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ABSTRACT

3D steganalysis aims to find the changes embedded through

steganographic or information hiding algorithms into 3D

models. This research study proposes to use new 3D features,

such as the edge vectors, represented in both Cartesian and

Laplacian coordinate systems, together with other stegana-

lytic features, for improving the results of 3D steganalysers.

In this way the local feature vector used by the steganalyzer

is extended to 124 dimensions. We test the performance of

the extended local feature set, and compare it to four other

steganalytic features, when detecting the stego-objects water-

marked by six information hiding algorithms.

Index Terms— 3D steganalysis, local features, informa-

tion hiding

1. INTRODUCTION

3D objects are becoming increasingly used in many applica-

tion areas, such as computer aided design, 3D printing, vir-

tual reality, augmented reality, medical imaging and so on.

A number of watermarking and steganographic methods have

been proposed for embedding information into the 3D objects

for various applications [1, 2, 3, 4, 5, 6]. The embedding

changes produced to the 3D objects are supposed not to be

noticeable by the naked eye. Steganalysis is the technique

that can identify whether any information was embedded in

the given object or not. Many steganalytic methods have been

proposed for audio signals [7, 8], digital images [9, 10, 11, 12]

or video signals [13, 14].

While 3D objects can be represented in various ways,

their most usual data representation is by means of meshes.

Such irregular representations, modelling complex 3D ob-

jects, are very different from the regular structural arrays

representing digital images or video signals. Consequently,

the existing image and video steganalytic algorithms cannot

be successfully applied to 3D objects. The first steganalytic

algorithm for 3D meshes was proposed in [15]. This 3D

steganalytic algorithm is based on the 208-dimensional fea-

ture set of 3D meshes, called YANG208, and using quadratic

discriminate analysis, for distinguishing stego-objects from

cover-objects. More recently, Yang et al. [16, 4] proposed a

new steganalytic algorithm, specifically designed for the ro-

bust 3D watermarking algorithm, MRS, proposed in [1]. The

limitation of this algorithm is that it is only effective for the

information embedded by the MRS algorithm and would not

be useful when the mesh is embedded by other information

hiding algorithms. Li and Bors proposed the 52-dimensional

Local Feature Set (LFS52) in [17], which simplified the

208-dimensional feature set YANG208 proposed in [15] and

included some new geometric feature for steganalysis, such

as the vertex normal, the curvature ratio and the Gaussian

curvature. In addition to LFS52, other geometric features

extracted from the mesh, represented in the spherical coor-

dinate system, form the 76-dimensional feature set for 3D

steganalysis in [18]. Meanwhile, Kim et al. [19] extended

the approach from [17], and proposed to use some additional

features such as the edge normal, the mean curvature and

the total curvature in addition to LFS52, forming the LFS64

feature set for 3D steganalysis. Li and Bors [20] proposed a

feature selection algorithm based on the features’ relevance

and robustness, in order to address the cover source mismatch

problem in 3D steganalysis.

Nevertheless, the steganalysis results for 3D wavelet-

based watermarking algorithms require further improvement,

according to the experimental results reported in [18]. In

this paper, we propose to use some new features derived

from the edge vectors of the mesh objects for 3D steganaly-

sis. Then, we combine the newly proposed features with the

LFS76 feature set, which is then compared against other four

steganalytic feature sets, when detecting the stego-objects

embedded by six information hiding algorithms. In Section

2 we describe the existing local feature set used for 3D ste-

ganalysis, while in Section 3 we describe the new features

that we propose to add for improving the results of 3D ste-

ganalysis. In Section 4 we present the experimental results,

while in Section 5 we draw the conclusions of this study.

2. LOCAL FEATURE SET FOR 3D STEGANALYSIS

In this section, we provide a brief introduction of the 3D ste-

ganalytic approach based on the local feature set, LFS76, pro-

posed in [18]. The 3D steganalyzer is trained through the fol-

lowing processing stages: preprocessing, feature extraction

and supervised learning. During the preprocessing step, a

smoothed version of the given original mesh, O′, is obtained



by applying one iteration of Laplacian smoothing on the orig-

inal mesh, O. Then, the original mesh and its smoothed ver-

sion are both normalized by using rotation and scaling.

19 geometric features, characterizing the local geometry

of 3D shapes, are extracted from the original mesh, O, and its

smoothed version, O′ in order to be used as inputs to the ste-

ganalyzer in [18]. These geometric features define the vertex

coordinates and norms in the Cartesian and Laplacian coor-

dinate systems, the face normal, the dihedral angle, the ver-

tex normal, the Gaussian curvature, the curvature ratio, the

vertex coordinates and edge length in the spherical coordi-

nate system. The differences between the mentioned geomet-

ric features from O and those from O′ are denoted as vector

Φ = {φt|t = 1, 2, .., 19}. Afterwards, the first four statistical

moments, representing the mean, variance, skewness and kur-

tosis, of the logarithm of the differences, {lg (φt)|φt ∈ Φ},

are considered as the steganalytic features, resulting in the

76-dimensional local feature set, LFS76.

