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We show, using three dimensional hybrid particle-in-cell simulations, that fast electron transport is

improved in a resistive guide when using a linear decreasing gradient in the resistivity between the

guide and substrate. We observe increased heating-at-depth along the guide and significantly reduced

heating inhomogeneity. These improvements result from an increase in the width of the collimating

magnetic field, improving fast electron confinement and limiting the growth of magnetic fields in the

interior of the guide. Published by AIP Publishing. https://doi.org/10.1063/1.5004265

I. INTRODUCTION

The interaction of an ultra-intense laser (ILkL > 1018

Wcm�2lm2) with a solid target results in multi-mega-

Ampere currents of fast electrons and the formation of hot

solid density plasma.1 These fast electrons are highly diver-

gent2,3 with their transport affected by self-generated mag-

netic fields.4,5 These magnetic fields can result in self-

pinching, resistive collimation6 and filamentation7 of the fast

electron beam. The growth rate of the magnetic field is

described by the induction equation as5

@~B

@t
¼ gðr �~jf Þ þ ðrgÞ �~jf ; (1)

where ~B is the flux density of the magnetic field, g is the

resistivity, and ~jf is the fast electron current density.

Equation (1) indicates two principal ways to generate a

magnetic field are through a spatial variation in (a) the fast

electron current density and/or (b) the target resistivity. The

resistive guiding concept, introduced by Robinson and

Sherlock,8 exploits Eq. (1) to generate an azimuthal mag-

netic field that confines electrons to regions of high resistiv-

ity enclosed by regions of low resistivity. Resistive guides

can be in the form of a wire,9 strip10 or conical11,12 shaped

targets with a high atomic number (and high resistivity) core

embedded in a lower atomic number substrate. The resistiv-

ity gradient is created by placing two or more materials next

to each other and is typically engineered in the direction

transverse to the axis of the fast electron beam. The collima-

tion of the fast electrons in the resistive guide occurs as

follows: in the early stages of the laser–target interaction, the

ðrgÞ �~jf term produces a strong azimuthal magnetic field

which pushes the fast electrons into regions of higher resis-

tivity, the core of the resistive guide. The resulting collima-

tion causes a gradient in the fast electron current density, so

the gðr �~jf Þ further increases the magnetic field and enhan-

ces the collimation.13

The condition to confine fast electrons along the guide

element is expressed as8,14

B/L/ �
Pf

e
ð1� cos hdÞ; (2)

where B/ is the azimuthal magnetic flux density, L/ is the azi-

muthal magnetic field width, Pf ¼ cf vfme is the fast electron

momentum, (cf is the Lorentz factor, vf is the fast electron

velocity), and hd is the fast electron divergence angle.

Equation (2) implies that the product of B/L/ needs to be

larger than the fast electron momentum to reflect the fast elec-

trons back towards the guide element axis. A laser intensity-

wavelength product of 1019Wcm�2lm2 gives an electron

energy of 1.8MeV and momentum of � 2� 10�22 kgm s�1;

taking the divergence angle hd ¼ 30� requires a B/L/ of

10�3 Tm for collimation. Clearly, higher divergence angles

and kinetic energy will require larger B/L/.
8,15

In our previous work,16 we extended the use of high

resistivity guide-elements embedded in low-Z substrates (see

Refs. 9, 10, and 12) to a graded-resistivity-interface target by

using a range of different materials between the core and

substrate to form a linear resistivity gradient at the interface.

This resulted in a higher B/L/ and improved the fast electron

beam collimation. Here, we take a similar approach, but use

new Z profiles to form the resistive gradient and in this work

structure the high-Z guide-element component of the target.

The result is a B/L/ product that is similar to what was

achieved in Refs. 9, 10, and 12, which sufficiently confines

and collimates the fast electrons with the expectation that

these new guides should be no better or worse than the ear-

lier designs. Yet, what we find is improved heating-at-depth;

we observe higher temperature tens of microns along the

guide with a reduction in the temperature gradient. This

results from a larger L/. There is less structure along the

whole guide, albeit without ideal homogeneity of heating.

The smoother heating structure results from a reduction in

the magnetic fields inside the guide wire, which interferes

with electron propagation ultimately driving electron beam

filamentation.

a)Authors to whom correspondence should be addressed: reemyork@gmail.

com raba500@york.ac.uk

1070-664X/2018/25(2)/023104/7/$30.00 Published by AIP Publishing.25, 023104-1

PHYSICS OF PLASMAS 25, 023104 (2018)



The paper is structured as follows: Sec. II contains a

description of resistive guide targets and hybrid particle-in-cell

ZEPHYROS modeling approach. In Sec. III, we compare and

discuss ZEPHYROS simulations of a simple guide embedded

in a substrate with the three graded-resistivity-interface guides

embedded in a substrate.

