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Summary

The specification of an optimizing model of the monetary transmission mechanism requires
selecting a policy regime, commonly commitment or discretion. In this paper we propose a
new procedure for testing optimal monetary policy, relying on moment inequalities that nest
commitment and discretion as two special cases. The approach is based on the derivation of
bounds for inflation that are consistent with optimal policy under either policy regime. We
derive testable implications that allow for specification tests and discrimination between the
two alternative regimes. The proposed procedure is implemented to examine the conduct of
monetary policy in the United States economy.
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1 Introduction

This paper proposes new methods for the evaluation of monetary policy within the framework

set by the New Keynesian model. Since the work of Kydland and Prescott (1977), the theory of

optimal monetary policy is aware of the time inconsistency problem. An optimal state-contingent

plan announced ex-ante by the monetary authority may fail to steer private sector expectations

because, ex-post, past commitments are ignored. The theoretical literature has considered two

alternative characterizations of optimal monetary policy: commitment, whereby the optimal plan

is history dependent and the time-inconsistency problem is ignored; and discretion, whereby the

monetary authority re-optimizes each period. We propose a method for estimating and testing a

structural model of optimal monetary policy, without requiring an explicit choice of the relevant

equilibrium concept. Our procedure considers a general specification, that nests optimal policy

under commitment and discretion. The approach is based on the derivation of bounds for the

inflation rate that are consistent with both forms of optimal policy and yield set identification of

the economy structural parameters. We derive testable implications that allow for specification

tests and discrimination between the monetary authority’s modes of behavior.

Under discretion, there exists a state-contingent inflation bias resulting from the fact that the

monetary authority must set policy independently of the history of shocks (Svensson, 1997). The

upshot of this state-contingent bias is that, when the output gap is negative, the inflation rate

under discretion in the following period is higher than what it would be if the monetary authority

was able to commit to history-dependent plans. This state-contingent inflationary bias allows

for the derivation of an inflation lower-bound (obtained under commitment) and an upper-bound

(obtained under discretion), based on the first order conditions that characterize optimal monetary

policy under each policy regime.
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More generally, our framework applies to the optimal linear regulator problem, and relies on

state-contingent bounds for a target variable that are used to derive moment inequality conditions

associated with optimal policy, and to identify the set of structural parameters for which the

moment inequalities hold, i.e. the identified set. We characterize the identified set implied by

optimal monetary policy using inference methods developed in Chernozhukov, Hong, and Tamer

(2007). We then test whether the moment restrictions implied by a specific regime are satisfied.

Assuming a specific policy regime enables point identification. Thus, parameters can be estimated

consistently and standard tests of overidentifying restrictions (Hansen, 1982) can be performed.

However, if our objective is to test for discretion or commitment under the maintained assumption

of optimal monetary policy, the standard Hansen’s J–test does not make use of all the available

information. Instead, we propose a test for discretion and a test for commitment which explore

the additional information obtained from the moment inequality conditions associated with the

inflation bounds implied by optimal monetary policy. Formally, the test is implemented using the

criterion function approach of Chernozhukov et al. (2007) and an extension of the Generalized

Moment Selection method of Andrews and Soares (2010), that takes into account the contribution

of parameter estimation error on the relevant covariance matrix.

In addition, the moment inequality conditions implied by optimal monetary policy under discretion

and commitment, respectively, can be used to perform a model selection test to discriminate

between the two alternative policy regimes, maintaining the assumption of optimal monetary

policy. Following Shi (2015), we compare the two models and select the one that is closer to the

truth in terms of a pseudo-distance measure based on the Kullback-Leibler divergence measure.

We apply our testing procedure to investigate whether the time-series of inflation and output gap

in the United States are consistent with the New Keynesian model of optimal monetary policy
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that has been widely used in recent studies of monetary policy, following the work of Rotemberg

and Woodford (1997), Clarida, Gaĺı, and Gertler (1999), and Woodford (2003). Using the sample

period running from 1983Q1 until 2008Q3, we find evidence in favor of discretionary optimal

monetary policy, and against commitment. In contrast, the standard J–test of overidentifying

restrictions lacks power and fails to reject either policy regime.1 Thus, by making use of the full

set of implications of optimal monetary policy, we construct a more powerful model specification

test, allowing the rejection of commitment but not discretion. This finding is further supported

by the model selection test based on Shi (2015).

The importance of being able to discriminate between different policy regimes on the basis of the

observed time-series of inflation and output is well recognized. In pioneering work, Baxter (1988)

calls for the development of methods to analyze policy-making in a maximizing framework, and says

that “what is required is the derivation of appropriate econometric specifications for the models, and

the use of established statistical procedures for choosing between alternative, hypothesized models of

policymaking”.2 This paper seeks to provide such an econometric specification. Our paper is also

related to work by Ireland (1999), that tests and fails to reject the hypothesis that inflation and

unemployment form a cointegrating relation, as implied by the Barro and Gordon model when

the natural unemployment rate is non-stationary. Ruge-Murcia (2003) estimates a model that

allows for asymmetric preferences, and fails to reject the model of discretionary optimal monetary

policy. Both these papers assume one equilibrium concept (discretion), and test the time-series

implications of discretionary policies. Our framework instead derives a general specification of

optimal policy, nesting commitment and discretion as two special cases.

1The lack of power of the J–test in the context of forward-looking models estimated using GMM is discussed
in Mavroeidis (2005). Our test of the monetary policy regime explores a larger set of moment inequality restrictions
implied by optimal monetary policy and, therefore, contributes to increasing the power of the specification test.

2Baxter (1988, p.145).
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Using maximum-likelihood, Givens (2012) estimates a New Keynesian optimal monetary policy

model for the US. The model is estimated separately under the two alternatives of commitment and

discretion, using quarterly data over the Volcker–Greenspan–Bernanke era; a comparison of the

log-likelihood of the two alternative models based on a Bayesian information criterion (to overcome

the fact that the two models are non-nested) strongly favors discretion over commitment. A similar

Bayesian approach has been used by Kirsanova and Le Roux (2013), who also find evidence in favor

of discretion for monetary and fiscal policy in the UK. Debortoli and Lakdawala (2015) estimate

a medium-scale DSGE model allowing for deviations from commitment plans that follow a regime

switching process. They reject both the full commitment and discretion, which are nested special

cases of their model.

The partial identification framework that we propose in this paper has two important advantages.

First, it constitutes a general econometric specification that nests commitment and discretion as

two special cases. Second, unlike full-information methods, our approach does not require strong

assumptions about the nature of the forcing variables (the shock processes). The disadvantage of

our method relative to the full information approach, is that it is currently limited to relatively

simple models of optimal policy. Thus, our procedure may not be directly applicable to medium-

scale DSGE models à la Smets and Wouters (2003) and Christiano, Eichenbaum, and Evans (2005),

that include several sources of endogenous persistence (such as habits, capital stock and persistence

in interest rates). However, several influential models used to study optimal monetary policy

yield set-ups that can be addressed using our methodology. Important examples include Clarida

et al. (1999) and Svensson and Woodford (2004) canonical models of optimal policy, Giannoni and

Woodford (2004) model of inflation inertia and a special (but empirically salient) case of the Erceg,

Henderson, and Levin (2000) model with sticky wages as well as prices.
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Simple monetary policy rules are often prescribed as guides for the conduct of monetary policy.

