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We study the phenomenon of migration of the small molecular weight component of a binary polymer

mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy

functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction

and show that it decreases significantly as the sample rigidity is increased. A wetting transition, observed

for high values of the miscibility parameter can be prevented by increasing the matrix rigidity. Estimated

values of the bulk modulus suggest that the effect should be observable experimentally for rubberlike

materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an

important role in industrial formulations, where surface migration often leads to decreased product

functionality.

DOI: 10.1103/PhysRevLett.116.208301

Introduction.—When a polymer mixture having mobile

components of different molecular weights and with an

interface that is free to the atmosphere is left to equilibrate,

the small molecular weight component migrates to the

surface [1–3]. Several industrial formulations, e.g., choco-

late [4], food packaging [5], etc., suffer from this ubiquitous

problem. While many experimental [1,2,6] and theoretical

studies [7] of this phenomenon exist, a good quantitative

agreement between theoretical predictions and experiments

is still lacking [1]. Further, experimental strategies to

control the amount of material migrating to the surface

is in a nascent stage of development.

In this Letter we ask how the elasticity of the polymer

matrix influences surface migration of small molecules in

polymer mixtures. We propose a free energy functional that

incorporates elasticity of the polymer mixture explicitly, a

feature that has been ignored in previous surface segrega-

tion studies. Using a Schmidt-Binder mean field theory

(SB) and self-consistent field theory (SCFT) we show that

as the sample rigidity is increased (i) the migrant fraction

decreases, and (ii) a wetting transition can be avoided

(demonstrated by a geometric construction [8,9]). These

results are of paramount importance in industrial product

formulations where surface migration of small molecular

weight component results in decreased functional perfor-

mance of the product.

Surface migration.—For a binary mixture, the compo-

nent with the lower surface energy will migrate to the

interface. A balance between loss of translational entropy

and gain in surface energy dictates the equilibrium

morphology of such systems. This is shown in Fig. 1 with

a high migrant (black) concentration close to the interface

(z ¼ 0) of a mixture of low and high (red) molecular

weight polymers. The migrant concentration decreases

monotonically to the bulk concentration ϕ
∞

as z → ∞.

A crucial parameter that dictates the thermodynamics of the

system is χN, where χ is the miscibility parameter and N
the molecular weight of the migrant. As χN increases, a

wetting transition characterized by a macroscopic wetting

layer is observed (Fig. 1, inset) [1].

Surface migration was first observed using x-ray photo-

emission spectroscopy [10] and the resolution of the depth

profile of the migrant concentration was improved signifi-

cantly using neutron reflectivity [11]. Further studies

concentrated on the theoretical aspects of the migration

FIG. 1. Schematic figure showing a mixture of low (black) and

high (red) molecular weight polymers, with the low molecular

weight component migrating to the free interface z ¼ 0. A semi-

infinite geometry is assumed. The volume fraction of the migrant

in bulk and at the surface is denoted by ϕ
∞
and ϕ1, respectively.

Inset shows migrant concentration profiles for different values of

χN. For low values of χN a monotonically decreasing concen-

tration profile is observed (dashed line). As χN increases, a

wetting transition characterized by a macroscopically thick

migrant layer (solid line with a break) is observed.
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by Schmidt and Binder [12] and, subsequently, a compari-

son between theory and experiments [13]. The wetting

transition of polymer mixtures at the air-mixture interface

was first demonstrated by Steiner et al. [14]. Experimental

and theoretical developments of this phenomenon have

recently been reviewed by a few authors [2,6].

Flory-Huggins theory.—The thermodynamics of mixing

of two chemically different polymers is well described by

Flory-Huggins (FH) theory [15]. Assuming the same

volume for the two monomers, and using it as a volume

unit, the mixing free energy per unit volume is given by

Ffh½ϕ�
kBT

¼ ð1 − ϕÞ
NB

logð1 − ϕÞ þ ϕ

NA

logðϕÞ þ χϕð1 − ϕÞ;

ð1Þ

where χ is the miscibility parameter, and NA and NB are the

degree of polymerization of A and B polymers, respec-

tively. The volume fractions of the A (ϕA ¼ ϕ) and B
(ϕB ¼ 1 − ϕ) polymers in Eq. (1) thus satisfy the incom-

pressibility constraint ϕA þ ϕB ¼ 1. The phase behavior of

such systems is well known [15]. Below a critical value of

the miscibility parameter χ < χc ¼ 1=ð2NAÞ þ 1=ð2NBÞ þ
1=ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

NANB

p Þ the equilibrium phase is a homogeneous

mixture of A and B polymers. For χ > χc (e.g., caused

by changing temperature) phase segregation occurs with

the system separating into A and B rich regions. Depending

on the parameters, a first or second order transition might

be observed. This is schematically shown in the inset of

Fig. 2 (solid line).

