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We hypothesize a beneficial influence of sleep on the consolidation of the combinatorial

mechanisms underlying incremental sentence comprehension. These predictions are

grounded in recent work examining the effect of sleep on the consolidation of

linguistic information, which demonstrate that sleep-dependent neurophysiological

activity consolidates the meaning of novel words and simple grammatical rules.

However, the sleep-dependent consolidation of sentence-level combinatorics has

not been studied to date. Here, we propose that dissociable aspects of sleep

neurophysiology consolidate two different types of combinatory mechanisms in human

language: sequence-based (order-sensitive) and dependency-based (order-insensitive)

combinatorics. The distinction between the two types of combinatorics is motivated

both by cross-linguistic considerations and the neurobiological underpinnings of

human language. Unifying this perspective with principles of sleep-dependent memory

consolidation, we posit that a function of sleep is to optimize the consolidation of

sequence-based knowledge (the when) and the establishment of semantic schemas

of unordered items (the what) that underpin cross-linguistic variations in sentence

comprehension. This hypothesis builds on the proposal that sleep is involved in the

construction of predictive codes, a unified principle of brain function that supports

incremental sentence comprehension. Finally, we discuss neurophysiological measures

(EEG/MEG) that could be used to test these claims, such as the quantification of

neuronal oscillations, which reflect basic mechanisms of information processing in the

brain.

Keywords: language learning, sentence comprehension, sleep and memory, neuronal oscillations, predictive

coding
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INTRODUCTION

The ability to form memory is essential for an organism to
successfully adapt to changing environmental demands (Rasch
and Born, 2013). While memory encoding and retrieval occur
during periods of wake, sleep facilitates the consolidation of
freshly encoded information through unique neuromodulatory
activity (Staresina et al., 2015). Electrophysiological research
demonstrates that sleep is composed of intensive variations in
spatio-temporal oscillations across the brain. These oscillations,
characterizing rapid- (REM) and non-rapid eye movement
(NREM) sleep, originate from signals generated by specific
cortical and subcortical networks, and play a key role in memory
consolidation (Rauchs et al., 2005).

Evidence suggests the relation between sleep and memory
extends to higher-order cognitive domains, such as language
(Nieuwenhuis et al., 2013; Mirković and Gaskell, 2016).
However, current research on sleep and language is largely
limited to word learning and grammar generalization (for
review, see Rasch, 2017), which does not account for the
complex combinatorics of language at the sentence level. Here,
we propose that sleep is a brain state necessary for the
consolidation of the combinatorial mechanisms that underlie
cross-linguistic variations in sentence comprehension, namely
sequence-based (order-sensitive) and dependency-based (order-
insensitive) combinatorics. In addition, we suggest that sleep’s
effect on the consolidation of sentential combinatorics is reflected
in various profiles of brain rhythmicity.

The spatiotemporal architecture of oscillatory rhythms is
a fundamental principle of brain structure and function
during both wake and sleep states (Buzsáki, 1996; Varela
et al., 2001). Sleep-related oscillatory dynamics, such as
the sleep-spindle, slow wave oscillation and REM theta
activity, will be hypothesized to differentially consolidate
sequence-dependent and sequence-independent combinatorics,
manifesting in distinct oscillatory activity during sentence
comprehension. To support this proposal, we briefly review
evidence linking sleep to declarative and procedural memory
consolidation, and recent research implicating sleep in language
learning. We also review the proposed involvement of the
declarative and procedural memory systems in language as
posited by Ullman’s Declarative/Procedural Model (Ullman,
2001, 2004, 2016). We then outline a new perspective on
the involvement of declarative and procedural memory in
language by linking mechanisms of sleep-dependent memory
consolidation to the neurobiological underpinnings of different
types of sentence-level combinatorics (Bornkessel-Schlesewsky
and Schlesewsky, 2013; Bornkessel-Schlesewsky et al., 2015).
Finally, we will present testable hypotheses arising from this view,
focusing on oscillatory brain activity.

NEUROBIOLOGY OF SLEEP AND
MEMORY CONSOLIDATION

The notion that sleep facilitates memory consolidation
and neural plasticity is long-standing (Graves, 1936;

Klinzing et al., 2016b). Since its discovery (Aserinsky and
Kleitman, 1953), REM sleep was thought to be the sleep stage
that supported memory consolidation because of its wake-
like EEG and oculomotor activity (Rasch and Born, 2015).
However, mixed evidence from studies that selectively deprived
subjects of REM sleep (for review, see Vertes and Eastman,
2000) prompted a shift in the sleep and memory field to
focus on the role of NREM sleep in memory consolidation.
Evidence implicating NREM sleep and associated SWS activity
in memory consolidation has given rise to several theories,
including the Active System Consolidation (ASC; Diekelmann
and Born, 2010; Born and Wilhelm, 2012) and information
overlap to abstract (iOtA; Lewis and Durrant, 2011) models,
and the Synaptic Homeostasis hypothesis (SHY; Tononi and
Cirelli, 2006, 2014). According to the ASC model, memory
formation is supported by a hippocampal and neocortical
system, such that mnemonic representations initially reliant
on the hippocampal complex are integrated into the neocortex
for long-term storage. From this perspective, sleep integrates
hippocampally dependent memory traces with neocortical
long-term memory (LTM) networks by facilitating cross-talk
between the two systems (Born and Wilhelm, 2012; Mirković
and Gaskell, 2016).

Slow oscillations (SOs; <1.0 Hz) and sleep spindles
(10–16 Hz) – hallmarks of NREM sleep – are suggested
to be involved in re-processing memory traces within the
hippocampo-cortical network (Schabus et al., 2004; Lewis and
Durrant, 2011). SOs reflect synchronized membrane potential
fluctuations between hyperpolarised up-states and depolarised
down-states of neocortical neurons (Lewis and Durrant, 2011;
Klinzing et al., 2016a). During phases of depolarisation, sleep
spindles are generated from thalamic reticular neurons and
promote memory consolidation via cortico-thalamic loops, with
individual differences in sleep spindle frequency and density
associated with post-sleep memory for motor tasks (Peters
et al., 2008), word-pair associations (Schabus et al., 2004), and
emotional images (Kaestner et al., 2013). These findings are in
line with a broader view (i.e., the ASC model; Born andWilhelm,
2012) that SOs serve as a temporal gating mechanism for the flow
of information between the hippocampus and neocortex, and that
the nesting of sleep spindles in phases of depolarisation initiates
synaptic change through LTP (Andrillon et al., 2011; Staresina
et al., 2015). By contrast, SHY (Tononi and Cirelli, 2014) argues
that the plastic processes occurring during wakefulness (e.g.,
memory encoding) result in a net increase in synaptic weight
in networks subserving memory formation. Sleep is argued
to facilitate the downscaling of synaptic weight to a baseline
level that is homeostatically sustainable; a process posited to
be performed by SOs during SWS (Mascetti et al., 2013). This
process of synaptic renormalisation desaturates the capacity
to encode new information during subsequent wake periods
by decreasing neuronal excitability, which in turn, improves
the signal-to-noise ratio in the reactivation of stored memory
traces (Olcese et al., 2010; Tononi and Cirelli, 2012). The
iOtA model (Lewis and Durrant, 2011) builds upon the ASC
and SHY models, but makes predictions primarily about
schema-conformant memory. According to iOtA, memory
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traces that are part of the same schemata are preferentially
reactivated during sleep via nested spindle and SO activity, and
thus develop stronger connections. After synaptic downscaling
during SWS, the strongest connections between neurons
that share encoded memory traces remain intact, supporting
the formation of cognitive schemata (Lewis and Durrant,
2011).

The literature linking sleep and memory consolidation has
focused to a large extent on the distinction between declarative
and procedural memory, and the unique neurophysiology that
contributes to their respective sleep-facilitated consolidation
(Smith, 2001). Declarative and procedural memory differ in
regard to their level of awareness and the neural networks
subserving their computations (Barham et al., 2016). Declarative
memory is primarily subserved by prefrontal and medial
temporal lobe (MTL) structures, and supports the learning of
general facts, namely semantic and episodic memory (Duff
and Brown-Schmidt, 2012). In contrast, procedural memory
is subserved by a basal ganglia cortico-striatal system, which
facilitates the acquisition and execution of motor and sequence
learning (Barnes et al., 2005; Albouy et al., 2013).