The steganalyzers are trained using the Fisher Linear Dis-

criminant (FLD) ensemble which is broadly used for image

steganalysis as well [9, 10, 11]. The FLD ensemble includes

a number of base learners trained uniformly on the randomly

selected feature subsets extracted from the whole training

data. The FLD ensemble uses the majority voting to com-

bine the results of all base learners, but achieves much higher

accuracy than any individual base learner [21, 22].

3. EXTENDED LOCAL FEATURE SET

In the following we consider a set of new 3D features, in order

to be added to those that have been already used in [15, 18],

in order to improve the performance of 3D steganalyzers. We

propose to use the edge vectors in both the Cartesian and the

Laplacian coordinate systems to extract steganalytic features.

Let us assume that we have a given mesh O = {V,F,E},

containing the vertex set V = {v(i)|i = 1, 2, . . . , |V |}, where

|V | represents the number of vertices in the object O, its

face set F, and its edge set E, respectively. We define the

1-ring neighbourhood N (v(i)) of a vertex v(i) as {v(j) ∈
N (v(i))|e(i, j) ∈ E}, where e(i, j) is the edge connecting

vertices v(i) and v(j).

When extracting the steganalytic features, we first apply

one iteration of Laplacian smoothing to the original object.

Then, the difference between the edge vector in the Cartesian

coordinate system from the original mesh, ec(i, j), and that

from the smoothed mesh, e′c(i, j) are calculated in four dif-

ferent ways. Firstly, the absolute differences are calculated

for the x, y, z-components of the vector in the Cartesian coor-

dinate system, such as:

φ20(i, j) = |ec,x(i, j)− e
′

c,x(i, j)|,

φ21(i, j) = |ec,y(i, j)− e
′

c,y(i, j)|,

φ22(i, j) = |ec,z(i, j)− e
′

c,z(i, j)|,

(1)

where ec,x(i, j) represents the x-component of the vector

ec(i, j) in the Cartesian coordinate system, defined as

ec,x(i, j) = vc,x(j)− vc,x(i), (2)

where vc,x(i) represent the x-coordinate of the ith vertex in

the mesh represented in the Cartesian coordinate system.

Secondly, the norm of the difference between the vectors,

ec(i, j) and e
′

c(i, j), is calculated as

φ23(i, j) = ‖ec(i, j)− e
′

c(i, j)‖ , (3)

and the actual feature is made up of the absolute differences

between the norms of the two vectors, namely,

φ24(i, j) = | ‖ec(i, j)‖ − ‖e′c(i, j)‖ |. (4)

Moreover, the angle between the two edge vectors, ec(i, j)
and e

′

c(i, j), is considered as a feature as well,

φ25(i, j) = arccos
ec(i, j) · e

′

c(i, j)

‖ec(i, j)‖ · ‖e′c(i, j)‖
. (5)

In the following, we consider the edge vectors in the

Laplacian coordinate system as the geometric features. The

Laplacian coordinates of the ith vertex, [vl,x(i), vl,y(i), vl,z(i)],
are the ith row of matrix L, given by

L = M









vc,x(1) vc,y(1) vc,z(1)
vc,x(2) vc,y(2) vc,z(2)
. . . . . . . . .

vc,x(|V |) vc,y(|V |) vc,z(|V |)









(6)

where vc,x(i) is the x-coordinate of the ith vertex in the Carte-

sian coordinate system, M is the Kirchhoff matrix [23]

Mi,j =







|N (v(i))| if i = j
−1 if i 6= j
0 otherwise

1 ≤ i, j ≤ |V | (7)

The x-component of the edge vector el(i, j) in the Lapla-

cian coordinate system is defined as

el,x(i, j) = vl,x(j)− vl,x(i), (8)

where vl,x(i) is the x-coordinate of the ith vertex in the mesh

represented in the Laplacian coordinate system.

Various features, {φt(i, j)|t = 26, ..., 31}, in order to

model the differences between the edge vectors in the Lapla-

cian coordinate system form the original mesh and those from

the smoothed mesh, are calculated in a similar way as for the

Cartesian coordinate calculations from equations (1), (3), (4)

and (5).

Eventually, we combine the 19 features proposed for 3D

steganalysis in [18] and the 12 new ones proposed in this

study into the set, Φ = {φt|t = 1, 2, .., 31}. Then, we follow

the same approach as in [18] to form the steganalytic features.

Considering the first four statistical moments, representing

the mean, variance, skewness and kurtosis, of the logarithm of

the statistics, {lg (φt)|φt ∈ Φ}, we have the 124-dimensional

Extended Local Feature Set, denoted as ELFS124.



4. EXPERIMENTAL RESULTS

In the following we provide the results for the proposed

3D steganalytic approach on 354 cover 3D objects from the

Princeton Mesh Segmentation project database [24]. This

database contains a large variety of shapes, representing the

human body under a variety of postures, statues, animals,

toys, tools and so on.

