
This is a repository copy of Impact of cell types and culture methods on the functionality of
in vitro liver systems - A review of cell systems for hepatotoxicity assessment.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/127749/

Version: Accepted Version

Article:

Kyffin, J.A., Sharma, P., Leedale, J. et al. (4 more authors) (2018) Impact of cell types and 
culture methods on the functionality of in vitro liver systems - A review of cell systems for 
hepatotoxicity assessment. Toxicol In Vitro, 48. pp. 262-275. ISSN 0887-2333 

https://doi.org/10.1016/j.tiv.2018.01.023

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Impact of cell types and culture methods on the functionality of in vitro liver systems – a review of cell 

systems for hepatotoxicity assessment 

Jonathan A. Kyffin
1
, Parveen Sharma

2*
, Joseph Leedale

3
, Helen E. Colley

4
,  Craig Murdoch

4
, 

Pratibha Mistry
5
, and Steven D. Webb

1  

 

1
Department of Applied Mathematics, Liverpool John Moores University, James Parsons Building, Byrom Street, 

Liverpool, United Kingdom, L3 3AF,   

2
MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, 

Ashton Street, University of Liverpool, United Kingdom, L69 3GE, 

3
EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, Peach Street, 

University of Liverpool, United Kingdom, L697ZL, 

4
School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield, United Kingdom, S10 2TA,  

5
Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire, United Kingdom, RG42 6EY. 

 

*Corresponding author 

Dr Parveen Sharma 

MRC Centre for Drug Safety Science,  

Department of Molecular and Clinical Pharmacology,  

Sherrington Building, Ashton Street,  

University of Liverpool,  

United Kingdom,  

L69 3GE 

Tel: (0151) 795 0149 

Email: parveen.sharma@liverpool.ac.uk 

 

  



2 

 

Abstract 

Xenobiotic safety assessment is an area that impacts a multitude of different industry sectors such as 

medicinal drugs, agrochemicals, industrial chemicals, cosmetics and environmental contaminants. As such 

there are a number of well-developed in vitro, in vivo and in silico approaches to evaluate their properties and 

potential impact on the environment and to humans. Additionally, there is the continual investment in 

multidisciplinary scientists to explore non-animal surrogate technologies to predict specific toxicological 

outcomes and to improve our understanding of the biological processes regarding the toxic potential of 

xenobiotics. Here we provide a concise, critical evaluation of a number of in vitro systems utilised to assess 

hepatotoxic potential of xenobiotics.  

Keywords; in vitro toxicology, xenobiotic safety, hepatotoxicity, 3D cell culture models, liver spheroids. 
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Introduction 

The major constituent cell type of the liver is the hepatocyte, a parenchymal cell which makes up to 80% of 

the entire liver mass and performs the majority of the liver functions [1]. The remaining liver mass of ~20% is 

made up of a number of non-parenchymal cells (NPCs) such as; stellate cells (SCs), liver sinusoidal 

endothelial cells (LSECs), biliary epithelial cells (BECs), Kupffer cells (KCs) acting as in situ macrophages, 

and other immune cells, including  lymphocytes and neutrophils [2]. Characterised by its anatomical position 

and intrinsic biochemistry, the liver is involved in the metabolism and clearance of numerous xenobiotics. 

While the metabolic transformation of xenobiotics is usually considered as a detoxification process, some 

compounds which are not toxic may subsequently be converted into toxic substrates in the liver. For example, 

a notable compound that has been intensively investigated in this regard is acetaminophen (APAP) [3]. The 

pathophysiology, disease course and management of acute liver failure caused by APAP toxicity still needs to 

be fully elucidated, however, APAP hepatotoxicity has been shown via the use of in vitro models, to follow a 

predictable timeline of hepatic failure [4].  

The scientific basis of xenobiotic action and activity is complicated due to the variance in predictability of  

primary and secondary metabolites, as well as variability in individual susceptibility within the population [5]. 

This is true not only for humans but for other species utilised as experimental models. For example, our 

understanding of the mechanisms involved in the occurrence of adverse drug reactions (ADRs) and drug-

induced liver injury (DILI) in humans is also an area that remains limited [6]. ADRs currently represent a 

major encumbrance to the development of new therapeutics with ~21% of drug attrition attributed to toxicity 

during the development process [7]. Despite a wealth of research utilising a variety of model systems in the 

field of xenobiotic safety, our comprehensive understanding of the mechanisms underpinning the impact of 

xenobiotics either on human health or on the environment is not fully established partly owing to the 

complexity of understanding exposure scenarios [8]. As such, the rigorous testing requirements and challenges 

in the global regulatory arena remain, and are apparent in all industries. 

Current in vitro model systems developed to assess hepatotoxicity have a number of limitations including:   
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 Current mainstream 2D models fail to capture the complexities of multicellularity as well as the lack 

of the intricate 3D microenvironment, such as direct cell-cell and cell-tissue interactions. 

 Primary human liver cell isolation is a complicated procedure that requires well-trained staff and 

established cooperation with the surgical department performing liver resections. However, 

cryopreserved human hepatocytes are available commercially. 

 In vitro models provide limited viability for the study of long-term effects, such as responses to low-

level chronic exposure.  

 Limited availability of certain in vitro platforms to all researchers. 

The use of animals in science is a global practice and the main purposes of animal experiments, both in vivo 

and in vitro, are to gain basic biological knowledge for fundamental medical research, to test the toxicity of 

xenobiotics and ultimately contribute towards the discovery and development of novel drugs, and the 

development of vaccines and medical devices [9]. However, due to species-species differences in mechanistic 

responses, it is often difficult to assess results in animal trials and translate these findings to predict the in vivo 

response in humans [10].  In addition to the ethical considerations, there is an increased desire to implement 

the 3R’s (Replacement, Reduction and Refinement) of animal experimentation in research [11-13], which is 

shifting the emphasis on producing more relevant and representative in vitro (human cell and cell line) models 

[14-17]. 

 This review discusses the development of in vitro platforms and expands on the focus of 3D spheroid and co-

culture models and their increasingly integral role in xenobiotic hepatic safety assessment. 

In Vitro Liver Models Utilised for Human Hepatotoxicity Prediction 

The main aim of an in vitro liver model is to be able to capture relevant and useful end points, such as 

assessing the toxicity potential of novel xenobiotics, ADRs and modifications in transporter functionality. For 

example, simple vesicle models can be used to investigate the uptake and efflux properties of specific 

transporters [18], demonstrating that in vitro models do not necessarily have to recapitulate the natural in vivo 

microenvironment in order to be utilised successfully. Further to that, there are a number of in vitro liver 

models that differ depending on their culture conditions and conformations, cell types used and other 
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additional culture parameters. These platforms include more classically used primary isolated hepatocytes, 

hepatic-derived cell lines, and liver slices. More conventional cellular models such as simple monolayer 

cultures are easier to manipulate in the laboratory and are much more widely accepted ethically than the use of 

animal models, but immortalised cell lines and 2D hepatocyte cultures maybe less representative of the in vivo 

liver. 

For certain compounds and other endpoint analyses, a more complex model that recapitulates the in vivo 

microenvironment more closely may be necessary.  As such, approaches including 3D platforms, co-cultures 

and/or those that incorporate flow parameters such as bioreactor technologies may prove to be better suited to 

capture these end points. Continuing development in the area of 3D cell culture technology has meant several 

technologies have been established to culture cells in these more complex environments, which include matrix 

free systems for some cells but can also include the addition of hydrogels and scaffold technologies, and the 

more recently established stem cell-derived hepatocyte-like cells and liver organoids. Another degree of 

complexity in these systems has been introduced with the inclusion of fluid-flow to emulate sheer stress and 

nutrient exchange seen in vivo as a way to improve functionality and relevance (Fig 1). 
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Figure 1. Schematic of commonly used liver models. There are a multitude of liver models that differ in 

their translational relevance to humans. Systems vary from complex animal models which present significant 

ethical challenges as well as species variation issues, to primary human hepatocytes that, although deemed 

more relevant, suffer from inter-donor variability, rapid dedifferentiation in vitro along with sparse 

availability. On the other end of the spectrum are the more conventional cellular models that are easier to 

manipulate in the laboratory and are much more widely accepted ethically but these immortalised cell line 

models are less representative of the in vivo liver. Sandwich cultured hepatocytes retain more in vivo-like 

properties, including polarized excretory function and enhanced morphology and viability of hepatocytes 

compared to monolayer cultures, however these models still lack complex cellular interactions and the 3D 

microenvironment. Cells can be grown in a 2D monolayer setting or the more complex 3D conformation with 
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3D set-ups considered to be more representative of the native liver in vivo. The complexity of both 2D and 3D 

models can be increased with the addition of non-parenchymal cells, again producing a more representative 

model via the adoption of a multicellular system, and the addition of flow with some systems incorporating 

highly complex microfluidic devices. 

Primary Human Hepatocytes (PHH) 

Primary human hepatocytes (PHH) in monolayer cultures are generally still considered the gold standard in 

vitro model for metabolism studies and toxicity investigations [19,20].  When isolated effectively, PHH 

demonstrate a number of favourable characteristics such as phase I and II metabolic enzyme activity, 

expression of liver specific transporters, glucose metabolism, ammonia detoxification, as well as urea 

secretion and albumin production [21]. However, there are a number of problematic issues with this system; 

(i) loss of liver-specific function/dedifferentiation (PHHs lose their specific-liver function rapidly in vitro, 

including Cytochrome P450 (CYP) expression, and therefore are unsuitable for long-term and repeat-dose 

studies) [22,23]; (ii) the isolation procedure of hepatocytes is itself difficult (there is scarce availability of 

tissue and considerable inter-donor variability which can impact on the reproducibility of end point 

measurements) [24]; (iii) classical 2D/monolayer cell culture does not recapitulate the complex 3D in vivo 

microenvironment. PHH in vitro are still widely used despite the difficulties associated with culturing, 

isolating, cost, inter-donor difference, acquisition etc. Much research has therefore been directed towards 

using cryopreserved hepatocytes, hepatic-derived cell lines and other alternatives. 

Research has demonstrated that one way to improve and retain hepatocyte phenotype is to culture cells in a 

3D conformation [25-27]. Mammalian cells in vivo grow in a 3D setting, therefore 2D cell cultures are 

ineffectual at recreating a microenvironment that is representative of this native in vivo configuration [27]. 2D 

cultures also fail to maintain phenotypic characteristics over the duration of the culture period [28]. Other 

strategies to improve PHH function and survival in vitro include the use of growth factors, cytokines and other 

supplementation within the growth media [29]. However, research has shown that one of the most successful 

techniques in retaining hepatocyte function has been their co-culture with other cell types including NPCs [14-

16].   
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Since many toxic responses in vivo are mediated by complex interplay amongst a multitude of cell types, the 

predictive capabilities of isolated hepatocytes are limited [30] and therefore, there is a need to establish 

models that integrate NPCs within the culture platform.  Research has shown that intricate hepatocyte-NPC 

interactions affect the response after exposure to specific compounds. An example of this is vinyl chloride 

monomer (VCM) which is metabolically activated in hepatocytes [31]. This hepatotoxic compound causes 

hepatocellular cancer. However, a long-term effect of VCM is that it gives rise to the formation of a rare 

tumour, haemangiosarcoma that arises from the LSECs [32]. Furthermore, toxic responses are not only 

mediated by the association of the cells within these multiplexes, but also by the complex 3D interaction 

involving NPCs and the extracellular matrix (ECM) which is believed to be crucial in regulating and 

maintaining hepatic function in vivo [33]. 

The differences between cells grown on flat culture surfaces versus novel 3D formats such as extracted ECM 

attachment surfaces, has been documented since the early 1970’s [34]. With decades of research being 

conducted since then, the compelling similarities of in vivo morphologies and behaviours of cells grown in 3D 

environments have been well demonstrated [35]. Consequently, it is widely agreed that culturing cells in 3D 

provides a much more in vivo-like platform and this format is extensively used in an array of disciplines 

within scientific research such as: cancer medicine/tumour-immune system interactions [36], regenerative 

medicine and tissue fabrication technologies [37], and in the field of toxicology [22].   

There are certainly a number of in vitro pharmacological models that have been developed to assess uptake, 

metabolism and detection of undesired effects, along with a vast number of publications that have addressed a 

number of desirable endpoints. However, only a small fraction of these models will inevitably become 

standardised industrial tools [38]. In part this is due to the specific internal requirements of industries and their 

capacity to incorporate these emerging technologies. Industry screening comprise a battery of models that 

address single end points and in combination make up the tools for xenobiotic safety screening. Even though 

it is widely accepted that 3D cell culture provides a more in vivo-like model, with large sets of historical data 

at their disposal and potential difficulties in comprehensive characterisation and automation of novel 3D 

models, the widespread adoption of these 3D platforms into the already well-established battery of screening 

tools remains a challenge [39].  
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Liver Slices  

There are a number of desirable characteristics attributed to liver slices when compared with other in vitro 

liver models. Unlike primary cell isolations liver slices do not require incubation with proteolytic enzymes 

and therefore cell-cell interactions and other cellular components remain largely undisrupted. The 

maintenance of this microarchitecture provides a more in vivo-like model. Additionally, with many in vitro 

systems, the conditions of isolation vary from species to species; counter to this, a reproducible and repetitive 

procedure is used to prepare and incubate liver slices from different species making this model particularly 

suitable to perform inter-species studies [40].  

