535 

better than the current PGA and PGV models; (b) the complexity of the multi-fault rupture, and 536 

therefore the multi-frequency ground motion intensity, better that the current PGA and PGV 537 

models; and (c) the more damaged nature of the rock masses close to the faults, where they tend 538 

to be more sheared and weakened. The strong explanatory power of the “distance to fault” 539 
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predictor variable could also reflect the apparent structural control of some of the largest 540 

landslides that occur on or near faults.  541 

Data and Resources 542 

A recent update on information relating to submarine landslides triggered by the Kaikoura 543 

earthquake was given in the AGU Landslide Blog. 2017. Last accessed October 2017. 544 

http://blogs.agu.org/landslideblog/2017/02/27/niwa-1/ 545 

The ShakeMap NZ map of peak ground accelerations for the Kaikoura earthquake was published 546 

online on the GeoNet website. 2016. Last accessed October 2017. 547 

http://www.geonet.org.nz/news/fiBlIE2uNq2qGmmiOg42m 548 

The software package used to carry out the logistic regression is called Statistica. 2017. Last 549 

accessed October 2017.  http://www.statsoft.com/Products/STATISTICA-Features 550 

The version 1.0 landslide dataset used in this paper can be downloaded from the GNS Science 551 

landslide database https://data.gns.cri.nz/landslides/ or the https://www.designsafe-ci.org/ 552 

website. 553 
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Table 1. Lithology and landslide types adopted in this paper 762 

* Landslide point densities were calculated by dividing the number of landslide sources within a given geological 763 
unit by the area of ground within that given unit, within the main area affected by landslides (Figure 1b). Landslide 764 
area densities were calculated by dividing the total area of all landslide sources within a given geological unit by the 765 
area of ground within that unit, within the main area affected by landslides. 766 

767 

Lithology Proportion 
of main 
area 
affected 
(%) 

Landslide 
point / area 
density* 
(N/km2 / 
%) 

Dominant landslide types 

Quaternary sands, silts 
and gravels. These 
typically form river 
terrace deposits in the 
region.  

19 1.8 / 0.3 Debris avalanches and flows that tend to be relatively 
small, and their source areas are mainly located in the 
terrace sands and gravels on top of the steeper coastal 
slopes. Many other landslides occurred within the 
shallow regolith, which covers many slopes in the area 
that were affected by strong ground shaking. These 
include shallow, translational slides in soil with 
displacements of a few centimetres to several metres. 

Neogene limestones, 
sandstones and 
siltstones. These are 
typically massive, but 
weak rocks with 
unconfined 
compressive strengths 
(UCS) of typically 
<2MPa (Read and 
Miller, 1990). 

9 5.5 / 0.9 Relatively shallow debris avalanches and flows that 
source from the more weathered rocks, or relatively 
deep-seated slides and slumps, where movement is 
thought to occur either along bedding or other 
persistent structural discontinuities, e.g., fault planes, 
thin clay seams, or through the rock mass. Substantial 
numbers of pre-Kaikoura earthquake, large landslides 
were mapped in these materials of which many 
reactivated (a few centimetres to metres) during the 
earthquake, forming translational and rotational 
slides/slumps. 

Upper Cretaceous to 
Paleogene rocks 
including limestones, 
sandstones, siltstones 
and minor volcanic 
rocks.  These are 
typically massive, but 
weak rocks with UCS 
of typically <2MPa. 

12 4.6 / 0.5 Rockfalls and debris avalanches in areas of steeper 
terrain, with some slides and slumps (termed coherent 
after Keefer 2013) in areas of less steep topography, 
and their location might be controlled by the presence 
of thin clay seams or small-scale changes in lithology. 
Several relict landslides are present in these materials, 
and there were numerous small rockfalls and debris 
avalanches from their over-steep head scarps. 

Lower Cretaceous 
Torlesse (Pahau 
terrane) “basement” 
rocks predominantly 
sandstones and 
argillite (greywacke). 
These are relatively 
strong rocks with UCS 
10-20 MPa, but they 
are closely jointed. 