For instance, a commitment to a Taylor rule (Taylor, 1993), according to which the short-term

policy rate responds to fluctuations in inflation and some measure of the output gap, incorporates

several features of an optimal monetary policy, from the standpoint of at least one simple class

of optimizing models. Woodford (2001) shows the response prescribed by these rules tends to

stabilize inflation and the output gap, and stabilization of both variables is an appropriate goal,

as long as the output gap is properly defined.

Under certain simple conditions, a feedback rule that establishes a time-invariant relation between

the path of inflation and of the output gap and the level of nominal interest rates can bring about

an optimal pattern of equilibrium responses to real disturbances. Giannoni and Woodford (2017)

show that it is possible to find simple target criteria that are fully optimal across a wide range of

specifications of the economy stochastic disturbance processes. To the extent that the systematic

behavior implied by simple rules takes into account private sector expectations, commitment-

like behavior may be a good representation of monetary policy. Therefore, as McCallum (1999)

forcefully argues, neither of the two modes of behavior has as yet been established empirically.

Our framework develops a new procedure for testing these two alternative policy regimes.

This paper also contributes to a growing literature that proposes partial identification methods to

overcome lack of information about the economic environment. For instance, Manski and Tamer

(2002) examine inference on regressions with interval outcomes. Haile and Tamer (2003) use partial

identification to construct bounds on valuation distributions in second price auctions. Blundell,

Browning, and Crawford (2008) derive bounds that allow set-identification of predicted demand

responses in the study of consumer behavior. Ciliberto and Tamer (2009) propose new methods for

inference in entry games without requiring assumption about the equilibrium selection. Galichon
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and Henry (2011) derive set-identifying restrictions for games with multiple equilibria in pure and

mixed strategies.

The rest of the paper is organized as follows. Section 2 describes the class of optimal linear

regulator problems to which our framework applies. Section 3 derives the bounds for inflation

implied by optimal monetary policy and outlines the inference procedure. Section 4 describes the

proposed test for optimal monetary policy. Section 5 describes the model selection test. Section 6

presents Monte Carlo evidence on the small sample performance of the tests. Finally, Section 7

reports the empirical findings and Section 8 concludes.3

2 Optimal monetary policy

Our methodology applies to the optimal linear regulator problem obtained when the policymaker’s

objective function is quadratic and the structural equations describing the economy’s equilibrium

dynamics are linear. This framework is widely used to study optimal monetary policy in the New

Keynesian model with staggered prices and monopolistic competition.4 The objective function of

the monetary authority, which in the canonical case is derived as a second order approximation to

the utility of a stand-in agent around the stable equilibrium with zero inflation (Woodford, 2003),

takes the form

U = E0

[
−1

2

∞∑

t=0

βt (y′tWyt)

]
,

= E0

[
−1

2

∞∑

t=0

βt
(
π2
t + s′tQst + x′tRxt

)
]
,

(1)

where Et denotes agents’s expectations at date t, yt = [πt, st, xt]
′ is a n × 1 vector of endogenous

variables with n ≥ 2; πt is a scalar random variable (the inflation rate in our benchmark example),

3All the proofs are collected in the Supplementary Material S.1 and S.2
4See Woodford (2003) for a detailed description of this class of structural models.
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st is an m × 1 vector, with m ≥ 1, and xt is of dimension (n−m− 1) × 1; β ∈ (0, 1) is a

scalar parameter representing the discount factor. The matrix W is a n × n symmetric positive

semi-definite matrix containing the target variables’ weights, with the following block diagonal

structure

W =




1 0 0

0 Q 0

0 0 R



, (2)

where Q and R are conformable square matrices.

The constraints on possible equilibrium outcomes (the structural equations) are represented by

the following m-dimensional system

ut = Ayt−1 +Byt + βCEt (yt+1) ,

=
[
a As Ax

]




πt−1

st−1

xt−1



+
[
b Bs Bx

]




πt

st

xt



+ β

[
c Cs Cx

]
Et




πt+1

st+1

xt+1



,

(3)

for all t, where ut is a vector of exogenous disturbances, A, B and C are m×n matrices, a, b and

c are m× 1 vectors, and As, Ax, Bs, Bx, Cs and Cx are conformable matrices.5 In particular, Bs

is an m×m square matrix.

In the sequel, we restrict attention to models admitting a representation such that a = 0 and

As = 0, so that the vector of target variables [πt, st]
′ does not include predetermined variables,

with all the endogenous predetermined variables included in xt. Moreover, we require that Cs = 0

and the matrix Bs to be nonsingular. These restrictions allow the Lagrange multipliers associated

with each of the m constraints to be mapped into the contemporaneous values of st.
6

5This formulation follows Dennis (2007) and Debortoli and Lakdawala (2015).
6Many influential models used to study optimal monetary policy satisfy these restrictions. For example, Clarida

et al. (1999), Svensson and Woodford (2004) and Giannoni and Woodford (2004) model of inflation inertia, all admit
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The problem of the monetary authority under commitment is to choose bounded state-contingent

sequences {yt}t≥0
to maximize (1) subject to (3). The Lagrangian formulation of this problem is

given by

E0

{
−1

2

∞∑

t=0

βt
[
π2
t + s′tQst + x′tRxt − λ′t (Ayt−1 +Byt + βCyt+1)

]}
, (4)

where λt is a h-dimensional vector of Lagrange multipliers, with initial condition λ−1 = 0. The

first order conditions solving the monetary authority’s problem under commitment are

πt − c′λt−1 − b′λt = 0, (5)

Qst −B′
sλt = 0, (6)

Rxt −C′
xλt−1 −B′

xλt − βA′
xEt (λt+1) = 0, (7)

for all t ≥ 0, together with the constraint (3) and the initial condition λ−1 = 0. From equation (5)

the necessary conditions for optimal policy under commitment yield

πt = c′λt−1 + b′λt. (8)

However, the commitment solution is time inconsistent in the Kydland and Prescott (1977) sense:

each period t, the monetary authority is tempted to behave as if λt−1 = 0, ignoring the impact of

its current actions on the private sector expectations. Under discretion, the policymaker acts as if

λt−1 = 0, and the resulting path for target variable πt satisfies the condition

πt = b′λt. (9)

such representation. However, the methods proposed in this paper are not directly applicable to medium-scale DSGE
models of the kind pioneered by Smets and Wouters (2003) and Christiano et al. (2005), that include sources of
endogenous persistence (such as habits in consumption, capital stock and persistence in interest rates), if those
sources of endogenous persistency cause the number of pre-determined target variables to exceed n− (m+ 1), such
that As 6= 0, or prevent a representation of the structural equations with Cs = 0.
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Both under discretion and commitment, from (6) we obtain the Lagrange multipliers as follows

λt = B′
s

−1
Qst,

= Dst,

(10)

In what follows, we define the sublist of structural parameters φ = {b, c,D}, and let φ0 =

{b0, c0,D0} denote the “true” value of φ. In addition, we define πc
t (φ0) as the inflation in period

t consistent with the first order conditions for optimal policy under commitment, given knowledge

of st and the structural parameters in φ0. In the same way, πd
t (φ0) is the inflation in period t

consistent with the first order conditions under discretion. Making use of (8), (9) and (10), πc
t (φ0)

and πd
t (φ0) are, respectively, given by

πc
t (φ0) = c′0D0st−1 + b′

0D0st, (11)

πd
t (φ0) = b′

0D0st. (12)

To model optimal monetary policy requires a decision about whether the first order conditions of

the policy maker are represented by (11) or, instead, by (12). But how does one decide whether

the behavior of the monetary authority should be classified as discretion or commitment-like? We

propose a general characterization of optimal monetary policy nesting both modes of behavior.