Liver slices have been utilised extensively in the field of hepatotoxicity and DILI investigations with the main 

advantage of this system being that the liver microarchitecture remains intact with all liver cell types being 

present, along with zone specific CYP450 activity [40]. Human liver tissue can either be obtained from 

excised tissue removed during surgical procedures such as a partial hepatectomy, or from the non-transplanted 

donor tissue itself [41]. Such liver slices have been utilised as an in vitro method for the prediction of human 

specific toxicity by toxicogenomics investigations. However, human liver slices used from different donors, 

many of whom have underlying conditions, result in the introduction of inter-individual variability. This in 

turn means reproducibility of the investigations can be difficult to achieve [22].  Animal tissue on the other 

hand, is more readily available and can be controlled via perfusion methods using preservation solutions or 

simple buffers [22].  It has been shown that albumin production and phase II enzyme expression remain 

relatively stable for a period of up to 96 hours of culture, with the studies typically lasting between 30 minutes 

and 5 days using rat liver slices [42-44]. The main limitation with using freshly cut liver slices is their 

longevity, meaning that repeat-dose studies cannot be achieved with this model beyond three days. Inter-

individual variability has also been seen in liver slices taken from different rats within a strain [45,46].  

It is well known that the long-term conservation of metabolic competence for in vitro models is difficult to 

achieve but it has been reported that metabolic capacity is better preserved in human liver slices when 

compared to PHH [41,47]. However, conflicting reports have demonstrated that xenobiotic metabolism in 
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liver slices is impaired after 24 hours of culture [48]. Research has demonstrated good in vitro to in vivo 

correlations for the qualitative metabolism of xenobiotics in liver slices obtained from multiple species, 

however, the use of liver slices may be limited to identifying low- and high-clearance compounds [40].  

Despite their short-term viability, liver slices have been used extensively over the years to investigate 

metabolism and toxicity of a number of xenobiotics. Olinga et al. showed that in human liver slices, all 

hepatocytes within the slice had an equal rate of metabolism of lidocaine [47]. Elferink et al. [49] further 

evaluated the utility of human liver slices as an in vitro platform for the prediction of human-specific toxicity 

by toxicogenomics. They found that human liver slices retained a relatively stable expression of transporters 

and enzymes that are involved in drug metabolism during the 24 hour culture period.  

Liver slices have also been used in conjunction with bioreactor platforms such as the multiwell plate platform 

engineered by CNBIO [50]. This combined approach has been utilised as a means of increasing the 

complexity and representativeness of the liver slice platform as fluid shear stress has been shown to improve 

liver-specific functional output [51]. Liver slices are placed into the multiwell chambers of the plate and 

media flow controlled by a pneumatic underlay. The bioreactor is produced from polystyrene and has two 

connected chambers, one for the media reservoir, and the second is the reactor chamber. This reactor chamber 

can be used for culturing liver slices (and for the culture of isolated hepatocytes) with polycarbonate scaffolds 

[52]. This engineered platform enables the cells or liver slices to be cultured in an environment close to that of 

the in vivo liver. The system incorporates media flow, oxygen gradients and shear stresses. The experimental 

set up is able to recapitulate oxygen gradients similar to that seen within the liver sinusoid (145 µM to 50 µM 

at a flow rate of 0.25 mL/minute) [52]. Hepatocytes cultured using this system have improved longevity when 

compared with conventional monolayer cultures. However, liver slices utilised in this platform are still not 

able to provide a model for repeat-dose toxicity studies due to their short term culture longevity and viability.  

Hepatic-derived Cell Lines  

To overcome some of the previously mentioned limitations with PHH, immortalized hematoma-

derived/hepatocellular carcinoma-derived cell lines have been utilized extensively. Cell lines previously used 

in toxicological investigations include; HepG2, C3A, HepaRG and  Huh7 [53-56]. These cell lines inherently 
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overcome the issue associated with inter-individual differences of primary isolated hepatocytes [57], and are 

characterised by having a relatively stable phenotype, ease of manipulation in the laboratory along with 

unlimited life span [53]. The main limitation with utilising these cell lines is that they generally possess 

reduced metabolic competence due to lack of expression of key metabolising enzymes [58]. 

Extensive work has been carried out using the HepG2 cell line int he fields of toxicological and 

pharmacological assessment, since the cell line was first generated in the 1970’s [42]. These cells possess a 

number of attractive characteristics such as: (i) nuclear transcription factor (Nrf2) expression, which is 

essential for drug metabolism and toxicity response [59]; (ii) unlimited growth and availability and the 

absence of inter-donor variability ensuring reproducible results [60];  and (iii) it is an easy-to handle cell line 

with uncomplicated culture protocols [61]. Research has targeted the development of classical monolayer 

formats to more complex 3D models including spheroids, with HepG2 spheroids showing markedly different 

gene expression when compared to monolayer cultures [62]. Chang and Hughes  revealed that significantly 

more genes related to ECM, cytoskeleton, and cell adhesion were expressed in monolayer cells, whilst genes 

involved in liver-specific functions of xenobiotic and lipid metabolism were upregulated in HepG2 spheroids 

[62]. In addition, more genes involved in cell cycle and regulation of growth and proliferation were 

upregulated in monolayers (Table 1). For example, CYP1A1 and ALB (albumin) expression was ~ 10.5 and 2 

fold higher, respectively in 3D spheroid cultures when compared with monolayers, whilst COL1A1 (alpha 1 

type-1 collagen) and GSPG2 (versican) expression was ~ 70 and 11 fold higher, respectively in monolayer 

cultures when compared with 3D spheroids. 

Table 1 – Number of genes upregulated by at least 2 fold in HepG2 monolayers or spheroid as determined by 

microarray analysis [62]. 

 Number of Genes Number of Genes 

Category Monolayer Spheroids 

Total 250 210 

Extracellular Matrix 10 0 

Cytoskeleton 10 5 
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Cell Adhesion 21 4 

Cell Cycle 13 7 

Growth/Proliferation 25 10 

Xenobiotic Metabolism 0 6 

Lipid Metabolism 4 11 

Apoptosis/Cell Death 11 12 

Signal Transduction 26 20 

Transcription 20 21 

It has been demonstrated that with the lack of appropriate levels of CYP expression when compared to PHH, 

HepG2 cells do not fully represent the phenotype of the in vivo hepatocytes and therefore that the detection of 

many hepatotoxic compounds utilising the HepG2 cells line is inaccurate, and for non-liver specific toxins this 

model is ineffectual [63]. It is however still the case that 2D cultures of hepatic-derived cell lines are valuable 

in the early stages of safety assessments [22] and liver cell lines can still provide a convenient and pragmatic 

initial tool for early screening and drug safety assessment [64].   

C3A cells are a sub-clone of the HepG2 cell line that demonstrate more advantageous characteristics 

compared with the parent cells. C3A cells are selected for their contact-inhibited growth characteristics, 

upregulated albumin production and alpha fetoprotein production alongside their ability to proliferate and 

thrive in glucose-deficient media [65]. These characteristics have made C3A cells a more representative 

model for hepatotoxicity studies with a number of researchers utilising this cell type with the more complex 

3D culture systems [57].  

The HepaRG cell line is another hepatocellular carcinoma-derived cell line that has been of interest over the 

last decade [66]. It is a human cell line that exhibits a number of attractive qualities and unique features when 

compared to the more commonly used HepG2 cells [55]. HepaRG cells have been shown to express a number 

of phase II enzymes and membrane transporters comparable to freshly isolated or cultured primary human 

hepatocytes [58,61,67]. HepaRG cells, when seeded at low density, acquire an elongated undifferentiated 

morphology. They then actively divide and after having reached confluency, form typical hepatocyte-like 
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colonies surrounded by biliary epithelial-like cells [55]. In addition, much of the literature has reported 

enhanced CYP450 expression along with improved liver-specific functionality [22,55,58,66].  

Guillouzo et al. demonstrated that the HepaRG cell line was more sensitive to metabolism-mediated toxicity 

when compared with HepG2 cells [55]. They found that HepaRG cells expressed various CYPs (1A2, 2B6, 

2C9, 2E1, 3A4) and the nuclear receptors, constitutive androstane receptor (CAR) and pregnane X receptor 

(PXR) at levels comparable to those found in cultured PHH, and much improved when compared to the 

expression levels in HepG2 cells. HepaRG cells also expressed phase II enzymes, apical and canalicular ABC 

transporters and basolateral solute carrier transporters, albumin, haptoglobin as well as aldolase B which is a 

specific marker of adult hepatocytes. The findings of Guillouzo et al., demonstrate that HepaRG cells models 

have the potential to replace PHH models for xenobiotic metabolism and toxicity studies [55]. McGill et al. 

concluded that HepaRG cells are a useful model to study mechanisms of APAP hepatotoxicity in humans 

[68]. They found that HepaRG cells that were exposed to APAP at varying concentrations resulted in 

glutathione depletion, APAP-protein adduct formation, mitochondrial oxidative stress, peroxynitrite 

formation, mitochondrial dysfunction, and lactate dehydrogenase (LDH) release. This analysis indicated that 

these key mechanistic propagators of APAP-induced cell death were the same as in the in vitro rodent models 

and primary cultured mouse hepatocytes [68].  

Gerets et al. carried out a comprehensive assessment of the HepaRG cell line, investigating mRNA levels and 

CYP activity in response to a number of inducers [58]. This study characterised PHH, HepG2 and the novel 

HepaRG cell lines in direct comparison with each other. All of the cells in this investigation were cultured in a 

monolayer multiwell format and were compared with regard to their metabolism and potential to detect 

hepatotoxicity. Gerets et al. concluded that HepG2 cells in this 2D environment responded weakly to the 

different inducers (beta-napthoflavone/BNF, phenobarbital/PB and rifampicin/RIF), when compared with 

PHH and the HepaRG cells at the gene expression and CYP activity levels, whilst HepaRG cells appeared to 

be most suitable for these induction studies. However, HepaRG cells were not as predictive for hepatotoxicity 

as PHH and were more comparable to HepG2 cells [58]. 
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One of the main limitations with the HepaRG cell line as a model for hepatotoxicity investigations is the long 

culture procedure that is required. Cells are seeded at low densities and after a period of 14 days, cells are able 

to differentiate into 2 cell types. This pre-differentiation culture phase incurs cost and also time when 

compared to more commonly used cell lines such as HepG2/C3A cells. Specialist culture media and 

supplements are required for the entirety of the culture procedure and, licensing is required to culture the cells 

meaning the cost of culturing the HepaRG cells can be as much as 100 times more expensive than the more 

commonly used cell lines. As a research tool this means that availability to all researchers is limited. 

However, terminally differentiated, commercially available cryopreserved HepaRG cells can be obtained with 

these cells exhibiting many of the characteristics of PHH including similar cellular morphology, the 

expression of key metabolic enzymes, and the expression of nuclear receptors. Dissimilar to other hepatic-

derived cell lines such as HepG2/C3A, these cryopreserved HepaRG cells have high cytochrome P450 activity 

and complete expression of all nuclear receptors [69].  

Co-cultures 

It has been demonstrated that culturing hepatocytes with other cell types increases their longevity and 

functionality [70]. The culturing of hepatocytes with NPCs has been investigated since the late 1970’s and is 

still being intensively researched [71]. The predictive capabilities of isolated hepatocytes can be limited [30]. 

Therefore, in order to represent the multicellularity of the liver, culturing isolated hepatocytes with NPCs is an 

important facet for in vitro cellular models [38]. Much of the research to date has demonstrated that culturing 

primary isolated hepatocytes, with NPCs not only increases liver-specific functionality, but also improves the 

longevity of the cultures [15-17]. Whilst there is a wealth of research in co-culture models, the emphasis has 

shifted to producing 3D co-cultures, where not only multiple cell types can interact but they can grow in a 

physiologically relevant manner [38]. Figure 2 highlights the various methods for producing co-culture 

models of hepatocytes and incorporating multiple NPCs within the model. 

Research has shown that hepatocyte function and stability is improved regardless of whether the secondary 

cells used are primary or not. Bhandari et al. showed that when culturing PRH with murine 3T3 fibroblasts, 

there was a reciprocal relationship whereby the cellular interactions in the co-cultures ensured survival, and 
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increased stability and function of both cell types [14]. Thomas et al. further expanded on the previous work 

by Bhandari et al. and described a co-culture model where activated rat SCs were cultured with isolated PRH 

in a spheroid model. This co-culture spheroid model demonstrated the development of bile canaliculi-like 

structures, complex ECM within the spheroid and, when compared with monoculture spheroids, superior 

cytochrome P450 functionality [14] [16].  

Peters et al. were able to demonstrate that PRH co-cultured with rat liver epithelial cells displayed higher 

levels of albumin secretion and the longevity of CYP enzyme activity was enhanced when compared to 

conventional PRH monolayer cultures. It was concluded that this co-culture model was the most applicable 

method for investigating cytokine-mediated induction of acute-phase proteins, due to there being a three-fold 

increase in fibrinogen secretion in comparison with the conventional monolayer cultures [72].   