60 2.5 / 0.6 Rockfalls (of individual boulders) to debris and rock 
avalanches. Given the highly discontinuous nature of 
the rock mass, most landslides are controlled by 
multiple intersecting joint blocks, hence a potential 
limitation on the volume of such failures. However, 
the Kaikoura earthquake triggered several very large 
and structurally controlled rock avalanches, the 
Hapuku landslide being the largest mapped landslide. 
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Table 2. Predictor variables evaluated in the logistic regression model, their ID codes, 768 
descriptions and units. 769 

Variable type Variable ID Description Units 

Susceptibility  Geology 1 Quaternary sands, silts and gravels. These materials 
typically form terrace deposits on the top of the steep 
coastal cliffs as well as inland slopes adjacent to the 
main rivers of the area. Many of these terraces have 
been incised by rivers. 

N/A 

Geology 2 Neogene limestones, sandstones and siltstones, which 
are typically weak. They occur along sections of the 
coast north of Kaikoura. 

N/A 

Geology 3 Upper Cretaceous to Paleogene rocks including 
limestones, sandstones, siltstones and minor volcanic 
rocks. These are typically weak (like the Neogene 
limestones and sandstones), and easily erodible and 
they can contain thin clay seams, which are volcanic 
in origin. They are typically exposed in narrow strips 
overlying the greywacke basement rocks.   

N/A 

Geology 4 Lower Cretaceous Torlesse (Pahau terrane) 
“basement” rocks are predominantly sandstones and 
argillite, also known as greywacke. The greywacke 
rocks are typically moderately to well bedded and 
tend to be closely jointed. They form many of the 
coastal slopes as well as the steeper inland Kaikoura 
mountain ranges. 

N/A 

SlopeMEAN Local hillslope gradient taken from the 8 m resolution 
digital elevation model generated by GNS Science, 
adopting the mean value of all of the 8 m by 8 m cells 
that fall within each cell of the sample 32 m by 32 m 
grid. This variable is a proxy for the static shear 
stresses in the slope. 

Deg (°) 

ElevMEAN Local hillslope elevation taken from the 8 m 
resolution digital elevation model generated by GNS 
Science, adopting the mean value of all of the 8 m by 
8 m cells that fall within the each cell of the sample 
32 m by 32 m grid. This variable represents the 
observation that topography can limit the size of the 
landslides. For example, slopes that are higher in 
elevation tend to have larger surface areas, and can 
therefore generate larger landslides than slopes at 
lower elevations, which tend to have smaller surface 
areas. 

mAMSL 

CurvPROFILE Profile curvature generated using ArcGIS, taken from 
the curvature of the surface on a cell-by-cell basis, as 
fitted through that cell and its eight surrounding 

One 
hundredth 
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neighbours. using the 8 m resolution digital elevation 
model generated by GNS Science. A negative value 
indicates the surface is upwardly convex at that cell. 
A positive profile indicates the surface is upwardly 
concave at that cell. A value of 0 indicates the surface 
is flat. This variable is a proxy for slope “sharpness” 
that represents topographic amplification effects, as 
amplification of shaking has been recorded at sharp 
breaks in slope (e.g., Massey et al., 2016; Janku, 
2017). 

(1/100) of 
a z-unit 

AspMEAN The aspect for each sample grid-cell was calculated 
using ArcGIS using the 8 m resolution digital 
elevation model generated by GNS Science, adopting 
the mean of all of the 8 m by 8 m cells that fall within 
each cell of the 32 m by 32 m sample grid. 

Deg (°) 

Earthquake 
forcing  

FaultDist The distance from the centroid of each of the 32 m by 
32 m sample grid cells to the nearest fault that 
ruptured using the mapped surface expression, taken 
from the GNS Science Active Faults database 
(Langridge et al., 2016), which includes those faults 
that ruptured during the Kaikoura earthquake. 

Meters 

PGASM Grid of the mean peak ground acceleration (PGA) 
derived from ShakeMap NZ (GeoNet, 2016), 
developed by the U.S. Geological Survey (Wald, 
1999; Worden, 2012), and calibrated for New 
Zealand by Horspool et al. (2015). Grid resolution is 
1000 m by 1000 m. The PGA values were attributed 
to the sample grid cell, by taking the PGV value at its 
centroid. 

g 

PGVSM Grid of the mean peak ground velocity (PGV) derived 
from ShakeMap NZ. Grid resolution is 1000 m by 
1000 m. The PGV values were attributed to the 
sample grid cell, by taking the PGV value at its 
centroid. 

m/s 

PGVLF Low-frequency (long period) PGV calculated from 
waveforms up to 0.33 Hz, using the method described 
by Holden et al. (2017). Grid resolution is 500 m by 
500 m. The PGV values were attributed to the sample 
grid cell, by taking the PGV value at its centroid. 

