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In modern wireless networks deployments, each serving node needs to keep its Neighbour Cell List (NCL) constantly up to date to
keep track of network changes.The time needed by each serving node to update its NCL is an important parameter of the network’s
reliability and performance. An adequate estimate of such parameter enables a significant improvement of self-configuration
functionalities. This paper focuses on the update time of NCLs when an approach of crowdsourced user reports is adopted. In
this setting, each user periodically reports to the serving node information about the set of nodes sensed by the user itself. We show
that, bymapping the local topological structure of the network onto states of increasing knowledge, a crispmathematical framework
can be obtained, which allows in turn for the use of a variety of user mobility models. Further, using a simplified mobility model we
show how to obtain useful upper bounds on the expected time for a serving node to gain Full Knowledge of its local neighbourhood.

1. Introduction

Neighbour Cell List Discovery (NCLD) is a core process
of modern wireless networks, especially when deployed in
an unplanned and decentralised manner like WiFi hotspots
and LTE femtocells [1]. In these scenarios, each node needs
to independently construct the NCL. Further, appropriate
knowledge of network topology, that is, the neighbourhood
structure of each node in the network, allows the design of
more efficient routing and interference-avoidance algorithms
and improved allocation of limited network resources. In a
number of common situations, relying on explicit commu-
nication or on a central controller may be impractical or
even impossible, for instance, when neighbouring devices
belong to a different operator. Local knowledge of network
topology is enough to produce distributed algorithms for
channel allocation in WiFi networks, code selection in small
cell networks, and distributed graph colouring and routing
and also for problems of joint power and channel allocation
optimisation (see Section 2).

Though related to location discovery, the topic of this
manuscript is the discovery of existing neighbours without

targeting their actual geographical position. We focus on
the process of NCLD via crowdsourcing, meaning that the
task of detecting and reporting the existence of conflicting
neighbours is delegated to users. In this framework, each user
periodically reports to the serving node information about
the set of neighbouring nodes observed; see, for example,
Figure 1. Exploiting User Equipment (UE) measurements is
appealing because such technique is easy to implement and
virtually cost-free. Nevertheless, the information received
from UE measurements is disregarded by the serving node
in most implementations [2, Section 7.4.1].

Keeping the NCL updated is fundamental for a number
of reasons:

(i) Neighbouring cells can be added, removed, or tem-
porarily offline.

(ii) The handover to a new cell might be problematic
whenever it is not contained in theNCL of the serving
cell.

(iii) Some cells should not be added to the NCL list
because they might reflect spurious measurements,
yielding nonreliable handovers.
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(iv) Neighbours with the same PCI should be handled
with specific solutions.

With these reasons in mind, this manuscript studies the time𝑇 necessary to achieve confident knowledge of the NCL
through UE measurements. Estimating 𝑇 enables optimal
tuning of neighbour cell list management schemes. 𝑇 is also
important for the design and deployment of decentralised
optimisation schemes. A key example is self-organisation, a
problem where the network nodes need to optimise their
configuration without a central controller, that is, relying on
local information only. There exist many fast and efficient
decentralised algorithms to self-organise a WiFi/femtocell
network; these algorithms are generally fed with a NCL,
which needs to be constantly kept up to date. At implemen-
tation level, this means that each node needs to periodically
estimate with a sufficient level of confidence which nodes
of the network are potential conflicting neighbours. The
majority of decentralised schemes require that each serving
node needs local knowledge of the local neighbourhood [3–
6], and any attempt to relax this hypothesis comes at the
expense of performance, as shown in Section 2.

In the literature, it is usually assumed that neighbourhood
information may be instantaneously acquired [7–13]; that is,
the time 𝑇 is considered negligible. In fact, this assumption
may often not be valid, either because it is necessary to listen
to the channel long enough to get a high-confidence estima-
tion or because hidden nodes/second-hop NCLs need to be
known as well, and thus it is necessary to use communication
with users or other nodes to obtain such information. When
the time needed by each serving node to update its NCL is
larger than the time to execute the optimisation algorithm, a
decentralised approach might not be the best solution.

In a framework where the NCL is built via crowdsourced
user reports, our main goal is to rigorously characterise 𝑇
and study its properties and bounds. This is a problem that,
to the best of our knowledge, has not yet been addressed in
the literature. Our main contributions are the following: (i)
the problem of user-reports-based NCLD is stated for the
first time through a crisp mathematical formulation; (ii) we
introduce a simple mobility model that is useful for gaining
insight into those situations where crowdsourcing via user
reports is likely to yield the greatest benefit to a decentralised
approach; (iii) we show that this model can provide an upper
bound on the time to topology discovery; thus it can be used
as a design tool (see Section 5.5).

The rest of the paper is organised as follows: in Section 2,
we present the related work; then, in Section 3 we show some
practical use cases where our approach can be applied. In
Section 4, we provide amathematical model for the discovery
process and in Section 5 we define the problem in the context
of such model and give some useful bounds. We present
simulation results to validate the model and show how it can
be used as a network design tool in Section 6. Finally, in
Section 7 we draw the conclusions.

2. Related Work

In the field of decentralised algorithm design, it has been
shown that local knowledge of network topology is enough to

Figure 1: Example of NCLD. Each user report to the serving node
which neighbouring nodes they observe.

produce a distributed algorithm for resource allocation; such
local knowledge also allows the minimisation of scrambling-
code collision and confusion in small cell networks; see [14]
and references therein. This knowledge is sufficient and in
a certain sense necessary to build efficient algorithms, as
the attempts to relax the hypothesis that each serving node
needs knowledge of the local neighbourhood will result in an
extreme loss of performances [15, 16], which can be prevented
only in specific scenarios where the interferencemodel can be
described with a simple graph [17].