II. RESISTIVE GUIDE TARGET WITH RESISTIVITY

GRADED CORE

Figure 1 shows 2-dimension z-x plane slices of the atomic

number for (a) a step change between the high resistivity

guide-element and low resistivity substrate, a simple resistive

guide-element and (b) a graded resistivity change between

the guide-element and substrate, where the grading is applied

to the resistive guide-element. The slices are taken in the mid

y-direction along the x-direction. The CH substrate in these

targets (with density 1:0 g cm�3 and average atomic number

Z¼ 3.5) has a square cross-section of length 50 lm in y- and

z-directions and length 100 lm in the x-direction. The embed-

ded wire is located in the middle of this substrate with a circu-

lar cross-section of diameter 10lm and is co-linear along the

length of CH substrate. In a simple resistive guide,15 Fig.

1(a), the high resistivity guide-element is aluminium with

density of 2:7 g cm�3 and atomic number 13. Figure 1(b)

shows the graded resistive guide; the guide-element has a

core of aluminium with density 2:7 g cm�3 and Z¼ 13 and

then from the surface of the aluminium core, the atomic num-

ber linearly decreases to Z¼ 6, density 2:2 g cm�3 (carbon).

The composition of the graded region of the guide-element in

Fig. 1(b) is varied between the two different Z materials

according to8

Zav ¼ Zhwþ Zlð1� wÞ; (3)

ni ¼ nhwþ nlð1� wÞ; (4)

where ni is the ion density, h and l are denoted as a high-Z

material and low-Z material, respectively, and w is a mixed

fraction of materials h and l. The form used for w is

w ¼

h w ¼ 1

l w ¼ 0

linear interpolation 0 < w < 1:

8

>

<

>

:

(5)

Figure 2 shows the radial atomic number profile for four

different targets. The first, referred to as Target A, is shown

in (a). This a simple resistive guide, with an aluminium

wire embedded in a plastic substrate. Figures 2(b)–2(d)

show three targets with a guide-element constructed of an

aluminium core surrounded or sleeved in a layer of material

of decreasing atomic number. The guide-elements in these

targets are atomic number graded from Z¼ 6 at z ¼ 65lm

to Z¼ 13, for Target B at z ¼ 63:5 lm, Target C at

z ¼ 62:5 lm, and for Target D at z ¼ 61:5 lm. This ena-

bles the testing of the guide-element with a different diame-

ter of aluminum (high resistivity) core. The dashed lines in

these figures show the diameter of aluminium core in each

case.

Simulations were performed for these four targets using

the three-dimensional particle-in-cell (PIC) hybrid code

ZEPHYROS,13 which is based on the hybrid method devel-

oped by Davies.17,18 A 200� 100� 100 lm3 grid was used

with a 0:5 lm cell size in each direction. The number of mac-

roparticles injected into each cell within the focal spot was

126. The laser irradiation intensity was 1:3� 1020 Wcm�2.

It is assumed that 30% of the laser energy couples to the fast

electrons with the energy distribution of the fast electrons

taken from the reduced Wilks’ ponderomotive scaling.19,20

The fast electron temperature is 2.7MeV. A fast electron

beam is injected into each target centered at (0,0,0), i.e., at

the center of the aluminium core. The temporal profile of the

fast electron beam is top-hat shaped with a pulse duration of

2 ps. The focal spot radius, rspot, is 3:5lm with intensity pro-

file / exp½� r2

2r2spot
�. The fast electron angular distribution is

uniform over a divergence angle hd of 50�. The resistivity

uses the Lee and More model21 and a minimum mean free

path of 5rs, where rs ¼ ð3=4pniÞ
1=3

is the interatomic spac-

ing and ni is ion density. To prevent fast electron beam fila-

mentation inside the guide and obtain uniform fast electron

collimation, it is necessary to ensure that the laser radius

spot, rspot, is greater than the aluminium core radius, rcore,

such that

v ¼
rcore

rspot
< 1: (6)

The aluminium core radius rcore and the ratio, v, to the spot

radius for Targets A to D are given in Table I.

FIG. 1. Atomic number maps of (a) a simple resistive guide with an alumin-

ium guide-element embedded in plastic and (b) a graded-resistive guide with

a guide-element composed of an aluminum core clad in a sleeve of material

of decreasing atomic number from Z¼ 13 to Z¼ 6 (carbon).
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III. RESULTS

A. Effect of resistive grading on a collimating
magnetic field

Figures 3(a)–3(d) show x-z images of the magnetic

fields generated in Targets A to D at 2.2 ps after injecting the

fast electrons. These images are taken at the mid-plane of y

and in each case, an azimuthal magnetic field is generated at

the interface between the guide-element and the substrate.