m/s 

PGVBRADLEY Grid of PGV derived from modelling carried out by 
Bradley et al. (2017). Grid resolution is 990 m by 990 
m. The PGV values were attributed to the sample grid 
cell, by taking the PGV value at its centroid. 

m/s 

PGVMEAN Mean PGV calculated for each of the sample grid 
cells by sampling the PGV value from each of the 
three PGV models model at the centroid of each 
sample grid, and taking the mean of the three values. 

m/s 
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  770 

DispV The vertical permanent tectonic displacement caused 
by the earthquake was taken from the 100 m by 100 
m resolution three-dimensional displacement field 
derived from satellite radar and GPS data (Hamling et 
al., 2017).  This variable is a proxy for ground 
shaking intensity because areas of increasing 
permanent tectonic displacement should correlate 
with increased dynamic ground shaking and inertial 
loading on the soil and rock masses forming the 
slopes, leading to an increase in landsliding.  

Meters 

DispH The horizontal permanent tectonic displacement was 
calculated for each sample grid cell as the vector of 
the maximum x and y displacement fields taken from 
Hamling et al. (2017), 100 m by 100 m resolution 
three-dimensional displacement field. As DispV, this 
variable is a proxy for ground-shaking intensity. 

Meters 

LSR Local slope relief calculated using focal statistics in 
ArcGIS. It represents the local height (and angle) of 
the sample grid cell. It is calculated as the difference 
in elevation between the lowest in elevation 8 m by 8 
m grid cell, within an 80 m (ten (10) 8 m cells) radius 
from the centroid of the given sample grid cell, and 
the mean elevation of that grid cell (ElevMEAN). This 
variable represents a proxy for slopes that could 
amplify ground shaking due to their “larger-scale 
steepness” (larger than just a sample grid-cell size), 
where larger values of LSR represent the steeper and 
higher slopes of the region, which can amplify ground 
shaking more than lower in height and less steep 
slopes (Ashford et al. 1997; Massey et al., 2016).   

Meters 
(m) 
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Table 3. Logistic regression output coefficients and model fit statistics. Input ground-motion 771 
variable PGASM. Binomial logistic regression – modelled probability that Landslide = 1. 772 

 773 
Number of observations: 3,481,858. Likelihood ratio ȋ2: 3.41 × 104. All variables have p values of less than             774 
1 × 10-8. Pseudo R2: 0.141  775 

Variable Coefficient 
(c) 

Standard 
error 

95% confidence interval 

Lower bound Upper bound 

Intercept -8.2531 0.0471 -8.3454 -8.1608 

PGASM 0.0278 0.0005 0.0268 0.0288 

FaultDist -0.0002 0.000003 -0.0002 -0.0002 

ElevMEAN -0.0014 0.00002 -0.0014 -0.0013 

SlopeMEAN 0.0816 0.0012 0.0793 0.0840 

LSR 0.0158 0.0006 0.0146 0.0169 

Geology 1  0.5813 0.0196 0.5429 0.6197 

Geology 2 0.1963 0.0186 0.1599 0.2327 

Geology 3 -0.1466 0.0104 -0.3117 -0.2434 

Geology 4 -0.6866 0.0084 -0.7031 -0.6700 
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Table 4. Logistic regression output coefficients and model fit statistics. input ground-motion 776 
variable PGVSM. Binomial logistic regression – modelled probability that Landslide = 1. 777 

Number of observations: 3,481,858. Likelihood ratio ȋ2: 3.49 × 104. All variables have p values of less than             778 
1 × 10-8. Pseudo R2: 0.144 779 
  780 

Variable Coefficient 
(c) 

Standard 
error 

95% confidence interval 

Lower bound Upper bound 

Intercept -8.5968 0.0494 -8.6937 -8.4999 

PGVMEAN 0.0294 0.0005 0.0284 0.0303 

FaultDist -0.0002 0.000003 -0.0002 -0.0002 

ElevMEAN -0.0013 0.00002 -0.0013 -0.0012 

SlopeMEAN 0.0835 0.0012 0.0812 0.0858 

LSR 0.0158 0.0006 0.0147 0.0170 

Geology 1  0.1537 0.0214 0.1117 0.1957 

Geology 2 0.3005 0.0188 0.2637 0.3372 

Geology 3 -0.0978 0.0174 -0.1320 -0.0636 

Geology 4 -0.3563 0.0137 -0.3831 -0.3295 
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List of Figure Captions 781 