In the following we consider identifying the 3D stego-

meshes produced by using six different embedding algo-

rithms: the 3D Wavelet-based High Capacity (WHC) wa-

termarking method and 3D Wavelet-based FRagile (WFR)

watermarking method proposed in [2]; the Multi-Layer

Steganography (MLS) provided in [3]; two blind robust wa-

termarking algorithms based on modifying the Mean or the

Variance of the distribution of the vertices’ Radial distances in

the Spherical coordinate system, denoted as MRS and VRS,

from [1] and the Steganalysis-Resistant Watermarking (SRW)

method proposed in [4]. In the case of WHC algorithm from

[2], the value of the controlling parameter is considered as

ǫhc = 100. Meanwhile, for the WFR algorithm, we consider

the parameter ∆θ = π/3 while the other parameters are iden-

tical to the values given in [2]. When using MLS method

from [3], we set the number of layers to 10, and consider

the number of intervals as 10000. For MRS and VRS wa-

termarking methods from [1], we consider α = 0.04 for the

watermark strength, while fixing the incremental step size to

∆k = 0.001 and the message payload as 64 bits. During the

generation of the stego-meshes using the SRW method from

[4], we set the parameter K = 128 which determines the

number of bins in the histogram of the radial distance coor-

dinates for all vertices. According to [4], the upper bound of

the embedding capacity is ⌊(K − 2)/2⌋ bits. The parameter

that controls the watermarking robustness of SRW is nthr,

which is set at 20. If the smallest number of elements in the

bins from the objects is less than 20, we would choose the

smallest nonzero number of elements in the bins as nthr. The

embedded information is a pseudorandom bit stream which

simulates the secret messages or watermarks hidden by the

steganographier.

The proposed feature set, ELFS124, is extracted from

the cover-meshes and the corresponding stego-meshes when

embedded with information by various 3D embedding algo-

rithms. During the preprocessing stage, we firstly apply one

iteration of Laplacian smoothing on both cover-meshes and

stego-meshes, by setting the scale factor as λ = 0.2. The 3D

steganalytic features are extracted as described in Sections 2

and 3. We consider the proposed feature set ELFS124, and

compare its results against other 3D steganalytic feature sets

such as, YANG208 [15], LFS52 [17], LFS64 [19] and LFS76

[18]. The steganalyzers are trained using the FLD ensemble

as in [18]. For each steganalyzer, we split the 354 pairs of

cover-mesh and stego-mesh into 260 pairs for training and 94

pairs for testing, repeating the experiments independently for
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Fig. 1. ROC curves for the detection results for the stegana-

lyzers trained by five feature sets when testing for the WHC

and WFR algorithms, respectively.

30 times. The steganalysis results are assessed by calculating

the areas under the Receiver Operating Characteristic (ROC)

curves of the testing results for all 30 trials. The ROC curve

is created by plotting the true positive rate against the false

positive rate at various threshold settings. The larger area un-

der the ROC curve represents higher accuracy of the testing

results. The ROC curves for the 3D steganalysis results when

the information was embedded by WHC or WFR for one trial,

using the FLD ensembles trained on various 3D steganalytic

feature sets, are provided in Figure 1. It can be observed from

Figure 1 that the proposed feature set, ELFS124, achieves

the best performance among the 3D steganalytic feature sets

being tested.

The confidence intervals of the areas under the ROC

curves of the steganalysis results for six information hiding
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Fig. 2. Box plots showing the confidence intervals for the area under the ROC curves of the detection results for the trained

steganalyzers when testing over 30 independent splits for the six 3D information embedding algorithms.

algorithms when testing over 30 splits of training/testing data

are shown as box plots in Figure 2. The proposed feature

set, ELFS124, shows better performance when compared to

the other four steganalytic feature sets. It can be observed

from Figures 2(a) and 2(b) that the advantage of ELFS124

over the other feature sets is quite obvious when detecting

the stego-objects embedded by the two 3D wavelet-based

watermarking algorithms, WHC and WFR. It is interesting

that the LFS52 feature set achieves better steganalysis perfor-

mance than LFS64 in the context of WHC, WFR and MLS,

as shown in Figures 2(a)-(c). We deduce that this is because

the features introduced in LFS64 are more efficient when the

embedding changes are more significant.

5. CONCLUSION

The contribution of the paper consists in proposing a new set

of local features for 3D steganalysis. We consider the edge

vectors of the mesh, represented in both the Cartesian and

the Laplacian coordinate systems, which are extracted from

the geometric features of the original mesh and its smoothed

version. Then, an extended local feature set is obtained by

combining the newly proposed features with the existing fea-

ture set, LFS76, from [18]. According to the experimental re-

sults, the extended local feature set shows better performance

than LFS76 and other existing 3D steganalytic features, when

identifying the stego-objects watermarked by several 3D in-

formation hiding algorithms. 3D steganalysis and 3D water-

marking have many potential applications, such as copyright

protection and covertly storing relevant information, not only

to be used in virtual graphics and vision but which also can

be embedded into real 3D objects through 3D printing.
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