Kang et al. produced a model system whereby PRH and LSECs were cultured on the opposite sides of a 

transwell membrane, allowing prolonged viability for a period of up to 39 days, as well as the stable presence 

of hepatocyte-specific differentiation markers. Dedifferentiation of primary hepatocytes is a commonly 

discussed limitation of classical in vitro liver platforms. However, the model system developed by Kang et al. 

demonstrated that PRH can maintain this differentiated status for an extended period as verified by the mRNA 

expression of albumin, transferrin, and hepatocyte nuclear factor 4 [73].   

KCs have been the focus of much research and it is accepted that this NPC plays a role in the development of 

DILI. Jemnitz et al. produced a 2D co-culture model of PRH and KCs and concluded that the hepatocyte-KC 

co-culture model provided a good platform for the prediction of chemical hepatotoxic potential [74]. KCs 

have also been shown to detect hepatocyte stress and damage from model hepatotoxins in vitro, leading to the 

release of cytokines [75]. Hepatocytes culture in isolation would not be able to capture this release of 

inflammatory response further strengthening the view that co-culture and, in particular, co-culture with KCs 

may increase the sensitivity of in vitro liver models to DILI and specific hepatotoxins [75].  

BECs line the biliary tracts and are often targets of liver disease such as cholestatic liver disease and because 

of this, BECs have been the subject of much NPC research [22]. Auth et al. developed a model where 

hepatocytes were co-cultured with BECs and demonstrated substantially increased protein synthesis and urea 
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production. Hepatocytes in isolation exhibited low levels of CYP450 activity; however, in co-culture with 

BECs, CYP450 activity remained stable for up to 3 weeks [76]. Auth et al. concluded that co-culture of 

human hepatocytes with BECs restored the synthetic and metabolic liver function in vitro [76].  

Figure 2. Schematic of a selection of in vitro co-culture liver models. (A) shows hepatocyte cultures that 

have been grown on a collagen coated surface and then overlaid with NPCs. (B) demonstrates the much-

utilised sandwich culture method whereby hepatocytes are cultured between two layers of collagen and then 

subsequently overlaid with NPCs. (C) demonstrates the structural formation of hepatocyte spheroids including 

NPCs. In this conformation there are multiple and direct cell-cell contacts between the parenchymal cells and 

the NPCs. There are a number of methods for culturing hepatocyte spheroids, however it is becoming more 

common to utilise certain low-attachment surfaces. (D) in this sandwich culture the NPCs are in direct contact 

with the hepatocytes and then subsequently sandwiched between two layers of collagen matrix. 

 

3D Liver Microtissues 

Spheroids 

3D cultures of hepatocytes and hepatic-derived cell lines is a rapidly developing field, whereby researchers 

and bioengineers endeavour to capture the complexity of the microenvironment with a view to improving the 

liver-specific functionality, longevity and relevance of the cultured cells [42]. The recent progress in 3D in 

vitro liver spheroid models may improve the ability to predict hepatotoxicity of novel compounds, in part 

owing to the better recapitulation of the native physiology of the liver [77]. It has been shown that the re-

establishment of cellular polarisation is critical in maintaining gene expression and hepatocyte-specific 
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function [78]. With 2D cultures of hepatocytes unable to model the multiple apical and basolateral membranes 

of the in vivo hepatocytes, it is crucial that models are capable of restoring this highly-complex 

microenvironment. There are now a number of 3D liver approaches which help restore this highly-complex 

microenvironment including hydrogel [12,37,79,80] and scaffold based technologies [81], as well as the 

production of “hepatospheres” or liver spheroids [82].  For the latter, techniques to produce spheroids have 

become progressively more refined and accessible and they are being increasingly utilised to assess areas such 

as xenobiotic penetration, metabolism and hepatotoxicity [83]. 

The basic underlying principle for the production of spheroids is that monodispersed cells (isolated cells from 

fresh tissue or cell lines) are capable of reforming a 3D configuration via self-reaggregation if adhesion to the 

substrate they are being cultured in is prevented [84]. According to the prevalent theory of self-assembly, in 

the absence of external influences, cells will self-organize into a spherical conformation as a result of specific 

local interactions amongst the cells themselves [79]. In conjunction with this, the differential adhesion 

hypothesis (DAH) states that tissues are treated as liquids composed of mobile cells whose varying degrees of 

surface adhesion causes them to reorganize spontaneously in order to minimize their free energy [85]. Thus, 

cells will migrate to be near other cells of comparable adhesive capacity in order to maximize the strength of 

the bonds between them. This in turn produces a more thermodynamically stable structure [79].   

 One of the main advantages of culturing cells in a spheroid is the increased cell-cell interactions and cell-

ECM interactions when compared to 2D monolayer culture [27]. The majority of cells are in close contact 

with each other and are able to communicate and produce their own ECM. Cells within a spheroid have 

virtually 100% of their surfaces in contact with neighbouring cells unlike a 2D monolayer. On this basis, cells 

in a spheroid conformation mimic much more closely the cells natural in vivo-like state, with figure 3 

illustrating the differences between monolayer cells and cells grown in a 3D spheroid model.   
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Figure 3. Comparison of monolayer cells and cell cultured in a spheroid. (A) Monolayer cells become 

flattened, have very few cell-cell contacts, unlimited access to the media as well as ease of waste product 

expulsion into the media. (B) Proliferative cell lines grown within the spheroid have numerous cell-cell 

contacts, do not become flattened and retain an in vivo-like morphology. Cells on the periphery of the 

spheroid proliferate and have greater access to media and can remove waste products to the media easier than 

those cells situated in the centre of the spheroid. These cells have less access to the nutrients within the media, 

less access to oxygen due to an oxygen diffusion gradient. Waste products may also accumulate in this central, 

and potentially this may cause necrotic regions. Over the duration of the culture period, the size of the 

spheroid can increase dramatically. (C) Non-proliferative cells such as PHH/PRH grown within a spheroid 

again have numerous cell-cell contacts and retain an in vivo-like morphology. Similar nutrient and solute 

gradients form within the spheroids. However, as there is no proliferative rim, the overall size of the spheroid 

remains relatively constant over-time, reducing the formation of necrotic areas due to hypoxia.   

A number of hepatic-derived cell lines have been utilised extensively in research including; C3A, HepG2, 

HepaRG and Huh7 [27,57,86,87]. These cell lines are capable of forming 3D liver spheroids and the resultant 

models are most commonly being used in the early stages of assessing xenobiotic safety [22]. HepG2 cells 

cultured as a spheroid model show the morphological characteristics of hepatocyte-like cells as well as the 
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formation of bile canalicular-like structures. HepG2 spheroids also exhibit a highly compact structure with 

tight cell-cell interactions [88].  Studies such as those from Li et al. and Ramaiahgari et al. have assessed a 

number of key functional outputs including; (i) cellular interactions as shown by E-cadherin, electron 

microscopy, β1-integrin and β-catenin which are indi ative of polarity; (ii) epithelial characteristics (CK7/8); 

and (iii) proliferative capabilities (Ki-67) [12] [27]. Wrezesinski et al. [54] along with others [12,57] have also 

investigated end points such as albumin and urea production, and metabolic competence via CYP activity 

(CYP1A1, CYP1A2, CYP3A4, & CYP7A1). These studies have conclusively elucidated that spheroids, and 

perhaps in general, 3D cultures of the HepG2 cell line show enhanced liver-like functionality when compared 

to the more traditional 2D cultures. However, it is widely accepted that with their low metabolic competence 

[22], HepG2 spheroids may be limited in their use as a model for toxicological investigations and may 

underestimate the toxicity potential of compounds [61].  

The formation of bile canalicular-like structures within HepG2 spheroids has been increasingly investigated in 

recent years [12,89]. Much of the work has shown the formation of these structures but further investigation 

into whether or not they are functional in producing bile salts and their subsequent transport is required [22]. It 

has been shown in work previously undertaken with the HepG2 and C3A cell lines [27,88,89], that there are 

several quantifiably useful end points such as albumin, urea secretion and ATP content that can be used to 

confirm in vitro 3D liver model phenotype. Recently Gaskell et al. demonstrated secondary structure 

functionality in C3A spheroids via the transport of CMFDA by the canalicular transporter MRP2 [57]. This 

line of investigation has yet to be fully characterised in primary hepatocyte spheroids and would help 

strengthen the case that 3D spheroid cultures may be better placed to assess hepatobiliary transporter-based 

compounds. Nevertheless, HepG2 or C3A cells have poor metabolic competencies when compared with PHH 

in 2D and this is one of the main limitations with these commonly used cell lines [60]. 

There are a limited number of publications using HepaRG cells in a 3D liver microtissue model [22]. 

However, with the accumulation of studies detailing more comparable functionality to that of PHH 

[55,58,66,90] and improved functionality when compared with the more commonly used cell lines such as 

HepG2 and C3A cells in 2D culture, it is anticipated that a 3D HepaRG model may bridge the gap between 

conventional monolayer cultures and in vivo physiology. 
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Gunness et al. reported that they were able to produce 3D organotypic cultures of the HepaRG cell line using 

the high-throughput hanging drop method [91]. They were able to maintain the cultures for three weeks and 

showed conservation of high liver-specific function for the duration of culture via phase I enzyme (CYP3A4, 

CYP2E1) and transporter activity (MRP2), expression of liver-specific proteins (albumin, urea) and response 

to a number of drugs (APAP, troglitazone and rosiglitazone). In order to assess whether the 3D HepaRG 

cultures were a more appropriate model to study drug toxicity, 2D HepaRG cultures were set up in parallel 

with the 3D cultures over three weeks. 3D HepaRG cultures showed higher sensitivity for APAP and 

troglitazone toxicity, and the 3D cultures maintained high levels of liver-specific functionality, including 

phase I enzyme and transporter activity,  and also production of liver-specific proteins including albumin and 

urea. These investigators  therefore suggested that these 3D organotypic HepaRG cultures, formed via the 

hanging drop technique, provide a suitable in vitro tool for assessment of drug-induced hepatotoxicity [91].  

HepaRG cells when cultured differentiate into hepatocyte-like cells and biliary-like cells and it has been 

demonstrated that bile canalicular-like structures form throughout 3D models [92]. The fact that the HepaRG 

cell line differentiates into two distinguishable cell types, means that the resultant cultures are intrinsically co-

cultures in nature. Compared with the more commonly used hepatic-derived cell lines, HepaRG cells possess 

many more advantages with regards to specific functional output, formation of secondary structures, 

upregulated metabolic capacity etc. and this makes them much more comparable to PHH [58,67,93]. 

The main advantage of 3D models, and in particular the spheroid model, is that very few cells are required to 

produce a functional spheroid [22]. For example, we have been able to demonstrate that a functional primary 

rat hepatocyte (PRH) spheroid can be produced from as little as 2000 cells/well on a 96-well, liquid-overlay 

plate.  

PRH spheroid models are well characterised and have been used since the 1980’s [26]. These spheroids have 

been shown to have a smooth outer surface with numerous pore-like openings leading to secondary structures 

shown to be similar to bile canaliculi [25]. As well as the formation of these bile canalicular-like structures, 

cells within the spheroid have shown polarisation as assessed by staining of apical HA4 and basolateral 

HA321 membrane bounds proteins [25], and dipeptidyl peptidase 4 (DPP IV) by immunohistochemical 
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staining as an apical membrane marker demonstrated by Wang et al. [94]. Much of the initial work was 

carried out on characterising the cellular morphology and polarity in conjunction with the formation of bile 

canaliculi [25,95]. However, more recent work has involved examining intra-cellular interactions and 

communication [89] along with oxygen concentration and gradients throughout the spheroids [96,97].  

Due to metabolism and uptake of numerous solutes by hepatocytes, the composition of blood changes as it 

flows along the sinusoids from the periportal zone to perivenous zone. Concentration gradients of substrates, 

products, and hormones are formed as a result and these gradients are considered to be drivers of liver 

zonation [98]. This sinusoidal zonation is extremely important to discuss when looking at hepatotoxic 

potential of xenobiotics. If we look at APAP toxicity for example, glucuronidation, the dominant pathway of 

conjugation at high APAP concentrations (>5mM), has been shown to be more rapid in perivenous cells than 

in periportal cells. Prolonged exposure to high concentrations of APAP damages perivenous cells expressing 

higher levels of CYP2E1 than periportal cells [99]. This demonstrates that perivenous hepatocytes exhibit 

increased APAP vulnerability and extensive glutathione depletion when compared with periportal cells, and 

emphasises the importance of being able to recapitulate liver-specific zonation and solute gradients in vitro. 

As one of the circulating signals, oxygen plays an important role in modulating zonation along the liver 

sinusoid. Its partial pressure is about 60 to 65 mm Hg (84-91 μmol/L) in the periportal blood and falls to about 

30 to 35 mm Hg (42-49 μmol/L) in the perivenous blood [100,101]. Research utilising liver spheroids has 

become progressively more interested in the physiological oxygen tension along the sinusoid, with increasing 

focus on trying to experimentally recapitulate oxygen profiles within 3D liver models.  