The approach is based on the derivation of bounds for the inflation rate under the maintained

assumption that at any point in time either (11) or (12) is satisfied.

3 Bounds for inflation

Under a specific equilibrium concept, commitment or discretion, it is in principle possible to identify

φ0 from observed data for inflation and the output gap using, respectively, equation (11) or (12).
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A general specification for optimal monetary policy, nesting the two alternative characterizations

of optimality follows from the next simple result.

Lemma 1. Consider an economy whose structural equations can be represented by the system (3),

with a = 0, As = 0, Cs = 0 and Bs a nonsingular matrix. Optimal policy implies that

Pr
(
πc
t (φ0) ≤ πt (φ0) ≤ πd

t (φ0)
∣∣∣c′0D0st−1 ≤ 0

)
= 1,

Pr
(
πd
t (φ0) ≤ πt (φ0) ≤ πc

t (φ0)
∣∣∣c′0D0st−1 > 0

)
= 1,

where πt (φ0) is the actual inflation rate in period t.

The bounds for inflation in Lemma 1 follow immediately from equations (11) and (12).

In the sequel, we assume that the observed inflation rate differs from the actual inflation rate

chosen by the monetary authority only through the presence of a measurement error with mean

Π̄0, possibly different from zero, thus allowing for the presence of a trend in measured inflation.7

Assumption 1. Let πt (φ0) be the actual inflation rate in period t. The observed inflation rate is

Πt = πt (φ0) + vt, where vt has mean Π̄0 and variance σ2
v.

3.1 Moment inequalities

The upshot of Lemma 1 is that we are able to derive moment inequality conditions implied by

optimal monetary policy, and nesting commitment and discretion as two special cases. From

Lemma 1 it is immediate to see that

Pr
(
πc
t (φ0) + vt ≤ Πt ≤ πd

t (φ0) + vt

∣∣∣c′0D0st−1 ≤ 0
)
= 1,

Pr
(
πd
t (φ0) + vt ≤ Πt ≤ πc

t (φ0) + vt

∣∣∣c′0D0st−1 > 0
)
= 1,

(13)

7Bernanke and Mishkin (1997) argue US measured annual inflation is overstated 0.5 to 2.0 percentage points.
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which establishes a lower and upper bound for the observed inflation rate, Πt.

We assume that enough is known about the structural parameters of the economy so that the

sign of each element of φ0 is known with certainty, and denote S = sign (c′0D0) the 1 × p vector

which is obtained after applying the sign function to each element of c′0D0. Then, we define the

p-dimensional vector St = S′ ◦ st, where ◦ denotes the Schur product (element by element vector

multiplication). Next, we obtain 1 (St−1 ≤ 0) and 1 (St−1 > 0), the indicator functions taking value

one when, respectively, each element of St−1 is non-positive and each element of St−1 is positive,

and zero otherwise. This yields the following moment inequalities implied by optimal policy

Proposition 1. Under Assumption 1, the following moment inequalities

E




− (Πt − b′
0D0st − vt) 1 (St−1 ≤ 0)

(Πt − b′
0D0st − vt) 1 (St−1 > 0)

(Πt − c′0D0st−1 − b′
0D0st − vt) 1 (St−1 ≤ 0)

− (Πt − c′0D0st−1 − b′
0D0st − vt) 1 (St−1 > 0)




≥ 0, (14)

are implied by optimal monetary policy under either commitment or discretion, where {b0, c0,D0}

denote the “true” structural parameter and E is the unconditional expectation operator.

Proposition 1 follows immediately from (13) and the fact that 1 (St−1 ≤ 0) = 1 is a sufficient

condition for c′0D0st−1 ≤ 0 and, similarly, that 1 (St−1 > 0) = 1 is a sufficient condition for

c′0D0st−1 > 0.8

Next, we define the following set of instruments

Assumption 2. Let Zt denote a p-dimensional vector of instruments such that

8We construct the moment functions in (14) using 1 (St−1 ≤ 0) instead of 1 (c′0D0st−1 ≤ 0) to obtain moment
functions which are differentiable in the parameters φ (and in fact linear given an appropriate reparameterization),
thus avoiding complications to do with non-smooth moment functions. In particular, we explore the fact that
1 (St−1 ≤ 0) = 1 is a sufficient condition for 1 (c′0D0st−1 ≤ 0)=1.
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1. Zt has bounded support;

2. E [vt1 (St−1 ≤ 0)Zt] = Π̄E [1 (St−1 ≤ 0)Zt], and E [vt1 (St−1 > 0)Zt] = Π̄E [1 (St−1 > 0)Zt];

3. E
[(
Πt − Π̄

)
1 (St−1 ≤ 0)Zt

]
6= 0, E [st1 (St−1 ≤ 0)Zt] 6= 0, E [st−11 (St−1 ≤ 0)Zt] 6= 0.

Assumption 2.1. guarantees that, without loss of generality, the vector of instruments can be

restricted to have positive support. Assumption 2.2 requires the instrumental variables to be

uncorrelated with the measurement error vt. Finally, Assumption 2.3 requires that the instruments

are relevant.

3.2 The identified set

Given Assumption 2, the moment inequalities in Proposition 1 can be written as

E
[
md,t

(
φ0, Π̄0

)]
≡ E




−
(
Πt − Π̄0 − b′

0D0st
)
1 (St−1 ≤ 0)Zt

(
Πt − Π̄0 − b′

0D0st
)
1 (St−1 > 0)Zt


 ≥ 0, (15)

E
[
mc,t

(
φ0, Π̄0

)]
≡ E




(
Πt − Π̄0 − c′0D0st−1 − b′

0D0st
)
1 (St−1 ≤ 0)Zt

−
(
Πt − Π̄0 − c′0D0st−1 − b′

0D0st
)
1 (St−1 > 0)Zt


 ≥ 0. (16)

We use θ =
(
φ, Π̄

)
∈ Θ to denote an ellement of the parameter space. The “true” underlying vector

value of θ is denoted θ0 and, in general, is not point identified by the conditions (15) and (16).