Perhaps the main motivation of this manuscript is the
work of [18], where the authors propose a neighbour cell
list management scheme based on the long-term statistics
of UE measurements. A key parameter of this scheme is
the forgetting factor 𝛾, which weighs the longitudinal UE
measurements. Such parameter is clearly not trivial to tune,
especially in settings, very common in wireless and cellular
networking, where instantaneous cell list acquisition cannot
be assumed.The optimal tuning 𝛾 is only possible by studying
the statistical properties of the time 𝑇 necessary to achieve
confident knowledge of the NCL through UEmeasurements.

The user report function is already available in commer-
cial femtocells [19] and small cells networks, and its imple-
mentation for code confusion and interference reduction is
recommended in [14, 20].

Crowdsourcing approaches have been investigated for
different applications, for example, for estimating both den-
sity and number of attendees of large events [21]. Many works
pertain to the use of crowdsourcing for NCL discovery. In
[22], the use of mobile measurement to update the NCL
of macrocells after deployment has been studied: since the
intrafrequency reporting function, known as Detected Set
Reporting (DSR), is energetically costly for themobile device,
the use of it is suggested only in critical situations where
a problem with the current NCL is known. A similar case,
where the NCL needs to be updated when a new macrocell
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is deployed, is studied in [23]. Other ways to dynamically
build the NCL via crowdsourcing are presented in [18, 24].
A similar work applied to WiMax is presented in [25], and a
closely related approach for the femtocell case is presented in
[26].

With this work, we address the problem of estimating
the NCL construction time, which is necessary to assess
whether crowdsourcing is effective in a particular network
deployment. However, to the best of our knowledge, this
problem has not been addressed in the literature yet.

3. Use Cases

We show in this section some timely use cases where our
proposed framework can be applied as a network design tool.

3.1. 3G Network Optimisation. In order to provide seamless
mobility and a satisfactory service, the optimisation of the
handover function is fundamental in modern 3G cellular
networks. To achieve that, the construction of a reliable
NCL is one of the most critical tasks. While in the past this
was achieved by drive and walk testing, the needs to adapt
to changes in the network and to reduce the cost require
different solutions [12, 18, 22].

The so-calledDetected Set Reporting (DSR) is an intrafre-
quency 3GPP functionality that allows users to report cells
not defined in the NCL. In this way, whenever a macrocell
detects a problem, or when a new cell is deployed [23], such a
function can be activated. The only disadvantage is that such
functionality is energetically costly for the mobile device, so
its use is recommended for short periods of time and only in
critical situations where a problem with the current NCL is
known. Therefore, an estimation of the optimal time to keep
the DSR active is required. Our work provides an effective
framework to make such estimation possible.

3.2. Small Cells Self-Configuration. An important problem
that affects the small cells deployment for residential use is
code selection. In 3G, base stations have only few scrambling
codes available, making the task of selecting the optimal allo-
cation challenging. Moreover, communication with a central
controller is discouraged, to avoid signalling overhead. In 4G
and 5G, Physical Cell Identity codes and 5G scrambling codes
have similar problems.

A fully decentralised algorithm that can converge to the
optimal confusion- and collision-free code allocation has
been devised in [14]. However, it relies on the assumption
that small cells are able to construct theirNCL.Unfortunately,
small cells are often not able to detect first- and second-
hop neighbours reliably due to hidden-node effects and
the absence of an efficient sniffing Common Pilot Channel
(CPICH) mechanism. A technique to construct the NCL
via crowdsourcing has been proposed in [26]. However, the
implementation of such a technique would first require the
evaluation of the time scale of the NCL construction and its
comparisonwith the time scale of the convergence of the code
allocation algorithm.
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Figure 2: Example of tessellation corresponding to scenario of
Figure 1. The scenario is modelled with a serving node, 𝑎0, with
three interfering neighbours, 𝑎1, 𝑎2, and 𝑎3; the coverage area of the
serving node, 𝐴(𝑎0), can be tessellated with the sets 𝐴0, 𝐴1, 𝐴2, 𝐴3,𝐴12, 𝐴13, 𝐴23, and 𝐴123. For simplicity of notation, we will write𝐴0 fl 𝐴0.
4. Neighbour Cell List Discovery Model

Given a set of wireless nodesA = {𝑎0, . . . , 𝑎𝑁}, let 𝐴(𝑎𝑖) ⊂ R2
denote the coverage area of access point 𝑎𝑖. Please note that𝐴(𝑎𝑖) generally depends on the transmission power of 𝑎𝑖 and
on the radio propagation properties of themedium.We focus
on serving access point 𝑎0 and letB denote the neighbouring
nodes that have nonvoid intersection with 𝐴(𝑎0); that is,

B = {𝑎𝑖 ∈ A, 𝑖 > 0 : 𝐴 (𝑎0) ∩ 𝐴 (𝑎𝑖) ̸= 0} . (1)

We will hereafter use the symbol𝑁 to denote the cardinality
ofB; that is,𝑁 = |B|.

