
This is a repository copy of Group Activity Recognition on Outdoor Scenes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/127774/

Version: Accepted Version

Proceedings Paper:
Stephens, Kyle and Bors, Adrian Gheorghe orcid.org/0000-0001-7838-0021 (2016) Group 
Activity Recognition on Outdoor Scenes. In: IEEE International Conference on Advanced 
Video and Signal-based Surveillance (AVSS). IEEE , pp. 59-65. 

https://doi.org/10.1109/AVSS.2016.7738071

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

AVSS

#90

AVSS

#90

AVSS 2016 Submission #90. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Group Activity Recognition on Outdoor Scenes

Anonymous AVSS submission for Double Blind Review

Paper ID 90

Abstract

In this research, we propose an automatic group activ-

ity recognition approach by modelling the interdependen-

cies of group activity features over time. Unlike simple hu-

man activity recognition, the distinguishing characteristics

of group activities are often determined by the way how the

movement of people are influenced by one another. We pro-

pose to model the group interdependences in both motion

and location spaces. These spaces are represented in time-

space and time-movement spaces using Kernel Density Esti-

mation (KDE). Such representations are then fed into a ma-

chine learning classifier. Unlike other approaches to group

activity recognition, we do not rely on any long term track-

lets or manual annotation of tracks.

1. Introduction

The area of human activity recognition is of interest for a

variety of different applications such as video surveillance,

human-computer interaction and semantic annotations of

multimedia. Despite being a critical part of overall scene

understanding, group activity recognition gained a signifi-

cant interest only recently.

Research in simple human activity recognition was un-

dertaken for several years [2, 18], often by modelling the ac-

tivities using local features [11, 10] followed by their mod-

elling. Recently, the focus of activity recognition has moved

on to more complex problems such as scene understanding

and analysis. One of such approaches is to detect abnor-

malities or uncommon activity events. Examples of such

methods include [12], where the motion patterns are mod-

elled using Gaussian Mixture Models (GMMs) of 3D distri-

butions of local space-time gradients. Similarly, GMMs of

Markov random fields (GMM-MRF) were used in [16] for

abnormal activity detection. Dynamic texture models [13],

which considers both appearance and dynamics, have also

been considered for abnormal activity detection.

Group activity recognition requires more complex de-

scriptions of the group interaction in the context of a given

scenario assumption. Ni et al. [17] recognised group activi-

ties using localized causalities based on manually initialized

tracklets. Lin et al. [14] used a heat-map based algorithm

for modelling human trajectories when recognising group

activities in videos. Chang et al. [4] used a probabilistic ap-

proach to group human activity by forming various proba-

bilities depending on the tracks between individuals using a

multi-camera system. Choi et al. [9] proposed a framework

for analysing collective group activities based on different

levels of semantic granularity. Zhang et al. [20] proposed

an approach using histograms of the different features ex-

tracted from the tracklets of moving pedestrians. More re-

cently, Cheng et al. [6] modelled group activity as a frame-

work composed of multiple layers and Gaussian processes

were used for representing motion trajectories. One dom-

inating issue with the current group of approaches is that

they mainly rely on some manual initialization of track-

lets. Furthermore, each person in the scene is observed

as a single tracklet entity, ignoring the potential discrimi-

nant features that could be extracted from more localised

motions. Activities containing complex individual human

movements cannot be well modelled by such approaches.

In this paper, we propose a automatic group activity ap-

proach by modelling the relationships of inter-dependant

group movements and locations over time. In our approach,

we avoid the use of manual tracklets and instead make use

of medium term automatic movement estimation by using

streaklines [15]. Distinct moving regions in the scene are

segmented in space-time and the moving regions are mod-

elled by their interdependencies by evaluating the differ-

ences in relative movement and locations. Kernel Density

Estimation (KDE) is utilised to model the changes in the

regions interdependencies over time in both time-location

and time-motion spaces. Furthermore, the proposed model

tracks the stopping of pedestrians by marking the locations

when they stop moving. We also propose a scaling method

to compensate for the perspective distortion present in video

sequences acquired from lowly located cameras of wide

view.