Thus, we define the identified set consistent with optimal monetary policy as follows

Definition 1. Let θ =
(
φ, Π̄

)
∈ Θ. The identified set is defined as

ΘI ≡
{
θ ∈ Θ : such that E [mt (θ)] ≥ 0

}

with mt (θ) ≡
[
md,t

(
φ, Π̄

)
, mc,t

(
φ, Π̄

)
]′
.
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Under optimal monetary policy, ΘI is never empty. From the linearity of the moment functions

E [mt (θ)] = E [m (θ0)] +∇θm
′ (θ − θ0) , (17)

where ∇θm denotes the gradient of the moment functions. The first terms on the RHS of (17) is

non-negative because of (15) and (16). Hence, by construction θ0 ∈ ΘI . On the other hand, ΘI

may be non-empty even if (13) does not hold. In fact, violation of (13) does not necessary imply

a violation of (15) and/or (16). Thus, θ0 may belong to the identified set even in the case of no

optimal monetary policy. In this sense, a non-empty identified set, while necessary for optimal

monetary policy, is not sufficient.

Although our moment inequalities are linear in the transformed parameter space θ̃ =
{
φ†, φ‡, Π̄

}
,

with φ† = c′D and φ‡ = b′D, our set-up is rather different from Bontemps, Magnac, and Maurin

(2012). In their case, lack of point identification arises because one can observe only lower and

upper bounds for the dependent variable. In our case, we observe Πt, st and st−1, and lack

of identification arises because we do not know which model generated the observed series. In

particular, their characterization of the identified set relies on the boundedness of the intervals

defined by the upper and lower bound of the observed variables, and thus does not necessarily

apply to our set-up. Beresteanu and Molinari (2008) random set approach also applies to models

which are incomplete because the dependent variable and/or the regressors are interval-valued.

For this reason, in the sequel we use the criterion function of Chernozhukov et al. (2007).

Before proceeding, notice that one may be tempted to reduce the moment inequalities (15) and (16)

into a single moment equality condition, given by

E
[ (

Πt − Π̄0 − ϕtc
′
0D0st−1 − b′

0D0st
)
Zt

]
= 0,

14



where ϕt ∈ {0, 1} is a random variable taking value 1 in the case of commitment and 0 in the case

of discretion. If ϕt is degenerate, it may be treated as a fixed parameter ϕ and the model can

be estimated by GMM, provided appropriate instruments are available. This is an application of

the conduct parameter method sometimes used in the industrial organization literature. But, this

approach is problematic since optimal monetary policy is characterized by either commitment or

discretion, and the standard regularity condition for consistency are violated.9

3.3 Preliminaries on inference

Before describing the model specification test in Section 4, we describe some preliminary notions

related to inference on the identified set ΘI . The basic idea underlying the specification tests is

to use the bounds for the observed inflation rate derived above to generate a family of moment

inequality conditions that are consistent with optimal policy. These moment inequality conditions

may be used to obtain a criterion function whose set of minimizers is the estimated identified set.

If the estimated identified set is non-empty, we construct the corresponding confidence region.

We define the following 4p moment functions associated with (15) and (16)

m−
i,d,t

(
φ, Π̄

)
= −

(
Πt − Π̄− b′Dst

)
1 (St−1 ≤ 0)Zi

t ,

m+

i,d,t

(
φ, Π̄

)
=

(
Πt − Π̄− b′Dst

)
1 (St−1 > 0)Zi

t ,

m−
i,c,t

(
φ, Π̄

)
=

(
Πt − Π̄− c′Dst−1 − b′Dst

)
1 (St−1 ≤ 0)Zi

t ,

m+
i,c,t

(
φ, Π̄

)
= −

(
Πt − Π̄− c′Dst−1 − b′Dst

)
1 (St−1 > 0)Zi

t ,

9In the IO literature, conduct parameter method methods are usually applied to obtain an average estimate
of market power across segmented markets with different structures (Corts, 1999, for a discussion of existing
applications). Only in this context it is possible to interpret an estimator for ϕ with continuous support.
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with Zi
t the i

th element of Zt. The corresponding sample moment functions are

m−
i,d,T

(
φ, Π̄

)
= T−1

T∑

t=1

m−
i,d,t

(
φ, Π̄

)
, m+

i,d,T

(
φ, Π̄

)
= T−1

T∑

t=1

m+

i,d,t

(
φ, Π̄

)
,

m−
i,c,T

(
φ, Π̄

)
= T−1

T∑

t=1

m−
i,c,t

(
φ, Π̄

)
, m+

i,c,T

(
φ, Π̄

)
= T−1

T∑

t=1

m+
i,c,t

(
φ, Π̄

)
,

and are collected in the 4p-dimensional vector of sample moment functions

mT (θ) =




(
m−

1,d,T

(
φ, Π̄

)
, . . . ,m−

p,d,T

(
φ, Π̄

))′

(
m+

1,d,T

(
φ, Π̄

)
, . . . ,m+

p,d,T

(
φ, Π̄

))′

(
m−

1,c,T

(
φ, Π̄

)
, . . . ,m−

p,c,T

(
φ, Π̄

))′

(
m+

1,c,T

(
φ, Π̄

)
, . . . ,m+

p,c,T

(
φ, Π̄

))′




. (18)

We let mi,T (θ) denote the i-th element of mT (θ), and define V (θ), the asymptotic variance of

√
TmT (θ), and V̂T (θ) the corresponding heteroscedasticity and autocorrelation consistent (HAC)

estimator.10 Finally, we impose the following assumption

Assumption 3. The following conditions are satisfied

1. Wt = (Πt, st, Zt) is a strong mixing process with size −r/(r − 2), where r > 2;

2. E
(
|Wi,t|2r+ι

)
<∞, ι > 0 and i = 1, 2, . . . , p+ 2;

3. plimT→∞ V̂T (θ) = V (θ) is positive definite for all θ ∈ Θ, where Θ is compact;

4. supθ∈Θ |∇θmT (θ)−D (θ)| pr→ 0, where D (θ) is full rank.

The criterion function we use for the inferential procedure is

QT (θ) =

4p∑

i=1

[mi,T (θ)]2
−

v̂i,i (θ)
, (19)

10 This is obtained as V̂T (θ) = 1

T

∑sT
k=−sT

∑T−sT
t=sT

λk,T (mt (θ)−mT (θ)) (mt+k (θ)−mT (θ))
′

, where sT is a lag

truncation parameter such that sT = o(T 1/2) and λk,T = 1− k/ (sT + 1).
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where [x]− = x 1 (x ≤ 0), and v̂i,i (θ) is the i−th element on the diagonal of V̂T (θ). The probability

limit of QT (θ) is given by Q (θ) = p limT→∞QT (θ). The criterion function Q has the property

that Q(θ) ≥ 0 for all θ ∈ Θ and that Q(θ) = 0 if and only if θ ∈ ΘI , where ΘI is as in Definition 1.

Under Assumptions 1–3 a consistent estimator of the identified set Θ̂I
T can be obtained as

Θ̂I
T =

{
θ ∈ Θ s.t. TQT (θ) ≤ d2T

}
, (20)

where dT satisfies the conditions
√
ln lnT/dT → 0 and dT/

√
T → 0. In the Supplementary

Material S.1 we show how to obtain an estimator for the identified set and construct a confidence

region C1−α
T that asymptotically contains the identified set ΘI with probability 1− α.