SWS is traditionally associated with the consolidation
of declarative memory, assumedly via coordination of
widespread neural synchrony that enable interactions between
the hippocampus and neocortex (Rasch and Born, 2013).
Conversely, REM is assumed to be associated with the facilitation
of procedural memory consolidation, potentially through the
activation of locally encoded memory traces in cortical-striatal
networks (Barham et al., 2016). It is important to note, however,
that the relationship between sleep and procedural memory
consolidation is less clear than for declarative memory. In a
recent meta-analysis, Pan and Rickard (2015; also see Rickard
and Pan, 2017) argue that, for at least finger tapping tasks,
sleep does not stabilize procedural memory, and that time
of training (e.g., morning/evening), old age (i.e., >59 years),
and a build-up of reactive inhibition over training, explain
differences in procedural memory consolidation from training
to delayed testing over and above that of sleep. There is,
however, strong evidence implicating sleep in the consolidation
of non-motor procedural tasks, such as auditory statistical
learning paradigms (e.g., Durrant et al., 2013, 2016), suggesting
a beneficial effect of sleep on procedural memory consolidation
may be domain-specific.

Moreover, the claim that SWS is preferentially involved
in declarative memory consolidation, and REM in procedural
memory consolidation, is too simplistic and is not well
supported by recent evidence (for a review, see Ackermann and
Rasch, 2014). Alternatively, EEG phenomena associated with
SWS (spindles, slow oscillations) and REM (theta oscillations,
increases in acetylcholine; ACh) are posited to contribute
sequentially to the consolidation of declarative and procedural
memory (Fogel et al., 2007; Cairney et al., 2014; Llewellyn and
Hobson, 2015; Rasch and Born, 2015). During SWS, low levels
of ACh promote spontaneous reactivation of recently encoded
memory traces within the hippocampal-cortical system, leading
to a transfer of information from the hippocampus to the
neocortex (Gais and Born, 2004; Hasselmo, 2006; Rasch et al.,

2006). During REM, ACh is nine times greater than during wake
(Hutchison and Rathore, 2015). This REM-related increase in
ACh has been posited as one potential mechanism that promotes
afferent input relative to feedback, an increase in theta oscillatory
activity, and synaptic plasticity (McDevitt et al., 2015). These
oscillatory and chemical changes within SWS and REM support
proposals (e.g., the Sequential Hypothesis; Giuditta et al., 1995)
that REM strengthens neocortical memory representations that
have been selectively refined through the synaptic downscaling of
SWS. It is important to note, however, that evidence implicating
scalp-recorded REM theta activity in humans is scarce. Much of
the evidence supporting this notion is based on invasive animal
research (e.g., Boyce et al., 2016), which is difficult to generalize to
higher-order mnemonic processes in humans, such as language
learning. This is further complicated by REM sleep deprivation
studies, which provide equal evidence for and against a role
of REM in memory consolidation (Vertes and Eastman, 2000).
From this perspective, the role of REM and associated theta
activity in memory consolidation is less established than the role
of SWS. See Figure 1 for a schematic of sleep architecture and
associated oscillatory activity in humans.

A ROLE FOR SLEEP IN LANGUAGE
LEARNING

Interest in the role of sleep during language learning has
increased dramatically in recent years, with evidence suggesting
that sleep plays a critical role in the consolidation of lexico-
semantic information and simple grammatical rules (for review:
Rasch, 2017). These experiments consistently demonstrate that
sleep consolidates novel word meanings and their respective
phonological forms from early childhood by integrating them
within the existing mental lexicon (Dumay and Gaskell, 2007;
Simon et al., 2017). In particular, SWS promotes novel word
production and recognition (Tamminen et al., 2010; Gaskell
et al., 2014), and grammar generalization over and above that
of time spent awake (Batterink and Paller, 2015). These findings
fit within the ASC model of sleep and memory formation (Born
and Wilhelm, 2012). From this perspective, the consolidation
of linguistic information occurs during two stages (Davis and
Gaskell, 2009; Schreiner and Rasch, 2016).

Initially, the hippocampal complex plays a crucial role in
binding a distributed neural representation of the linguistic input,
such as word form and meaning (Davis and Gaskell, 2009).
During sleep, these newly encoded memory representations
are spontaneously reactivated, resulting in localized synaptic
downscaling and the distribution of lexical representations in
neocortical LTM networks (Rasch and Born, 2013; Schreiner and
Rasch, 2016). Thus, sleep is posited to facilitate the integration
of newly encoded lexical representations with existing lexical
schemata, such as phonological and word form-to-meaning
mapping systems (Gaskell et al., 2014).

This idea has been further tested by investigating the effect of
sleep on the consolidation of a hidden linguistic rule using event-
related potentials (ERPs; Batterink et al., 2014), a derivative of
EEG reflecting the synchronized firing of neuronal populations
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FIGURE 1 | Schematic of sleep architecture in humans and associated oscillatory activity and stages of memory consolidation. (A) SWS is most prominent during

the first half of the sleep period, and is dominated by neocortical slow oscillations (SOs) and thalamic spindles. By contrast, REM sleep is most prominent during the

second half of the sleep period and is characterized by ponto-geniculo-occipital waves, increased acetylcholine (ACh) and cortical theta oscillations (reproduced

from Vorster and Born, 2015; permission to reuse image is not required from the copyright holder for non-commercial use as determined by RightsLink R©). (B) The

cyclic occurrence of SWS and REM differentially facilitate memory consolidation. The hierarchical nesting of sharp-wave ripples and spindles within the up state of

SOs during SWS facilitate the transfer of information from the hippocampal complex to the neocortex. These neocortically distributed memory representations are

strengthened by REM theta oscillations and increases in ACh (Lewis and Durrant, 2011; Hutchison and Rathore, 2015). Each cycle of SWS induces large-scale

rescaling of synaptic strength via widespread SO activity.

time-locked to specific cognitive or sensory events (Luck, 2014).
In this nap study, participants were presented with novel two-
word phrases, which included an (English) noun that was
preceded by a novel word serving as an article. Unbeknownst
to the participants, the novel articles predicted noun animacy,
an important semantic feature that is relevant for sentence
comprehension in many languages of the world (e.g., Bates
et al., 2001). Relative to participants who only experienced SWS,
participants who experienced both SWS and REM demonstrated
a larger negative ERP occurring between 400 and 800 ms in
response to animacy violations, suggesting greater sensitivity to
the hidden linguistic rule. This ERP effect provides preliminary
evidence for a modulatory role of SWS and REM in generating
neural representations of linguistic information by generalizing
novel linguistic rules in memory.

This claim is supported by language learning studies that find
sleep-mediated effects on oscillatory brain dynamics, suggesting
memory-related changes in the organization of local and
distributed neuronal assemblies (Fellner et al., 2013; Hanslmayr
and Staudigl, 2014; Hanslmayr et al., 2016). Oscillations within
different frequency bands are posited to reflect a number of
language-related computations, including the retrieval of newly
learned word meanings (Bakker et al., 2015; Takashima et al.,
2016) and the detection of violations in artificial languages
(de Diego-Balaguer et al., 2011). For example, Bakker et al. (2015)

reported that novel words encoded before a 12-h consolidation
period elicited greater fronto-temporally distributed theta power
at recall than novel words encoded immediately before recall,
while de Diego-Balaguer et al. (2011) found that an increase
in alpha and theta phase synchrony during encoding predicted
the detection of violations in learned trisyllabic sequences.
Research also reveals that greater theta power during encoding
of word-pair associations predicts sleep spindle frequency, which
in turn is associated with enhanced recall (Heib et al., 2015;
Schreiner and Rasch, 2015; Schreiner et al., 2015). Theta activity
is associated with memory encoding and retrieval, and is thought
to facilitate the consolidation of memory representations in the
neocortex via hippocampo-cortical loops (Schreiner and Rasch,
2016), while alpha activity coordinates the flow of information
in thalamo-cortical connections that subserve attention and
perception (Klimesch et al., 2007; Klimesch, 2012; Hanslmayr
et al., 2016). Thus, modulations in theta and alpha activity
may differentially modulate the encoding and consolidation
of linguistic information, facilitating sleep-dependent memory
consolidation, such as spindle-related memory reprocessing
(Hanslmayr et al., 2016; Schreiner and Rasch, 2016).