Oxygen demand and concentration throughout the in vitro spheroid models remains an interesting point of 

research because, it is desirable that all the cells are viable and free from necrosis. Much of the literature 

describes that spheroids with a diameter >150µm form a necrotic core due to hypoxia and lack of nutrients 

(see figure 3) [102]. For an in vitro model used in cancer medicine for example, necrosis is a desirable 

characteristic because; larger tumour spheroids are characterised by an external proliferating rim, an internal 

quiescent zone, and a necrotic core resembling the cellular heterogeneity of solid in vivo tumours [103]. 

However, for a model that attempts to recapitulate the in vivo-like liver microenvironment, this is an 

undesirable characteristic. Being able to determine the oxygen diffusion and consumption within spheroids, 
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and using this information to try to mimic the oxygen profile seen within the  liver sinusoid, would provide a 

more accomplished model than classic monolayer culture, and a more comparable one to that of the liver in 

vivo. In the field of 3D tumour cell culture, much research has been dedicated to the quantitative description 

of tumour vascular networks whilst the consideration of oxygen consumption is largely neglected. Whilst 

oxidative respiration in standard 2D cell culture has been widely studied, this aspect of characterisation has 

also been lacking with 3D in vitro liver models [104].  

Sakai et al. [89] demonstrated that PRH cultured as spherical multicellular aggregates provided a more useful 

model than the traditional monolayer culture. It was shown that PRH rapidly lost expression of a number of 

liver-specific genes when cultured in monolayer from day 1 up to day 5 (determined by quantitative PCR). In 

direct comparison, the PRH spheroid cultures conferred higher levels of expression of these liver-specific 

genes when compared to the monolayer cultures, for a period of up to 10 days. These results suggested that 

PRH cultured as spheroids acquire intercellular organisation that may permit maintenance of metabolic 

competence [82,89].   

As outlined previously, PHH are still considered by many to be the gold standard as an in vitro tool for DILI 

and toxicity investigations [20]. Despite the number of limitations with primary cells, spheroid systems can be 

produced from a low cell number, so a large number of spheroids can be produced from a small fraction of a 

single isolation suspension [22]. It is also important to reiterate that hepatocytes isolated from different donors 

display marked variations in gene expression levels, and thus may respond differently in hepatotoxicity 

investigations. 3D spheroid culture, however, enables the production of spheroids utilising cells from a single 

donor or pooled hepatocytes. The advantage of utilising pooled hepatocytes is that the resultant spheroids may 

better predict average population drug responses and conversely, spheroids produced from single donors 

allows for more direct in vivo variability comparisons [105].  

Messner et al. [106] were able to characterise a multi-cell type spheroid system incorporating PHH and liver-

derived NPCs. This subsequent system was shown to be functional for a period of up to 5 weeks, 

demonstrating that longevity of the cultures is vastly improved compared with the conventional monolayer or 

sandwich cultures of PHH. Secondary structure formation was confirmed in these spheroids via 
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immunohistochemical staining for the apical transporters MDR1 and BSEP, demonstrating functional 

polarisation of hepatocytes within the spheroids. Messner et al [106], were able to demonstrate that the PHH 

spheroid model incorporating NPCs has improved longevity in culture, stable albumin production over the 

duration of culture period with KCs showing responsiveness to inflammatory stimuli. In these investigations, 

Messner et al. [106] were able to incorporate both the 3D microenvironment and multiple cell types within a 

single model, producing a more representative in vitro tool for the assessment of DILI. These 3D, 

multicellular models show promise for drug discovery investigations as the much improved longevity and 

viability of the cells will enable the assessment of long-term effects of compounds over repeat-dose scenarios, 

an area initially highlighted as a limitation of many of the commercially available in vitro liver models.  

A more recent study carried out by Bell et al. [107] produced PHH spheroids using ultra-low attachment 

plates. Spheroids in this instance were cultured for a period of up to 5 weeks in serum-free culture medium. 

Spheroid size decreased over time alongside increasing expression of E-cadherin, suggesting that the cells 

within the spheroid model are becoming more tightly incorporated via spheroid compaction [108]. MRP2 

staining revealed the formation of bile canaliculi-like structures throughout the spheroid body over the 35 day 

culture period, indicative of stable functional polarisation of hepatocytes [22].  A direct comparison can 

subsequently be made between the multi-cell spheroids produced by Messner et al. and the monoculture 

spheroids by Bell et al. Interestingly both researchers demonstrate improved longevity of up to 5 weeks in 

culture compared to conventional models via stable albumin production over the duration of the culture 

period. This demonstrates that co-cultures of NPCs and PHH within this spheroid model may not be essential 

for improving the longevity. However, the co-culture spheroid models with the inclusion of KC place 

themselves well to investigate immune mediated toxicities whereas a monoculture hepatocyte spheroid model 

may be inadequate for capturing this specific end point analysis.  Both models demonstrate preserved hepatic 

phenotypes and long-term functionality for the investigations into chronic toxicity assays and repeat-dose 

studies. 

There are a number of techniques that have been implemented for the production of PHH and PRH spheroids 

including, spinner vessels and orbitally shaken flasks [109].  However, limitations of these systems include 

the inability to control spheroid size, difficulties with manipulation in the lab as well as these systems 
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requiring relatively high cell numbers. Scaffold-free systems that allow the formation of size controllable 

primary cell spheroids has currently only been performed using a hanging-drop system as described by a 

Kelm and Fusseneger [110] and the use of ultra-low attachment (ULA) plates described by Bell et al [107].   

Sufficient supply of oxygen to the cells is crucial for a functional 3D in vitro model trying to recapitulate the 

liver microenvironment. Primary hepatocytes have a relatively high metabolic activity compared with their 

hepatic cell-line counterparts, and thus, primary hepatocytes have a high oxygen turnover which can be up to 

ten times greater than other types of non-proliferative cells [111]. Increased levels of albumin and urea 

production, along with other liver-specific functions have been seen to correlate with higher oxygen uptake 

rates (OUR) of hepatocytes [111]. The idea that increased functional output increases the oxygen demand on 

the cells suggests that even the basic set up of in vitro liver models needs to be accurately determined to allow 

sufficient oxygen to diffuse through the media and into the cells. It also outdates the idea that spheroid 

diameter is the most crucial factor in determining the formation of central necrosis. It is much more likely that 

the combination of specific cellular OUR, along with their proliferative characteristics and the experimental 

set up are equally as important.  

Scaffold and Hydrogel Technology 

Spheroids can be produced by embedding hepatocytes into non-adhesive hydrogels [112]. Spheroids form via 

the process of cellular self-assembly [79], and the cells that self-assemble into spheroids have been shown to 

achieve increased gene expression and retention of the native cell phenotype when compared to 2D cultures 

[110]. Even though spheroids have been shown to form without scaffolds and hydrogels, not all cell lines are 

able to form spheroids via self-aggregation [113] and thus, the 3D microtissue system required is heavily 

dependent on the cell type being utilised.   

Lee et al. [87] were able to produce functional encapsulated spheroids using Huh7 cells. These encapsulated 

spheroids were functional for a period of up to 3 weeks and the microenvironment in which they were 

cultured could be adapted depending on the stiffness of the hydrogels. In this case, an in vitro model 

representative of normal liver could be generated by utilising low stiffness hydrogels, and cirrhotic liver by 

increasing the stiffness of the gels. Lee et al. also demonstrated that spheroids cultured within the low stiffness 
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hydrogels had the highest rates of proliferation, albumin secretion and CYP450 expression over the culture 

time.  

Another way in which hepatocytes can be cultured to mimic the 3D microenvironment is the use of scaffolds 

produced from either natural or synthetic material [22]. Natural scaffold systems are thought to allow for 

biocompatibility with the cells, with the scaffold itself mimicking the native ECM and conferring multiple 

cell-ECM interactions. However, these naturally liver-derived scaffolds are inherently variable leading to 

difficulties with reproducibility of experimental data. Decellularised human livers are considered the ideal 

ECM alternative because both the 3D microarchitecture and biological features of the native liver are 

preserved. However, human donor livers are in short supply as decellularised scaffolds, and the intrinsic inter-

donor differences means that reproducibility of experiments can be difficult [114]. This limitation can be 

overcome with the use of synthetic scaffold systems and, similarly to hydrogels, they can be purposely 

engineered to allow for specific 3D conformations and cell-specific scaffolds [115,116]. Hepatocytes have 

been shown to have an affinity for galactose residues such that scaffold systems presenting galactose on their 

surfaces allows for improved hepatocyte adhesion, leading to an improved functional system [117,118].  

An example of synthetic scaffolds that has been increasingly used within the field of 3D cell culture is the 

Alvetex® (Reinnervate), which has been produced from cross-linked polystyrene. This system has been 

shown to be biocompatible and the manufacturing of the scaffold has shown little batch-to-batch variation 

allowing for more reproducible experimental data [119]. The scaffold is engineered into thin (200 µm) 

membranes that are able to fit into conventional multiwell plate plasticware. Knight et al. [119] reported that 

cells seeded on to the scaffold system are able to form close cell-cell interactions and cellular differentiation, 

allowing the formation of thin tissue-like cultures. Furthermore, the HepG2 cell line has been shown to have 

improved liver-specific functionality when cultured with the Alvetex® scaffold including higher viability over 

the culture period and the formation of bile canaliculi within the tissue-like cultures [120]. Rat hepatocytes 

have also been cultured using the Alvetex® scaffold system and have been shown to retain their native 

cuboidal morphology along with much improved viability when compared with conventional monolayer 

cultures. These 3D cultures display gene expression associated with phase I, II and III drug metabolism under 

basal conditions along with increased sensitivity to APAP toxicity [121].  
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One on the main limitations with the hydrogel technologies is that there is poor mass transfer of nutrients, 

oxygen and xenobiotics and cell retrieval is more difficult [22]. Cell retrieval difficulties have been previously 

described by Godoy et al. [22], developing the idea that downstream analysis becomes much more 

challenging with reduced cell numbers. This potentially remains a major caveat of hydrogel systems, as 

altering the hydrogel stiffness may impact the ability to dissociate cells from the gels themselves. However, 

with the development of more simplistic methods, the utilisation of non-adhesive hydrogels reduces cell-

substrate interactions, thereby increasing the important cell-cell interactions which are vital for retaining 

functionality as well as the driving process of self-assemble [79]. One of the main advantages of using non-

adhesive hydrogels for the production of 3D microtissues is that hundreds of spheroids can be produced with a 

single pipetting step. This in turn means that the hydrogel method may lend itself to long-term, repeat-dose 

toxicological investigations [79].  

In recent years it has been shown that the cellular microenvironment contributes to the spatially and 

temporally intricate signalling domain that directs cell phenotype, and thus the idea that cellular scaffolds 

serve simply as a vehicle with which to assess the expression of specific genes and subsequent functionality 

has become outdated [37]. Tibbitt et al. concluded that a cell can no longer be thought of as a single entity 

defined by its genomic material, but must also be regarded in the context of the ECM, soluble growth factors, 

hormones, and other molecules that regulate organ formation and function [37]. It is better understood that the 

extracellular microenvironment coordinates intracellular signalling cascades that influences phenotype by 

altering gene and subsequent protein expression [122,123].  

Liver Organoids 

Organoids are 3D culture models in which adult stem cells and their progeny grow and are able to recapitulate 

the natural physiology of the cells in vivo. Organoids have been successfully derived from a number of organ 

systems for both animals and humans [124]. “Organoid” is a term that, in the past, was used interchangeable 

for in vitro spheroid models. However, the term organoid refers to “stem cell derived” self-organising 

organoids [125].  Organoids can be produced from two types of stem cells which include pluripotent stem 

cells (PSCs) such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), and organ-

specific adult stem cells (ASCs) such as hepatic progenitor cells (HPCs), which are tissue-specific resident 
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stem cells. Organoid systems have the potential to aid in the development of personalised medicine/treatment 

strategies and have previously been utilised to investigate a number of disease models [125,126].  As with 

hepatic-derived cell lines, 2D culture of PSCs is relatively amenable within the laboratory. However, long-

term culture of PSCs with maintenance of stem cell characteristics is a limiting factor [127]. Additionally, 2D 

cultures fail to produce in vivo cell polarisation and intricate cellular interactions, and cannot recapitulate the 

complex 3D microenvironment as seen in vivo [35]. As with hepatic-derived cell lines and primary isolated 

cells, 3D culture of PSCs has become a rapidly developing field in order to overcome the limitations of 

monolayer cultures. Huch et al. developed a 3D culture system of HPCs which demonstrated long-term 

genetically stable expansion (>1 year). The organoid models were derived from both Lgr5+ cells (mouse) and 

EpCAM+ (normal human liver) ductal cells [128,129]. It was shown that the original phenotypic epithelial 

architecture of the cells were maintained and that organoids were differentiated in vitro toward hepatocyte-

like and cholangiocyte-like cells [125].  Additionally, upon transplantation of the Lgr5+ organoid into 

impaired mouse livers, this propagated the formation of functionally mature hepatocytes [129].  