LetP(B) denote the powerset ofB. A tessellation of the
area 𝐴(𝑎0) is the collection of tiles {𝐴 i}i∈P(B) such that𝐴 (𝑎0) = ⋃

i∈P(B)
𝐴 i, (2)

where 𝐴 i = ⋂
𝑗∈i
𝐴(𝑎𝑗) ∩ 𝐴 (𝑎0) \⋃

𝑗∉i
𝐴(𝑎𝑗) , i ̸= 0,

𝐴0 = 𝐴 (𝑎0) \ ⋃
i∈P(B)\0

𝐴 i. (3)

In what follows, each element 𝐴 j composing the tessellation
is referred to as a tile, and we will use the vector notation j
to represent a set of neighbouring nodes. Let us consider, for
example, i = {𝑎1, 𝑎2}; then, the tile 𝐴 j is the portion of 𝐴(𝑎0)
that is covered by 𝑎1 and 𝑎2 only; see Figure 2.

Whenever a user is in 𝐴 j, it will report j to access point𝑎0. In other words, 𝑎0 will be aware of the existence of those



4 Wireless Communications and Mobile Computing

neighbouring nodes 𝑎𝑖 ∈ j. The rate of these reports depends
on the mobility model assumed (see Section 5).

To keep the model as conservative as possible and to
encompass the frequent case of half-duplex nodes, we assume𝑎0 cannot detect the existence of any neighbour even though𝑎0 lies in one of the neighbours’ coverage area.

Let K𝑡 denote the knowledge set of access point 𝑎0, that
is, the set of neighbours that 𝑎0 is aware of, at time 𝑡. Given a

sequence of reports {j1, . . . , j𝑡}, we have thatK𝑡 = ⋃𝑡𝑖=1 j𝑖.K𝑡
is a sequence of sets that satisfies

K𝑡 = 𝑡⋃
𝑠=0

K𝑠; (4)

in particular, |K𝑡| is nondecreasing in 𝑡. Clearly, the knowl-
edge state at time 𝑡,K𝑡, takes values inP(B).
Definition 1 (Full Knowledge). Given an integer𝑇 and a finite
sequence of reports {j1, . . . , j𝑇}, the node 𝑎0 is said to have Full
Knowledge (FK) of its neighbours at time 𝑇 if

K𝑇 = 𝑇⋃
𝑠=1

j
𝑠 =B. (5)

Remark 2. If 𝑎0 has Full Knowledge (FK) of its neighbours at
time 𝑇, so it has at all times 𝑇 + 𝑡 for 𝑡 ≥ 0. In other words,
once 𝑎0 has reached FK, it cannot lose it.

Definition 3 (first time to FK). Given a sequence of reports{j1, j2, . . .}, the first time to FK 𝜏 for the node 𝑎0 is the first
time the latter reaches FK of its neighbours; that is,𝜏 fl min {𝑇 ≥ 0 such that K𝑇 =B} . (6)

Remark 4. The characterisation of the first time to FK gener-
ally depends on the realisation of a sequence of user reports;
this means that 𝜏 is a random variable. More precisely, by (6),𝜏 is a stopping time; see, for example, [27].

We end the section with a note on the tessellation.

Remark 5. A generic tessellation ofB can be represented as

a hypercube𝐻 = {0, 1}𝑁 by identifying the vertices of𝐻with
the tiles 𝐴 j that the tessellation is composed of. The number

of tiles of a generic tessellation of B is 2𝑁 as well as the
vertices of a hypercube, represented as vectors of size𝑁. The
tiles of the tessellation can be mapped onto the vertices of the
hypercube by identifying the 𝑖th component of the vertices𝑥 ∈ 𝐻 with 𝑎𝑖 ∈B. In other words,𝐴 j ←→ 𝑥 ⇐⇒𝑥𝑖 = 1{𝑎𝑖∈j}, 𝑖 = 1, . . . , 𝑁, (7)

where 1 is the indicator function.We define the order of a tile
as the number of neighbours a report from that tilewould give
knowledge of; the number of 𝑘th order tiles is (𝑁𝑘 ). A report

4th-order tile

3rd-order tiles

2nd-order tiles

1st-order tiles

0th-order tile
Line of Full Knowledge

Figure 3: Hypercube representation of the tessellation for 𝑁 = 4.
There is one-zeroth order tile, namely, 𝐴𝐶; four first-order tiles, 𝐴1,𝐴2, 𝐴3, and 𝐴4; six second-order tiles, 𝐴12, 𝐴13, 𝐴14, 𝐴23, 𝐴24, and𝐴34; four third-order tiles, 𝐴123, 𝐴124, 𝐴134, and 𝐴234; and a fourth-
order tile, that is, 𝐴1234.
from a 𝑘th order tile is equivalent to 𝑘 first-order reports. In
particular, FK is attained with a report from the 𝑁th order
tile, or at least two reports from two distinct (𝑁 − 1)th tiles,
and so on. This property can be graphically represented by
what we call the Line of Full Knowledge; see Figure 3.The line
of FK is clearly not unique (e.g., there are𝑁 tiles of order𝑁−1, but only 2 are part of a given line of FK); the aim of Figure 3

is only to illustrate that a sequence of 𝑇 reports {j1, . . . , j𝑇} is
a path on the hypercube𝐻 and that FK is attained whenever
a line of FK is reached at a time smaller than 𝑇.

SinceK𝑡, the knowledge state at time 𝑡, takes on values in
the same setP(B), we can also map the knowledge states on

the hypercube𝐻. That is, a sequence of reports {j1, j2, . . . , j𝑡}
is equivalent to a single report from tile⋃𝑡𝑠=1 j𝑠 =K𝑡.