Figure 1. Inset map shows the area of New Zealand affected by coseismic landslides 782 

triggered by the MW 7.8 2016 Kaikoura earthquake. a) Shows the mapped 10195 coseismic 783 

landslide source areas and their size (area) triggered by the earthquake, superimposed on the 8 m 784 

by 8 m digital elevation model for New Zealand, classified by elevation in meters above sea 785 

level. b) The landslide source area distribution overlain on the main geological units. c) 786 

Landslide source area distribution shown on the 8 m ground resolution digital elevation model 787 

for New Zealand. 788 

Figure 2. a) The number of landslides (frequency) with source areas within each source area 789 

bin. Landslide source-area bin widths are equal in logarithmic space for all data sets. b) 790 

Landslide probability density plotted against landslide area (for the landslide source areas only), 791 

for landslides generated by the Kaikoura earthquake, the MW 7.1 1968 Inangahua, New Zealand 792 

earthquake (Hancox et al., 2014) and the MW 7.8 1929 Murchison, New Zealand earthquake 793 

(Hancox et al., 2016). For Figure 2b the power-law fitting statistics are: 1) MW 7.8 2016 794 

Kaikoura earthquake, where NLT = 10195, xmin = 500 m2 and Į = 1.88; 2) MW 7.8 1929 795 

Murchison earthquake (Hancox et al., 2016), where NLT = 6104, xmin = 10000 m2 and Į = 2.62; 796 

and 3) the MW 7.1 1968 Inangahua earthquake (Hancox et al., 2014), where NLT = 1199, xmin = 797 

10000 m2 and Į = 2.71. 798 

Figure 3. a) Hapuku rock avalanche in Lower Cretaceous basement rocks – this is the 799 

largest of the mapped landslides with an estimated volume of about 20 (±2) M m3. In this case, 800 

the slide surface appears to correspond to multiple persistent discontinuities such as old and 801 

recent fault planes. Several faults that ruptured to the surface pass through the source area of the 802 

landslide. The debris left the source and blocked the Hapuku River creating a dam about 100 m 803 
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high.  Multiple lobes of debris of different clast size can be mapped in the deposit, indicating 804 

multiple pulses of debris deposition. The dam subsequently overtopped and the downstream face 805 

was partially eroded (due to headward erosion initiated by seepage through the dam) following 806 

Cyclone Cook in April 2017. The debris left in the source is still unstable and several debris 807 

flows have occurred, which have eroded the debris down to bedrock in places. The debris 808 

forming the dam continues to erode as water from the impounded lake flows over the crest and 809 

down the outflow channel. b) Seafront rock slide/slump in Paleogene limestone – This is the 810 

largest mapped landslide in these materials with an approximate volume of 18 (±2) M m3. This 811 

slide surface is assumed to be deep seated (>100 m below the surface), with the field 812 

observations and cross sections suggesting a semi-rotational failure through the rock mass. Much 813 

of the debris has remained intact, and so the slide/slump would be classified as coherent (Keefer, 814 

2013). The displaced mass is still creeping and several debris flows have occurred off the toe of 815 

the intact displaced debris and also the head scarp. The Papatea fault (Hamling et al., 2017) 816 

ruptured through the source area suggesting that surface rupture of this fault caused the landslide 817 

to initiate.  The vertical displacement of this fault measured approximately 0.5 km away from the 818 

landslide is about 6 m. We are not sure whether the landslide initiated either from permanent 819 

coseismic displacement of the ground or dynamic displacement caused by shaking, or some 820 

combination of both.  c) Leader River rock slide/slump in Neogene mudstone – The largest 821 

mapped landslide in these materials is the Leader River landslide with an approximate volume of 822 