The rest of the paper is organised as follows: Sec-

tion 2 describes the interdependency features used for rep-

resenting moving regions, and the modelling of such inter-
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dependencies in the context of group activity is explained in

Section 3. Section 4 describes the modelling of such inter-

dependencies over time and discusses the classification of

group activities. Section 5 shows the experimental results

and Section 6 draws the conclusions of this research study.

2. Group Activity Modelling

The proposed methodology for group activity recog-

nition has several stages, including extracting streaklines

representing medium-time trajectories of movement, using

these for modelling group interaction and then finally clas-

sifying the sequences into group activities using Support

Vector Machines (SVM). A block diagram of the proposed

method for recognising group activities is shown in Fig-

ure 1.

The first processing stage consists of movement estima-

tion. One issue that arises from using traditional optical

flow is the difficulty in capturing unsteady movement in

scenes with multiple pedestrians interacting, crossing and

occluding each other. To alleviate this problem, we pro-

pose to use the medium-time movement tracking method

of streaklines, proposed in [15]. Streaklines correspond to

tracking fluid particles that have passed through a particular

location in the past and its modelling is based on the La-

grangian framework for fluid dynamics [15]. This approach

provides a smooth and robust representation of the move-

ment flow over several frames. Unlike the approach in [15],

we associate each streakline with blocks of pixels by using

the marginal median as the streakline estimate. A first de-

gree polynomial is then fit to the streakline in order to obtain

a smoother representation. This differs from [19], where the

authors use PCA for estimating the principal streak. One is-

sue with the approach from [19] is that it does not consider

the motion consistency over several frames. In this research

paper we ensure the consistency of the streaklines over sev-

eral frames. Furthermore, we make the assumption that

each compact region of streakflows may contain several dis-

tinct movements, which are represented by clusters. Firstly,

we begin by segmenting the streakflow field into distinct

moving regions using the Expectation-Maximization (EM)

algorithm, under the Gaussian Mixture Model (GMM) as-

sumption. The number of clusters and the centres of the

Gaussian functions in the EM algorithm are initialised us-

ing the modes of the histogram of flow improving the con-

vergence. The space of clustering is defined jointly by both

movement and localisation, as given by the streakflows and

their locations in the frame, respectively.

We also address the effects of perspective distortions

by using a two-step approach to movement segmentation.

Such effects are evident in the case of video sequences ac-

quired with wide-angle lens cameras which are located at

low heights. In the first step, the segmentation is performed

in order to estimate the height of the moving objects, which

is used to derive a scaling factor. In the second step, the

segmentation is repeated considering this scaling factor, ap-

plied appropriately to the estimated movement, according

to the location of its corresponding moving region in the

scene. A moving region i is scaled as follows:

si =
1

2hm
(hi +

∑n

j=1 hj

n
) (1)

Where hi is the height identified for each moving region

in the first step, j = 1, . . . , n are the segmented moving

regions, hm is the predetermined overall mean height of

all moving regions and si is the scaling factor for moving

region i. This is repeated for all compact moving regions

which are identified in the scene. The motion Mi of region

i is then scaled by a factor si:

M
′

i = siMi. (2)

Each moving region is therefore represented by a GMM

defined by its characteristic parameters representing move-

ment and location in the scene. Another issue that is ad-

dressed in this research study is the modelling of people

who become stationary after they have moved through the

scene. Under the optical flow detection and motion model

such people would not be accounted for. To overcome this

situation, we propose to identify when and where people

stop moving in the scene. If no movement is present in

a particular region where motion was previously detected,

during p consecutive frames, this indicates a stationary re-

gion. Such stationary regions are characterised by their lo-

cation and by zero motion. Any movements of a person

present near the edge of the scene that subsequently moves

out of the scene is appropriately identified and the respec-

tive moving region is dropped from the existing movements

dictionary considered for the scene. Finally, when move-

ment occurs within a bounding box of the stopped pedes-

trian, the region is deemed to be no longer stationary and

the new emerging moving region in the area is activated in

the existing group activity model.