Schmidt-Binder formalism.—While FH free energy

describes the phase separation process in bulk it cannot

be directly applied to study segregation close to an interface

that is exposed to atmosphere. Cahn’s [8] seminal work

provides a cue in this case. This framework offers a way of

calculating the concentration profile of a fluid near a wall,

given a limiting fluid concentration, using the calculus of

variations. The Flory-Huggins as well as Cahn’s theory have

successfully been combined into a single mean field

description to describe the surface segregation of binary

polymer mixtures by Schmidt and Binder [12] (referred as

SB henceforth). The SB free energy functional for a semi-

infinite system (z > 0) with a surface that is selectively

attractive to componentA having area A at z ¼ 0 is given by

FSB½ϕ�
AkBT

¼
Z

∞

0

dz

�

Ffh½ϕ�
kBT

þkðϕÞ
�

dϕ

dz

�

2

−Δμϕ

�

þFsðϕ1Þ;

ð2Þ

where kðϕÞ ¼ ½a2=36ϕð1 − ϕÞ� is the coefficient associated
with the energetic cost of creating a concentration gradient

(obtained within the random phase approximation

[12,13,16]), and Δμ models the exchange chemical poten-

tial. The SB functional also incorporates the surface free

energy gain of themigrantFsðϕ1Þ expressed as a polynomial

expansion of the migrant volume fraction at the surface,

[ϕ1 ¼ ϕðz ¼ 0Þ] and is given by Fsðϕ1Þ ¼ −ϕ1μ1−

ðg=2Þϕ2

1
, where μ1 is the surface chemical potential and

the coefficient g characterizes the change in bulk interactions
due to the surface [12,17]. Within the gamut of square

gradient theory the free energy functional in Eq. (2) can be

minimized δFSB½ϕ�=δϕ ¼ 0, to yield an integral expression

for zðϕÞ, which can be inverted to obtain the concentration

profile of the migrant ϕðzÞ [12]. For small values of χN an

exponentially decaying profile shows reasonable agreement

with experimental data [1].

Elastic Flory-Huggins theory.—We now explore the role

of polymer matrix elasticity in the small molecule migra-

tion process. If one component (B polymer in our case)

forms an elastic network as in cross-linked gels (reticulated

permanent network), then its entropic contribution to the

FH mixing free energy would be negligible in comparison

to that of the migrant. Assuming the Flory-Rehner form of

free energy [18] describing the energy cost of a migrating

oligomer as it pushes its way through the matrix, the Flory

Huggins elastic free energy Ffhe can be written as

Ffhe

kBT
¼ ϕ logðϕÞ

NA

þ χϕð1 − ϕÞ þ Fel

kBT
; ð3Þ

where Fel ¼ ~Bðn=2Þ½λ2 þ ð2=λÞ − 3�, modeling uniaxial

network deformation [15,19,20], with λ representing the

relative chain extension (λ ¼ ð1 − ϕ=1 − ϕ
∞
Þ), n the

number density of chains in the network (n ¼ 1 − ϕ
∞
)

[20], and ~B the elastic modulus. The free energy that

describes the small molecule migration through a matrix

where elastic effects have been explicitly incorporated is

therefore given by

FIG. 2. The variation of χc on the elastic modulus ~B of a phase

separating the binary mixture with elastic interactions for differ-

ent values of the bulk migrant volume fraction ϕ
∞
. Main figure

shows χc increases with ~B (as ∼

ffiffiffiffi

~B
p

) indicating that softer

systems are more susceptible to phase separation and decreases

with ϕ
∞

for a fixed ~B. Inset shows phase diagram of polymer

mixtures without elastic interactions (see text).
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Ftot½ϕ�
AkBT

¼
Z

∞

0

dz

�

Ffhe

kBT
þ kðϕÞ

�

dϕ

dz

�

2

− Δμϕ

�

þ Fsðϕ1Þ;

ð4Þ

where Ffhe is the elastic Flory Huggins functional in

Eq. (3) and the gradient, exchange chemical potential,

and surface contributions to the free energy is the same as

the SB free energy functional in Eq. (2).