We can now define the main problems of this work.

Problem 6 (expected first time to Full Knowledge). Given an
access point 𝑎0, a set B of neighbours with given position
and coverage area, and a sequence of user reports, we want
to characterise the expectation of the first time to FK; that is,

E (𝜏) = ∑
𝑡≥1
𝑡P (𝜏 = 𝑡) . (8)

Obviously, the way the user(s) moves inside the coverage
area 𝐴(𝑎0) heavily affects the difficulty of the problem and
its answer. However, the formulation of Problem 6 has the
great advantage of decoupling the notion of FK from the user
mobility model; addressing the mean value of the first time
to FK is also an enabler to the estimate of the tail of the
distribution of 𝜏—through Markov’s inequality, for example.
Further, from a numerical point of view, the expected time to
FK may be achieved via a Monte Carlo simulation once the
setB and the mobility model in use are fixed.

There may exist cases where it is only necessary to
characterise the first time to attain partial knowledge of the
local topology. For example, we may be interested in the first
momentwhen the neighbouring nodes that have been already
discovered, that is, the elements of the knowledge setK𝑡, are
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enough to describe a given fraction of the local topology.This
idea motivates the following.

Problem 7 (expected first time to 𝛿-knowledge). Let  be a
measure over P(B) and fixed 𝛿 ∈ (0, 1]. Given an access
point 𝑎0, a set B of neighbours with given position and
coverage area, and a sequence of user reports, we want to
characterise the expectation of the first time to 𝛿-knowledge
E(𝜏𝛿), where
𝜏𝛿 = min{𝑇 ≥ 0 such that

∑k∈P(K𝑇)  (𝐴k)∑j∈P(B)  (𝐴 j) ≥ 𝛿} . (9)

When 𝛿 = 1 and (𝐴 j) > 0 for each j ∈
P(B), Problem 7 is equivalent to Problem 6. Indeed,∑k∈P(K𝑇) (𝐴k)/∑j∈P(B) (𝐴 j) ≥ 1 if and only ifK𝑇 ≡B.

We will hereafter consider the Lebesgue measure (𝐴k) =‖𝐴k‖.This leads to the following interpretation: 𝛿-knowledge
is attained when the knowledge set K𝑡 defines for the first
time a tessellation that covers a fraction of𝐴(𝑎0) larger than or
equal to 𝛿. Equivalently, 𝜏𝛿 is the first time when the tiles that
would give new information (in the sense that the cardinality
of the knowledge setK𝑇 would increase) cover a fraction of𝐴(𝑎0) that is smaller than 1 − 𝛿.
Remark 8. The concept of 𝛿-knowledge is fundamental in
the simulation phase, when we want to know whether user
reports can effectively be used to give knowledge of the
local topology. Indeed, it is likely that the neighbours 𝑎𝑖
whose coverage area do not overlap with 𝐴(𝑎0) save for a
nearly negligible portion will be discovered after a very long
time; in other words, the leading contribution to E(𝜏) will
be represented by the mean first-visit time of the user(s)
to 𝐴(𝑎𝑖). Discarding 𝑎𝑖 from the picture, the concept of 𝛿-
knowledge lets us focus on the quantitative analysis of NCLD;
see Section 6.

5. Teleport Mobility

The characterisation of 𝜏, the first time to FK, depends on the
assumed user’s mobility model: it describes how users enter,
exit, and move within 𝐴(𝑎0). The users evolution can then be
represented as a pair 𝑈𝑡 = (𝑛𝑡, 𝑋𝑡), where 𝑛𝑡 is the number
of users that lie in 𝐴(𝑎0) at time 𝑡 and 𝑋𝑡 = (𝑥1𝑡 , 𝑥2𝑡 , . . . , 𝑥𝑛𝑡𝑡 )
is a vector with the position of the 𝑛𝑡 users. We assume the
evolution of 𝑈𝑡 to be driven by a discrete-time Markov chain
(MC) throughout the paper.

The realisation of {𝑈𝑡}0≤𝑡≤𝑇 completely determines the

sequence of user reports {j1, . . . , j𝑇} to the access point 𝑎0 (cf.
Remark 4). SinceK𝑡 only depends onK𝑡−1 and 𝑈𝑡, then the
bivariate process (𝑈𝑡,K𝑡) is a MC.

It will prove useful to consider a simplified mobility
model in which a single user continuously teleport between
tiles, without leaving 𝐴(𝑎0)(this model will be extended to
many users and to more general models in Section 5.5).

Model 1 (teleport mobility). A single user moves within𝐴(𝑎0) according to a discrete-time MC taking on values in
P(B). At any time the user cannot abandon the whole
region, that is, it is constrained within 𝐴(𝑎0). At each step,
the user instantaneously teleports with a probability that is
proportional to the measure of the destination tile (note that
the actual position within a tile is undefined in this model).
The destination tile can also be the same tile of previous step,
meaning that the user would remain on the same tile during
that discrete-time step. Assuming that all tiles are Lebesgue-
measurable plane sets, the transition probabilities are

P (i → j) = 𝐴 j

𝐴 (𝑎0) , (10)

where ‖ ⋅ ‖ denotes the Lebesgue measure.

Remark 9. Model 1 greatly simplifies the characterisation of𝜏, the first time to FK. Indeed, in this mobility model, K𝑡 is
independent of𝑈𝑡, and the sole processK𝑡 is hence sufficient
to describe the process of gathering knowledge from the user
reports. We will hereafter refer toK𝑡 as the knowledge chain.