Although this evidence suggests sleep may play a role in
aspects of language learning, this does not mean that the
consolidation process will be uniform regardless of the material
to be learned. Two related factors that may be relevant tomemory
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consolidation, particularly in the case of language, are prior
knowledge and systematicity (Dingemanse et al., 2015; Mirković
and Gaskell, 2016; Gilboa and Marlatte, 2017).

Prior knowledge has traditionally been viewed as crucial
to successful encoding and retention of new knowledge, but
research on memory consolidation has revived interest in the
notion of schema integration in learning (Gilboa and Marlatte,
2017). A landmark study by Tse et al. (2007) demonstrated
that rats’ ability to acquire new associations between flavors
and locations depended on the rats’ prior knowledge. If new
pairings were consistent with previously learned associations
involving similar stimuli then the process of consolidation was
swift, with new associations quickly becoming independent
of the hippocampus. This result is consistent with the idea
that a pre-existing mental schema can assist with the learning
and integration of new memory traces, a claim supported by
McClelland (2013), who demonstrated that this kind of schema-
compatibility effect could be explained in the context of a
Complementary Learning Systems (CLS) model.

A CLS account predicts that the relationship between the
individual elements of a new set of associations can be influential
in terms of their initial acquisition and subsequent consolidation.
If a set of new associations (e.g., between form and meaning)
are in some ways compatible or systematic then they should be
acquired more easily by a cortical network with less reliance
on the hippocampal complex (Mirković and Gaskell, 2016).
If the hippocampus is involved to a lesser extent during
initial acquisition, then hippocampo-cortical replay during
sleep might also be less important for consolidation, meaning
that sleep-facilitated consolidation effects of hippocampally
dependent memory may be weaker. However, such predictions
are quite difficult to make because of the potential interaction
between prior knowledge and systematicity. That is, the same
compatibility in a systematic mapping that leads to weak reliance
on the hippocampus during initial acquisition might also lead to
greater schema compatibility during consolidation.

Mirković and Gaskell (2016) examined the influence
of systematicity empirically in the context of an artificial
language learning experiment. They trained participants on
a language in which some elements had an entirely arbitrary
relationship between the form and the meaning (as is typical of
monomorphemic content words), whereas other elements had
a more consistent relationship (determiners were used that had
a consistent relationship with the gender of the referent). They
found that, in this case, only the arbitrary components showed an
influence of sleep on performance, consistent with the argument
that hippocampal reliance is affected by the level of systematicity.

Nevertheless, several open questions remain. Mirković and
Gaskell’s (2016) study adopted an afternoon nap paradigm, which
occurred at a different circadian phase than nocturnal sleep
and was dominated by NREM sleep. In accordance with the
sequential hypothesis (Giuditta, 2014; Giuditta et al., 1995),
interactions between SWS and REM may mediate the influence
of prior knowledge and systematicity on the retention of new
(linguistic) knowledge. An interactive effect of SWS and REM
was demonstrated by Batterink et al. (2014), who found that
sensitivity to violations of systematic article–noun pairings was

predicted by the combined time spent in SWS and REM. From
this perspective, during SWS, spindles and SOs may support
the consolidation of schema conformant memory (Lewis and
Durrant, 2011; Tamminen et al., 2013), while cortical REM theta
activity may strengthen systematic mappings between form-to-
meaning associations, similar to the beneficial role of REM in
facilitating the abstraction of stimuli in probabilistic classification
learning paradigms (e.g., Barsky et al., 2015). However, as stated
in section “Neurobiology of Sleep and Memory Consolidation,”
the relationship between REM theta activity and memory is not
as well established in humans as in animal models, making REM-
related memory consolidation hypotheses tentative and open to
further investigation. Thus, while recent research has produced
important initial insights on sleep and the consolidation of novel
words and simple grammatical rules, we still know relatively little
about the neural basis of sleep-facilitated memory consolidation
of sentence-level combinatorics, and how an effect of prior
knowledge and systematicity may be differentially mediated by
different sleep stage characteristics.

Beyond Single Words: Preliminary
Evidence for a Role of Sleep in the
Consolidation of Sentence-Level
Combinatorics
A potential role for sleep in the consolidation of sentence-level
combinatorics is identifiable based on studies using artificial
and modified miniature languages (MML). Artificial and MMLs
generally contain a limited number of words belonging to
several syntactic categories that can be combined intomeaningful
sentences based on the grammatical regularities of a chosen
language model (Mueller, 2006). These paradigms provide a
useful framework not only to track the learning trajectory of
single words, but also the extraction and generalization of
the linguistic building blocks (e.g., sequencing and dependency
formation) that underpin sentence comprehension.

Studies using these paradigms (Friederici et al., 2002; Mueller
et al., 2007) have helped characterize the neural correlates of
language learning by demonstrating that rule violations elicit a
biphasic ERP pattern containing a negativity (e.g., N400) and
a late positivity (e.g., P600), as observed in natural language
studies. Additionally, in a recent functional magnetic resonance
imaging (fMRI) study (Weber et al., 2016), speakers of Dutch
were exposed to an artificial language made up of 36 transitive
verbs, ten intransitive verbs and four nouns. Activation in the
angular gyrus – a region associated with semantic representations
and in unifying smaller concepts into larger representations
(Seghier, 2013) – increased linearly across the learning phase
(i.e., across 7–9 days), and predicted participants’ ability to
detect illegal word-order variations. Further neuroanatomical
research with shorter learning intervals (i.e., ∼1–2 days)
corroborates Weber and colleagues’ findings, demonstrating that
hippocampal activation systematically decreases, while activation
of language-related neocortical regions (e.g., BA 45 of Broca’s
area) systematically increase across (artificial) language exposure
(Opitz and Friederici, 2003, 2004, 2007; Mueller et al., 2014).
These findings are in line with two-stage models of memory
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consolidation (e.g., Davis and Gaskell, 2009; Kumaran et al.,
2016), further substantiating the notion that newly encoded
information is initially reliant on the hippocampal complex
before becoming neocortically distributed. As described in
section “Neurobiology of Sleep and Memory Consolidation,”
neocortical LTM networks are strengthened during sleep,
suggesting sleep may play a critical role in consolidating language
at the sentence-level, but that such an effect may depend on
factors related to schema integration and systematicity. Thus,
although existing artificial and MML experiments have helped
characterize (artificial) language learning, further research is
required to expand our understanding of the neurobiological
mechanisms underlying the consolidation of language at the
sentence-level, such as mechanisms of sleep-dependent memory
consolidation.

One model, namely the Declarative/Procedural Model (DP
model; Ullman, 2001, 2004, 2016), attempts to ground language
processing in the neurobiological systems subserving memory.
The DP model argues for a one-to-one mapping between
declarative/procedural and semantic/syntactic processing,
respectively, and assumes that sleep plays a beneficial role in the
consolidation of both memory systems (although it does not
provide specific sleep-related predictions; see Ullman, 2016).
Since, to the best of our knowledge, the DP model is the only
model of language beyond the single word-level that assumes a
beneficial role of sleep via the two memory systems as a shared
basis, we will briefly review its theoretical underpinnings before
introducing our perspective.

CONTRIBUTIONS OF THE DECLARATIVE
AND PROCEDURAL MEMORY SYSTEMS
TO LANGUAGE

For language, differential roles of the declarative and procedural
memory systems have been posited and discussed extensively by
Ullman (2001; 2004; 2016). It is assumed here that declarative
memory underlies the associative memory system required for
the mental lexicon and the processing of semantic relations,
while procedural memory subserves all rule-based processes
in language, including morphology and syntax. As such, the
processing of lexico-semantic and syntactic information is
argued to differentially engage the neurobiological substrates
associated with the declarative and procedural memory systems,
respectively.

