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Introduction

Detecting and monitoring the presence of gases such as 

methane (CH4), carbon monoxide (CO) and carbon dioxide 

(CO2), which have unique absorption spectra within the mid-

infrared (MIR) spectral range, is desirable for numerous appli-

cations in different industries particularly for environ mental 

monitoring because of their harmful effects on the earth’s 

atmosphere [1]. Light emitting diodes (LEDs) are a promising 

alternative to laser-based devices for the detection of these 

gases due to their favourable operating properties including: 

lower power consumption, easier implementation, lower com-

plexity and lower cost [2]. However, the eficiency of MIR 

LEDs at room temperature is signiicantly lower than those 

operating at visible and near-infrared wavelengths because 

of detrimental non-radiative Auger and SRH recombination 

processes. In this respect, type-II InAs/InAsSb superlattice 

structures continue to attract research interest because of the 

ability to tailor the band structure to target speciic emission 

wavelengths as well as the potential to adjust electron–hole 

separation to reduce non-radiative Auger recombination and 

maximise the rate of radiative recombination [3, 4]. This makes 

them excellent candidates for use in the active region of MIR 

LEDs. The majority of research to date has focused on the 

study of InAs/InAsSb structures grown lattice-matched and 

therefore unstrained onto GaSb substrates [5, 6] comprising 
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Abstract

InAs/InAsSb type-II strained-layer superlattice (SLS) and multiple quantum well (MQW) 

structures have been studied for their suitability in the active region of mid-infrared LEDs 

operating at room temperature. A series of InAs/InAs1−xSbx superlattices with low antimony 

content (x  =  3.8–13.5%) were grown by MBE on InAs substrates and characterised using 

x-ray diffraction and photoluminescence (PL). The 4 K PL spectra of these samples exhibit 

the expected peak shift to longer wavelength and a reduction in intensity as the Sb content is 

increased. Band structure simulations highlight the effects of changing the antimony content 

and the layer thicknesses, to tailor the overlap of the electron and hole wavefunctions and 

maximise the radiative recombination rate. Analysis of the temperature dependence of the 

PL emission spectra enabled the extraction of quenching energies that demonstrate some  

suppression of Auger recombination in both the MQW and SLS structures. The MQW samples 

exhibit a changeover in the dominant radiative recombination process above ~100 K associated 

with thermal emission of holes into the InAs barriers; this behaviour was not observed in the 

SLS samples. These SLS structures have the potential for use as the active region in room 

temperature mid-infrared LEDs.
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numerous thick InAsSb layers of high antimony content, as 

required for the development of MIR photodetectors [7–10]. 

These superlattices have also been quite successful as the 

active regions in lasers [11–13]. But, there have been fewer 

reports of MIR LEDs using these structures [14–16]. In this 

work we report on InAs/InAsSb strained-layer superlattices 

(SLS) grown on InAs substrates. There are some advantages 

of such structures: irstly, a smaller bandgap can be achieved 

as the strain makes the structure more type II; secondly, the 

strain breaks the degeneracy of the heavy hole and light hole 

bands, which can help to reduce Auger recombination which 

is particularly detrimental to LED performance at higher 

temperatures.

Experimental procedures

A series of four InAs/InAs1−xSbx SLS structures were grown, 

comprised of 50 periods of 14nm InAs and 14nm InAsSb with 

antimony content x = 3.8–13.5%, on n-InAs(1 0 0) substrates 

in a VG-V80H MBE system. Two multiple quantum well 

(MQW) InAs/InAsSb structures (40 nm InAs barrier, 10 nm 

InAsSb QW) containing xSb  =  3.7, 4.3% were also grown 

based on our earlier work [17]. Valved cracker cells were used 

to provide As and Sb luxes and a thermal effusion K-cell was 

used to provide the In lux. During the growth surface recon-

structions were monitored by in situ relection high energy 

electron diffraction (RHEED). Substrate temper ature was 

measured using an infrared pyrometer and back-calibrated 

by monitoring surface reconstructions. The growth rates were 

calibrated by monitoring RHEED spot intensity oscillation 

using a photomultiplier tube. The substrate is irst outgassed 

in the preparation chamber and oxide desorption is carried 

out in the growth chamber by gradually heating up to 520 °C 

under As lux until the weak  ×  3 RHEED pattern transforms 

to the  ×  2 pattern. The substrate temperature is lowered to 

480 °C to grow an InAs buffer layer of thickness 600 nm and 

then further reduced to 450 °C to carry out growth of the InAs/

InAsSb SLS and MQW. To obtain abrupt interfaces between 

InAsSb and InAs, As–Sb exchange is done by exposing the 

InAs surface to Sb lux for 10 s prior to InAsSb QW and SLS 

layer growth and before InAs barrier growth the InAsSb sur-

face is exposed to As lux for 20 s. Antimony composition of 

the InAsSb layers was varied by controlling the temperature 

of the Sb cell, starting at 550 °C to achieve Sb  =  3.8% and 

increased up to 580 °C to achieve Sb  =  13.5%. Details are of 

the samples are given in table 1.