3. Modelling Interdependent Relationships of

Moving Regions

The key characteristics of group activities are often

present in the interdependent relationship between the

pedestrians/moving objects. In this research study we pro-

pose to model the interdependent relationships between the

features of each pair of moving regions detected in the

scene. In this section, we describe how we model four dis-

tinct features for representing group activities: streakflows,

streakflow dynamics, locations and location dynamics.

To begin, we model the relative movement between

streakflow models in the scene, considering both direc-

tion and intensity of movements. This models the inter-
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Figure 1. Overview of the proposed group activity recognition approach

dependant relationship of the group movement at a partic-

ular time instance. We compute the differences between

streakflows, AI(t) and AJ(t) for two moving regions I(t)
and J(t) at time t by:

M(I(t), J(t)) = e−
DSKL(A

I(t)||AJ(t))

σm (3)

where σm is a scaling factor for movement differences and

DSKL(AI(t)||AJ(t)) is the symmetrised KL divergence be-

tween the streakline distribution of moving regions I(t) and

J(t) at time t. This results in a scaled value within the

range [0, 1], representing the difference between two streak-

flow models, each characterising the relative movement of

one region with respect to another. The differences are

computed by considering all pairs of moving regions in the

scene at a particular time t by using equation (3). The dif-

ferences are then concatenated to form a vector representing

the inter-dependant group relationship of the streakflows at

a particular time t.

We also model the dynamic changes of differences be-

tween moving regions over subsequent frames by comput-

ing the differences between all streakflow models at time t

and all streakflows at time t + n. These are computed as

in equation (3), except that the models are now across sub-

sequent sets of frames instead of at the same time instance.

A vector of streakflow differences representing all the inter-

dependant relationships of streakflow models between the

time instances t and t+ n is then formed.

The distributions of relative locations for the people from

the scene, both moving or stationary, is modelled similarly

by considering differences between the GMM representing

the spatial-location of the moving region. By this model, the

mean will approximate the centre of the region, whilst the

variance will provide some characteristics of the size and

shape of the region. Similarly to the streakflows, the dif-

ferences between such location GMMs are then computed.

Given two location GMMs CI(t) and CJ(t) for moving re-

gions I(t) and J(t) at time t, the differences between their

locations can be computed by:

D(I(t), J(t)) = e
−

DSKL(C
I(t)||CJ(t))

σl (4)

where σl represents the characteristic scale parameter for

locations. Similarly to the streakflow model, this provides

a value in the range [0,1] which represents the difference

between the two locations. For example, individuals char-

acterised by moving regions I(t) and J(t) at time t, located

far apart, will have D(I(t), J(t)) = 0 whilst individuals

very close together will have D(I(t), J(t)) = 1. A vector,

representing all the inter-relationships of locations for the

group activity at time t, is then formed.

Similarly to the streakflow model, the dynamics of the

locations over time is computed. The dynamic changes of

differences over subsequent frames are computed by the dif-

ferences between all location points at time t and all loca-

tion points at time t + n using equation (4). A vector of

location differences, representing all the inter-dependant re-

lationships of location points between time t and t + n, is

then obtained.

One further issue that arises when computing such dif-

ferences is that the rate of movement change and rate of

location change is not clearly characterised. To overcome

this, we consider the background as an additional region for

both the streakflow model and the location model. In the

former case, the background object is defined as the GMM

model comprising of all the motion in the scene that does

not belong to a moving region (often zero motion if the

camera is stationary). In the latter case, the location object

is defined as the GMM representing the centre of the scene.

By adding the background model, the change in both mo-

tion and location relative to the background is characterised

representing the absolute movement of people in the scene.