4 Specification tests

The next step in our analysis is to test for the null hypothesis of discretion (commitment), taking

into account the lower (upper) bound imposed by optimal monetary policy. Heuristically, this

implies testing whether there is a θ in the identified set for which the moment inequality conditions

associated with either discretion or commitment hold as equalities. If there is such θ, then we have

evidence in favor of discretion (commitment). The test consists of a two-step procedure: in the first

step the structural parameters are estimated under either discretion or commitment; in the second

step we test if the estimated parameters are in the identified set implied by optimal monetary

policy under either discretion or commitment.

In the sequel we consider our benchmark application, the New Keynesian model with staggered

prices and monopolistic competition that has become widely used to study optimal monetary

policy.11 The optimizing model of staggered price-setting proposed by Calvo (1983) results in the

11See Appendix A for a more detailed description of the structural model.
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following equation relating the inflation rate to the economy-wide real marginal cost and expected

inflation

πt = βEtπt+1 + ψst + ut, (21)

where ψ and β are positive parameters related to technology and preferences, πt is the inflation rate,

st the real marginal cost in deviation from the flexible-price steady state, and ut is an exogenous

stochastic shock resulting from time-varying markups and other distortions.

The objective function of the monetary authority is derived as a second order approximation to

the utility of a stand-in agent around the stable equilibrium associated with zero inflation, and

takes the form

U = E0

[
−1

2

∞∑

t=0

βt
(
π2
t + ζs2t

)
]
, (22)

with ζ a positive parameter that relates to technology and preferences. Thus, in the benchmark

model we obtain b = 1, Bs = −ψ, c = −1, Q = ζ, and D = − (ζ/ψ), and the moment inequality

conditions that characterize optimal monetary policy corresponding to (15) and (16) specialize as

follows

E
[
md,t

(
D, Π̄

)]
≡ E




−
(
Πt − Π̄−Dst

)
1 (st−1 ≤ 0)Zt

(
Πt − Π̄−Dst

)
1 (st−1 > 0)Zt


 ≥ 0, (23)

E
[
mc,t

(
D, Π̄

)]
≡ E




(
Πt − Π̄−D∆st

)
1 (st−1 ≤ 0)Zt

−
(
Πt − Π̄−D∆st

)
1 (st−1 > 0)Zt


 ≥ 0, (24)

with θ =
{
D, Π̄

}
, the parameter space. In more general applications, the parameter vectors in b

and c may be unknown, and θ =
{
b, c,D, Π̄

}
. In such cases, b and c may be pre-estimated from

the system (3) as they are invariant across policy regimes, and the covariance estimator V̂T (θ)

needs to capture the estimation error due to the estimators b̂ and ĉ.
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4.1 Testing for discretion

If the monetary authority implements optimal policy under discretion the joint path of actual

inflation and the economy-wide real marginal cost satisfies the moment conditions

E
[
m0

d,t (θ0)
]
= E

[(
Πt − Π̄0 −D0st

)
Zt

]
= 0, (25)

E [mc,t (θ0)] = E




(
Πt − Π̄0 −D0∆st

)
1 (st−1 ≤ 0)Zt

−
(
Πt − Π̄0 −D0∆st

)
1 (st−1 > 0)Zt


 ≥ 0, (26)

with m0 denoting the moment functions that do not include the indicator on st−1. The moment

equality conditions in (25) follow from the assumption of discretion and the moment inequality

conditions (26) impose a lower bound to the observed inflation rate as implied by optimal monetary

policy. As already mentioned, conditions (25) point identify θ0, provided we can find at least one

instrument, in addition to the intercept, satisfying Assumption 2. We define the following test for

optimal monetary policy under discretion.

Definition 2. Let θ0 ≡
(
D0, Π̄0

)
∈ Θ. We define the null hypothesis of discretion and optimal

monetary policy as,

Hd
0 : θ0 satisfies conditions (25)–(26),

against the alternative Hd
1 : θ0 does not satisfy conditions (25)–(26).

To test the null hypothesis of discretion we follow a two-step procedure. Under the null hypothesis,

the structural parameter vector θ0 is point-identified and it can be consistently estimated via the

optimal GMM estimator using the moment conditions (25).12 Thus, to test the null hypothesis of

12If we assume that θ0 satisfies (25)–(26), then it is possible to obtain an estimator using the approach of Moon
and Schorfheide (2009), who consider the case in which the set of moment equalities point identify the parameters
of interest, and use the additional information provided by the set of moment inequalities to improve efficiency.
However, our objective is to test whether there exists θ0 satisfying (25)–(26).
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discretion we first obtain an estimate for the structural parameter vector using the optimal GMM

estimator, denoted θ̂d. In the second step, we construct the following test statistic

TQd
T

(
θ̂d

)
= T




p∑

i=1

m0
i,d,T

(
θ̂d

)2

v̂i,i
(
θ̂d

) +

2p∑

i=1

[
mi,c,T

(
θ̂d

)]2
−

v̂i,i
(
θ̂d

)


 , (27)

where v̂i,i
(
θ̂d

)
is the i-th diagonal element of V̂T

(
θ̂d

)
, the HAC estimator of the asymptotic

variance of
√
T
[
m0

d,T

(
θ̂d

)
,mc,T

(
θ̂d

)]
, which takes into account the estimation error in θ̂d.

13

Notice that since the first p moment conditions hold with equality, they all contribute to the

asymptotic distribution of TQd
T

(
θ̂d

)
. Thus, we apply the Generalized Moment Selection procedure

introduced by Andrews and Soares (2010) only to the inequality conditions.14 Andrews and Soares

(2010) study the limiting distribution of the statistic in (27) evaluated at a fixed θ. In our case, due

to the two-step testing procedure, we need to take into account the contribution of the estimation

error to the asymptotic variance of the moment conditions, and compute bootstrap critical values

that properly mimic the contribution of parameter estimation error. The first order validity of the

bootstrap percentiles is established in the following Proposition.

Proposition 2. Let Assumptions 1, 2 and 3 hold. Let cdB,α be the (1−α) percentile of the empirical

distribution of TQ∗d
T

(
θ̂∗d

)
, the bootstrap counterpart of TQd

T

(
θ̂d

)
. Then, as T → ∞, B → ∞,

l → ∞, and l2/T → 0, we have that:

(i) under Hd
0 , lim sup

T,B→∞

Pr
(
TQd

T

(
θ̂d

)
> cdB,α

)
= α,

(ii) under Hd
1 , lim

T,B→∞
Pr

(
TQd

T

(
θ̂d

)
> cdB,α

)
= 1,

where B denotes the number of bootstrap replications.

13See Supplementary Material S.2 for the definition of V̂T

(
θ̂d

)
.

14See Supplementary Material S.1 for details on the Generalized Moment Selection method.
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4.2 Testing for commitment

If the monetary authority implements optimal policy under commitment, the joint path of actual

inflation and the economy-wide real marginal cost is given by

E [md,t (θ0)] = E




−
(
Πt − Π̄0 −D0st

)
1 (st−1 ≤ 0)Zt

(
Πt − Π̄0 −D0st

)
1 (st−1 > 0)Zt


 ≥ 0, (28)

E
[
m0

c,t (θ0)
]
= E

[(
Πt − Π̄0 −D0∆st

)
Zt

]
= 0, (29)

where the moment equality condition (29) follows from the assumption of commitment and the

moment inequality condition (28) imposes an upper bound to the observed inflation rate, as implied

by optimal monetary policy. We define the following test for optimal policy under commitment.