All the samples were characterised using high resolution 

x-ray diffraction (XRD) using a Bede QC 200 system to obtain 

ω  −  2θ scans. Bede Mercury RADS simulation software based 

on dynamical scattering theory of XRD was used to determine 

the layer thicknesses and Sb content. Photoluminescence of 

the structures was excited using a 785 nm laser focused onto 

the sample which was held inside an Oxford Instruments con-

tinuous low cryostat, capable of maintaining the sample at 

a ixed temper ature in the range 4–300 K. The spot size was 

1 mm (diameter) corresponding to an excitation of approxi-

mately 2.5 Wcm−2 at the sample surface. The photolumines-

cence (PL) emission was analysed using a Bruker Vertex 70 

Fourier transform infrared (FTIR) spectro meter in step scan 

mode. The radiation was detected using a 77 K InSb photode-

tector and lock-in ampliier.

Results

InAs/InAsSb multiple quantum wells (MQW)

The ω  −  2θ XRD spectra obtained from the (0 0 4) x-ray 

rocking curves of the two MQW samples are shown in 

igure 1. These were peak matched with theoretical scan data 

simulated by RADS Mercury software. The InAs barrier and 

InAsSb well thickness were obtained as 40 nm and 10 nm 

respectively and the Sb content was determined to be 3.7% 

and 4.3% in Sample 1 and Sample 2 respectively, in close 

agreement with the target design. The strong Pendellosung 

fringes are evidence of good structural layer quality and sharp 

growth interfaces.

The corresponding FTIR PL spectra obtained from the 

MQW samples obtained at temperatures in the range 4–300 K 

are shown in igure  2. The PL spectra are comprised of 

double peaks situated at wavelengths relatively close to one 

another which were separated by Gaussian deconvolution. 

At 4 K the energy separation between the two deconvoluted 

peaks is small, at around 3.7 meV and 5.4 meV for Sample 

1 and (more clearly visible) in Sample 2 respectively which 

is consistent with exciton recombination in the quantum well 

and which is as expected approximately 4 times the exciton 

binding energy in the bulk semiconductor [18, 19] (assuming 

an exciton binding energy of 1.3 meV in bulk InAs, and is pro-

posed to be discussed in detail in a further publication). The 

PL decreases in intensity as temperature is increased. The two 

most important non-radiative processes are SRH and Auger 

recombination. The rate at which SRH recombination occurs 

is relatively insensitive to temperature [20]. However, Auger 

recombination is known to be temperature dependent and fol-

lows the general relation

RAuger ∝ exp

(

−

Ea

kBT

)

T3
 (1)

where Ea is the activation energy for the corresponding Auger 

process and the exponential term dominates [21]. The spe-

ciic Auger processes each have their own activation energies, 

where the CHCC and CHSH processes have activation ener-

gies given by [22]

Table 1. A summary of the structure details of the different 
samples under investigation. Thickness and composition values 
were measured using high resolution XRD.

Sample Structure

InAs  
barrier  
(nm)

InAsSb 
QW (nm)

No. of  
periods

Sb  
content,  
x (%)

1 MQW 40.0 10.0 10 3.7

2 MQW 40.0 10.0 10 4.3

3 SLS 14.0 14.0 50 3.8

4 SLS 14.0 14.0 50 6.2

5 SLS 14.0 14.0 50 9.5

6 SLS 14.0 14.0 50 13.5
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Figure 1. XRD scan comparison with simulated data for (a) Sample 1 (MQW, Sb  =  3.7%) and (b) Sample 2 (MQW, Sb  =  4.3%). Black 
line—XRD data, red line—simulation.

Figure 2. The temperature dependence of PL obtained from the two MQW samples: (a) Sample 1 containing 3.7% Sb in the MQW and 
(b) Sample 2 containing 4.3% Sb in the MQW. The lines are a guide to the eye, where the dotted line follows the peak from the e1–hh1 
transition in the type-II structure, and the solid line follows the peak from recombination in the InAs layers.

J. Phys. D: Appl. Phys. 51 (2018) 075103
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ECHCC
a =

m∗

e Eg

m∗

e + m∗

hh

 (2)

ECHSH
a =

m∗

SO

m∗

e + 2m∗

hh − m∗

SO

(Eg −∆0) (3)

where Eg is the bandgap energy, ∆0 is the spin orbit split-

ting energy, and m∗

e, m∗

hh , m∗

SO are the effective masses of the 

electrons, holes in the heavy hole band and holes in the split 

off band respectively. It is possible to determine the dominant 

Auger process using,

(ET −∆0) /ET

m∗

e/m∗

SO

> 1 (4)

such that the CHCC process is dominant when this condi-

tion is satisied. (ET is the transition energy corresponding to 

e1  −  hh1 recombination).