Given a streakflow background model AB(t), at time t the

difference between the streakflow model AI(t), for moving

region I(t), at time t, and the background B(t) is computed

as:

M(I(t), B(t)) = e−
DSKL(A

I(t)||AB(t))

σm (5)

Similarly, given the centre point CB(t) defined as the loca-

tion of background model B(t) (centre of the scene) at time

t and the location model CI(t) for moving region I(t) at

time t, the difference is computed as:

D(I(t), B(t)) = e
−

DSKL(C
I(t)||CB(t))

σl (6)

Such differences are then computed between every region

in the scene and the background model B(t). Finally, the

3
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vector of differences in both cases are concatenated with

the vector representing pairwise motion and location differ-

ences between the moving regions in the scene.

4. Classification of Group Activities

To model the change in feature relationship over the

whole sequence, we propose to use bi-variate Kernel Den-

sity Estimation (KDE). KDE would provide smoothing on

the dynamics of feature changes over time increasing the ro-

bustness of the group activity model. We form two column

matrices where the motion and location inter-dependences

for each pair of moving regions are represented along the

first column and their corresponding time instances are lo-

cated in the second column. This matrix representation is

used for each feature (streakflow, streakflow dynamics, lo-

cations and location dynamics), separately. The bi-variate

kernel density estimation is applied over a fixed grid size

of K × K, given the normalized matrix data. By using

a fixed grid size, video sequences of different lengths will

be normalized in length, helping normalise the difference

in speeds at which the activities are performed. The grid

size is a important parameter in the density estimation as a

too small grid would result in over-smoothed feature data

and consequently important characteristics in the relation-

ship features may be lost. If the grid size is too large, then

the data will appear too sparse and would not model well

the underlying pattern of the data.

The densities computed over the fixed grid are used as

the defining feature vector representation for the group ac-

tivity. Such densities are computed independently for each

dimension, representing the relationships of the moving re-

gions in the movement, movement dynamics, location and

location dynamics, respectively. Finally, the feature vectors

representing each activities are used for training a Support

Vector Machines (SVM) algorithm.

5. Experimental Results

For all experiments, we follow the same recognition rou-

tine. To begin, the streakflows are extracted for each set

of frames and the moving regions are segmented based on

the streakflows in each inter-connected region. Streakflow

models and their location models are extracted for the mov-

ing regions in each set of frames. The features of the mov-

ing regions are then modelled by the inter-dependant dif-

ferences between all moving regions across a set of frames.

The dynamic changes of the features are modelled by the

inter-dependant differences between all moving regions in

one set of frames and the next set. Then, the vector of dif-

ferences for each set are used to form a two column matrix

with differences along the first column and the time instance

along the second column. KDE is applied on a fixed grid

size using the data from the feature matrix. The features are

then represented by their density estimation obtained from

applying the KDE with difference in features along one axis

and time along the other. Finally, the densities are used as

features to build a classifier and make recognition decisions

via a Support Vector Machine (SVM) (with RBF kernel).

5.1. New Collective dataset

The new Collective dataset [8] consists of 6 collective

activities: gathering, talking, dismissal, walking together,

chasing and queueing. The dataset consists of 32 video se-

quences, where each video sequence contains multiple ex-

amples of each activity. The video sequences are recorded

using a hand-held camera, and therefore the perspective dis-

tortion is quite strong.

To start, the video sequence is segmented spatio-

temporally into blocks of 20×20 pixels by 10 frames, where

the streaklines are extracted for each block of 10 frames.

The motion filter is applied over each 3 sets of frames. The

movement segmentation is applied as in Section 2, and ex-

amples of the streakflows and movement segmentation are

shown in Figure 2 for the chasing and gather activities. In

both cases, the moving regions are well segmented, partic-

ularly in the chasing example where the chaser and chasee

are segmented separately despite forming one connected re-

gion moving in the same direction.