Assuming Model 1, we can easily describe the process
of gathering knowledge from user reports as a discrete-

time random walk on the hypercube 𝐻 = {0, 1}𝑁 (which
we have introduced in Remark 5); having knowledge of 𝑛
neighbouring nodes is in fact equivalent to receiving a report
from the 𝑛th order tile that gives information about all of
them.

Let 𝑃(⋅, ⋅) be the transition kernel of the knowledge chain.
If k ̸⊆ l, then (4) guarantees that 𝑃(k, l) = 0 because such
transitionwouldmean a loss of knowledge. Conversely, when
k ⊆ l, a transition from k to l happens if the user moves to a
tile that contains the missing information (l\k) and does not
add more information than that. Therefore,

𝑃 (k, l) = {{{{{ ∑
m∈P(k)

𝐴 {m∪(l\k)}𝐴 (𝑎0) , if k ⊆ l,0, otherwise. (11)

The following result holds.

Lemma 10. The matrix 𝑃 is upper triangular.
Proof. Let us consider the following partial ordering relation
among the states:

k ⪯ l⇐⇒
k ⊆ l. (12)
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By (11), 𝑃(k, l) ̸= 0 only if k ⪯ l. Therefore, any mapping

P (B) ∋ l←→𝑙 ∈ {1, 2, . . . , 2𝑁} , (13)

such that

k ⪯ l⇐⇒𝑘 ≤ 𝑙, (14)

will put the matrix 𝑃 into an upper triangular form. In
particular, we can order the states by increasing cardi-
nality and in lexicographic order (for 𝑁 neighbouring

nodes, that is, with 2𝑁 different tiles, this would mean the
sequence {1}, {2}, . . . , {𝑁}, {1, 2}, . . . , {𝑁−1,𝑁}, . . . , {1, 2, . . . ,𝑁}).

The explicit computation of the whole matrix 𝑃 using (11)
is expensive in general since 𝑃 is a 2𝑁 × 2𝑁 matrix. However,
as stated above, 𝑃 is upper triangular. In Section 5.3, we
show that it is possible to explicitly characterise its spectrum.
For the reader’s reference, the following equation shows the
example of transition matrix 𝑃 for𝑁 = 3:

𝑃 = 1𝐴 (𝑎0)

⋅
(((((((((((
(

𝐴0 𝐴1 𝐴2 𝐴3 𝐴12 𝐴13 𝐴23 𝐴1230 𝐴0 + 𝐴1 0 0 𝐴2 + 𝐴12 𝐴3 + 𝐴13 0 𝐴23 + 𝐴1230 0 𝐴0 + 𝐴2 0 𝐴1 + 𝐴12 0 𝐴3 + 𝐴23 𝐴13 + 𝐴1230 0 0 𝐴0 + 𝐴3 0 𝐴13 + 𝐴1 𝐴2 + 𝐴23 𝐴12 + 𝐴1230 0 0 0 𝐴0 + 𝐴1 + 𝐴2 + 𝐴12 0 0 𝐴3 + 𝐴13 + 𝐴23 + 𝐴1230 0 0 0 0 𝐴0 + 𝐴1 + 𝐴3 + 𝐴13 0 𝐴2 + 𝐴12 + 𝐴23 + 𝐴1230 0 0 0 0 0 𝐴0 + 𝐴2 + 𝐴3 + 𝐴23 𝐴1 + 𝐴12 + 𝐴13 + 𝐴1230 0 0 0 0 0 0 1

)))))))))))
)
. (15)

5.1. Expected Time to Full Knowledge. Let k∗ = {1, 2, . . . , 𝑁}
be the state of FK. By formula (11), 𝑃(k∗, k∗) = 1. This means
that the chain has an absorbing state, and the hitting time of
this state is just 𝜏, the first time to FK. Hence, we can compute
the expected time to FK simply by

E [𝜏] = (𝐼 − 𝑄)−1 1, (16)

where 𝑄 is obtained from 𝑃 by removing the row and the
column relative to state k∗ and 1 is the column vector of
ones [28]. In a similar way, it is possible to compute the other
moments of 𝜏.

Even if 𝐼 − 𝑄 is upper triangular and can be block
decomposed, the computation of its inverse may not be
affordable when the cardinality of B grows. In Section 5.4,
we will bound the probability of the event {𝜏 > 𝑡}.
5.2. Expected Time to 𝛿-Knowledge. Regarding Problem 7, we
can easily modify matrix 𝑃 to obtain the expected time to 𝛿-
knowledge. Every state k ∈ P(B) such that

∑
l∈P(k)

𝐴 l
𝐴 (𝑎0) ≥ 𝛿 (17)

can be aggregated in the absorbing state, summing the
corresponding column of 𝑃 in the last column, and then
eliminating the column and row corresponding to state k. In
this way, it is possible to compute E[𝜏𝛿] using (16).
5.3. Eigenvalues. The following result fully characterises the
spectrum of the matrix 𝑃.

Theorem 11. For k ∈ P(B), the eigenvalues of 𝑃 have the
form

𝜆k = 1𝐴 (𝑎0) (𝐴0 + ∑l⊂k
|l|=1

𝐴 l
 + ⋅ ⋅ ⋅ + ∑

l⊂k
|l|=𝑚

𝐴 l


+ ⋅ ⋅ ⋅ + ∑
l⊂k
|l|=|k|

𝐴 l
) .