For the declarative memory system, this is posited to include
MTL regions, including the hippocampal complex and entorhinal
and perihinal cortices; however, Ullman (2016) recently proposed
that there should be a decrease in the involvement of the MTL
and an increase in neocortical regions as a function of time
and experience of language use. This proposal is in accordance
with two-stage models of memory that were discussed in
section “A Role for Sleep in Language Learning” (see Davis and
Gaskell, 2009 for a discussion on novel word consolidation),
such that during novel word learning the hippocampal complex
binds relational aspects of the word (e.g., form and meaning),
with these associations slowly becoming independent of the

hippocampus and neocortically distributed over time. While the
DP Model’s predictions of semantic and episodic memory in
relation to language processing are in accordance with the well-
established two-stage models of memory consolidation, evidence
at the sentence-level is limited, and while sleep is assumed
to play a beneficial role in the consolidation of both memory
systems (see Ullman, 2016), specific sleep-related predictions are
absent.

By contrast, the procedural memory system is thought to
be comprised of parietal, cerebellar, basal ganglia and frontal
structures, including premotor regions (Newman et al., 2001;
Ullman, 2016). Moreover, Ullman (2001, 2016) argues that
specific ERP components are rooted in the neuroanatomical
structures of the two memory systems: the N400, which is
often associated with lexico-semantic violations (but see, for
example, Frisch and Schlesewsky, 2001, 2005; Choudhary et al.,
2009; Dröge et al., 2016, for evidence against a narrow lexico-
semantic function of the N400), is suggested to be tied to
MTL and rhinal cortex activation, while left anterior negativities
are tied to procedural memory activation (Ullman, 2001,
2016; Morgan-Short et al., 2012). Late positivities, such as the
P600, are discussed as originating from ‘conscious syntactic
integration’ processes (Ullman, 2016). In regard to (second)
language learning, Ullman argues that the declarative system
is engaged more strongly than procedural memory during the
initial phases of learning, evidenced by greater MTL activation
during early second language processing, and greater activation
of ganglia cortico-striatal structures when processing becomes
more “native-like.”

Ullman states that “procedural memory should underlie the
learning and processing of sequences and rules in language”
(Ullman, 2016, p. 960), but acknowledges that his predictions for
procedural memory are less specific and more tentative than for
declarative memory. However, the basic assumptions of the DP
Model are closely tied to the affordances of processing English
and languages of a similar type. Consideration of a broader range
of languages calls for a somewhat more complex perspective on
the combinatory mechanisms underlying sentence interpretation
(e.g., MacWhinney et al., 1984; Bornkessel and Schlesewsky,
2006; Bornkessel-Schlesewsky and Schlesewsky, 2009). From
this perspective, the dichotomy between the declarative and
procedural memory systems does not appear to fully account for
the inherent complexity of language. In the following section,
we discuss the need to distinguish between different types of
combinatory mechanisms depending on the language being
processed.

A NEW PERSPECTIVE ON
HIGHER-LEVEL LANGUAGE
COMBINATORICS AND THE POTENTIAL
ROLE OF SLEEP IN THEIR
CONSOLIDATION

Languages differ fundamentally with respect to the information
sources that are relevant to sentence interpretation.
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The assignment of thematic roles to noun phrases (NPs) is
a case in point. Thematic role assignment allows comprehenders
to determine “who is doing what to whom” in the sentence
currently being comprehended, and the way in which it occurs
is thought to differ between languages (e.g., Bornkessel and
Schlesewsky, 2006; Dominey et al., 2009). Specifically, following
Bornkessel-Schlesewsky et al. (2015), we assume that languages
differ as to whether they dominantly rely on order-sensitive
(sequence-based) or order-insensitive (non-sequence-based)
combinatorics.

Sequence-based sentence interpretation is the dominant
mechanism in languages such as English or Dutch. Accordingly,
native speakers of these languages typically interpret the first
NP encountered as the actor (the active, controlling participant)
and the second NP as the undergoer (the affected participant),
irrespective of semantic cues (MacWhinney et al., 1984). This is
apparent from example (1), which is an implausible sentence in
English because “the javelin” must be interpreted as the actor. In
fact, the reliance on word order for interpretation is so strong
that the only plausible way of combining “javelin,” “athletes,”
and “throw” – namely to mean that the athletes threw the
javelin – is not a possible interpretation of this sentence for
native speakers of English (Bornkessel and Schlesewsky, 2006;
Bornkessel-Schlesewsky et al., 2011).

(1) The javelin has thrown the athletes. (Hoeks et al., 2004)

By contrast, in languages that rely primarily on non-sequence-
based sentence interpretation thematic role assignment is based
more strongly on cues other than word order, such as case
marking and/or semantic information, including animacy (for a
review, see Bates et al., 2001). A particularly striking example,
from the Australian language Jiwarli, is given in (2).

(2) Jiwarli, Pama-Nyungan, Western Australia (Austin, 2001)
Yinha nhurra parlura-rni-nma payipa nganaju.
this.acc 2sg.erg full-caus-imper pipe.acc 1sg.dat.acc
‘You fill up this pipe of mine!’

As is apparent from (2), groups of words that must be
interpreted together need to occur sequentially in Jiwarli. For
example, “this” and “pipe” are separated from each other by
two other words. In addition, the order in which the words
occur is not important for the interpretation of the sentence.
Rather, which words belong together and which role they play
within the sentence is indicated by case marking, i.e., changes
in the morphological form of NPs depending on their role in
the current sentence (akin to the difference between subject
and object personal pronouns in English, cf. “I saw her” versus
“She saw me”). While (2) is a quite extreme example, the basic
principle of sentence interpretation being based primarily on
non-sequential (order-independent) cues is very common across
the languages of the world, applying, for example, in German,
Turkish and Japanese. For a review of the supporting behavioral
evidence from a wide range of languages, see Bates et al. (2001).

These cross-linguistic dissociations in incremental sentence
comprehension are captured in proposals that assume distinct
combinatory mechanisms in the brain, namely sequence-based

and dependency-based (sequence-independent) combinatorics
(Bornkessel-Schlesewsky et al., 2015). From this perspective,
speakers of sequence-dependent languages (e.g., English
and Dutch) are posited to rely primarily on predictive
sequence processing mechanisms for sentence comprehension
(Bornkessel-Schlesewsky et al., 2011, 2015; Dröge et al., 2016).
Conversely, speakers of languages such as German and Turkish
rely more strongly on sequence-independent features such
as case marking or animacy to combine linguistic input into
successively more complex representations, thereby facilitating
the establishment of relations between non-adjacent elements in
a sentence. Note, however, that both types of combinatorics are
thought to be operative in all languages: clearly, the processing
of languages such as German and Turkish is not completely
independent of the order in which the words in a sentence
are encountered, and languages such as English allow for
non-adjacent dependencies. Thus, rather than being a clear-cut
dichotomy, the classification of languages as sequence-dependent
or sequence-independent is a matter of degree.

This assumed distinction of dependency- and sequencing-
based combinatorics as basic and dissociable components of the
neurobiology of human language (Bornkessel-Schlesewsky et al.,
2015) raises new questions about the relation between these
combinatory mechanisms and different memory systems, and
accordingly, about the role of sleep in their consolidation. While
it appears reasonably straightforward to associate sequence-
based combinatorics with the procedural memory system, the
status of non-sequence-based combinatorics is less clear. This
type of combinatorics is rule-based but sequence-independent
(for a similar perspective, see Wilson et al., 2014). It thus
shows characteristics of both memory systems (e.g., the
requirement for relational binding as in declarative memory;
rule-based combinatorics as assumed by Ullman for procedural
memory). Consequently, the consolidation of non-sequence-
based combinatorics may depend on an interaction between
the two memory systems, or may work independently of both
systems1.

This perspective is closely tied to theoretical advancements
in cognitive neuroscience which view the brain as a predictive
organ (Friston, 2010; Friston and Buzsáki, 2016), and which
posit that the (lexico)semantic/syntax distinction can be better
described as a segregation of what and when representations.