This magnetic field is central to guiding and collimating of

the fast electrons. Figures 3(a)–3(c) show magnetic fields

that grow in the interior of the guide-elements; these interior

FIG. 2. Radial atomic number profile across the central of the targets. (a) shows a simple resistive guide with an aluminium guide-element embedded in plastic.

(b), (c), and (d) show profiles for graded-resistive guide with decreasing atomic number at the edge of the aluminium core. The diameter of the aluminium core

is indicated by the vertical dashed lines. The radius of this core, rcore, is 3:5 lm; 2:5lm, and 1:5 lm respectively.

TABLE I. Table of radius of aluminium core, and ratio to spot radius, v, for

each Targets A to D.

Simulation

rcore v

(lm) [Eq. (6)]

Target A 5 1.4

Target B 3.5 1

Target C 2.5 0.7

Target D 1.5 0.4

FIG. 3. Simulated magnetic field maps in Targets A–D (in Tesla) in the y midplane taken at 2.2 ps after the injection of the fast electron beam.

023104-3 Alraddadi et al. Phys. Plasmas 25, 023104 (2018)



fields occur close to the substrate interface at approximately

x ¼ 10 lm along the guide element and converge towards

the central axis at approximately x ¼ 20 lm. Figure 3(a)

shows a second interior field close to x ¼ 40 lm. The interior

fields are most significant for Target A, the simple resistive

guide. Interior magnetic fields are not observed in Fig. 3(d).

The formation of “interior” magnetic fields is due to inhomo-

geneous propagation of the fast electrons. This results from

the divergent flow of electrons22 due to the gradient in the

fast electron current density. The reduction and minimization

of interior magnetic fields and electron beam filamentation

are a key requirement for uniform guide-element heating.

Graded resistivity guides limit the divergent of the fast elec-

tron beam.

Figure 4 shows the cross-sections of the azimuthal mag-

netic field B/ taken at x ¼ 10 lm; this is close to the electron

beam injection surface. Each cross-section is taken in the y

midplane at 2.2 ps. The guide-element substrate interface is

at z ¼ 65lm; as indicated by the vertical dashed lines, the

azimuthal magnetic field peaks close to this boundary and

extends into the substrate as well as the guide-element. The

width of the collimating magnetic field, L/, differs from

target to target. The measurement of L/ extracted from Fig. 4

is listed in Table II. Target A has the smallest L/. For

targets with graded-resistivity guide-element, the width of the

collimating magnetic field increases. For example, L/, is

1:77lm for Target B compared to 2:04lm in Target D. The

difference in L/ is about 13%.

The magnetic field scale length, LB, estimated from

Fig. 4 using LB ¼ ðB/=jdB/=dzjÞ, is listed in Table II. These

values give some indication about the gradient in the mag-

netic field. For Target A, Fig. 4(a), the gradient in the mag-

netic field is steep and results in a region of significant

magnetic field inside the guide element. In comparison, the

magnetic field gradients in Targets B to D, Figs. 4(b)–4(d),

are increasingly shallow and extended with the magnetic field

in Target D permeating throughout the guide element. The

inclusion of a resistivity gradient in the guide element

increases LB, which influences fast electron transport and

improves the electron uniformity across and along the guide

element. Furthermore, this improvement occurs for B/L/,

which is similar in all targets (see Table II). The more com-

plex targets do not increase B/L/ yet using these targets

improves the electron beam uniformity and target heating.

This results from increases in both L/ and LB, which suppress

the growth of magnetics field interior to the guide element.

In a sharp resistivity change, for example, Target A,

strong azimuthal magnetic fields with steep gradients form at

the material interfaces resulting in a specular scattering of

fast electrons as described in Ref. 22. Our analysis shows for

targets with extended resistivity gradients (Targets B to D)

in the high-Z guide; the azimuthal magnetic fields are

extended and the gradients are reduced. The confinement of

the fast electrons is enhanced by the extended magnetic field.

With a sample particle pusher code, we find that the electron

turns back toward the axis in Target A, for example, at

x ¼ 3lm while this occurs at x ¼ 1:5 lm in Target D. The

simulations show that electrons oscillate in the guide with

electrons in Target D traversing a shorter path. This limits

the electron beam filamentation improving fast electron

FIG. 4. Cross-sections of B/ the magnetic field, as a function of z at x ¼ 10lm for Targets A–D. These cross-sections are taken at 2.2 ps and are limited to

�10 < z < 10lm in y midplane. The dashed lines show the boundaries of the guide-element. The arrow shows the gradient in the magnetic field inside the

guide-element.