8 (±1) M m3. This rock slide/slump is predominantly within Neogene mudstone (including 823 

sandstone and siltstone), and the slide surface is assumed to be deep seated (about 80 m below 824 

the surface) with the displacement vectors suggesting a translational failure (with some rotation 825 

at the head scarp), possibly along bedding, which is inclined at about 20˚ to 25˚ out of the slope 826 
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(measured near the toe of the debris) and has the same dip direction as the vectors of landslide 827 

displacement. A faulted contact between the Lower Cretaceous greywacke and Neogene 828 

mudstone is also present in the landslide head scarp.  Although there is no field-evidence to 829 

suggest this contact ruptured, it is possible that a fault also ruptured through the source area of 830 

this landslide (Nicol et al., this issue), but more investigation is needed to determine whether this 831 

is the case or not. All photos D. Townsend. 832 

Figure 4. Peak ground velocities (PGV) and peak ground accelerations (PGA) from: a) Bradley 833 

et al. (2017) (PGVBRADLEY), calculated up to frequencies of >10 Hz, grid resolution 1000 m; b) 834 

PGVLF calculated using the method by Holden et al. (2017) up to a frequency of 0.33Hz, grid 835 

resolution 500 m; and c) PGVSM from Shake Map NZ (median estimates), calculated up to 836 

frequencies of 50 Hz, grid resolution 1000 m. d) PGASM from Shake Map NZ (median 837 

estimates), calculated up to frequencies of 50 Hz, grid resolution 1000 m. The Kaikoura 838 

earthquake landslide distribution (shown as grey polygons, N=10195 landslides) are overlain on 839 

all the maps. 840 

Figure 5. Permanent ground displacement: a) horizontal; and b) Vertical, and the inferred fault 841 

model taken from InSAR and GPS measurements relating to the Kaikoura earthquake presented 842 

by Hamling et al. (2017), grid resolution of 100 m by 100 m, overlain by the Kaikoura 843 

earthquake landslide distribution (shown as grey polygons, N=10195 landslides).  844 

Figure 6. Maps a) to d) showing the distributions of the main susceptibility predictor variables 845 

used in the logistic regression model. a) Elevation (ElevMEAN); b) Slope (SlopeMEAN); c) Distance 846 

to fault (FaultDist); d) Local slope relief (LSR). Maps e) and f) show the estimated landslide 847 

probabilities (PLS) from the logistic regression model: e) adopting the PGASM variable as the 848 
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input ground motion; f) adopting the PGVSM variable as the input ground motion. The faults that 849 

ruptured to the surface during the earthquake are shown as red lines. 850 

Figure 7. Consistency of the logistic regression model probabilities with the data, adopting the 851 

variables listed in Table 3 and ground motion parameter PGVSM. The graph shows a comparison 852 

of observed and predicted landslide probabilities, calculated by accumulating (adding) the 853 

predicted landslide probability (PLS) values for each sample grid cell from smallest to largest, 854 

along with the corresponding observed Y value for the same grid cell.  855 

Figure 8. Logistic regression model performance adopting the variables listed in Table 4 and 856 

ground motion parameter PGVSM. The graph shows the relative contributions of predictor 857 

variable to the fit of the overall model. The sequence of model variables and the resulting pseudo 858 

R2 values are shown in rank order of their significance, which we determined by sequentially 859 

removing each of the predictor variables contributing least to the fit of the model. 860 

Figure 9. Landslide point and area density (N=10195 landslides) within each 200 m distance 861 

from fault buffer. Landslide density is calculated by taking the centroid of each landslide source 862 

area that falls within each 200 m distance buffer from the mapped surface expression of the 863 

faults that ruptured during the earthquake. The number (N) of landslide points within each 864 

distance from fault bin range is then divided by the area of slope (km2) within each bin. The 865 

landslide area density is also shown, which is calculated in the same way as the landslide point 866 

density; however, the area of each landslide source (km2) within each distance from fault bin is 867 

summed and divided by the total area of ground within each 200 m bin. 868 

Figure 10. Landslide source areas (N=10195 landslides) normalised relative to the largest 869 

mapped landslide (area in km2) and their associated elevation and slope angle taken from the 8 m 870 



 

47 
 

by 8 m New Zealand digital elevation model. The slope angle and elevation values attributed to 871 

each landslide source area were sampled from the digital elevation grid by calculating the mean 872 

values within each source area polygon. a) Landslides on coastal slopes only; and b) landslides 873 

on non-coastal slopes. c) Area of slope within a given slope angle bin as a proportion of the total 874 

area of coastal and non-coastal slopes. d) Landslide point density for each slope angle bin 875 

adopting 10-degree bins. Landslide density is calculated by taking the number of landslide 876 

sources that have mean slope angles that are within each 10-degree slope-angle bin range. The 877 

number (N) of landslides within each slope-angle bin range is then divided by the area of slope 878 