1Note also that it is not straightforwardly apparent whether existing findings on
the sleep-facilitated consolidation of word learning (see section “A Role for Sleep
in Language Learning”) might generalize to sentence-level combinatorics. The
learning of novel words entails the learning of sound sequences, i.e., sequences of
phonemes. This raises the question of whether phoneme sequence consolidation
operates via similar mechanisms to word sequence consolidation at the sentence
level. However, a crucial difference between the two types of sequences is that
sequences of words involve the combination of meaningful units into larger
meaningful units. Phonemes, by contrast, do not themselves bear meaning, but
are rather the smallest units in language that differentiate meaning. Consider,
for example, the difference between the English words “map” and “nap”: here,
“m” and “n” lead to a difference in meaning without being meaningful in
and of themselves (See Collier et al., 2014, for an accessible summary of how
phonological and syntactic combinatorics differ). It is an open question whether
the sequencing property common to both phonological and sequence-based
sentence-level combinatorics constitutes a common denominator for mechanisms
of consolidation, or whether the two are subject to differential consolidation
processes due to the difference in the types of units being combined.
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This claim is supported by various neurobiological observations
of sleep-dependent memory consolidation - as an optimisation
of (Bayesian) model evidence (Hobson and Friston, 2012; Rauss
and Born, 2017) – facilitating the generalization of ordinal
sequences (the when) and the establishment of semantic schemas
of unordered items (the what). These findings provide a
promising basis for investigating the consolidation of sequence-
dependent and non-sequence-dependent combinatorics from a
neurobiological perspective. However, they also demonstrate
a need to move beyond the current state of the art in the
literature in order to fully capture the complexity of the two
types of combinatorics. As described above, non-sequence-
based combinatorics involve unordered schemas that are rule-
based in their organization; that is, while these schemas
are unordered from a sequence-based perspective, they do
involve organizational principles of other types. Likewise,
sequence-based combinatorics cannot be reduced to ordinal
sequences. Rather, they require more richly structured sequence
representations, involving asymmetric, hierarchical sequences of
elements.

In the following, we derive novel hypotheses about the sleep-
dependent consolidation of higher-order language combinatorics
based on these assumptions. Specifically, we explore how
such hypotheses can be linked to oscillatory brain dynamics,
which have long been identified as a key feature of sleep
neurophysiology, and which also play an essential role in
information processing while awake.

SLEEP-DEPENDENT CONSOLIDATION
OF HIGHER-ORDER LANGUAGE
COMBINATORICS AS REFLECTED IN
OSCILLATORY BRAIN RHYTHMS

Neural oscillations are ubiquitous in the central nervous system
and play a key role in sensory, motor and cognitive computations
during wake and sleep states (Buzsáki, 1996; Canolty and
Knight, 2010). Wake oscillatory activity is typically divided
into five bands: delta (δ; ∼0.5–3.5 Hz), theta (θ; ∼4–7.5 Hz),
alpha (α; ∼8–12 Hz), beta (β; ∼13–30 Hz) and gamma (γ;
>30 Hz; Mai et al., 2016; Cole and Voytek, 2017). Conversely,
Stage 2 sleep is characterized by sigma (12–15 Hz) and θ

oscillations, while SWS is predominantly characterized by sigma,
δ and SO (0–1 Hz) activity. REM sleep is dominated by
high-intensity, wake-like θ oscillations (Hutchison and Rathore,
2015).

Oscillatory cycles within each band can be conceptualized
as temporal receptive windows, transmitting envelopes of
information of varying size across or within neuronal pools
(Buzsáki, 2010; Harmony, 2013; Buzsáki and Schomburg, 2015).
It follows that slow oscillations, such as those within the
δ and θ range, are involved in large-scale network activity,
which in turn, modulate faster local events expressed as activity
in higher frequencies (e.g., in β and γ activity; Buzsáki and
Draguhn, 2004; Sirota et al., 2008). The coupling of activity
between fast and slow frequencies allows regions that are part

of the same functional network to bind together information
that is differentially encoded in memory (Bastiaansen et al.,
2012).

Oscillatory neuronal activity is typically quantified using
power spectrum analyses, which index local neuronal activity,
and phase synchronization, which is a measure of functional
connectivity between distant neuronal populations (Rubinov
and Sporns, 2010; Bastiaansen et al., 2012). Possible separable
functional roles of each band have been examined across a large
body of research in a number of domains, including attention
(Klimesch, 2012), memory (Duzel et al., 2010; Hanslmayr
et al., 2016) and language (Lewis and Bastiaansen, 2015).
Given that oscillatory activity is an inherent property of brain
function, supporting both neural plasticity (Hanslmayr et al.,
2016) and neural communication (Canolty and Knight, 2010),
we posit that neuronal oscillations are a robust means of
indexing any effect of sleep on the formation of the neural
networks that subserve sentence comprehension. Throughout
the remainder of the paper, we will attempt to provide
neurobiologically grounded proposals for the role of oscillatory
activity in the encoding, sleep-facilitated consolidation and
retrieval of sentence-level combinatorics. While we consider
proposals regarding the neurobiological underpinnings of the
observed evidence from a variety of sources (e.g., scalp-
recorded and intracranial EEG in humans), some hypotheses
are more tentative than others. This includes REM θ activity
in memory consolidation, given that the majority of supporting
evidence stems from invasive animal studies (see Figure 2

for a schematic of the oscillatory mechanisms subserving
the encoding, consolidation and retrieval of sentence-level
combinatorics)

δ Oscillations Entrain the Activity
of Higher Frequencies
Low frequency oscillations in the δ range have traditionally been
associated with memory consolidation processes occurring
during sleep (Harmony, 2013; Rasch and Born, 2013).
While δ oscillations play a key role in hippocampo-cortical
communication during sleep, they also play an active role in
sensory processing during wakeful states (Schroeder and Lakatos,
2009; Basar and Duzgun, 2016). Research in the auditory domain
indicates that δ–θ oscillations lock to various speech features
(e.g., at the syllabic and phoneme level), facilitating the decoding
and integration of complex sequences during speech perception
(Doelling et al., 2014). Similarly, increases in the amplitude
of θ and γ oscillations are entrained to the δ phase during
attentionally demanding tasks (e.g., oddball tasks), such that
increases in θ and γ cross-frequency coupling (CFC) in response
to salient stimuli are predicted by the phase of δ oscillations
(Schroeder and Lakatos, 2009; Calderone et al., 2014).

In general, the literature suggests that δ oscillations modulate
the entrainment of higher frequencies (e.g., θ and γ) during
the processing of higher-level information from a task-relevant
input stream, such as language and general sequence processing
(Canolty and Knight, 2010). From this perspective, δ oscillations
may govern optimal excitability within and between neuronal
assemblies, facilitating information transfer during wake, and
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memory consolidation during sleep. Thus, for language learning,
we propose that the phase of δ oscillations will entrain higher
frequency bands, facilitating the timing and spiking of synaptic
activity, and in turn, facilitate memory encoding (Fell and
Axmacher, 2011). For sentence comprehension, δ activity will
depend on the predictability of the category sequence, which
will further depend on which units have been successfully
consolidated into LTM.

θ Oscillations and Hippocampo-Cortical
Communication during Memory
Encoding and Sentence Comprehension
θ oscillations are generated in the hippocampus and surrounding
structures (Covington and Duff, 2016; Piai et al., 2016).
They play a key role in the coordination of communication
between the hippocampal complex and neocortical regions
during wakeful states (Hanslmayr et al., 2016; Herweg et al.,
2016). The hippocampus is implicated in relational binding and
representational integration, which are important in language
processing (Duff and Brown-Schmidt, 2012; Covington and
Duff, 2016). Further, the hippocampus has been suggested to
be involved in predictive processing by combining elements in
memory, supporting the ability to predict future events (Bendor
and Spiers, 2016; Friston and Buzsáki, 2016). The process of
combining elements inmemory to predict sensory input is critical
during sentence comprehension, since as information unfolds,
the brain generates predictions about upcoming information
(Bornkessel-Schlesewsky et al., 2016; Dröge et al., 2016). The
hippocampus might therefore support language processing by
generating predictions for upcoming linguistic information, and
θ activity may be modulated depending on whether the sensory
input matches the internal model predictions, an idea also
recently proposed by Covington and Duff (2016).