The role of elasticity in the phase separation of binary

polymer mixtures where both species are cross-linked has

been investigated earlier [21–23]. Such a system shows

microphase separation and is different from the functional

proposed here [Eq. (4)].

Before discussing the surface segregation process, we

consider the bulk thermodynamic behavior of the system

described by Eq. (3). This can be obtained easily by

minimizing the elastic FH free energy with respect to ϕ.

The minimization procedure leads to a relation between ϕ

and χ, which for bulk concentration ϕ
∞
corresponds to the

binodal curve χ ¼ ½1 − logðϕ
∞
Þ − NAΔμ�=½NAð1 − 2ϕ

∞
Þ�.

It is interesting to note that the χ parameter does not depend

on the elastic modulus ~B. The critical value of χc above

which the mixed phase is unstable, obtained from the

relation ∂3Ffhe=∂ϕ
3 ¼ 0, however, increases with increas-

ing ~B. This is shown in Fig. 2 with χc ∼
ffiffiffiffi

~B
p

for different

values of ϕ
∞
. As shown in Fig. 2 χc decreases with

increasing ϕ
∞

for a fixed ~B. This can be understood as

follows. As the volume fraction of the migrant increases,

the available free volume decreases and, hence, entropy

decreases. Since a balance between entropic and enthalpic

contributions dictates the equilibrium, a lower value of

enthalpy (and hence lower χ) is required to bring about the

phase separation. With χc increasing with ~B the single

phase region of a rigid system is stable for larger values of χ

in comparison to polymer mixtures without elastic inter-

actions. The phase behavior of the binary polymer mixture

without matrix elasticity is shown in the inset of Fig. 2.

Surface segregation for elastic FH theory.—The SB

formalism outlined earlier can be used to compute the

concentration profile of the migrant ϕðzÞ close to the

interface for the phenomenological free energy functional

described by Eq. (4). Figure 3 shows migrant concentration

profiles for both systems, a symmetric binary polymer

mixture having a bulk concentration ϕ
∞
¼ 0.05 with and

without elastic interactions. The inset shows ϕðzÞ as a

function of depth z for different values of χ for NA ¼ NB ¼
10 in the absence of elasticity [obtained by minimizing

Eq. (2)]. For smaller values of χ [−0.78 (red dashed line)]

an approximate exponentially decaying profile is observed.

As χ increases, migrant concentration reaching the surface

increases monotonically (χ ¼ 0.320, 0.325) and beyond a

critical value χc ¼ 0.327 a macroscopic wetting layer is

observed. In contrast, when elastic interactions are included

(main panel Fig. 3), the migrant fraction for the same value

of miscibility parameter χ (0.320), obtained by integrating

the area under the curve ϕðzÞ decreases monotonically with

increasing ~B. For lower values of the modulus, ~B ¼ 0.1,

0.108 a shoulder (reminiscent of a rounded wetting

transition) is observed. For higher values of ~B (0.13,

0.3) an exponentially decaying profile is obtained, sug-

gesting elastic interactions severely inhibiting migration.

While physically intuitive and relatively straightforward

to implement, the SB model has some disadvantages. First,

the surface migrant fraction ϕ1 is an additional input and

cannot be calculated from the model. In order to establish

our main result, namely, that elastic interactions inhibit

surface migration as the matrix rigidity is increased, we

employ a self-consistent field theoretic approach where this

limitation does not exist. However, both the SB model and

the SCFT framework suffers from the limitation that the

bulk volume fraction ϕ
∞

is held constant, no matter how

much material flows to the surface. Modifications to the SB

and SCFT framework that do not suffer from this drawback

will be reported elsewhere [24].

Self-consistent field theory.—First introduced in the

context of polymers by Edwards [25], self-consistent field

theory (SCFT) has been successfully employed to solve

equilibrium behavior of polymeric systems [26]. We

employ the SCFT formalism developed for end absorbed

polymer brushes in polymer matrices [27,28] and adapt it to

our situation (see Supplemental Material [20]).

The concentration profile of the migrant as a function of

distance from the surface (in units of Rg) obtained from the

SCFT calculation is shown in Fig. 4 for a miscibility

parameter χ ¼ 0.22 and surface energy Fs ¼ −2.0. The

migrant polymer has a Kuhn length a ¼ 1 and a degree of

polymerization NA ¼ 10. As the elastic modulus of the

matrix ~B is increased (from 0.001 to 0.11) the amount of

FIG. 3. Migrant concentration profiles ϕðzÞ for the SB model

including the elasticity obtained by minimizing Eq. (4) for

(χ ¼ 0.320 and NA ¼ 10) and increasing ~B. A wetting transition

is not observed in this model. Inset shows concentration profiles

for the SB model without elasticity for the symmetric case NA ¼
NB ¼ 10 with increasing χ. The black solid line with a break

indicates the formation of a macroscopic wetting layer.
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material migrating to the surface decreases monotonically.