(km2) within each bin. The point densities are calculated for coastal and non-coastal slopes and 879 

landslides. 880 

 881 

 882 
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Appendices 883 

The information contained in the appendices comprise the following: 1) A summary of the imagery and topographic data used to map Version 884 

1.0 of the landslide distribution presented in the paper; and 2) The variance inflation factor matrix (VIF), which was used as a method to ensure 885 

that the predictor variables included in the logistic regression model did not exhibit multicollinearity. 886 

Table A1. Summary of data used to compile the landslide inventory. 887 

 Item Data Type Date (NZST) Source Ground 
resolution (m) 

Public 
availability 

Notes 

Pre Kaikoura 
earthquake 
data 

1 Kaikoura District 
aerial photographs 

Orthorectified mosaics 
Individual tiled tiffs (provided 
by Council) converted to one 
mosaic by GNS Science. 

2014-2015 Environment 
Canterbury 
(ECAN), 
(captured by 
Aerial Surveys) 

0.3 Yes  

2 Marlborough 
District aerial 
photographs 

Orthorectified mosaic 
Individual tiled tiffs (provided 
by Council) converted to one 
mosaic by GNS Science. 

2011-2012 Marlborough 
District Council 
(MDC), 
(captured by 
Aerial Surveys) 

0.4 Yes  

 Marlborough 
District aerial 
photographs 

Orthorectified mosaic 
Individual tiled tiff format 
files 

2015-2016 MDC, captured 
by AAM Group 
Ltd. 

0.2 Early 2018  

3 Kaikoura Digital 
Surface Model 
(DSM), generated 
from the 
photographs taken 
for 1 and 2. 

ESRI Grid file  2014-2015 ECAN, captured 
by Aerial 
Surveys Ltd. 

1.0 Early 2018  

4 ESRI Grid file already 
provided 

2014-2015 ECAN, captured 
by Aerial 
Surveys Ltd. 

10.0 Early 2018  
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5 Airborne lidar Point clouds converted to 
Digital Elevation Models 
(DEMs) and Hillshades by 
GNS Science 

2012 Captured by 
AAM Group 
Ltd. 

1.0 Yes Only the coastal strip from 
Ward through to Cheviot 

Post 
Kaikoura 
earthquake 
data 

5 WorldView-2 
satellite imagery  

Multispectral bands supplied 
raw. Orthorectified as an 
Imagine file and converted to 
mosaics by GNS Science 

22 November 
2016 

Captured by 
Digital Globe 

2.4 Yes EAGLE technology 
processed the same raw 
images and provided to all of 
government. 

6 WorldView-3 
satellite imagery 

15 November 
2016 

Captured by 
Digital Globe 

1.4 Yes  

7 GeoEye satellite 
imagery 

15 November 
2016 

Captured by 
Digital Globe 

2.0 Yes  

8 Aerial photographs RGB stereo-tiff files with 
image coordinates, processed 
to individual orthorectified 
images and DSMs by GNS 
Science.  
Aerial Surveys to provide 
complete processed data set 

December 
2016 

Captured by 
Aerial surveys 
Ltd. 
commissioned 
by LINZ at the 
request of GNS 
Science and 
other New 
Zealand agencies 

0.3 Early 2018 Area covered is the main 
area affected by landslides 
and the total area affected by 
landslides. 

9 Airborne LIDAR Point clouds converted to 
DEM and Hillshades by GNS 

November to 
December 
2016 

Captured by 
AAM Group 
Ltd. 
commissioned 
by LINZ at the 
request of GNS 
Science and 
other New 
Zealand agencies 

1.0 On request Only the coastal strip, main 
faults and Goose Bay 
provided to date. Additional 
areas (dam sites) to be 
provided later. 

10 
Terrestrial LIDAR 
of landslides and 
landslide dams on 
the rivers called – 
Hapuku, Ote 

Point clouds, orthorectified 
images,  

November and 
December 
2016 

Captured by 
GNS Science 

Variable Yes Multiple surveys of each 
dam. Several of the dams 
failed following Cyclone 
Debbie and Cook, and 
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Makura, Linton, 
Conway, Towy, 
Stanton and Leader  

March, April, 
May and 
September 
2017 

surveys of these dams were 
carried out post failure. 