This proposal is supported by Friston and Buzsáki (2016,
p. 508) who state that “Whether in space or time, ordinal
sequences in the hippocampal system may ‘index’ the items
(“what”) in the neocortex. . . [and] the organized access to
neocortical representations (“what”) then becomes episodic
[memory] information.” From this perspective, during
incremental sentence comprehension, the hippocampus may
encode the succession of words, accumulating evidence over the
duration of the sentence. This evidence may then be used by the
neocortex to test what predictions about prior beliefs (i.e., the
probability distribution of the likelihood of upcoming words
based on prior observations). Based on evidence indicating
that θ oscillations bind neocortically distributed memory traces
during memory encoding and retrieval (Herweg et al., 2016),
θ activity might combine linguistic input into successively
more complex representations, establishing relations between
(non-adjacent) elements in a sentence. We posit that this may
be a general mechanism for the processing of dependencies in
linguistic input: dependencies necessarily require the relational
binding of two elements; they may also lead to predictions of
upcoming input items when the dependent element within
a dependency precedes the independent element. From this
perspective, dependency processing involves (neocortically

computed) relational binding and (hippocampally driven)
rule-based processing. Further, as what computations are
posited to be performed by the neocortex, sleep should optimize
the transmission of spatial sequences into more complex
(unordered) representations by strengthening connections
between the hippocampus and neocortex, and in turn, modulate
θ activity during subsequent wakeful states.

Modulations in θ power may also index effects of systematicity
and prior knowledge on the consolidation of sequence- and
dependency-based combinatorics. As discussed in section “A
Role for Sleep in Language Learning,” newly encoded associations
that are compatible or systematic with existing schemata may be
acquired more easily by a cortical network with less reliance on
the hippocampal complex (Tse et al., 2007; Mirković and Gaskell,
2016; Gilboa and Marlatte, 2017). For example, the consolidation
of a second language that shares combinatorial properties similar
to a first language (e.g., morphosyntactic casemarking in German
and Hindi) may result in less hippocampal-dependence during
initial learning, and thus weaker sleep-related consolidation
effects during SWS (e.g., a reduction in the occurrence of
spindles). Rather, effects of sleep may depend on interactions
between SWS and REM – as demonstrated by Batterink et al.
(2014) – resulting in an early emergence of cortical θ activity
during incremental sentence comprehension.

In summary, we expect θ oscillations to reveal effects of sleep-
facilitated memory consolidation of sentential combinatorics.
Specifically, we posit that there will be an increase in θ power
during incremental sentence comprehension after a language
learning task followed by a period of sleep versus an equivalent
wake period. We also hypothesize that θ oscillations index
hippocampal when-based processing, and neocortically driven
what-based relational binding, two mechanisms which may
depend on hippocampo-cortical communication during SWS
(reflected in an increase in spindles and SOs). We assume
that this effect will accompany both sequence-dependent and
sequence-independent combinatory processing, as both types
of combinatorics are based on dependency relations. The two
types of combinatorics differ in that, on top of basic dependency
processing, sequence-based combinatorics include an additional
restriction on the positioning of the elements in question as part
of a structured sequence.

α Oscillations as a Thalamo-Cortical
Gating Mechanism
According to the inhibition-timing hypothesis (Klimesch et al.,
2007), oscillatory α activity modulates the activation of task-
relevant cortical regions, facilitating the flow of information
through thalamo-cortical networks, and enabling memory traces
to form in the hippocampal complex (Bazanova and Vernon,
2014). The generation of α oscillations is posited to occur through
GABAergic inter-neurons, an inhibitory neurotransmitter which
receives input from excitatory output neurons, manifesting as
oscillatory activity in cortico-thalamic and intra-cortical circuits
(Mathewson et al., 2011). During NREM sleep, neocortical
SOs, thalamic sleep spindles and hippocampal sharpwave
ripples facilitate the reactivation of freshly encoded memory
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FIGURE 2 | Summary of the oscillatory mechanisms subserving the encoding, consolidation and retrieval of information during language learning and sentence

comprehension. (A) Decreases in α power facilitate enhanced information processing within the thalamo-neocortical-hippocampal system (TNHs), enabling freshly

encoded memory traces to form in the hippocampal complex (HPC). An increase in θ power entrained to the phase of δ oscillations strengthens newly formed

memory traces within the TNHs (thalamus, Th; neocortex, Cx). (B) Sleep-dependent neurophysiological activity, such as thalamic sleep spindles nested within the

up-state of slow oscillations (SOs), enable hippocampal-cortical communication, and the transfer of information to the neocortex for long-term storage, as illustrated

by the neural network grids in the right panel. SOs also induce a rescaling of synaptic weight, optimizing synaptic efficiency for post-sleep encoding and retrieval.

(C) The construction of sentence-level meaning is facilitated by LTM networks recently established in the neocortex and a fine tuning of synaptic connections in the

cortical hierarchy during sleep, as reflected by hierarchically nested δ–θ–γ and β activity, respectively (schematic of hierarchically nested δ–θ–γ oscillations modified

from Calderone et al., 2014). Specifically, the schematic in the right panel illustrates the interplay between neuronal oscillations during sentence comprehension from

a predictive-coding-based view of the brain following sleep-dependent consolidation. Once acoustic speech patterns are perceived by the auditory cortex (AC),

hierarchically nested δ–θ–γ oscillations form successively more complex representations that are generated across the cortical hierarchy (i.e., L1, L2, L3 predictive

estimators). Each level of the cortical hierarchy compares feedback (top-down) predictions to lower levels of the hierarchy, a process subserved by β oscillations.

Error signals occur when there is a discrepancy between the predicted and actual sensory input, resulting in an update of the internal model. Brain models were

generated using BodyParts3D/Anatomography service by DBCLS, Japan.

traces in the thalamo-neocortical-hippocampal system (TNHs;
Bergmann and Staresina, 2017). Thus, α oscillations may
serve as a thalamo-cortical gating mechanism, modulating
wakeful memory encoding and subsequent reactivation of
the TNHs during NREM sleep. From this perspective, α

activity might modulate the timing and strength of language
learning by facilitating the encoding of novel words and
the regularities that govern the combination of words into
sentences. Specifically, event-related changes in α power
during encoding may index cortical processing in response
to novel linguistic information, determining whether sensory
input reaches the hippocampal complex via thalamo-cortical
connections for long-term consolidation. To this end, we predict

that changes in α activity during encoding will modulate
language learning outcomes, manifesting behaviourally as greater
accuracy of acceptability ratings, and neurophysiologically in
distinct oscillatory profiles that reflect successful sentence
comprehension. Finally, we expect that this effect will be
more pronounced after sleep compared to wake through sleep-
dependent reactivation of the TNHs during NREM sleep.

β Oscillations Reflect a Hierarchical
Predictive Coding Architecture
β oscillations have recently been proposed to reflect the
propagation of top-down predictions to lower levels of the

Frontiers in Human Neuroscience | www.frontiersin.org 10 January 2018 | Volume 12 | Article 18



Cross et al. Neurobiology of Sleep and Language Learning

cortical hierarchy during sentence comprehension (Lewis et al.,
2016). During highly predictable sentence constructions, β

activity is posited to increase, reflecting maintenance of the
model predictions. Conversely, β activity is suggested to decrease
when prediction errors occur in highly predictable sentences,
possibly reflecting mismatches between internal predictions and
the actual sensory input (Weiss and Mueller, 2012; Fontolan
et al., 2014; Lewis and Bastiaansen, 2015; Lewis et al., 2015).
From this perspective, we predict that β power will be modulated
by sentences with unpredicted continuations, e.g., sentences
deviating from the canonical word order, which are expected
to elicit greater β desynchronization due to word-order-related
prediction errors. We posit that this desynchronization reflects
internal model updates based on mismatches with the actual
sensory input, such as the abstract features (e.g., category) and
sensory properties (e.g., word form) of the incoming linguistic
item (Bornkessel-Schlesewsky et al., 2016). Finally, in addition
to the TNHs facilitating offline reactivation of memory traces,
homeostatic reductions in synaptic weight during sleep may
accentuate prediction error-related β activity relative to an
equivalent period of wake (formore on sleep and the formation of
predictive codes, see Hobson and Friston, 2012; Rauss and Born,
2017).