Definition 3. Let θ0 ≡
(
D0, Π̄0

)
∈ Θ. We define the null hypothesis of commitment and optimal

monetary policy as,

Hc
0 : θ0 satisfies conditions (28)–(29).

against the alternative Hc
1 : θ0 does not satisfy conditions (28)–(29).

The test of optimal monetary policy under commitment has the same structure as the test under

discretion, with an analogous test statistic, given by

TQc
T

(
θ̂c

)
= T




2p∑

i=1

[
mi,d,T

(
θ̂c

)]2
−

v̂i,i
(
θ̂c

) +

p∑

i=1

m0
i,c,T

(
θ̂c

)2

v̂i,i
(
θ̂c

)


 , (30)

with θ̂c the optimal GMM estimator under commitment. We establish the following Proposition.

Proposition 3. Let Assumptions 1, 2 and 3 hold. Let ccα,B be the (1−α) percentile of the empirical

distribution of TQ∗c
T

(
θ̂∗c

)
, the bootstrap counterpart of TQc

T

(
θ̂c

)
. Then, as T → ∞, B → ∞,

l → ∞, and l2/T → 0, we have that:
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(i) under Hc
0, lim sup

T,B→∞

Pr
(
TQc

T

(
θ̂c

)
> ccα,B

)
= α,

(ii) under Hc
1, lim

T,B→∞
Pr

(
TQc

T

(
θ̂c

)
> ccα,B

)
= 1,

where B denotes the number of bootstrap replications.

In the Supplementary Material S.3 we provide an alternative formulation of the specification

test, and in the Supplementary Material S.4 we show how to adapt our framework to provide an

interpretation of the specification test based on the set-up developed by Bontemps et al. (2012).

5 Model selection

The moment conditions (25), (26), (28) and (29) can be used to construct a model selection test

that discriminates between discretion and commitment, maintaining the assumption of optimal

monetary policy. Following Shi (2015), we construct a quasi-likelihood ratio test for the null

hypothesis that both models are equally close to the true data. If the null hypothesis is rejected,

we select the one closer to the true model in terms of a pseudo-distance measure. The null

hypothesis is

H0 : d(D, µ) = d(C, µ), (31)

against the alternative H1 : d(D, µ) < d(C, µ), where D is the model for discretion and optimal

policy in (25) and (26), C is the model for commitment and optimal policy in (28) and (29), and

µ is the true model. To test the null hypothesis in (31), we construct the test statistic

QLRT = max
θ∈Θ

1

T

T∑

t=1

Md
t (θ, γ̂d (θ))−max

θ∈Θ

1

T

T∑

t=1

Mc
t (θ, γ̂c (θ)) , (32)
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where Md
t (θ, γ (θ)) = exp


γ (θ)

′



m0

d,t (θ)

mc,t (θ)





, Mc

t (θ, γ (θ)) = exp


γ (θ)

′



m0

c,t (θ)

md,t (θ)





, and

γ̂i (θi) = arg min
γ∈Rp×R

2p
+

T−1

T∑

t=1

Mi
t (θi, γ) , (33)

with i ∈ {d, c}. In turn, the pseudo true set of parameters can be estimated as

Θ̂i
T = arg max

θ∈Θ

T−1

T∑

t=1

Mi
t (θ, γ̂i (θ)) . (34)

Under discretion and optimal policy, conditions (25) and (26) point identify θ̂dT and, similarly,

under commitment and optimal policy, conditions (28) and (29) point-identify θ̂cT .

Using the estimated parameters, we define

T ω̂2
T

(
θ̂d, θ̂c

)
=

sT∑

k=−sT

T−sT∑

t=sT

λk,T
(
∆t − ∆̄

) (
∆t+k − ∆̄

)′
, (35)

with ∆t = Md
t

(
θ̂d, γ̂d

(
θ̂d

))
− Mc

t

(
θ̂c, γ̂c

(
θ̂c

))
, ∆̄ = T−1

T∑
t=1

∆t, and where sT and λk,T are as

defined in footnote 10. Shi (2015) shows that under H0 we have

√
T

QLRT

ω̂T

(
θ̂d, θ̂c

) →d N(0, 1), (36)

and, therefore, we reject the null hypothesis (31) in favor of the alternative at the α level if

√
TQLRT/ω̂T

(
θ̂d, θ̂c

)
> zα, where zα is the 1− α quantile of the standard normal distribution.

6 Monte Carlo experiments

In this section, we perform Monte Carlo simulations to analyze the small sample properties of the

model specification test presented in Section 4. The data generating process (DGP) used in the
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Table 1: Monte Carlo experiments: rejection rates (nominal level α = 0.10)

DGP: Discretion (T = 250)

Instrument lags: t− 1 . . . t− 3 t− 2 . . . t− 4 t− 3 . . . t− 5

H0: discretion 0.118 0.112 0.126
H0: commitment 1.000 1.000 0.992

DGP: Commitment (T = 250)

Instrument lags: t− 1 . . . t− 3 t− 2 . . . t− 4 t− 3 . . . t− 5

H0: discretion 0.980 0.954 0.926
H0: commitment 0.148 0.192 0.174

DGP: Discretion (T = 500)

Instrument lags: t− 1 . . . t− 3 t− 2 . . . t− 4 t− 3 . . . t− 5

H0: discretion 0.086 0.092 0.122
H0: commitment 1.000 1.000 1.000

DGP: Commitment (T = 500)

Instrument lags: t− 1 . . . t− 3 t− 2 . . . t− 4 t− 3 . . . t− 5

H0: discretion 1.000 0.994 1.000
H0: commitment 0.126 0.160 0.152

The table reports the rejection rates of the test statistics TQT , in (27) and (30), with
10% nominal level. Each Monte Carlo simulation has T observations and “burn-in”
sample of size 1,000. The critical values cdα,B and ccα,B are based on 500 block-bootstrap
replications of block size 4.

Monte Carlo experiment is described in the Supplementary Material S.5. We simulate 500 vectors

of time-series, each with 1,000 + T observations and we discard the first 1,000 observations to

eliminate the influence of the initial values. The resulting time-series length is T , for which we

consider two possible values: T = 250 and T = 500. This way, we are able to study the influence

of sample size on the properties of our test.

We consider both discretion and commitment, and we seek to analyze the size and power properties

of the tests described in Propositions 2 and 3. We also examine how the performance of the

proposed tests varies with the strength of the instruments, by varying the length of the lags

used as instruments. In particular, the instrumental variables used in the Monte Carlo are lagged
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values of inflation and the labor income share, and we look at the performance of the test when the

instrument list includes the lags: (t− 1, t− 2, t− 3); (t− 2, t− 3, t− 4); and (t− 3, t− 4, t− 5).