TABLE II. Table of the inferred L/, LB, and B/L/ extracted from simula-

tions shown in Fig. 4 (i.e., at 2.2 ps and x ¼ 10 lm in y midplane) of a sim-

ple resistive guide (Target A) and graded resistivity guides (Targets B to D)

taken in each simulation.

Simulation rcore L/ LB B/L/
(lm) (lm) (lm) (�10�3 Tm)

Target A 5 1.19 0.45 3.21

Target B 3.5 1.77 0.65 3.46

Target C 2.5 1.90 1.59 3.38

Target D 1.5 2.04 1.58 3.19
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current density uniformity, and whilst confining the electrons

to a narrower region. This enables heating to higher tempera-

tures deeper in the target.

B. Resistive guide heating

The resulting temperatures of the resistive guide

(the substrate temperatures are not shown) are illustrated in

Figs. 5(a)–5(d). These show x-z contour images of tempera-

tures in eV in the y midplane at 2.2 ps. Target heating results

from resistive scattering of the return current.23 The tempera-

ture is highest, reaching 4 keV, close to the fast electrons

injection site and fall to temperatures <1 keV close to the

edge of the guide element and with distance along the length

of the guide. In addition, for the simple resistive guide, Fig.

5(a), simulations show a significant structure on the tempera-

ture profile along the guide with low temperature (<1000 eV)

regions on axis around x ¼ 15lm and 40lm. This results

from filamentation in the return current due to the internal

magnetic fields shown in Fig. 3(a). The temperature structure

is reduced in the graded-resistivity-interface guide targets. An

additional benefit of the improved fast electron confinement

is a small temperature gradient along these guides between

x ¼ 15lm and x ¼ 100lm. Target D, Fig. 5(d), which has

the widest graded resistivity region, shows the least amount of

temperatures structure and the smallest temperature gradient.

The Ohmic heating gives a background material heating

rate that is proportional to the fast electron current density

squared24

@T

@t
¼

2

3kBne
g~j

2

f ; (7)

where kB is the Boltzmann constant, ne is the background

electron density, g is the resistivity and~jf is the fast electron
current density. In dense plasmas, the fast electron current is

very nearly balanced by a cooler and more collisional return

current;23 as a result, the guide element heating is sensitive

to the uniformity and collimation of the fast electrons across

and along the guide element. In comparison to the simple

guides, increased temperatures and lower gradients in the

graded guides result from the confinement of electrons to a

region of smaller radius. To understand this, we look at~j
2

f in

both targets A and D. In Fig. 6, we show~j
2

f along the center

of the simple (Target A) and graded guide (Target D) at the

2 ps. The fast electron density is highest in Target D (we

note the decrease in the~j
2

f in the region 7 � z � 15 lm) fol-

lowed by a peak and then a drop. This explains the tempera-

ture difference between the targets A and D in Fig. 7, which

is approximately 600 eV at x ¼ 50 lm where ~j
2

f differs by a

factor of 2.

The total energy deposition using the thermal energy of

electron per volume

Ue ¼
3

2
neeT; (8)

Ee ¼

ð

V

UedV; (9)

where e is the electron charge, is calculated. For the total

radius of the wire (core plus the graded resistivity region),

rwire ¼ 5lm, the energy deposition is comparable. However,

Target D has core, rcore ¼ 1:5 lm much smaller than Target

A. This, and the enhanced confinement of the electrons,

results in a higher energy deposition at the center of the wire

for Target D compared with Target A. The difference is a

FIG. 5. Contour plots of the resistive guide temperature in eV at 2.2 ps for Targets A–D, respectively, along the x-direction in the y midplane.
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factor of 1.5. This makes the central region of Target D

higher temperature than Target A. This is in line with Fig. 7.

IV. CONCLUSION

We have described the improvement in the collimating

magnetic field and resistive guide heating when using a

graded-resistivity guide element in a resistive guide target.

The principal result is B/L/ similar to what was observed

before but with an extended magnetic field and shallower

magnetic field gradient. By extending the magnetic field

over much of the guide element, fast electrons will deflect

over much of the guide, and these tend to smooth out any

current density gradients eliminating interior magnetic field.

In this situation, the fast electron transport is governed by an

increasingly diffusive reflection in an extended magnetic

field at the guide–substrate interface. As a result, fast elec-

tron confinement improves and an increased heating-at-depth

occurs. We observe higher temperature tens of microns along

the guide with a reduction in the temperature gradient.

Furthermore, electron beam, and hence temperature, inho-

mogeneity is reduced by extending the length of the mag-

netic field and reducing the field gradient at the interface.
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