 888 

  889 
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Table A2. Variance inflation factor matrix (VIF) for the variables included in the logistic regression models. VIF values greater than 10 indicate 890 

a high level of multicollinearity (Kutner et al., 2004) and are avoided in our models. 891 

 892 

Variables  LSR SlopeMEAN ElevMEAN FaultDist PGVMEAN PGVBRADLEY PGVLF PGVSM PGASM 

LSR  - 4.54 1.60 1.00 1.01 1.03 1.03 1.13 1.00 

SlopeMEAN   - 1.48 1.00 1.00 1.03 1.03 1.16 1.00 

ElevMEAN     - 1.04 1.00 1.00 1.02 1.11 1.02 

FaultDist       - 1.10 1.04 1.02 1.30 1.60 

PGVMEAN         - 8.89 3.04 1.09 1.16 

PGVBRADLEY           - 1.96 1.00 1.05 

PGVLF             - 1.00 1.03 

PGVSM               - 1.62 

PGASM                 - 
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Μανυσχριπτ Νυmβερ:   ΒΣΣΑ−D− _______________________[λεαϖε βλανκ φορ νεω συβmισσιονσ] 

Τιτλε: Landslides triggered by the MW 7.8 14 November 2016 Kaikoura Earthquake, New Zealand 

Αυτηορσ:  Chris Massey____________________________________________________________________ 

ΧΟΠΨΡΙΓΗΤ 
Ιν αχχορδανχε ωιτη Πυβλιχ Λαω 94−533, χοπψριγητ το τηε αρτιχλε λιστεδ αβοϖε ισ ηερεβψ τρανσφερρεδ το τηε Σεισmολογιχαλ Σοχιετψ οφ 

Αmεριχα (φορ Υ.Σ. Γοϖερνmεντ εmπλοψεεσ, το τηε εξτεντ τρανσφεραβλε) εφφεχτιϖε ιφ ανδ ωηεν τηε αρτιχλε ισ αχχεπτεδ φορ πυβλιχατιον ιν 

τηε Βυλλετιν οφ τηε Σεισmολογιχαλ Σοχιετψ οφ Αmεριχα. Τηε αυτηορσ ρεσερϖε τηε ριγητ το υσε αλλ ορ παρτ οφ τηε αρτιχλε ιν φυτυρε ωορκσ οφ 

τηειρ οων. Ιν αδδιτιον, τηε αυτηορσ αφφιρm τηατ τηε αρτιχλε ηασ νοτ βεεν χοπψριγητεδ ανδ τηατ ιτ ισ νοτ βεινγ συβmιττεδ φορ πυβλιχατιον 

ελσεωηερε.  

Το βε σιγνεδ βψ ατ λεαστ ονε οφ τηε αυτηορσ (ωηο αγρεεσ το ινφορm τηε οτηερσ, ιφ ανψ) ορ, ιν τηε χασε οφ ∀ωορκ mαδε φορ ηιρε,∀ βψ τηε 

εmπλοψερ.  

       Πριντ Ναmε (ανδ τιτλε, ιφ νοτ αυτηορ)  Dατε

ΠΥΒΛΙΧΑΤΙΟΝ ΧΗΑΡΓΕΣ  
Τηε Σεισmολογιχαλ Σοχιετψ οφ Αmεριχα ρεθυεστσ τηατ ινστιτυτιονσ συππορτινγ ρεσεαρχη σηαρε ιν τηε χοστ οφ πυβλιχιζινγ τηε ρεσυλτσ οφ τηατ ρεσεαρχη.  

Τηε Εδιτορ ηασ τηε δισχρετιον οφ ωαιϖινγ πυβλιχατιον χηαργεσ φορ αυτηορσ ωηο δο νοτ ηαϖε ινστιτυτιοναλ συππορτ. If pages are paid for by SSA, then 
no further page charge waivers can be requested for two years by any author listed on the paper. Page charges for waived papers cannot exceed 12 
printed pages. Rejected papers in which a page waiver was requested will be considered toward the limit of one request per two years.  Ιν αδδιτιον 

το ρεγυλαρ πυβλιχατιον χηαργεσ τηερε ισ α νοmιναλ φεε φορ πυβλισηινγ ελεχτρονιχ συππλεmεντσ, which will not be waived. Χυρρεντ ρατεσ αρε αϖαιλαβλε 

ατ ηττπ://ωωω.σεισmοσοχ.οργ/πυβλιχατιονσ/ϕουρναλ−πυβλιχατιον−χηαργεσ/. 