For each sample, we obtain the critical values cdα,B and ccα,B following the bootstrap procedure

described in Propositions 2 and 3. Table 1 reports the percentage of times the null hypothesis is

rejected, obtained from the critical values based on the nominal level α = 0.10. The results show

that our test performs well in small samples. The power properties of the test are good, and the

test is correctly sized with the empirical level close to the nominal level for both T = 250 and

T = 500. As expected, the empirical level of the test departs from the 10% nominal level with

weaker instruments. But, the test is found to still perform well when long lags are used.

7 Empirical application

In this section, we apply the specification and selection tests proposed above to study the monetary

policy in the United States since the start of the 1980s. The sample spans a period in which

monetary policy has been perceived as good (Clarida, Gali, and Gertler, 2000).15

7.1 Data and sample

We use quarterly time-series for the US economy over the sample period 1983Q1 to 2008Q3.

Following Gaĺı and Gertler (1999) and Sbordone (2002), we use the labor income share in the

non-farm business sector, detrended using a quadratic polynomial, to measure st. The measure of

inflation is the percentage change in the GDP deflator.

15The term “good” is used loosely to describe a period in which monetary policy is consistent with achieving
stable and low inflation. Clarida et al. (2000) argue that this is due to a stronger systematic reaction of monetary
policy to changes in expected inflation.
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The econometric framework developed in this paper is for stationarity data (see Assumption 3).

Halunga, Osborn, and Sensier (2009) show that there is a change in inflation persistence from I (1)

to I (0) dated at June 1982. This result is related to the study of Lubik and Schorfheide (2004)

who estimate a structural model of monetary policy for the US using full-information methods,

and find that only after 1982 the estimated interest-rate feedback rule that characterizes monetary

policy is consistent with equilibrium determinacy. Moreover, following the analysis in Clarida et al.

(2000), we study the sample starting from 1983Q1, that removes the first three years of the Volcker

era. Clarida et al. (2000) offer two reasons for doing this. First, this period was characterized

by a sudden and permanent disinflation episode bringing inflation down from about 10 percent

to 4 percent. Second, over the period 1979Q4 – 1982Q4, the operating procedures of the Federal

Reserve involved targeting non-borrowed reserves as opposed to the Federal Funds rate. Thus, our

empirical analysis focuses on the sample period 1983Q1 to 2008Q3, which spans the period starting

after the disinflation and monetary policy shifts that occurred in the early 1980s and extends until

the period when the interest rate zero lower bound becomes a binding constraint.16 Figure 1 plots

the time-series of the US labor income share and inflation.

Following standard practice in the literature (see, for example, Gaĺı and Gertler, 1999), we include

in the instrument set lagged values of the labor income share and inflation, assumed orthogonal to

the measurement error in inflation (Assumption 2.2). The instrument set used comprises the first,

second and third-order lags of the labor income share and inflation. These instrumental variables

are adjusted using the transformation Z+ = Z −min (Z), guaranteeing positiveness. Notice that

Assumption 2.1 guarantees this transformation always exists. The complete instrument set also

includes the unit vector, yielding p = 7 instruments and 28 moment conditions overall. Of course,

16After 2008Q3, the federal funds rate rapidly fell toward the lower bound, signaling a period of unconventional
monetary policy for which our econometric specification may be inadequate.
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Figure 1: labor share and inflation in the US, 1983Q1–2008Q3.
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weak instruments are a potential problem given that the first step in our test requires a consistent

estimator of the structural parameter vector θ0. For example, when we are testing discretion we

require that

E
[
m0

d,t (θ0)
]
= E

[(
Πt − Π̄0 −D0st

)
Zt

]
= 0, (37)

holds at the “true” value θ0 =
(
D0, Π̄0

)′
and no other value of θ. If the instrument is irrelevant, in

the sense that the correlation between Πt and Zt is zero (or weakly different from zero), then θ0 =

(
D0, Π̄0

)′
is not identified as, given Π̄0, any value of D satisfies the moment condition. Instrument

relevance requires strong correlation between Πt and Zt, as indicated by Assumption 2.3.

Reassuringly, the instruments used (which include lags of inflation and of the real marginal cost)

pass the standard tests of weak instruments. In particular, the Kleibergen and Paap (2006) Wald

statistic (the robust counterpart of the Cragg-Donald Wald statistic) is 14.079, which suggests

that weak identification should not be considered a problem. Underidentification is clearly rejected

based on the Kleibergen and Paap (2006) rank test, that yields a p-value of 0.001.
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7.2 Baseline empirical results

We first examine the formal test statistics developed in sections 4.1 and 4.2 to test for discretion

and commitment, under the maintained assumption of optimal monetary policy. The tests are

based on a two-step procedure. In particular, to test discretion we first estimate the parameter

vector θd via optimal GMM from condition (25). Next, using the estimated vector of parameters

θ̂d we construct the test statistic for discretion TQ
d
T

(
θ̂d

)
and compute the bootstrap critical value.

To test commitment, we proceed in an analogous way, making use of condition (29) to obtain θ̂c.

Results are reported in the Panel A of Table 2. Since we use enough instrumental variables

for overidentification, we start by obtaining results from the standard Hansen J–test statistic for

overidentifying restrictions. The table reports the J–tests and the corresponding p–values, for the

null hypotheses of discretion (first column) and commitment (second column) based, respectively,

on the moment conditions in (25) and (29). The p–value of the J–test for discretion is 16% and

that for commitment is 20%. Thus, the standard J–test fails to reject either model.

By not making use of the full set of implications of optimal monetary policy, we are unable to

reject either policy regimes. However, using the additional information implied by the maintained

assumption of optimal monetary policy, we can test the composite null hypothesis of optimal

monetary policy and a specific policy regime, discretion or commitment, by constructing the

test statistic TQT . The test statistic is based on equation (27) for the case of discretion and

equation (30) for commitment. For discretion, the p–value associated with the test statistic is 41%.

Instead, for commitment, the p–value is 3%, allowing for rejection at the 5% level. Thus, we reject

commitment but fail to reject discretion at all conventional levels.

Finally, Panel B of Table 2 reports the results from the Shi (2015) model selection test presented
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Table 2: model specification and model selection tests

Panel A: model specification tests

H0: discretion H0: commitment

J–test 11.73 11.63

p–val (0.16) (0.20)

TQT 16.90 21.82

p–val (0.41) (0.03)

Panel B: model selection test

H0 : d(D, µ) = d(C, µ)

QLRT 4.999
p–val (0.00)

The p–values for the J test and for TQT are obtained
from 1,000 block-bootstrap replications with blocks of
size 4. The J test is based on the moment condi-
tion (25) for discretion, and (29) for commitment. The
test statistics TQT correspond to (27) and (30). The
test statistic QLRT is given by (32). The instrument
list includes Πt−1,Πt−2,Πt−3, and st−1, st−2, st−3.

in Section 5. We consider the null hypothesis that the distance between the commitment and

discretion model is zero, against the two-sided alternative, and construct the test statistic so that

a positive realization of QLRT constitutes a rejection of the null hypothesis in favor of discretion.

We reject the null hypothesis, with QLRT = 4.999 and p-value less than 1%.