(18)

Proof. The matrix 𝑃 being upper triangular by Lemma 10,
the entries 𝑃(k, k) are the eigenvalues of the matrix. Let us
then imagine to have the knowledge chain in state k. The
only way for the chain to undergo a self-transition (k → k)
is that the user reports any combination of neighbouring
nodes that have already been discovered. In other words, the
knowledge chain undergoes a self-transition if and only if the
user reports an element ofP(k). Therefore,

𝜆k = 1𝐴 (𝑎0) ∑l∈P(k) 𝐴 l
 . (19)

Last formula is equivalent to the thesis.

Since each eigenvalue is a sum of positive elements, the

second-largest eigenvalue �̃� can be obtained by maximising
over the tiles of order𝑁 − 1:�̃� = max

k:|k|=𝑁−1
𝜆k. (20)
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5.4. Convergence Properties, Bounds. Using (20), it is possible
to obtain the following result.

Lemma 12. Given 𝜀 > 0, let𝑆 (1 − 𝜀) = log 𝜀
log �̃� . (21)

Then, 𝑆(1 − 𝜀) reports are sufficient to achieve FK with
probability greater than or equal to (1 − 𝜀).
Proof. Using Lemma 10 and (20) on 𝑃,

P (𝜏 > 𝑡) ≤ �̃�𝑡. (22)

For a small target tolerance 𝜀 of not achieving FK,
if 𝑡 ≥ log 𝜀

log �̃� ⇒
P (𝜏 > 𝑡) ≤ 𝜀. (23)

𝛿-Knowledge Convergence Bounds. Using the same manipu-
lation of the matrix 𝑃 described in Section 5.2, Lemma 12 in
Section 5.4 can be applied to the modified matrix to obtain
a bound for the number of steps to have 𝛿-knowledge with
high probability.

5.5. 𝛿-Knowledge and Other-Than-Teleport Mobility. Model
1 is equivalent to a single user teleporting instantaneously
to a random point within the coverage area of the node;
time is discrete. Thus, at each time node 𝑎0 receives a report
from a location that is sampled from the uniform probability
distribution over the coverage area𝐴(𝑎0). Bearing inmind the
numerical characterisation of the first time to 𝛿-knowledge,
the teleport model is particularly convenient. This task could
be in fact carried out within the Monte Carlo paradigm by
simply throwing sufficiently many points at random inside
the coverage area 𝐴(𝑎0). In other words, it is possible to
numerically study the process through which 𝛿-knowledge
is achieved by sampling sufficiently many times a probability
density function that is uniform over the coverage area𝐴(𝑎0).

Model 1 may prove itself unsatisfactory in a real life
scenario. The main problem is that if we generate a sequence
of user reports according to it, any two elements of the
sequence are independent, whereas in general they are not. In
each mobility model where the trajectory taken by the user is
physically feasible, the user positions communicated by two
successive reports are in fact correlated due to the motion
constraints.

Let us imagine that a single user travels inside the cov-
erage area 𝐴(𝑎0) according to an unknown mobility model,
and let 𝑇(𝑡) be the trajectory taken by the user. Sampling
the trajectory at equally spaced discrete times, we obtain
an embedded sequence of user locations, which correspond
to an embedded sequence of user reports. Next, we can
analyse the sequence and understand after how many steps𝛿-knowledge has been reached. By multiplying this number
of steps by the time lapse between two consecutive reports

(inter-report time), the time to 𝛿-knowledge can be obtained
for that particular realisation of the user-reports sequence.
Finally, the procedure above can be repeated sufficiently
many times to estimate with a Monte Carlo method the
expected time necessary for 𝑎0 to reach 𝛿-knowledge.

As mentioned above, in a general mobility model it is
likely that two successive user reports are correlated. These
correlations may decay as the inter-report time grows larger
and larger. As an example, let us imagine that a single user
travels inside the coverage area 𝐴(𝑎0) according to a MC.
Let 𝜋 be the equilibrium probability measure of the chain
and let 𝑡mix be the mixing time of the chain, that is, the
time needed for the chain to reach equilibrium. If the inter-
report time is chosen comparable to 𝑡mix then the time
lapse between two successive reports will be sufficient for
the MC to forget the past trajectory; in other words, the
correlations between consecutive reports will be negligible.
As a consequence, the user locations will be independently
drawn from the probability measure 𝜋, and the matrix 𝑃
describing the knowledge evolution will become

𝑃 (k, l) = {{{ ∑
m∈P(k)

𝜋 (𝐴 {m∪(l\k)}) , if k ⊆ l,0, otherwise. (6)
Therefore, the formulation and the results developed in

Sections 5.1–5.4 are still valid if we consider a single-user
mobility model based on a MC, provided that the time lapse
between two consecutive reports is of the order of the mixing
time of the chain. Under the assumption that user reports are
sent at a frequency comparable with the inverse mixing time
of the mobility MC, we can compute an upper bound on the
time to 𝛿-knowledge. Any reporting rate higher than 1/𝑡mix

will in fact still guarantee that 𝑎0 achieves 𝛿-knowledge of
its neighbourhood in at most E[𝜏𝛿] ⋅ 𝑡mix seconds on average
(recall that E[𝜏𝛿] is measured in number of reports).