Χολορ οπτιονσ:  Χολορ φιγυρεσ χαν βε πυβλισηεδ (1) ιν χολορ βοτη ιν τηε ονλινε ϕουρναλ ανδ ιν τηε πριντεδ ϕουρναλ, ορ (2) ιν χολορ ονλινε ανδ γραψ 

σχαλε ιν πριντ.  Ονλινε χολορ ισ φρεε; αυτηορσ ωιλλ βε χηαργεδ φορ χολορ ιν πριντ.  Ψου mυστ χηοοσε ονε οπτιον φορ αλλ οφ τηε χολορ φιγυρεσ ωιτηιν α 

παπερ; τηατ ισ, ψου χαννοτ χηοοσε οπτιον (1) φορ ονε χολορ φιγυρε ανδ οπτιον (2) φορ ανοτηερ χολορ φιγυρε.  Ψου χαννοτ συβmιτ τωο ϖερσιονσ οφ τηε 

σαmε φιγυρε, ονε φορ χολορ ανδ ονε φορ γραψ σχαλε.  Ψου αρε ρεσπονσιβλε φορ ενσυρινγ τηατ χολορ φιγυρεσ αρε υνδερστανδαβλε ωηεν χονϖερτεδ το γραψ 

σχαλε, ανδ τηατ τεξτ ρεφερενχεσ ανδ χαπτιονσ αρε αππροπριατε φορ βοτη ονλινε ανδ πριντ ϖερσιονσ.  Χολορ φιγυρεσ mυστ βε συβmιττεδ βεφορε τηε παπερ 

ισ αχχεπτεδ φορ πυβλιχατιον.   

     Αρτ γυιδελινεσ αρε ατ ηττπ://ωωω.σεισmοσοχ.οργ/πυβλιχατιονσ/βσσα/βσσα−αρτ−συβmισσιον−γυιδελινεσ/ 

Wιλλ πυβλιχατιον χηαργεσ βε παιδ?  Χηεχκ ονε: 

_YES_ ΒΟΤΗ ΠΥΒΛΙΧΑΤΙΟΝ ΧΗΑΡΓΕΣ ΑΝD ΧΟΛΟΡ ΧΗΑΡΓΕΣ WΙΛΛ ΒΕ ΠΑΙD, ανδ αλλ χολορ φιγυρεσ φορ τηισ παπερ ωιλλ βε 

χολορ βοτη ονλινε ανδ ιν πριντ.  Τηισ οπτιον ρεθυιρεσ φυλλ παψmεντ οφ πυβλιχατιον & χολορ χηαργεσ. 

_____ΟΝΛΨ ΠΥΒΛΙΧΑΤΙΟΝ ΧΗΑΡΓΕΣ WΙΛΛ ΒΕ ΠΑΙD, ανδ αλλ φιγυρεσ φορ τηισ παπερ ωιλλ βε γραψ σχαλε ιν πριντ.  

Χολορ φιγυρεσ, ιφ ανψ, ωιλλ βε χολορ ονλινε. 

 _____ΡΕΘΥΕΣΤ Α ΡΕDΥΧΤΙΟΝ ΙΝ ΠΥΒΛΙΧΑΤΙΟΝ ΧΗΑΡΓΕΣ. Σενδ α λεττερ οφ ρεθυεστ ανδ εξπλανατιον το τηε Εδιτορ−ιν−Χηιεφ ατ 

ΒΣΣΑeditor≅σεισmοσοχ.οργ. Χολορ φιγυρεσ, ιφ ανψ, ωιλλ βε χολορ ονλινε βυτ γρaψ σχαλε ιν πριντ. 

Σενδ Ινϖοιχε το: GNS Science, 1 Fairway Drive, Avalon, Lower Hutt, New Zealand 

Ιφ ψουρ παπερ ισ αχχεπτεδ φορ πυβλιχατιον, ΣΣΑ ρεθυιρεσ τηατ ψου φιλλ ουτ ανδ συβmιτ your final files. 

Θυεστιονσ ρεγαρδινγ βιλλινγ σηουλδ βε διρεχτεδ το τηε ΣΣΑ Βυσινεσσ Οφφιχε,  

400 Εϖελψν Αϖενυε, Συιτε 201 Αλβανψ, ΧΑ 94706 ΥΣΑ  Πηονε 510 525−5474  Φαξ 510 525−7204 
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