7.3 Inflation indexation

The baseline model considered is the simplest New Keynesian model. However, it is possible to

apply our method to more general versions that include sources of endogenous persistence found

to be empirically relevant. To illustrate this, we now consider a version of the model including
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inflation inertia.17 We incorporate inflation inertia by considering partial inflation indexation, as

in Giannoni and Woodford (2004) and Christiano et al. (2005). Partial indexation results in the

following equation relating inflation to real marginal costs, lagged inflation and expected inflation

πt − γπt−1 = βEt (πt+1 − γπt) + ψst + ut, (38)

where γ ∈ [0, 1] indicates the degree of indexation. This hybrid version of the Phillips Curve is

widely used in empirical work. Following Giannoni and Woodford (2004) the objective function is

U = −E0

[
1

2

∞∑

t=0

βt
(
π̃2
t + ζs2t

)
]
, (39)

with π̃t = πt − γπt−1, subject to (38).

This model is analogous to our baseline model, except that πt is everywhere replaced by the quasi-

differenced inflation rate π̃t. The moment inequality conditions that characterize optimal monetary

policy are given by the moment conditions analogous to (15) and (16), but with Π̃t = Πt − γ0Πt−1

in place of Πt and (1− γ0) Π̄0 in place of Π̄0, as follows

E
[
md,t

(
D0, γ0, Π̄0

)]
≡ E




−
(
Π̃t − (1− γ0) Π̄0 −D0st

)
1 (st−1 ≤ 0)Zt

(
Π̃t − (1− γ0) Π̄0 −D0st

)
1 (st−1 > 0)Zt


 ≥ 0, (40)

E
[
mc,t

(
D0, γ0, Π̄0

)]
≡ E




(
Π̃t − (1− γ0) Π̄0 −D0∆st

)
1 (st−1 ≤ 0)Zt

−
(
Π̃t − (1− γ0) Π̄0 −D0∆st

)
1 (st−1 > 0)Zt


 ≥ 0. (41)

Given Assumption 1, the measurement error in quasi-differenced inflation is given by the first-

order moving average ṽt = vt − γvt−1, and has mean (1− γ) Π0 and variance (1 + γ2) σ2
v . Thus,

the instruments in Zt should not include the first lag of inflation, to be independent from vt−1.

In Table 3 we show results for the standard J-test, our model specification test, and the model

17In Supplementary Material S.6, we show how our methodology can be applied to a special (but empirically
salient) case of the Erceg et al. (2000) model with sticky wages as well as prices.
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Table 3: specification test (model with inflation indexation)

Panel A: H0 is Discretion

indexation: γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

J-test (p–val) 0.220 0.172 0.124 0.096

TQT (p–val) 0.286 0.260 0.265 0.393

Panel B: H0 is Commitment

indexation: γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

J-test (p–val) 0.383 0.397 0.396 0.289

TQT (p–val) 0.072 0.089 0.160 0.128

Panel C: model selection test

indexation: γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

QLRT 2.404 2.082 1.937 2.534

p–val 0.008 0.019 0.026 0.006

The p–values for the J test and for TQT are obtained from 1,000 block-
bootstrap replications with blocks of size 4. The instrument list includes
Πt−2,Πt−3,Πt−4, and st−2, st−3, st−4.

selection test of Shi (2015) based on (40) and (41). The results are shown for different levels of

inflation indexation, including γ = 0.2, 0.4, 0.6 and 0.8, for discretion (Panel A) and commitment

(Panel B). We notice first that the J-test fails to reject at conventional levels any of the 8 models

considered. Instead, our test fails to reject discretion for each level of indexation considered but

rejects commitment for γ = 0.2 and γ = 0.4.

Another important finding is that it is harder to reject either discretion or commitment as the

degree of indexation increases. This result has a natural interpretation. Without indexation,

optimal policy yields a process for inflation with low persistency. This counterfactual feature

leads to the empirical rejection of the model. Instead, with higher degrees of inflation indexation,

optimal policy is consistent with some persistency in the level of inflation, and rejecting either

discretion or commitment is harder.
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In these circumstances, the model selection test presented in Section 5 is specially relevant. Results

are reported in Panel C of Table 3. Positive realizations of QLRT constitute a rejection of the

null hypothesis in favor of discretion. For all four levels of indexation, the p-value is less than 5%.

Regardless of the level indexation, the null hypothesis is rejected decisively in favor of discretion.

8 Conclusion

This paper develops a method for testing for optimal monetary policy without requiring an explicit

choice of the relevant equilibrium concept. The procedure considers a general specification of

optimal policy that nests discretion and commitment as two special cases. It is obtained by

deriving bounds for inflation that are consistent with both forms of optimal policy. This allows for

the construction of a test statistic based on the combination of moment equality and inequality

conditions that incorporate a wider set of implications of optimal monetary policy and provides a

more powerful specification test. Unlike full-information methods, our approach does not require

strong assumptions about the forcing variables.

We investigate if the behavior of the US monetary authority is consistent with the simple baseline

New Keynesian model of optimal monetary policy (Clarida et al., 1999). We fail to reject the

null hypothesis of discretion but reject that of commitment, a result consistent with findings in

previous studies using full-information methods. In contrast, the standard J–test of overidentifying

restrictions fails to reject either model. By making use of the full set of implications of optimal

monetary policy, we discriminate across policy regimes, rejecting commitment but not discretion.

Our two-step testing procedure can be used more generally to test the validity of models that

combine moment equality and inequality conditions, when the parameters of the model can be
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consistently estimated under the null hypothesis. Currently, the method proposed in this paper

may not be directly applicable to medium-scale DSGE models of the kind pioneered by Smets and

Wouters (2003) and Christiano et al. (2005), that include sources of endogenous persistence (such

as habits in consumption, capital stock and persistence in interest rates). This is an interesting

avenue for future work.
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Appendix

A Benchmark structural model

The framework is the New Keynesian model with monopolistic competition and Calvo pricing

described in Clarida et al. (1999) and Woodford (2010). In log-linear form, inflation πt, average

real marginal costs st, and the output gap zt = ln (Yt/Y
n
t ), satisfy the following relationships

πt = βEtπt+1 + ψst + ut, (A.1)

st =
(
ς + σ−1

)
zt, (A.2)

zt = Etzt+1 − σ (it − Etπt+1) + νt, (A.3)

where it ≥ −i⋆ denotes the nominal interest rate in deviation from its steady state i⋆, ut is an

exogenous shock capturing time-varying desired markups, νt is a shock to the natural real rate, β

is the discount factor, σ > 0 is the elasticity of intertemporal substitution and ψ is given by

ψ =
(1− α) (1− αβ)

α (1 + ϑς)
, (A.4)

with α ∈ (0, 1) the fraction of prices that are not reset optimally each period, ϑ > 1 the elasticity

of substitution across goods, and ς > 0 the output elasticity of real marginal cost.

Finally, the second order approximation to the utility of a stand-in agent around the steady state

equilibrium associated with zero inflation takes the form

U = E0

[
−1

2

∞∑

t=0

βt
(
π2
t + ζs2t

)
]
, (A.5)

with ζ = ψ/ [(ς + σ−1)ϑ] the relative target weight on the log average real marginal cost.
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