5.5.1. Multiuser Scenario. We end this section by briefly
mentioning a straightforward application of Model 1 in a
multiuser scenario. Let us imagine that 𝑛 users may enter,
move within, and exit 𝐴(𝑎0) according to a hidden mobility
model. We assume that 𝑛 is a very large number and that
it is possible to statistically characterise the stationary user-
density by means of a probability measure 𝜋 over 𝐴(𝑎0).
At each time every user may independently send a report
with a very small probability 𝑝. Then, the number of reports
received by 𝑎0 in a given time interval is approximately
Poissonian and the time lapse between two successive reports
is exponential with parameter 𝜆 = 𝑛𝑝. Next, let 𝑚 = E[𝜏]
be the expected time to FK, expressed in number of reports,
returned by (6) and (16); the expected time to achieve FK
is the expectation of the first time for a Poisson process of
parameter 𝜆 to hit the state 𝑚. A practical example for this
kind of scenario in presented in Section 5.6.2.

5.6. Examples

5.6.1. Femtocells Deployment for Residential Use. Regarding
the use case of femtocell self-organisation presented in
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Section 3.2, each serves a very small number of devices.
Using data of typical residential densities and coverage areas,
a statistic of the tessellation can be devised. If it is possible

to establish a time �̃� after which the user position can be
considered as drawn from a uniformdistribution, then 𝑆(𝛿) is
an upper bound of the time to 𝛿-knowledge for all the inter-
report times smaller than or equal to �̃�.
5.6.2. Cells Deployed in Congested Areas. Opposite to the
previous example, cells deployed in congested places like
a mall have an extremely large basin of potential users.
However, in situations where users main interest is other
than connecting to the Internet, it is reasonable to expect the
single-user reporting-activity to be rather sporadic. There-
fore, the Poissonian approximation that we have mentioned
at the end of Section 5.5 may be applicable. In this case,
characterising the time to achieve 𝛿-knowledge is possible
through a statistic of the typical (or worst case) tessellations.

6. Simulations

6.1. Teleport Model on Random Positioned Nodes. In this
section, we offer a preliminary assessment of the possibility of
using the machinery developed so far in real applications. To
this purpose, we developed a simulation framework inMAT-
LAB and studied a scenario where 8 nodes are positioned
on a plane at random according to a uniform (bivariate)
probability distribution, that is, uniformly at random. Each
node has a circular coverage area of the same size. We
considered 350 different configurations, with the constraint
that the coverage area of 𝑎0 has nonvoid intersection with
the coverage area of the remaining nodes, meaning that
FK is achieved as soon as all 7 neighbours are reported
to 𝑎0. We compute the tessellation of each configuration
using a classical Monte Carlo sampler. For each of these
350 configurations, we computed the expected time to 0.9-
knowledge E[𝜏] together with the number of steps sufficient
to guarantee 0.9-knowledge with 90% confidence, that is,𝑆(0.9). The inter-report time being fixed during this first
experiment, the amount of time in seconds to achieve 0.9-
knowledge is directly proportional to the number of steps just
evaluated.

Figure 4 displays the empirical probability mass function
of these two quantities. E[𝜏] is centred around 10 steps, while𝑆(0.9) is shifted on higher values, as expected being an upper
bound. Figure 5 shows the empirical cumulative distribution
function of E[𝜏] and 𝑆(0.9). We see that 16 steps are sufficient
to achieve 0.9-knowledge for nearly all scenarios (95%), while
we need 22 steps using 𝑆(0.9). We also notice that the bound
obtained from (21) is a conservative estimation, because it
uses only the second-largest eigenvalue �̃�. Indeed, it takes into
account only the slowest way to reach the desired knowledge,
while the problem has a rich combinatorial structure that
cannot be completely captured by (22).

Roughly speaking, a usermoving at 0.5m/s according to a
random walk model, and providing at least one report every
hour, can guarantee the node will have 0.9-knowledge with
high probability in less than 5 h and in less than two hours
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Figure 4: Empirical probability mass function of the expected time
to 0.9-knowledge, and the number of steps to have 0.9-knowledge
with 90% confidence, for the teleport model on random positioned
nodes. Since the inter-report time is fixed, the simulation time is
directly proportional to the number of reports.
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Figure 5: Empirical cumulative distribution function of the
expected time to 0.9-knowledge, and the number of steps to have
0.9-knowledge with 90% confidence, for the teleport model on
random positioned nodes. Since the inter-report time is fixed, the
simulation time is directly proportional to the number of reports.

if reports are sent at least every 15 minutes (see next section
for a more detailed analysis on the interaction between
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Figure 6: Empirical mean 0.9-knowledge time (in hours) of a
randomwalk versus inter-report period, comparedwithModel 1 and
its bound 𝑆(0.9) in a femtocell grid of 8 nodes.

report frequency and our bound). If the local topology is not
typically expected to change often, these are acceptable times.

To summarise, simulation on random scenarios show that
our proposed bound can be used to estimate the time to 𝛿-
knowledge. Using realistic values, the expected time to 𝛿-
knowledge is reasonably small.

6.2. Random Walk on a Grid. In order to investigate and
confirm the ideas of Section 5.5, we simulated the reports
sent with different inter-report times by a random walker
that moves within 𝐴(𝑎0) under the condition of reflective
boundary and compared this mobility model with Model 1
(see Section 5) for a set of 8 nodes positioned as described at
the beginning of this section.

In Figure 6, we let the inter-report time increase and com-
pare the average time to achieve 0.9-knowledge according to
both the random walk (green line) and the teleport model
(blue).We see that if the inter-report time is sufficiently large,
the empirical mean time to achieve 0.9-knowledge for the
random walk model is well approximated by that of Model
1.