Takebe et al. demonstrated the formation of vascularised, functional human liver organoids from human 

iPSCs via transplantation of liver buds created in vitro (iPSCs-LB) [130]. The researchers were able to 

show the formation of functional vasculatures that stimulated the maturation of iPSCs-LB into tissue that 

highly resembled the adult liver. Metabolically competent iPSC-derived tissue demonstrated liver-specific 

functionality including increased albumin production and human-specific drug metabolism [130]. 

Commercially available iPSCs have also been used as an in vitro tool for the assessment of hepatotoxic 

potential with Sirenko et al. demonstrating this with a large number of identified toxic compounds [131]. The 

researchers used iCell® hepatocytes (Cellular Dynamics International [CDI], Madison WI) which are human 

iPSC-derived hepatocytes, cultured in a 2D multi-well plate platform. The researchers demonstrated that high-

content automated screening assays using iPSC-derived hepatocytes were feasible, and additionally this model 

provided useful information about the potential mechanisms of toxicity. These results suggest that this in vitro 

liver model may be placed well to assess drug and xenobiotic safety. Although this model does show promise 

it is clear that the culturing of iPSCs in monolayer cultures is not representative of the liver in vivo and toxic 

potential of compounds was assessed over a 72 hour period only. Future applications of these iPSCs in a 3D 
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culture may allow for the repeat-dose of xenobiotics and it would be interesting to see the potential of this 

model in assessing chemicals with unknown toxicity and other novel xenobiotics. 

3D organoid systems provide an in vitro platform that is highly representative of the in vivo physiology of 

liver cells, and have developed our understanding of disease development and progression. Liver organoids 

have also demonstrated accurate recapitulation of disease pathways in vivo. Although much of the research to 

date concerning liver organoid systems are focused on the developing field of personalised medicine, these 3D 

in vitro tools position themselves equally to be utilised within the field of xenobiotic safety and drug toxicity 

investigations. PSCs have been shown to be a promising model to assess hepatotoxicity in acute treatments, 

and also in response to chronic drug exposure and repeated-dose investigations, potentially overcoming some 

of the shortfalls of more commonly used hepatic-derived cell lines [132]. 

In vitro to in vivo extrapolation (IVIVE) 

A number of in vitro cell models have been described within this review. However, it is becoming more 

apparent that quantitative analyses of the various in vitro liver models is necessary to aid in demonstrating 

their potential for hepatotoxicity investigations compared to more qualitative measures such as physiological 

and functional improvements of the cell models. Many reviews have detailed improved physiological and 

metabolic status of 3D and co-culture in vitro liver models. However, few have combined this with IVIVE as 

a quantitative classification tool for the different models.  IVIVE refers to the transposition of experimental 

results or data in vitro to predict phenomena in vivo. Extrapolation of intrinsic clearance (CLint) measurements 

using hepatocytes to give predicted in vivo clearance (CLin vivo) involves a well-established ‘two-step’ 

mechanistic approach. Firstly, the physiological scaling from cell to whole liver and secondly the subsequent 

modelling of extraction from blood by the liver [22]. There have been a number of investigations that have 

compared in vitro liver model CLint as a means to develop the predictive capabilities with regards to 

xenobiotic safety assessments. 

Suspensions of PRH have been shown to provide a more accurate estimation of CLint rate when compared to 

conventional PRH monolayer cultures [133]. Griffin et al. [133] investigated the incubation of seven 

compounds in both suspensions and monolayer cultures, and the CLint was obtained via metabolite formation 

or substrate depletion analysis. However, the main limitation with this in vitro system was that cells rapidly 

dedifferentiated ex vivo in suspension, whereas often the processes of hepatotoxicity manifest themselves over 
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several hours. Therefore, hepatocytes in suspension are unable to maintain viability for the time necessary to 

capture the development of toxicities for some xenobiotics. As such the assessment of long-term or repeat-

dose investigations with this in vitro model will in turn be ineffectual.  

Research utilising rat microsomes, hepatocytes and liver slices have indicated adequate accuracy with the 

aforementioned two-step mechanistic approach [134]. However more recent investigations have demonstrated 

that rates of drug metabolism and CLint were found to be lower in rat liver slices than in isolated rat 

hepatocytes [135]. Other research has indicated that this two-step IVIVE mechanistic approach leads to under-

prediction of human in vivo clearance when utilising human hepatocytes and microsomes [136].  

Although much of the work to date has particularly focused on suspensions and 2D cultures of cryopreserved 

and primary isolated hepatocytes, more recent publications have analysed the prospective competence of the 

more novel HepaRG hepatic-derived cells [137]. Zanelli et al. compared intrinsic clearance of 26 drug 

compounds in both cryopreserved hepatocytes and the more novel HepaRG cell line [137]. The CLint of the 

compounds was determined via substrate depletion and the results showed that there was a direct correlation 

of CLint for both cryopreserved hepatocytes and HepaRG cells (scaled to whole body) for the range of 

compounds used.  

Co-culture bioprinted systems have also been analysed to investigate their potential for hepatotoxicity studies. 

An example of this is the Hepregen system which is a collagen micro patterned substrate system where 

hepatocytes are seeded onto a feeder layer of a secondary cell type. When compared to human microsomes, 

and PHH suspensions, the Hepregen system allowed for longer incubations with 27 known liver-metabolised 

compounds and was able to generate a greater proportion of the major human metabolites normally found in 

vivo [138]. 

Furthermore, bioreactors and 3D cultures are rapidly becoming incorporated within industry and research as 

improved predictive platforms for xenobiotic safety assessments. Sivaraman et al. demonstrated this by using 

a 3D bioreactor system to analyse the functionality of PRH spheroids [139]. This system was developed as it 

allowed the formation of heterotypic cell interactions, shear stresses via flow, and an in vivo liver-like 

microarchitecture. Toxicity testing utilising this bioreactor system included studies showing that clearance 

rates of compounds with known liver metabolism were comparable to those obtained in vivo [30,42].  
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Summary  

There are a number of advantages that 3D in vitro liver models possess that place them well in the continually 

developing field of drug discovery and toxicological investigations. These models have been shown to 

demonstrate improved physiology, longevity and viability over extended culture periods and increasing 

relevance when compared to classical monolayer cultures. Also, the ability to include multiple cell types 

within a single model has been shown to result in improved liver-specific functionality and longevity [38]. 

The continued development of these in vitro liver models significantly improves their biological relevance and 

thus increases the chances that xenobiotic-induced toxicities, that may require the complex interplay of a 

multicellular model, will be identified. 

One of the main limitations of in vitro liver models, despite the recent advancements, is the inability to 

prolong the culture period for repeat-dose and long-term toxicological investigations, without extensive 

necrosis within the in vitro cellular environment. However, PSC models have shown promise in 

hepatotoxicity investigations including chronic drug exposure and repeated dose scenarios [132]. Most 

commonly used hepatic cell lines proliferate and as a result, microtissue models such a spheroids will increase 

in size. With an increase in functionality there seems to be an increase in oxygen consumption by the cells, 

and this increase in oxygen consumption coupled with excessive growth will inevitably result in the formation 

of necrotic regions within the model, greatly impacting on the phenotype of the model and the ability of 

oxygen and key nutrients to diffuse through the 3D culture.  

Primary cells have a number of advantages over the hepatic-derived cell lines including the inability to 

proliferate ex vivo and thus 3D cell models utilising these cells will remain relatively stable in size over time. 

In fact, it has been shown that primary hepatocytes cultured as spheroids actually contract over the culture 

period. The up-regulation of key ECM elements and cytoskeletal components causes and initial contraction of 

the spheroid body. It may be possible that over an extended culture period that cell viability may decrease, 

however, the ability of oxygen and key nutrients to diffuse through the spheroid is not interrupted. 
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Table 2 shows the multiple cell types and model systems that are used to investigate liver toxicity in vitro, and 

defines some of the advantages and limitations of these systems. It is clear from the literature that 2D and 

classic monolayer cultures of hepatic cell lines and primary hepatocytes are rapidly becoming superseded by 

the continually developing field of 3D, co-culture, bioreactor, and combined approaches. There is a wealth of 

research that has demonstrated that both 3D and co-culture approaches improve liver-specific functionality, 

sensitivity to xenobiotics, culture longevity, recapitulation of the microenvironment and relevance to that of 

the in vivo liver, with 3D cell culture becoming the model of choice for many researchers and industrial 

institutions.  

Systems that utilise 3D cell culture that can incorporate flow dynamics for a primary cell type appear to hold 

the most promise for toxicological studies, due to that fact that many of the liver-specific functions remain 

stable over time along with the preservation of phase I, II and III genes associated with metabolism. In 

addition, models that incorporate multiple cell types, not limited to NPCs, have the ability to further enhance 

the functional and predictive capabilities of the aforementioned 3D systems, through representative cellular 

morphologies and phenotypes, and intricate cellular-ECM interactions.   

Outlook 

As the need for more predictive in vitro liver models increases, emerging 3D and bioreactor technologies have 

started to become increasingly utilised for xenobiotic hepatotoxicity assessments [140]. The incorporation of 

shear stress and flow has been demonstrated to improve functionality as described previously, and increases 

the complexity of the model system [50,51]. These more complex 3D and bioreactor technologies have the 

potential to capture some more of the intricate physiological aspects of the liver in vivo such as the solute and 

oxygen gradients of the liver sinusoid, and thus, may be able to better recapitulate the microenvironment of 

the native liver [7]. It has become clear that collaborative investigations between tissue engineers, 

toxicologist, applied mathematicians etc. whereby a more detailed assessment of the in vitro liver model set 

up is analysed, has focused the development of 3D and bioreactor models. While many of these systems show 

encouraging results, only a small number have provided extensive data that demonstrates the added value for 

hepatotoxicity investigations for human liver.  
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Industry, along with academia, are continually developing a multitude of 3D in vitro liver models for 

toxicological investigations. Prior to these model systems being incorporated and utilised for early compound 

screening investigations, a pragmatic schedule of detailed evaluation and subsequent validation to show 

relevant pharmacological and toxicological end points is required. To date, liver organoids and spheroid 

models show good promise for assessment of hepatotoxicity, however they only partly recapitulate the native 

liver in vivo and so more complex flow systems, micro patterned plates and bioreactor technologies have 

started to emerge as other potential candidates.  

Furthermore, solute gradients, including oxygen, have been identified as key physiological characteristics that 

play a vital modulating role for liver zonation and subsequent gene expression and metabolism [98]. Recent 

focus of in vitro liver models has been directed at trying to capture these gradients in a physiological fashion. 

In the future, the screening for hepatotoxic potential of novel xenobiotics most likely requires a combined 

approach whereby multiple in vitro models to cover appropriate end points are needed. This approach 

combined with the developing field of in silico liver models may better aid in early selection of compounds, 

and streamline the process by which toxicity investigations are carried out. 

In conclusion, multidisciplinary approaches in the development of more complex in vivo-like models will 

better aid human relevant translational research and will yield potential diagnostic advances that will reduce 

the risk of hepatotoxic potential at pre-clinical and clinical levels. 
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Table 2. Advantages and limitations of currently used in vitro liver models. 

Cell Type Advantages Limitations 

HepG2 Unlimited source of cells. 

Repeatability of experiments is 

more achievable. 

Easy-to-handle in laboratory 

with simplistic culturing 

methods. 

No inter-donor differences. 

Some expression of liver-

specific enzymes. 

Low metabolic competence 

and rapid loss of expression of 

liver-specific 

enzymes/transporters. 

Loss of cellular polarity.  

Absence of NPCs.  

 

C3A (HepG2/C3A) Selected for strong contact 

inhibited growth 

characteristics. 

High albumin production, 

alpha fetoprotein (AFP) 

production and ability to thrive 

in glucose deficient media. 

Low metabolic competence 

and rapid loss of expression of 

liver-specific 

enzymes/transporters. Loss of 

polarity. 

Absence of NPC’s. 

 

 

HepaRG  Improved liver-specific 

functionality when compared 

with the commonly used 

HepG2 and C3A cells in 2D 

culture. 

More comparable to PHH for 

phase I & II, gene and 

More complex culturing 

methods when compared to 

more commonly used hepatic 

cell lines.  

Expensive consumables 

required for extended culture 

periods.  



34 

 

transporter expression. 

Primary Hepatocytes (Human, 

Rat) 

Improved metabolic 

competence and more 

physiologically relevant 

compared to hepatic cell lines.  

Availability of cryopreserved 

hepatocytes. Full expression of 

liver-specific enzymes.  

Good transferability of data for 

in vitro to in vivo models. 

Historical human data for 

numerous drugs allows for 

direct comparison with in vitro 

models.  

Limited availability for 

researchers and inter-donor 

variability.  

Short-term culture time. 

Rapid loss of expression of 

liver-specific enzymes.  

Unlike immortalised hepatic 

cell lines, hepatocytes do not 

proliferate in vitro. 

Difficult isolation and 

subsequent culturing processes.  

Limitations can be partially 

overcome by 3D culturing. 

Stem cell based approaches  Stem cells proliferate 

extensively in vitro and can 

differentiate into hepatocytes. 

This provides a stable source 

of hepatocytes for multiple 

investigations. iPSCs/HPCs 

have the potential to establish 

genotype-specific cells, 

increasing the predictivity of 

toxicity assays.  