In contrast to the SB model where ϕ1 is an additional input,

[(ϕ1 ¼ 1.0) in Fig.(3)], it can be calculated within the

SCFT framework. Figure 4 shows ϕ1 decreasing mono-

tonically with increasing ~B. The inset in Fig. 4 shows the

variation of the migrant concentration at the surface ϕ1 as a

function of ~B for different values of the surface energy Fs.

The effect of elasticity on the migrant fraction ϕ1 is more

pronounced for low values of ~B, (≈0 − 0.02). As expected,

ϕ1 decreases with increasing surface free energy Fs for a

given value of ~B. For the elastic systems considered

here, a wetting transition is not observed. A direct com-

parison between the parameters in the SB model and a

variant of the SCFT method presented here [29] is currently

underway.

Cahn construction.—A geometric way of demonstrating

the absence of a wetting transition has been proposed by

Cahn [8,9] and applied in the context of binary polymer

mixtures [30]. A calculation of the surface migrant

concentration ϕ1 involves solving the equation

F0
sðϕ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðϕ1ÞFðϕ1Þ
p

; ð5Þ

where kðϕÞ has the same meaning as Eq. (4), and Fðϕ1Þ
refers to the Ffh for the SB model and Ffhe when elastic

interactions are present. A graphical method of solving

Eq. (5) is shown in Fig. 5, plotting the surface F0
sðϕ1Þ (blue

solid line) for μ1 ¼ −0.5 and g ¼ 0.4, and bulk free energy

contributions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðϕ1ÞFðϕ1Þ
p

as a function of ϕ1 for a

system with (red dashed line) and without (green dash

dotted line) elastic interactions. In the absence of elasticity
~B ¼ 0 the curves intersect at three points, demarcating

areas S1 and S2. The area difference is related to the

spreading coefficient S ¼ S1 − S2, such that S1 > S2

indicates the formation of a complete wetting layer. For

a finite value of ~B (0.17 in Fig. 5) the wetting transition is

absent [8,9].

Conclusion.—In conclusion, we have analyzed the role

of matrix elasticity on the surface migration of small

molecules in binary polymer mixtures (with the matrix

being a reticulated gel), proposing a phenomenological free

energy functional and using mean field and self-consistent

field theories. We have shown that increasing the rigidity of

the matrix leads to significant reduction of the migrant

fraction on the surface. Further, by increasing the elastic

modulus of the polymer matrix a wetting transition can be

avoided for systems having miscibility parameters in the

range that would otherwise have led to it. This provides a

novel way of controlling surface migration in complex

industrial formulations such as adhesives in hygiene

products where surface migration leads to decreased

product functionality. To the best of our knowledge, the

only experimental system (despite significant differences)

related to the theory presented here investigates segregation

processes in polystyrene networks [31]. A theoretical

formalism that starts from a microscopic Hamiltonian

incorporates long-ranged elastic interactions in hetero-

geneous matrices and employs field theoretic techniques

to arrive at a coarse-grained free energy functional similar

to the one proposed is beyond the scope of the current work

and will be pursued elsewhere. We hope that our theoretical

work will prompt more theoretical and experimental studies

in this direction.
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FIG. 4. Migrant concentration profiles ϕðzÞ for different elastic
moduli ~B of the polymer matrix. The amount of material flowing

to the surface decreases with increasing ~B. The dependence of

the surface fraction ϕ1 as a function of ~B for different surface free

energy Fs is shown in the inset. As expected, the volume fraction

decreases for system with higher Fs.

FIG. 5. Cahn construction showing first order wetting transition

for the Flory Huggins free energy functional, Ffh [Eq. (1)]. An

intersection between Ffhðϕ1Þ and F0
sðϕ1Þ at three points demar-

cate areas S1 and S2, such that S1 > S2 indicates a first-order

wetting transition. A similar graphical construction for the elastic

Flory-Huggins functional Ffhe [Eq. (3)] with ~B ¼ 0.17 shows

one intersection, indicating the absence of the wetting transition.
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