(a) Streakflow (Chasing) (b) Segmentation (Chasing)

(c) Streakflow (Gather) (d) Segmentation (Gather)
Figure 2. Examples of streakflow and segmentation on the new

Collective dataset

The next step involves applying the stationary pedestrian

detector as in Section 2 where the prior frames p is p = 25
and the boundary parameter is set to 15% of the region

size. In the collective dataset, the pedestrians transition be-

tween different activities, some of which include the pedes-

trians remaining stationary. An example of the transitioning

stationary pedestrians through three activities are shown in

Figure 3. At the start, shown in Figure 3 a), the pedestrians

4
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are moving towards each other performing the gathering ac-

tivity. At the end of the gathering activity, the pedestrians

have gathered and transition to the talking activity shown

in Figure 3 b). The stationary pedestrian detection has suc-

cessfully recorded the last locations of the individuals as

seen in Figure 3 b), despite the individuals having stopped

moving. Finally, after a period of time, the individuals begin

to move again performing the dispersing activity shown in

Figure 3 c). In Figure 3 c), the new moving regions are de-

tected and replace the previously identified stopped regions

which are no longer recorded.

Next, the features (streakflow differences, streakflow dy-

namics, location differences and location dynamics) are

computed for each moving region as described in Section 3.

The scaling parameters (σm and σl) for the feature equa-

tions from Section 3 are varied and the best parameter val-

ues are selected for each feature. The best recognition re-

sults are obtained when σm = 15 and σl = 450 for both

motion features and location features respectively. The size

of the dynamic window for the motion dynamics and loca-

tion dynamics n is set to n = 5.

Following the computation of the streakflow differences,

streakflow dynamics, location differences and location dy-

namics, the data is represented over time using KDE as de-

scribed in Section 4. The KDE is applied over a fixed grid

size using the 2-column feature matrices as input data. In

this work, we choose to utilise the bi-variate KDE method

proposed in [3] which is based on using linear diffusion pro-

cesses. The KDE methodology from [3] assumes the ker-

nel to be Gaussian and uses a bandwidth selection method

such that the bandwidth parameters are automatically se-

lected depending on the data. The use of KDE over tradi-

tional histograms has several key advantages, most notably

adaptive smoothing of the data which not only helps with

the smoothing of noise but provides smooth transitions of

the feature differences over time. Secondly, the automatic

bandwidth selection method allows for different granular-

ity of different features to be represented depending on the

feature data. Next, we compare the use of the proposed

KDE method to conventional histograms using the same

fixed grid size of K × K. In this experiment, K is var-

ied and the recognition accuracy is compared between his-

tograms and KDE. The results are shown in Figure 4. In

Figure 4, the KDE results shows a notable improvement

over their equivalent-sized histograms, demonstrating the

effectiveness of KDE over histograms. In our experimen-

tal work, there was no improvement in recognition results

by using grid sizes larger than K = 8. Furthermore, the

computational complexity increases significantly when grid

sizes larger than K = 16 are used. Therefore, in our exper-

iments, we choose K = 8. Finally, the KDEs are used as

input to the SVM classifier with RBF kernel.

Table 1. Recognition results on the new Collective dataset

Method Result (%)

Monte Carlo Tree Search [1] 77.7%

Collective activities [9] 79.2%

MIR [5] 80.3%

Motion differences 75.4%

Motion dynamics 76.8%

Location differences 64.3%

Location dynamics 71.6%

Motion and location differences 76.5%

Motion and location dynamics 78.4%

Combined differences and dynamics 79.7%

To compare with state of the art, we follow the recom-

mended evaluation protocol from [8] and divide the dataset

into 3 subsets for 3-fold training and testing. Since the data

sequences contain an unknown quantity of activities of an

unknown length, we split the sequences during training and

testing to short sequences of 60 frames each for evaluation.