Potential to develop 

personalised medicine as well 

as hepatotoxicity 

Dedifferentiation concerns 

after the long-term culture of 

PSCs. 

Few thorough investigation in 

toxicological applications. 

Complex reprogramming steps 

(iPSCs.) 

Variability in phenotype 

between preparations. 

Expensive when compared 

with other hepatic-derived cell 

lines.   
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investigations.  

In vitro Approaches Advantages  Limitations  

Monolayer cultures  

 

 

 

 

 

 

 

 

 

Simplistic culture methods and 

low set-up costs.  Good 

repeatability of experimental 

data. Can incorporate  

NPC’s improving overall 

functionality and longevity. 

Cannot recapitulate the 

complex 3D 

microenvironment. 

Lack of in vivo-like cellular 

morphology. Poor gene and 

subsequent protein expression 

profiles. Loss of cell polarity. 

Sandwich cultures Sandwich cultured hepatocytes 

retain more in vivo-like 

properties, including polarised 

excretory function and 

enhanced morphology and 

viability of hepatocytes 

compared to monolayer 

cultures. 

Sandwich cultures lack 

complex cellular interactions 

and the 3D microenvironment. 

The expression of genes 

responsible for many liver-

specific functions decreases 

over time. 

 

Co-Culture Multi-cellular environment 

with direct cell-cell 

interactions mimicking natural 

environment. 

Positive reciprocal effect with 

improved functionality and 

longevity. 

Co-culture models can be 

produced in 2D and sandwich 

cultures and also within 3D 

Limited availability of NPCs 

with difficult isolation 

procedures. 

Batch to batch variability 

between NPCs. 

Differentiation status and 

viability are varied depending 

on culture conditions. 
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cultures such as spheroids. 

Recovery of cellular polarity. 

Scaffold and Hydrogels Formation of cellular 

interactions and representation 

of native ECM. Improved 

functionality and sensitivity to 

APAP. 

 

Limitations with regards to 

mass transfer of oxygen and 

nutrients. Limitations with cell 

retrieval and subsequent 

analysis. Poor culture longevity 

3D Recapitulation of 3D 

microenvironment and ECM 

properties. Well established 

cellular interactions leading to 

improved gene and protein 

expression. Establishment of 

cellular polarity.  Can 

incorporate NPC’s improving 

overall functionality and 

longevity. 

More complicated methods of 

culture. The literature has 

extensively discussed the 

formation of necrotic regions 

within 3D cellular models due 

to reduced oxygen diffusion to 

cells within the 3D mass. 

Spheroids Multicellular environments 

recapitulating native 3D 

microenvironment. Cell-cell 

interactions and natural 

production of ECM. Spheroids 

can be produced with hepatic 

cell lines and primary 

hepatocytes. 

Maintain liver-specific 

Spheroids have a limited size 

due to formation of necrotic 

cores (~150 μm). Limitations 

of oxygen and nutrient 

diffusion through multicellular 

aggregates. Comprehensive 

investigation with regards to 

optimal spheroid size for 

specifics cell types has yet to 



37 

 

functionality over longer 

periods of time. 

Enhanced CYP450 and 

transporter expression. 

Formation of secondary 

structures (bile canalicular-like 

structures). 

Cellular polarity is recovered. 

Along with maintenance of 

native cuboidal morphology. 

be done including cell-specific 

and model-specific OUR. 

More work needs to be done to 

improve basis for high-

throughput system. 

Liver slices  Maintains multicellularity (all 

NPC’s) in appropriate 

proportions and complex 3D 

microenvironment. Can be 

incorporated into flow systems 

to allow shear stresses. 

Short term culture periods 

meaning liver slices are 

unsuitable for repeat-dose 

investigations. 

 

 

  



38 

 

  

References 

1. Kmiec Z: Cooperation of liver cells in health and disease. Advances in anatomy, embryology, and cell 

biology (2001) 161(Iii-xiii, 1-151. 

 

2. Tacke F, Luedde T, Trautwein C: Inflammatory pathways in liver homeostasis and liver injury. 

Clinical reviews in allergy & immunology (2009) 36(1):4-12. 

 

3. Hinson JA, Roberts DW, James LP: Mechanisms of acetaminophen-induced liver necrosis. Handbook 

of experimental pharmacology (2010) 196):369-405. 

 

4. Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N: Acetaminophen-induced hepatotoxicity: 

A comprehensive update. Journal of Clinical and Translational Hepatology (2016) 4(2):131-142. 

 

5. Park BK, Laverty H, Srivastava A, Antoine DJ, Naisbitt D, Williams DP: Drug bioactivation and protein 

adduct formation in the pathogenesis of drug-induced toxicity. Chemico-Biological Interactions 

(2011) 192(1–2):30-36. 

 

6. Heidari R, Niknahad H, Jamshidzadeh A, Abdoli N: Factors affecting drug-induced liver injury: 

Antithyroid drugs as instances. Clinical and molecular hepatology (2014) 20(3):237-248. 

 

7. Williams DP, Shipley R, Ellis MJ, Webb S, Ward J, Gardner I, Creton S: Novel in vitro and 

mathematical models for the prediction of chemical toxicity. Toxicology research (2013) 2(1):40-59. 

 

8. Damalas CA, Eleftherohorinos IG: Pesticide exposure, safety issues, and risk assessment indicators. 

International Journal of Environmental Research and Public Health (2011) 8(5):1402-1419. 

 

9. Taylor K, Gordon N, Langley G, Higgins W: Estimates for worldwide laboratory animal use in 2005. 

Alternatives to laboratory animals : ATLA (2008) 36(3):327-342. 

 

10. Hackam DG, Redelmeier DA: Translation of research evidence from animals to humans. Jama 

(2006) 296(14):1731-1732. 

 

11. Schechtman LM: Implementation of the 3rs (refinement, reduction, and replacement): Validation 

and regulatory acceptance considerations for alternative toxicological test methods. ILAR journal / 

National Research Council, Institute of Laboratory Animal Resources (2002) 43 Suppl(S85-94. 

 

12. Ramaiahgari SC, den Braver MW, Herpers B, Terpstra V, Commandeur JN, van de Water B, Price LS: A 

3d in vitro model of differentiated hepg2 cell spheroids with improved liver-like properties for 

repeated dose high-throughput toxicity studies. Archives of toxicology (2014) 88(5):1083-1095. 

 

13. Russell WMS, Burch RL: The principles of humane experimental technique. (1959). 

 



39 

 

14. Bhandari RN, Riccalton LA, Lewis AL, Fry JR, Hammond AH, Tendler SJ, Shakesheff KM: Liver tissue 

engineering: A role for co-culture systems in modifying hepatocyte function and viability. Tissue 

engineering (2001) 7(3):345-357. 

 

15. Riccalton-Banks L, Liew C, Bhandari R, Fry J, Shakesheff K: Long-term culture of functional liver 

tissue: Three-dimensional coculture of primary hepatocytes and stellate cells. Tissue engineering 

(2003) 9(3):401-410. 

 

16. Thomas RJ, Bhandari R, Barrett DA, Bennett AJ, Fry JR, Powe D, Thomson BJ, Shakesheff KM: The 

effect of three-dimensional co-culture of hepatocytes and hepatic stellate cells on key hepatocyte 

functions in vitro. Cells, tissues, organs (2005) 181(2):67-79. 

 

17. Zinchenko YS, Schrum LW, Clemens M, Coger RN: Hepatocyte and kupffer cells co-cultured on 

micropatterned surfaces to optimize hepatocyte function. Tissue engineering (2006) 12(4):751-761. 

 

18. Brouwer KR, Ferguson SS, Lai Y, Luo G, Roe AL, Volpe DA, Yang K: The importance of in vitro liver 

models: Experts discuss whole-cell systems, transporter function, and the best models for future in 

vitro testing. Applied In Vitro Toxicology (2016) 1-7. 

 

19. Gomez-Lechon MJ, Tolosa L, Conde I, Donato MT: Competency of different cell models to predict 

human hepatotoxic drugs. Expert Opin Drug Metab Toxicol (2014) 10(11):1553-1568. 

 

20. Gomez-Lechon MJ, Donato MT, Castell JV, Jover R: Human hepatocytes in primary culture: The 

choice to investigate drug metabolism in man. Current drug metabolism (2004) 5(5):443-462. 

 

21. Knobeloch D, Ehnert S, Schyschka L, Büchler P, Schoenberg M, Kleeff J, Thasler WE, Nussler NC, 

Godoy P, Hengstler J, Nussler AK: Human hepatocytes: Isolation, culture, and quality procedures. 

In: Human cell culture protocols. Mitry RR, Hughes RD (Eds), Humana Press, Totowa, NJ (2012):99-

120. 

 

22. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner 

C, Bottger J, Braeuning A et al: Recent advances in 2d and 3d in vitro systems using primary 

hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in 

investigating mechanisms of hepatotoxicity, cell signaling and adme. Archives of toxicology (2013) 

87(8):1315-1530. 

 

23. Rodriguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, Gomez-Lechon MJ: 

Cytochrome p450 expression in human hepatocytes and hepatoma cell lines: Molecular 

mechanisms that determine lower expression in cultured cells. Xenobiotica; the fate of foreign 

compounds in biological systems (2002) 32(6):505-520. 

 

24. Bhogal RH, Hodson J, Bartlett DC, Weston CJ, Curbishley SM, Haughton E, Williams KT, Reynolds GM, 

Newsome PN, Adams DH, Afford SC: Isolation of primary human hepatocytes from normal and 

diseased liver tissue: A one hundred liver experience. PloS one (2011) 6(3):e18222. 

 



40 

 

25. Abu-Absi SF, Friend JR, Hansen LK, Hu WS: Structural polarity and functional bile canaliculi in rat 

hepatocyte spheroids. Experimental cell research (2002) 274(1):56-67. 

 

26. Landry J, Bernier D, Ouellet C, Goyette R, Marceau N: Spheroidal aggregate culture of rat liver cells: 

Histotypic reorganization, biomatrix deposition, and maintenance of functional activities. The 

Journal of cell biology (1985) 101(3):914-923. 

 

27. Li CL, Tian T, Nan KJ, Zhao N, Guo YH, Cui J, Wang J, Zhang WG: Survival advantages of multicellular 

spheroids vs. Monolayers of hepg2 cells in vitro. Oncology reports (2008) 20(6):1465-1471. 

 

28. LeCluyse EL, Witek RP, Andersen ME, Powers MJ: Organotypic liver culture models: Meeting current 

challenges in toxicity testing. Critical Reviews in Toxicology (2012) 42(6):501-548. 

 

29. Nakamura S, Salahuddin SZ, Biberfeld P, Ensoli B, Markham PD, Wong-Staal F, Gallo RC: Kaposi's 

sarcoma cells: Long-term culture with growth factor from retrovirus-infected cd4+ t cells. Science 

(New York, NY) (1988) 242(4877):426-430. 

 

30. Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J, Obach RS, Griffith LG, Tannenbaum SR: Liver tissue 

engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol (2009) 5(10):1159-

1174. 

 

31. Bolt HM, Filser JG, Laib RJ: Metabolic activation and pharmacokinetics in hazard assessment of 

halogenated ethylenes. In: Industrial and environmental xenobiotics: Metabolism and 

pharmacokinetics of organic chemicals and metals proceedings of an international conference held in 

prague, czechoslovakia, 27’30 may 1980. Gut I, Cikrt M, Plaa GL (Eds), Springer Berlin Heidelberg, 

Berlin, Heidelberg (1981):161-167. 

 

32. Cohen SM, Storer RD, Criswell KA, Doerrer NG, Dellarco VL, Pegg DG, Wojcinski ZW, Malarkey DE, 

Jacobs AC, Klaunig JE, Swenberg JA et al: Hemangiosarcoma in rodents: Mode-of-action evaluation 

and human relevance. Toxicological sciences : an official journal of the Society of Toxicology (2009) 

111(1):4-18. 

 

33. Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, Takenami T, Shinji T, Mori M, 

Tsuji T: Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with 

positively charged surfaces and under other nonadherent environments. Experimental cell research 

(1990) 186(2):227-235. 

 

34. Elsdale T, Bard J: Collagen substrata for studies on cell behavior. The Journal of cell biology (1972) 

54(3):626-637. 

 

35. Pampaloni F, Reynaud EG, Stelzer EH: The third dimension bridges the gap between cell culture and 

live tissue. Nature reviews Molecular cell biology (2007) 8(10):839-845. 

 

36. Hirt MN, Boeddinghaus J, Mitchell A, Schaaf S, Bornchen C, Muller C, Schulz H, Hubner N, Stenzig J, 

Stoehr A, Neuber C et al: Functional improvement and maturation of rat and human engineered 



41 

 

heart tissue by chronic electrical stimulation. Journal of molecular and cellular cardiology (2014) 

74(151-161. 

 

37. Tibbitt MW, Anseth KS: Hydrogels as extracellular matrix mimics for 3d cell culture. Biotechnology 

and bioengineering (2009) 103(4):655-663. 

 

38. Roth A, Singer T: The application of 3d cell models to support drug safety assessment: 

Opportunities &amp; challenges. Advanced Drug Delivery Reviews (2014) 69–70(179-189. 