We assume typical femtocell parameters, that is, that
coverage radius is 50m and that the user does a step in a grid
of 2.5m every 5 s. Figure 6 also shows that when reports are
sent each 6min or less, the time to 0.9-knowledge is smaller
than 1 h, but at such high frequency the bound 𝑆(0.9) (red
line) is not valid anymore.The reason why more reports than
Model 1 are needed in the case of high-frequency reports is
the following: since the inter-report time is short, it is likely
that many reports will be sent from the same tile; that is, the
knowledge chain will undergo many self-transitions.

It is important to notice that the inter-report times used
in Figure 6 are far from the theoretical order of magnitude
of the random walk mixing time. Yet, Figure 6 suggests that,
for a family of scenarios, it should be possible to determine
the value of the inter-report time such that the average time

AP 1

AP 2

AP 3

AP 4

Figure 7: Coverage areas at Hynes convention centre. The coloured
lines delimit the extension of the coverage areas. Base stations are
transmitting at 2.1 GHz with a power of 34mW. Point 𝑎 lies in the
tile 𝐴123.
to achieve 0.9-knowledge may be well predicted by Model 1.
Once that value of the inter-report time is found, the value of
E[𝜏0.9] returned by Model 1 may serve as an upper bound to
the actual time to achieve 0.9-knowledge when smaller inter-
report times are implemented.

To summarise, simulation on random walks corroborate
the analysis of Section 5.5

6.3. A Realistic Scenario. A received power map for 4 base
stations in the Hynes convention centre have been generated
using theWireless System Engineering (WiSE) [29] software,
a comprehensive 3D ray tracing based simulation package
developed by Bell Laboratories. Base stations are assumed
transmitting at a frequency of 2.1 GHz with a power of
34mW.We assume there is a macrocell that covers the whole
building, and we estimate its time to Full Knowledge. As
before, a Monte Carlo simulation has been made to estimate
the tessellation, and then the expected time to 𝛿-knowledge
has been computed using a teleport mobility model (Model
1), as explained in Section 5.2.

Figure 7 shows the corresponding coverage areas when
the power detection threshold is −70 dBm. Although the
shape of the coverage areas and their intersection is much
more complex than the simple scenario depicted in Sec-
tion 6.1, it is still possible to construct the tessellation by
considering which coverage areas each spatial point lies in.
For example, point 𝑎 lies in the coverage area of nodes 1, 2,
and 3, so it belongs to the tile 𝐴123.

Figure 8 displays the expected time to 𝛿-knowledge,
E[𝜏𝛿], when 𝛿 is varied. We notice a step-function-like
behaviour, with a new step that is added every time a new
state becomes absorbing, as explained in Section 5.2.
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Figure 8: Expected time to 𝛿-knowledge, E[𝜏𝛿], using Model 1 in
Hynes convention centre for different values of the parameter 𝛿.The
inter-report time is set to the very same value used for Figures 4 and
5.
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Figure 9: Expected time to FK, E[𝜏], using Model 1 in Hynes con-
vention centre, for different values of the user-detection threshold.
The inter-report time is set to the very same value used for Figures
4 and 5.

Figure 9 shows the behaviour of E[𝜏], the expected time
to FK, when the user-detection threshold varies from a very
conservative value of −60 dBm to a more realistic one of−100 dBm. When the users are more sensitive, the coverage
areas, and specifically the higher order tiles, are bigger,
leading to better performance. In particular, we see that an
average of 14 steps are enough to achieve FK.

To summarise, these results seem to confirm that the
values obtained placing random nodes with circular coverage
areas in Section 6.1 are compatible with real world scenarios,
so the use of statistics obtained frommacroscopic parameters
as densities of deployment and distribution of coverage radii
can be used as a tool to bound the time to 𝛿-knowledge.
7. Conclusions

In this paper, we have introduced the problem of user-
reports-based Neighbour Cell List Discovery and provided
a crisp mathematical formulation of it for a simple mobility
model. We have also shown that such mobility model can
be effectively used as an upper bound for a wide range of

mobility models when the user-reports frequency is lower
than the inverse mixing time of the Markov chain of the
actual mobility model. Additionally, we have provided a
useful method to estimate the time to 𝛿-knowledge when the
problem is too complex to be solved exactly.

Simulations on random scenarios with typical small cells
parameters show that the expected number of reports in
order to have a high degree of knowledge of the local topology
is very small. Roughly speaking, a user moving at 0.5m/s
according to a random walk model, and providing at least
one report every hour, can guarantee the serving node will
have 0.9-knowledge with high probability in less than 5 h,
and in less than two hours if reports are sent at least every 15
minutes. Since we do not expect the network topology to be
affected by high network dynamics, these are acceptable times
for the problems of interest.We encourage the adoption of the
presented framework to assess the possibility of employing
crowdsourced user reports in other self-configuration prob-
lems, comparing the time to 𝛿-knowledge with the expected
time to convergence of a given decentralised algorithm.

Simulations in more realistic scenarios show that the
bounds obtained are compatible with the ones obtained from
statistics on random scenarios with similar parameters. This
seems to confirm that the use of statistics obtained from
macroscopic parameters, such as densities of deployment and
distribution of coverage radii, can be used as a tool to bound
the time to 𝛿-knowledge.

In conclusion, we provide a useful tool to estimate the
time to NCL construction, which is fundamental to assess
whether a decentralised algorithm can be employed in a given
network scenario.
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