γ Oscillations Reflect Local Network
Activation during the Phase of
Hippocampal θ Activity
Our hypotheses for γ oscillations are less specific and more
tentative than for the slower frequency bands, since oscillations
above ∼30 Hz are susceptible to artifact interference, making
it difficult to interpret their functional role in information
processing and cognition (Whitham et al., 2007; Kovach
et al., 2011; Buzsáki and Schomburg, 2015). Specifically,
electromyogram and oculomotor signals can contaminate
scalp and cortically (i.e., electrocorticography; ECoG) recorded
electrical activity >30 Hz, and cause widespread synchronized
high frequency oscillations, leading to spurious inter- and
intra-regional γ activity (Whitham et al., 2007). Scalp- and
cortically recorded γ activity is also confounded by volume-
conduction currents, which result from large fluctuations in
subcortical γ rhythms that spread to and inflate γ activity in
surrounding cortical layers (for a comprehensive discussion see
Buzsáki and Schomburg, 2015). Recordings of cortical neuronal
populations are particularly susceptible to volume-conduction
currents, as cortical neurons share significant overlap in somatic
and dendritic connections (Sirota et al., 2008; Buzsáki and
Schomburg, 2015). For this reason, we suggest that the following
predictions for γ oscillations be tested with depth electrodes, or at
the very least, with magnetoencephalography (MEG), which can
overcome spatially spread high frequency activity, since magnetic
fields are less distorted by cortical tissue and the low conductivity
of the skull (Cuffin and Cohen, 1979; Muthukumaraswamy and
Singh, 2013). These approaches would be complemented by
advanced analysis techniques, such as independent component
analysis, in conjunction with appropriate filtering procedures
(Buzsáki and Schomburg, 2015).

In the language comprehension literature, γ synchronization
is argued to reflect accurate model predictions. That is, the
matching between top-down (e.g., memory representations of
word meaning, contextual information derived from prior
discourse) and bottom-up (i.e., the incoming word) information
is hypothesized to be reflected in γ synchronization (Lewis et al.,
2015; Lam et al., 2016). However, this research is largely based on
cortical (EEG) recordings, which may be confounded by volume
conduction currents. Given the possible artifactual nature of
scalp-recorded γ oscillations, we will focus on research that has
utilized more reliable measures of neurophysiological activity,
such as depth electrode recordings.

Research using depth electrodes reveal that γ oscillations
occur within the hippocampal complex as well as throughout
the cortex (Sirota et al., 2008; Buzsáki and Schomburg, 2015).
Further, the selective coupling between regions CA1/CA3 and
the medial entorhinal cortex appears to be mediated by γ

oscillations that are phase-locked to θ activity (Colgin, 2015).
Hippocampally generated θ oscillations entrain isolated bursts of
γ activity through widespread, reciprocal connections between
the hippocampal complex and neocortex (Lisman and Jensen,
2013). For example, in a study on waking rats, a large proportion
of neocortically generated γ oscillations were dependent on the
phase of hippocampally generated θ oscillations (Sirota et al.,
2008). Thus, the temporal organization between CFC neocortical
γ and hippocampal θ oscillations may facilitate information
transfer between regionally distant neocortical neural ensembles,
which in turn, may support information processing within the
hippocampo-cortical system.

This interpretation is in accordance with a θ–γ neural code
proposed by Lisman and Jensen (2013), who posit that θ–γ CFC
facilitates the generation of ordered multi-item representations
within the hippocampo-cortical network, providing information
to down-stream regions about the sequence of upcoming
sensory input. This interpretation aligns with our proposed
role of θ oscillations in dependency-based combinatorial
computations, and with Friston and Buzsáki’s (2016) perspective
on hippocampal when-based processing. Within this framework,
the hippocampal complex encodes the succession of sensory
input, which is then used by the neocortex to perform what-
based predictions.While θ oscillationsmay support hippocampo-
cortical communication, self-organized γ oscillations may help to
bind memory representations by (1) allowing neural ensembles
that have coded individual memory traces to spike, and (2)
generating gaps between temporally encoded items that prevent
errors in decoding hippocampally driven sequences, since up
to four γ cycles can occur within one θ cycle (Lisman and
Jensen, 2013). This proposal is in line with evidence implicating
hierarchically nested δ–θ–γ activity in sensory and memory
computations, including the perception of speech (see Giraud
and Poeppel, 2012; Arnal et al., 2016; Ding et al., 2016). It
is also in accordance with the observation that slow cortical
oscillations (e.g., δ and θ) reflect large network activation, which
in turn modulates the activity of more regionally isolated, faster
oscillations (e.g., γ; Sirota et al., 2008).

To this end, bursts of regionally isolated γ activity may
reflect the activation of locally encoded memory traces during
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incremental sentence comprehension, such as the meaning
of single words and morphological case marking cues. The
entrainment of γ activity to the phase of θ oscillations may
then facilitate the binding of these individual memory traces
within the hippocampo-cortical network, providing information
to down-stream regions about the meaning of the sentence, a
process which may be supported by inter-regional δ oscillations
(for a similar perspective, see Murphy, 2016). Finally, in line
with the notion that SWS and REM play complementary roles
in memory consolidation (Giuditta et al., 1995), we posit that
REM will strengthen regionally isolated neocortical memory
representations that have been selectively refined through the
synaptic downscaling of SWS, which will manifest in increased
γ activity during incremental sentence comprehension.

SUMMARY OF HYPOTHESES

To summarize, we will restate the above as concrete predictions
that follow our proposed functional role of neuronal
oscillations in reflecting effects of sleep on the consolidation
of sequence-based (order-sensitive) and dependency-based
(order-insensitive) combinatorics during language learning and
sentence comprehension.

Hypothesis 1: The phase of δ oscillations entrain the activity
of higher frequencies, modifying learning and large-scale
neuronal network communication in an attention-dependent
manner.

Evidence for this prediction stems from research with
rodents and monkeys, which demonstrate that δ and θ

cross-frequency phase synchronization coordinates interactions
between deep and superficial cortical layers, modifying sensory
perception and learning processes, particularly for task-relevant
stimuli (Carracedo et al., 2013; Harmony, 2013). Thus, we
hypothesize that the phase of δ oscillations will entrain higher
frequency bands, such as θ and γ oscillations, facilitating
the timing and spiking of synaptic activity and regulating
large-scale network communication during language learning
and sentence comprehension. Specifically, δ and θ cross-
frequency phase synchronization will predict enhanced memory
encoding and retrieval, which will predict greater accuracy
of acceptability ratings during sentence comprehension tasks
requiring grammaticality judgements.

Hypothesis 2: θ oscillations bind relational elements from
LTM during sentence comprehension that have been
consolidated during sleep-dependent reactivation of the
thalamo-neocortical-hippocampal system.

This hypothesis is supported by intracranial EEG evidence
reported by Piai et al. (2016), who found that θ power increased
in the hippocampal complex during ongoing relational
processing during sentence comprehension. In accordance
with the general memory literature, θ activity is posited to
reflect the synchronization between neocortical regions and
the hippocampal complex, binding neocortically distributed
memory representations during encoding and retrieval

(Osipova et al., 2006; Herweg et al., 2016). This interpretation is
supported by sleep and memory research (Bakker et al., 2015;
Schreiner et al., 2015), which reports increased neocortical θ

power during memory retrieval after a period of sleep, possibly
reflecting stronger connectivity between the hippocampal
complex and neocortex. These findings are in line with the
ASC model (Born and Wilhelm, 2012), which predicts that SOs,
spindles and sharp-wave ripples facilitate memory consolidation
by modulating hippocampo-cortical communication. Thus, our
prediction is two-fold: (1) θ power during incremental sentence
comprehension of a newly learned language will be increased
following a period of sleep versus an equivalent period of wake,
with this increase in power predicted by the occurrence of
SOs, spindles and ripples; and, (2) an increase in θ power will
occur for both sequence-independent and sequence-dependent
interpretation, as both rely on basic dependency formation,
which involves the binding of multiple memory traces to form
coherent representations.