 

39. Kostadinova R, Boess F, Applegate D, Suter L, Weiser T, Singer T, Naughton B, Roth A: A long-term 

three dimensional liver co-culture system for improved prediction of clinically relevant drug-

induced hepatotoxicity. Toxicology and applied pharmacology (2013) 268(1):1-16. 

 

40. Lerche-Langrand C, Toutain HJ: Precision-cut liver slices: Characteristics and use for in vitro 

pharmaco-toxicology. Toxicology (2000) 153(1-3):221-253. 

 

41. Elferink MG, Olinga P, van Leeuwen EM, Bauerschmidt S, Polman J, Schoonen WG, Heisterkamp SH, 

Groothuis GM: Gene expression analysis of precision-cut human liver slices indicates stable 

expression of adme-tox related genes. Toxicology and applied pharmacology (2011) 253(1):57-69. 

 

42. Soldatow VY, LeCluyse EL, Griffith LG, Rusyn I: In vitro models for liver toxicity testing. Toxicology 

research (2013) 2(1):23-39. 

 

43. Toutain HJ, Moronvalle-Halley V, Sarsat JP, Chelin C, Hoet D, Leroy D: Morphological and functional 

integrity of precision-cut rat liver slices in rotating organ culture and multiwell plate culture: 

Effects of oxygen tension. Cell biology and toxicology (1998) 14(3):175-190. 

 

44. Price RJ, Ball SE, Renwick AB, Barton PT, Beamand JA, Lake BG: Use of precision-cut rat liver slices 

for studies of xenobiotic metabolism and toxicity: Comparison of the krumdieck and brendel tissue 

slicers. Xenobiotica; the fate of foreign compounds in biological systems (1998) 28(4):361-371. 

 

45. Sugihara K, Kitamura S, Tatsumi K: Strain differences of liver aldehyde oxidase activity in rats. 

Biochem Mol Biol Int (1995) 37(5):861-869. 

 

46. Kacew S, Festing MF: Role of rat strain in the differential sensitivity to pharmaceutical agents and 

naturally occurring substances. Journal of toxicology and environmental health (1996) 47(1):1-30. 

 

47. Olinga P, Meijer DKF, Slooff MJH, Groothuis GMM: Liver slices in in vitro pharmacotoxicology with 

special reference to the use of human liver tissue. Toxicology in Vitro (1997) 12(1):77-100. 

 

48. Graaf IA, Groothuis GM, Olinga P: Precision-cut tissue slices as a tool to predict metabolism of 

novel drugs. Expert Opin Drug Metab Toxicol (2007) 3(6):879-898. 

 



42 

 

49. Elferink MGL, Olinga P, van Leeuwen EM, Bauerschmidt S, Polman J, Schoonen WG, Heisterkamp SH, 

Groothuis GMM: Gene expression analysis of precision-cut human liver slices indicates stable 

expression of adme-tox related genes. Toxicology and applied pharmacology (2011) 253(1):57-69. 

 

50. Domansky K, Inman W, Serdy J, Dash A, Lim MH, Griffith LG: Perfused multiwell plate for 3d liver 

tissue engineering. Lab on a chip (2010) 10(1):51-58. 

 

51. Rashidi H, Alhaque S, Szkolnicka D, Flint O, Hay DC: Fluid shear stress modulation of hepatocyte-like 

cell function. Archives of toxicology (2016) 90(1757-1761. 

 

52. Bale SS, Vernetti L, Senutovitch N, Jindal R, Hegde M, Gough A, McCarty WJ, Bakan A, Bhushan A, 

Shun TY, Golberg I et al: In vitro platforms for evaluating liver toxicity. Experimental biology and 

medicine (Maywood, NJ) (2014) 239(9):1180-1191. 

 

53. Donato MT, Tolosa L, Gomez-Lechon MJ: Culture and functional characterization of human 

hepatoma hepg2 cells. Methods in molecular biology (Clifton, NJ) (2015) 1250(77-93. 

 

54. Wrzesinski K, Magnone MC, Hansen LV, Kruse ME, Bergauer T, Bobadilla M, Gubler M, Mizrahi J, 

Zhang K, Andreasen CM, Joensen KE et al: Hepg2/c3a 3d spheroids exhibit stable physiological 

functionality for at least 24 days after recovering from trypsinisation. Toxicology Research (2013) 

2(3):163-172. 

 

55. Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C: The human hepatoma heparg 

cells: A highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. 

Chem Biol Interact (2007) 168(1):66-73. 

 

56. Sivertsson L, Ek M, Darnell M, Edebert I, Ingelman-Sundberg M, Neve EP: Cyp3a4 catalytic activity is 

induced in confluent huh7 hepatoma cells. Drug metabolism and disposition: the biological fate of 

chemicals (2010) 38(6):995-1002. 

 

57. Gaskell H, Sharma P, Colley HE, Murdoch C, Williams DP, Webb SD: Characterization of a functional 

c3a liver spheroid model. Toxicology Research (2016) 5(4):1053-1065. 

 

58. Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA: Characterization 

of primary human hepatocytes, hepg2 cells, and heparg cells at the mrna level and cyp activity in 

response to inducers and their predictivity for the detection of human hepatotoxins. Cell biology 

and toxicology (2012) 28(2):69-87. 

 

59. Hagiya Y, Adachi T, Ogura S, An R, Tamura A, Nakagawa H, Okura I, Mochizuki T, Ishikawa T: Nrf2-

dependent induction of human abc transporter abcg2 and heme oxygenase-1 in hepg2 cells by 

photoactivation of porphyrins: Biochemical implications for cancer cell response to photodynamic 

therapy. Journal of experimental therapeutics & oncology (2008) 7(2):153-167. 

 

60. Castell JV, Jover R, Martnez-Jimnez CP, Gmez-Lechn MJ: Hepatocyte cell lines: Their use, scope and 

limitations in drug metabolism studies. Expert Opinion on Drug Metabolism & Toxicology (2006) 

2(2):183-212. 



43 

 

 

61. Jennen DGJ, Magkoufopoulou C, Ketelslegers HB, van Herwijnen MHM, Kleinjans JCS, van Delft JHM: 

Comparison of hepg2 and heparg by whole-genome gene expression analysis for the purpose of 

chemical hazard identification. Toxicological Sciences (2010) 115(1):66-79. 

 

62. Chang TT, Hughes-Fulford M: Monolayer and spheroid culture of human liver hepatocellular 

carcinoma cell line cells demonstrate distinct global gene expression patterns and functional 

phenotypes. Tissue engineering Part A (2009) 15(3):559-567. 

 

63. Atienzar FA, Novik EI, Gerets HH, Parekh A, Delatour C, Cardenas A, MacDonald J, Yarmush ML, 

Dhalluin S: Predictivity of dog co-culture model, primary human hepatocytes and hepg2 cells for 

the detection of hepatotoxic drugs in humans. Toxicology and applied pharmacology (2014) 

275(1):44-61. 

 

64. Ramboer E, Vanhaecke T, Rogiers V, Vinken M: Immortalized human hepatic cell lines for in vitro 

testing and research purposes. Methods in molecular biology (Clifton, NJ) (2015) 1250(53-76. 

 

65. Sun H, Wei Y, Deng H, Xiong Q, Li M, Lahiri J, Fang Y: Label-free cell phenotypic profiling decodes 

the composition and signaling of an endogenous atp-sensitive potassium channel. Scientific reports 

(2014) 4(4934. 

 

66. Le Vee M, Jigorel E, Glaise D, Gripon P, Guguen-Guillouzo C, Fardel O: Functional expression of 

sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma heparg 

cell line. European journal of pharmaceutical sciences : official journal of the European Federation for 

Pharmaceutical Sciences (2006) 28(1-2):109-117. 

 

67. Hart SN, Li Y, Nakamoto K, Subileau E-a, Steen D, Zhong X-b: A comparison of whole genome gene 

expression profiles of heparg cells and hepg2 cells to primary human hepatocytes and human liver 

tissues. Drug Metabolism and Disposition (2010) 38(6):988-994. 

 

68. McGill MR, Yan HM, Ramachandran A, Murray GJ, Rollins DE, Jaeschke H: Heparg cells: A human 

model to study mechanisms of acetaminophen hepatotoxicity. Hepatology (Baltimore, Md) (2011) 

53(3):974-982. 

 

69. Aninat C, Piton A, Glaise D, Le Charpentier T, Langouet S, Morel F, Guguen-Guillouzo C, Guillouzo A: 

Expression of cytochromes p450, conjugating enzymes and nuclear receptors in human hepatoma 

heparg cells. Drug metabolism and disposition: the biological fate of chemicals (2006) 34(1):75-83. 

 

70. Guguen-Guillouzo C, Guillouzo A: General review on in vitro hepatocyte models and their 

applications. Methods in molecular biology (Clifton, NJ) (2010) 640(1-40. 

 

71. Langenbach R, Malick L, Tompa A, Kuszynski C, Freed H, Huberman E: Maintenance of adult rat 

hepatocytes on c3h/10t1/2 cells. Cancer research (1979) 39(9):3509-3514. 

 



44 

 

72. Peters SJ, Vanhaecke T, Papeleu P, Rogiers V, Haagsman HP, van Norren K: Co-culture of primary rat 

hepatocytes with rat liver epithelial cells enhances interleukin-6-induced acute-phase protein 

response. Cell and tissue research (2010) 340(3):451-457. 

 

73. Kang YB, Rawat S, Cirillo J, Bouchard M, Noh HM: Layered long-term co-culture of hepatocytes and 

endothelial cells on a transwell membrane: Toward engineering the liver sinusoid. Biofabrication 

(2013) 5(4):045008. 

 

74. Jemnitz K, Bátai-Konczos A, Szabó M, Ioja E, Kolacsek O, Orbán TI, Török G, Homolya L, Kovács E, 

Jablonkai I, Veres Z: A transgenic rat hepatocyte - kupffer cell co-culture model for evaluation of 

direct and macrophage-related effect of poly(amidoamine) dendrimers. Toxicology in Vitro (2017) 

38(159-169. 

 

75. Kegel V, Pfeiffer E, Burkhardt B, Liu JL, Zeilinger K, #xfc, ssler AK, Seehofer D, Damm G: Subtoxic 

concentrations of hepatotoxic drugs lead to kupffer cell activation in a human in vitro liver model: 

An approach to study dili. Mediators of Inflammation (2015) 2015(14. 

 

76. Auth MK, Woitaschek D, Beste M, Schreiter T, Kim HS, Oppermann E, Joplin RE, Baumann U, Hilgard 

P, Nadalin S, Markus BH et al: Preservation of the synthetic and metabolic capacity of isolated 

human hepatocytes by coculture with human biliary epithelial cells. Liver transplantation : official 

publication of the American Association for the Study of Liver Diseases and the International Liver 

Transplantation Society (2005) 11(4):410-419. 

 

77. Andersson TB: Evolution of novel 3d culture systems for studies of human liver function and 

assessments of the hepatotoxicity of drugs and drug candidates. Basic & clinical pharmacology & 

toxicology (2017) 121(4):234-238. 

 

78. Dunn JC, Tompkins RG, Yarmush ML: Long-term in vitro function of adult hepatocytes in a collagen 

sandwich configuration. Biotechnology progress (1991) 7(3):237-245. 

 

79. Anthony P. Napolitano PC, Dylan M. Dean, and Jeffrey R. Morgan.: Dynamics of the self-assembly of 

complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Engineering (2007) 

13(8)(2087-2094. 

 

80. Moscato S, Ronca F, Campani D, Danti S: Poly(vinyl alcohol)/gelatin hydrogels cultured with hepg2 

cells as a 3d model of hepatocellular carcinoma: A morphological study. Journal of functional 

biomaterials (2015) 6(1):16-32. 

 

81. Gillette BM, Rossen NS, Das N, Leong D, Wang M, Dugar A, Sia SK: Engineering extracellular matrix 

structure in 3d multiphase tissues. Biomaterials (2011) 32(32):8067-8076. 

 

82. van Zijl F, Mikulits W: Hepatospheres: Three dimensional cell cultures resemble physiological 

conditions of the liver. World journal of hepatology (2010) 2(1):1-7. 

 

83. Phung YT, Barbone D, Broaddus VC, Ho M: Rapid generation of in vitro multicellular spheroids for 

the study of monoclonal antibody therapy. Journal of Cancer (2011) 2(507-514. 



45 

 

 

84. Kelm JM, Djonov V, Ittner LM, Fluri D, Born W, Hoerstrup SP, Fussenegger M: Design of custom-

shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue 

engineering (2006) 12(8):2151-2160. 

 

85. Foty RA, Steinberg MS: The differential adhesion hypothesis: A direct evaluation. Developmental 

biology (2005) 278(1):255-263. 

 

86. Rebelo SP, Costa R, Estrada M, Shevchenko V, Brito C, Alves PM: Heparg microencapsulated 

spheroids in dmso-free culture: Novel culturing approaches for enhanced xenobiotic and 

biosynthetic metabolism. Archives of toxicology (2015) 89(8):1347-1358. 

 

87. Lee BH, Kim MH, Lee JH, Seliktar D, Cho NJ, Tan LP: Modulation of huh7.5 spheroid formation and 

functionality using modified peg-based hydrogels of different stiffness. PloS one (2015) 

10(2):e0118123. 