We compare our results to state of the art using average

recognition accuracy across all activity classes. Confusion

matrices of the results of our combined features compared

to the approach from [5] are shown in Figure 5. One obser-

vation of the confusion matrices is that the queuing activ-

ity is not well classified in our method. This is due to the

stationary pedestrians not moving at all for the duration of

the sequence, therefore our stationary detector fails to de-

tect the pedestrian. Considering this, a further observation

from Figure 5 is that we achieve an improvement in overall

recognition results when the queuing activity is not consid-

ered, and also greater consistency in the results across the

other activities. Comparison of our recognition results when

compared to state of the art are shown in Table 1. Notably,

our method is comparative to state of the art and superior

when the queuing activity is removed, despite using an au-

tomatic method.

5.2. NUS­HGA Dataset

We also evaluate our method on the NUS-HGA dataset

[17]. This data set consists of six different group activities

collected in five different sessions. We follow the same ex-

perimental outline as described above.

To begin, streaklines are extracted for blocks of size

14 × 14 over 10 consecutive frames. The motion filter de-

scribed in Section 2 is placed over each set of 5 frames,

where motion must be present in 3 out of 5 image frames.

The motion is segmented as described in Section 2. Follow-

ing the initial movement segmentation, the motion in each

moving region is scaled according to the height of the region

using equation (2). The segmentation is then performed for

the second time using the scaled motion. Following the sec-

ond movement segmentation step, the stationary pedestrian
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a) Gathering b) Talking b) Dispersing
Figure 3. Example of pedestrians transitioning through activities in the new Collective dataset.
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Figure 4. Difference in recognition accuracy between histograms

and KDE for 3 different grid sizes.
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Figure 5. Confusion matrices for the recognition results on the new

Collective dataset

detector is applied as in Section 2 where the number of prior

frames is set to p = 25. We define the boundary parameter

as 10% of the region size.

The streakflow movement model, streakflow dynamics,

location and location dynamics relationship differences are

computed as in Section 3, considering the scaling parame-

ters σm = 15, σl = 550 for motion and location differences

respectively, and σm = 17.5, σl = 650 for the motion and

location dynamics. The size of the dynamic window from

Section 3 is set to n = 13. The data is represented by a

2-column matrix over time as described in Section 4. KDE

is applied over a fixed grid size using the 2-column feature

matrices as input data where K = 16.

For classification purposes, the density estimations are

sub-sampled and fed to the classifier independently. For the

classifier we use SVM with the RBF kernel, and we follow

the evaluation protocol described in [17], where the NUS-

HGA dataset is split into 5-fold training and testing and the

performance is evaluated by average classification accuracy.

Table 2. Recognition results on the NUS-HGA dataset

Method Result (%)

Localized Causalities [17] 74.2%

Group interaction zone [7] 96.0%

Multiple-layered model [6] 96.2%

Motion differences 86.2%

Location differences 87.1%

Motion dynamics 91.6%

Location dynamics 92.6%

Motion and location differences 94.5%

Motion and location dynamics 97.1%

Combined differences and dynamics 98.0%

A comparison of the results when compared to the state-

of-the-art in group activity recognition is shown in Table 2.

The location features provide a better recognition result

than the motion features while the results for the dynam-

ics models for motion and location emphasise their impor-

tance for group activity recognition. The combination of all

features provides the best overall result of 98%. In compari-

son to state-of-the-art methods, we achieve a clear improve-

ment in results of about 2%, while using a fully automated

method.

6. Conclusions

In this paper, we proposed a model to describe the dis-

criminative characteristics of group activity by considering

the relations between motion flows and locations of moving

regions in the scene. We also proposed a scaling method to

compensate for the effect of perspective projection in video

sequences with perspective distortion. A stationary pedes-

trian detector is used in order to keep track of stationary

pedestrians by marking the locations where they stop mov-

ing. Kernel Density Estimation (KDE) is used to model

both time-location and time-motion spaces for such group

movement interactions. Experimental results on a group ac-

tivity dataset demonstrate the effectiveness of the approach,

without relying on any manual annotation of tracks like

other methods.
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