Hypothesis 3: Decreases in α power facilitate enhanced
information processing within the thalamo-neocortical-
hippocampal system, promoting the encoding of novel words
and the regularities that govern the combination of words into
sentences.

α oscillations facilitate cortical processing, acting as a
gating mechanism for information flow within thalamocortical
loops (Klimesch, 2012; Sadaghiani and Kleinschmidt, 2016). In
terms of power, α desynchronization reflects the activation of
cortical areas with increased neuronal excitability (a decrease
in amplitude), whereas α synchronization reflects the inhibition
of brain regions (Klimesch, 2012). From this perspective, we
hypothesize that α desynchronization will enhance language
learning by enabling novel linguistic information to be processed
by the thalamus, promoting the formation of memory traces in
the hippocampal complex via the entorhinal cortex. This effect
will manifest behaviourally as greater accuracy of acceptability
ratings, and neurophysiologically in distinct oscillatory rhythms
engaged during sentence comprehension, such as increases
in θ-band power. Finally, we expect that this effect will be
more pronounced after sleep compared to wake through sleep-
dependent neurophysiology, such that a decrease in α power
at encoding and an increase in SOs and thalamic spindles
during sleep will predict (1) enhanced behavioral performance on
grammaticality judgment tasks and (2) increases in θ- and β-band
power during incremental sentence comprehension.

Hypothesis 4: During incremental sentence comprehension,
β synchronization reflects maintenance of model predictions,
while β desynchronization reflects prediction error signals.

From a predictive-coding-based view of the brain, internal
generative models, which predict unfolding linguistic input,
update when there is a mismatch between predicted sensory
input and the actual sensory input (Pickering and Garrod,
2013; Bornkessel-Schlesewsky et al., 2015). In principle,
because of the time-dependent nature of sensory-related
predictions, β oscillations may reflect the maintenance of

Frontiers in Human Neuroscience | www.frontiersin.org 12 January 2018 | Volume 12 | Article 18



Cross et al. Neurobiology of Sleep and Language Learning

model predictions of sensory input. From this perspective,
during sentence comprehension, feedback projections (reflecting
model predictions) that conflict with prediction error signals
projected by feedforward connections may increase β-band
desynchronization. This prediction is in line with in vivo
recordings demonstrating that β oscillations are generated in
deep cortical layers, which propagate prediction-related error
signals backward on the cortical hierarchy to more superficial
layers (Arnal, 2012). It is also in accordance with the proposal that
β desynchronization is elicited by bottom-up information that
conflicts with top-down predictions during sensory processing
(Arnal et al., 2011), or conversely, that β synchronization
occurs when “the cognitive set has to be maintained; (Engel
and Fries, 2010, p. 160). Thus, we hypothesize that β power
will be modulated by whether incoming linguistic items match
internal model predictions. We further posit that SOs will fine
tune synaptic connections in the cortical hierarchy, optimizing
information flow between feedforward and feedback projections,
and in turn, optimize accurate model predictions and minimize
prediction errors.

Hypothesis 5: γ oscillations are temporally entrained to the
phase of θ and δ oscillations, which subserves the binding
of spatially distant neocortical memory traces that have been
strengthened during REM sleep.

As stated above, our hypotheses for γ oscillations are more
tentative than for the slower frequency bands. Based on depth
electrode recordings (e.g., Sirota et al., 2008) and MEG research
on speech perception (e.g., Ding et al., 2016), we hypothesize that
locally generated cortical γ oscillations are temporally entrained
to the phase of θ and δ oscillations during incremental sentence
comprehension. We further posit that such a hierarchical nesting
reflects the following: (1) bursts of regionally isolated γ activity
allow neuronal ensembles that code specific memory traces –
such as for the meaning of single words – to optimally spike;
(2) during sentence comprehension, hippocampally generated
θ activity binds together single memory traces activated by γ

activity, and; (3) large-scale δ oscillations facilitate the transfer
of γ–θ bound memory representations to regions further
downstream. Finally, we predict that increases in REM and
associated θ activity after language learning will predict increases
in γ synchronization during subsequent sentence comprehension
by potentially reorganizing inter- and intracortical memory
representations that have been selectively refined during SWS
(see Durrant et al., 2015, for a discussion on REM θ oscillations
and schema-conformant memory consolidation).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

We have proposed that sleep is an optimal brain-state for
consolidating sequence-based (order-sensitive) and dependency-
based (order-insensitive) combinatorics. To this end, we argued
that sleep-dependent memory consolidation optimizes synaptic
efficacy, which maximizes the ability of the brain to generate
predictions of upcoming sensory input during incremental

sentence comprehension. We have provided testable predictions
for this proposal, focussing on sleep-mediated effects on
oscillatory brain activity during language learning and sentence
comprehension. During encoding and sentence comprehension,
δ oscillations entrain the activity of higher frequencies that serve
as windows of various size for processing information within
and between neuronal pools. α oscillations coordinate the flow of
information in a thalamo-neocortical-hippocampal system that
subserves memory encoding, and subsequent sleep-dependent
memory consolidation. In turn, we have proposed that θ

oscillations index a sleep-dependent transfer of information from
MTL to neocortex, a process which supports both dependency-
and sequence-based combinatorial computations. β oscillations
reflect the propagation of predictions and prediction errors via
a hierarchically organized predictive coding architecture that is
instantiated by sleep-dependent synaptic downscaling. Finally,
γ oscillations are entrained to the phase of hippocampally
generated θ oscillations, a temporally coordinated process which
subserves the binding of spatially distinct, neocortically stored
information during sentence comprehension.

Although not within the scope of this paper, it would be
worthwhile to consider how mechanisms of sleep-dependent
memory consolidation influence the ontogenesis of the
functional neuroanatomy of sentence comprehension, such
as the dorsal-ventral stream architecture (Brauer et al., 2013;
Bornkessel-Schlesewsky et al., 2015). In the visual domain,
sleep drives plastic changes in early (V1) and late (i.e., parietal
lobe) visual areas, facilitating top-down attentional modulations
of primary visual cortex, enhancing visual object recognition
(Walker et al., 2005). Similar effects may hold in the auditory
domain, such that sleep may trigger large-scale, system-
level changes, modifying acoustic memory representations
beyond primary auditory cortex, facilitating the recognition of
successfully more complex auditory objects (e.g., from syllables to
words), a process subserved by the ventral stream (Rauschecker
and Scott, 2009; Bornkessel-Schlesewsky et al., 2015).

Clinically, understanding the relationship between sleep
neurophysiology and language learning could inform treatments
for individuals with language-related disorders, including those
with Autism Spectrum Disorder, Specific Language Impairment,
and Aphasia, who experience greater sleep disturbances than
healthy controls (McGregor and Alper, 2015). Specifically,
SOs may serve as a sensitive biomarker of local cortical
reorganization during aphasia therapy post-stroke (Sarasso et al.,
2010, 2014). Research on both animals and humans indicates
that SOs play a homeostatic role in synaptic plasticity by
facilitating synaptic depression to obtain a general rescaling
of synaptic strength (Sarasso et al., 2014; Tononi and Cirelli,
2014). In this view, if the hypotheses proposed in this
paper hold, such that SOs – at least partially – underlie
the consolidation of sentential combinatorics, SOs could be
selectively increased via stimulation methods (e.g., transcranial
magnetic or closed looped stimulation methods; Ngo et al., 2013)
to accelerate aphasia-based speech and language therapy. Finally,
this paper provides a theoretical framework for understanding
how sleep may affect foreign language learning in adults
beyond the single word level (e.g., Schreiner and Rasch, 2016),
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influencing approaches to foreign language learning, which is
critical in an increasingly multilingual world.
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