 

88. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK: Method for generation of 

homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. 

Biotechnology and bioengineering (2003) 83(2):173-180. 

 

89. Sakai Y, Yamagami S, Nakazawa K: Comparative analysis of gene expression in rat liver tissue and 

monolayer- and spheroid-cultured hepatocytes. Cells, tissues, organs (2010) 191(4):281-288. 

 

90. Kanebratt KP, Andersson TB: Evaluation of heparg cells as an in vitro model for human drug 

metabolism studies. Drug metabolism and disposition: the biological fate of chemicals (2008) 

36(7):1444-1452. 

 

91. Gunness P, Mueller D, Shevchenko V, Heinzle E, Ingelman-Sundberg M, Noor F: 3d organotypic 

cultures of human heparg cells: A tool for in vitro toxicity studies. Toxicological Sciences (2013). 

 

92. Leite SB, Wilk-Zasadna I, Zaldivar JM, Airola E, Reis-Fernandes MA, Mennecozzi M, Guguen-Guillouzo 

C, Chesne C, Guillou C, Alves PM, Coecke S: Three-dimensional heparg model as an attractive tool 

for toxicity testing. Toxicological sciences : an official journal of the Society of Toxicology (2012) 

130(1):106-116. 

 

93. Sison-Young RL, Mitsa D, Jenkins RE, Mottram D, Alexandre E, Richert L, Aerts H, Weaver RJ, Jones 

RP, Johann E, Hewitt PG et al: Comparative proteomic characterization of 4 human liver-derived 

single cell culture models reveals significant variation in the capacity for drug disposition, 

bioactivation, and detoxication. Toxicological sciences : an official journal of the Society of 

Toxicology (2015) 147(2):412-424. 

 

94. Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML: Three-dimensional primary hepatocyte 

culture in synthetic self-assembling peptide hydrogel. Tissue engineering Part A (2008) 14(2):227-

236. 

 



46 

 

95. LeCluyse EL, Audus KL, Hochman JH: Formation of extensive canalicular networks by rat 

hepatocytes cultured in collagen-sandwich configuration. The American journal of physiology 

(1994) 266(6 Pt 1):C1764-1774. 

 

96. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S: Opportunities and challenges for use of 

tumor spheroids as models to test drug delivery and efficacy. Journal of controlled release : official 

journal of the Controlled Release Society (2012) 164(2):192-204. 

 

97. Vadivelu KR, Kamble H, Shiddiky JM, Nguyen N-T: Microfluidic technology for the generation of cell 

spheroids and their applications. Micromachines (2017) 8(4). 

 

98. Jungermann K, Kietzmann T: Oxygen: Modulator of metabolic zonation and disease of the liver. 

Hepatology (Baltimore, Md) (2000) 31(2):255-260. 

 

99. Anundi I, Lahteenmaki T, Rundgren M, Moldeus P, Lindros KO: Zonation of acetaminophen 

metabolism and cytochrome p450 2e1-mediated toxicity studied in isolated periportal and 

perivenous hepatocytes. Biochemical pharmacology (1993) 45(6):1251-1259. 

 

100. Jungermann K, Kietzmann T: Zonation of parenchymal and nonparenchymal metabolism in liver. 

Annual review of nutrition (1996) 16(179-203. 

 

101. Ferrigno A, Pasqua LGD, Berardo C, Siciliano V, Richelmi P, Vairetti M: Oxygen tension-independent 

protection against hypoxic cell killing in rat liver by low sodium. European Journal of Histochemistry 

: EJH (2017) 61(2):2798. 

 

102. Funatsu K, Ijima H, Nakazawa K, Yamashita Y, Shimada M, Sugimachi K: Hybrid artificial liver using 

hepatocyte organoid culture. Artificial organs (2001) 25(3):194-200. 

 

103. Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, Bevilacqua A, Tesei A: 3d tumor 

spheroid models for in vitro therapeutic screening: A systematic approach to enhance the 

biological relevance of data obtained. Scientific reports (2016) 6(19103. 

 

104. Grimes DR, Kelly C, Bloch K, Partridge M: A method for estimating the oxygen consumption rate in 

multicellular tumour spheroids. Journal of the Royal Society Interface (2014) 11(92):20131124. 

 

105. Lauschke VM, Hendriks DFG, Bell CC, Andersson TB, Ingelman-Sundberg M: Novel 3d culture 

systems for studies of human liver function and assessments of the hepatotoxicity of drugs and 

drug candidates. Chemical research in toxicology (2016). 

 

106. Messner S, Agarkova I, Moritz W, Kelm JM: Multi-cell type human liver microtissues for 

hepatotoxicity testing. Archives of toxicology (2013) 87(1):209-213. 

 

107. Bell CC, Hendriks DF, Moro SM, Ellis E, Walsh J, Renblom A, Fredriksson Puigvert L, Dankers AC, 

Jacobs F, Snoeys J, Sison-Young RL et al: Characterization of primary human hepatocyte spheroids 



47 

 

as a model system for drug-induced liver injury, liver function and disease. Scientific reports (2016) 

6(25187. 

 

108. Lin RZ, Chou LF, Chien CC, Chang HY: Dynamic analysis of hepatoma spheroid formation: Roles of e-

cadherin and beta1-integrin. Cell and tissue research (2006) 324(3):411-422. 

 

109. Tostoes RM, Leite SB, Serra M, Jensen J, Bjorquist P, Carrondo MJ, Brito C, Alves PM: Human liver 

cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology 

(Baltimore, Md) (2012) 55(4):1227-1236. 

 

110. Kelm JM, Fussenegger M: Microscale tissue engineering using gravity-enforced cell assembly. 

Trends in biotechnology (2004) 22(4):195-202. 

 

111. Cho CH, Park J, Nagrath D, Tilles AW, Berthiaume F, Toner M, Yarmush ML: Oxygen uptake rates and 

liver-specific functions of hepatocyte and 3t3 fibroblast co-cultures. Biotechnology and 

bioengineering (2007) 97(1):188-199. 

 

112. Ringel M, von Mach MA, Santos R, Feilen PJ, Brulport M, Hermes M, Bauer AW, Schormann W, 

Tanner B, Schön MR, Oesch F et al: Hepatocytes cultured in alginate microspheres: An optimized 

technique to study enzyme induction. Toxicology (2005) 206(1):153-167. 

 

113. Iles LR, Bartholomeusz GA: Three-dimensional spheroid cell culture model for target identification 

utilizing high-throughput rnai screens. In: High-throughput rnai screening: Methods and protocols. 

Azorsa DO, Arora S (Eds), Springer New York, New York, NY (2016):121-135. 

 

114. Mattei G, Magliaro C, Pirone A, Ahluwalia A: Decellularized human liver is too heterogeneous for 

designing a generic extracellular matrix mimic hepatic scaffold. Artificial organs (2017) 

41(12):E347-e355. 

 

115. Allen AB, Priddy LB, Li M-TA, Guldberg RE: Functional augmentation of naturally-derived materials 

for tissue regeneration. Annals of biomedical engineering (2015) 43(3):555-567. 

 

116. Chan BP, Leong KW: Scaffolding in tissue engineering: General approaches and tissue-specific 

considerations. European Spine Journal (2008) 17(Suppl 4):467-479. 

 

117. Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, Harada I, Akaike T: Galactose-carrying polymers 

as extracellular matrices for liver tissue engineering. Biomaterials (2006) 27(4):576-585. 

 

118. Hayward AS, Eissa AM, Maltman DJ, Sano N, Przyborski SA, Cameron NR: Galactose-functionalized 

polyhipe scaffolds for use in routine three dimensional culture of mammalian hepatocytes. 

Biomacromolecules (2013) 14(12):4271-4277. 

 

119. Knight E, Murray B, Carnachan R, Przyborski S: Alvetex®: Polystyrene scaffold technology for 

routine three dimensional cell culture. In: 3d cell culture: Methods and protocols. Haycock JW (Ed) 

Humana Press, Totowa, NJ (2011):323-340. 



48 

 

 

120. Bokhari M, Carnachan RJ, Cameron NR, Przyborski SA: Culture of hepg2 liver cells on three 

dimensional polystyrene scaffolds enhances cell structure and function during toxicological 

challenge. Journal of anatomy (2007) 211(4):567-576. 

 

121. Schutte M, Fox B, Baradez MO, Devonshire A, Minguez J, Bokhari M, Przyborski S, Marshall D: Rat 

primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-

dimensional culture on a polystyrene scaffold designed for routine use. Assay and drug 

development technologies (2011) 9(5):475-486. 

 

122. Birgersdotter A, Sandberg R, Ernberg I: Gene expression perturbation in vitro--a growing case for 

three-dimensional (3d) culture systems. Seminars in cancer biology (2005) 15(5):405-412. 

 

123. Suter-Dick L, Alves PM, Blaauboer BJ, Bremm KD, Brito C, Coecke S, Flick B, Fowler P, Hescheler J, 

Ingelman-Sundberg M, Jennings P et al: Stem cell-derived systems in toxicology assessment. Stem 

cells and development (2015) 24(11):1284-1296. 

 

124. Nantasanti S, de Bruin A, Rothuizen J, Penning LC, Schotanus BA: Concise review: Organoids are a 

powerful tool for the study of liver disease and personalized treatment design in humans and 

animals. Stem cells translational medicine (2016) 5(3):325-330. 

 

125. Dutta D, Heo I, Clevers H: Disease modeling in stem cell-derived 3d organoid systems. Trends in 

molecular medicine (2017) 23(5):393-410. 

 

126. Fatehullah A, Tan SH, Barker N: Organoids as an in vitro model of human development and disease. 

Nature cell biology (2016) 18(3):246-254. 

 

127. Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM, Hay T, Guest RV, Wojtacha D, Man TY, Mackinnon A, 

Ridgway RA et al: Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nature 

cell biology (2015) 17(8):971-983. 

 

128. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, Ellis E, van Wenum M, Fuchs SA, 

de Ligt J, van de Wetering M et al: Long-term culture of genome-stable bipotent stem cells from 

adult human liver. Cell (2015) 160(1-2):299-312. 

 

129. Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold 

MJ, Haft A et al: In vitro expansion of single lgr5+ liver stem cells induced by wnt-driven 

regeneration. Nature (2013) 494(7436):247-250. 

 

130. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang R-R, Ueno Y, Zheng Y-W, Koike 

N, Aoyama S et al: Vascularized and functional human liver from an ipsc-derived organ bud 

transplant. Nature (2013) 499(481. 

 

131. Sirenko O, Hesley J, Rusyn I, Cromwell EF: High-content assays for hepatotoxicity using induced 

pluripotent stem cell–derived cells. Assay and drug development technologies (2014) 12(1):43-54. 

 



49 

 

132. Gomez-Lechon MJ, Tolosa L: Human hepatocytes derived from pluripotent stem cells: A promising 

cell model for drug hepatotoxicity screening. Archives of toxicology (2016) 90(9):2049-2061. 

 

133. Griffin SJ, Houston JB: Prediction of in vitro intrinsic clearance from hepatocytes: Comparison of 

suspensions and monolayer cultures. Drug metabolism and disposition: the biological fate of 

chemicals (2005) 33(1):115-120. 

 

134. Houston JB, Carlile DJ: Prediction of hepatic clearance from microsomes, hepatocytes, and liver 

slices. Drug metabolism reviews (1997) 29(4):891-922. 

 

135. Ekins S, Murray GI, Burke MD, Williams JA, Marchant NC, Hawksworth GM: Quantitative differences 

in phase i and ii metabolism between rat precision-cut liver slices and isolated hepatocytes. Drug 

Metabolism and Disposition (1995) 23(11):1274. 

 

136. Riley RJ, McGinnity DF, Austin RP: A unified model for predicting human hepatic, metabolic 

clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug metabolism 

and disposition: the biological fate of chemicals (2005) 33(9):1304-1311. 

 

137. Zanelli U, Caradonna NP, Hallifax D, Turlizzi E, Houston JB: Comparison of cryopreserved heparg 

cells with cryopreserved human hepatocytes for prediction of clearance for 26 drugs. Drug 

Metabolism and Disposition (2012) 40(1):104. 

 

138. Wang WW, Khetani SR, Krzyzewski S, Duignan DB, Obach RS: Assessment of a micropatterned 

hepatocyte coculture system to generate major human excretory and circulating drug metabolites. 

Drug metabolism and disposition: the biological fate of chemicals (2010) 38(10):1900-1905. 

 

139. Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ, Stolz DB, Fry R, Samson LD, Tannenbaum SR, 

Griffith LG: A microscale in vitro physiological model of the liver: Predictive screens for drug 

metabolism and enzyme induction. Current drug metabolism (2005) 6(6):569-591. 

 

140. Knöspel F, Jacobs F, Freyer N, Damm G, De Bondt A, van den Wyngaert I, Snoeys J, Monshouwer M, 

Richter M, Strahl N, Seehofer D et al: In vitro model for hepatotoxicity studies based on primary 

human hepatocyte cultivation in a perfused 3d bioreactor system. International Journal of 

Molecular Sciences (2016) 17(4):584. 

 

 



50 

 

 