Figure 3. XRD scans and comparison with simulated data for the SLS samples; (a) Sample 3 (Sb  =  3.8%), (b) Sample 4 (Sb  =  6.2%),  
(c) Sample 5 (Sb  =  9.5%) and (d) Sample 6 (Sb  =  13.5%). Black lines—XRD data, red lines—simulation.

Figure 4. PL spectra obtained from each of the SLS samples (a) 4 K PL spectra of InAs/InAs1−xSbx SLS structures with increasing Sb 
content; (b) normalised 4 K PL spectra of those shown in (a) highlighting the decrease in intensity with increasing Sb.

J. Phys. D: Appl. Phys. 51 (2018) 075103
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The evolution of the e1  −  hh1 main peak in the PL spectra 

of the MQW with increasing temperature shows the character-

istic red-shift due to bandgap narrowing and follows closely 

the well-known Varshni law [23]. In both samples, above 

about 80 K, PL emission begins to appear from the InAs bar-

riers originating from thermal emission of conined holes 

escaping from the MQW. This process continues up to room 

temperature where it dominates to the extent that there is no 

longer any observable PL emission from the MQW. This is 

in contrast to the behaviour in the SLS samples considered 

below.

InAs/InAsSb strained-layer superlattices (SLS)

The four SLS samples were also characterised using high res-

olution XRD and the (0 0 4) x-ray rocking curves are shown in 

igure 3 together with the corresponding simulations. These 

samples contain 50 periods of InAs/InAsSb (compared with 

Figure 5. Normalised PL spectra for all of the SLS samples at increasing temperatures. As a guide to the eye the dashed line indicates the 
e1  −  hh1 transition, the dotted line at shorter wavelength indicates the e1  −  hh2 transition.

J. Phys. D: Appl. Phys. 51 (2018) 075103
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ten in the MQW samples) with much thinner InAs barriers—

see table  1 for details. The measured fringes are broader 

compared to the simulation, but the Pendellosung fringes are 

clearly visible, which indicates good layer quality and very 

low Sb segregation into the InAs wells. In each case the simu-

lation gives the corresponding Sb content and the thickness of 

the InAsSb QW and InAs barrier thickness as 14.0 nm. The 

strain increases with Sb content and calculations using the 

Matthews Blakeslee model [24, 25] revealed that the critical 

thickness is just exceeded for Sample 6 containing the highest 

Sb content, which means that sample this sample may contain 

some dislocations. This is consistent with the reduced struc-

tural quality evident in the XRD scan where the peaks are 

less well deined compared to those in the other samples with 

lower Sb content.

The 4 K photoluminescence spectra of the InAs/InAs1−xSbx 

SLS structures in igure 4 show behaviour in good agreement 

with previously reported PL results on similar structures 

[26]. It is evident that as Sb content of the InAs1−xSbx layers 

increases the PL emission shifts to longer wavelengths, the 

intensity decreases, and the peak broadens, which is consistent 

with spatially indirect transitions in type-II QW [17]. As 

shown in the normalised spectra of igure 5(b) the peak inten-

sity decreases by ~13 times as Sb content is increased from 

3.8% to 13.5% and the full width half maximum increases 

from ~97 nm to ~270 nm.

The temperature dependent PL spectra from each of the 

InAs/InAs1−xSbx SLS are shown together in igure  5. The 

PL peak corresponding to the e1  −  hh1 ground state trans-

ition is identiiable in all cases from 4 K up to 300 K. All 

samples exhibit thermal broadening of ~1.1–1.7 kBT. Unlike 

the MQW samples, the holes remain strongly conined and 

the PL spectra of the SLS samples do not display a peak 

corresponding to the InAs barrier transition as temperature 

is increased. However, an additional peak is observed in all 

of the SLS samples. This peak is of higher energy than the 

e1  −  hh1 peak and is of a different energy for each sample and 

becomes visible above ~60 K in each case. The energy sepa-

ration between these peaks ranges from 15 meV to 26 meV,  

consistent with e1  −  hh2 transitions to the next conined hole 

state in the quantum well (—dotted lines in igure 5). The peak 

energy is dependent on the composition and is consistent with 

the inite square well approximation for energy levels in the 

type-II quantum wells. The PL linewidth of the SLS is very 

similar to that of the MQW samples.

Discussion

The band structures of the InAs/InAsSb type-II structures 

were calculated using Nextnano [26] software, assuming 

rectangular quantum wells and periodic boundary conditions. 

The strain in the structure is included within the program 

according to the work of Krijn [27]. The program provides a 

self-consistent solution of the SchrÖdinger, Poisson and cur-

rent equations. In order to ind the quantization energies the 

carriers are treated within the effective mass approximation 

and the dependence of band offsets relies on a materials data-

base populated mostly by Vurgaftman [28]. However, more 

recent experimental works have shown the parameters for the 

InAsSb alloy to be inaccurate, and therefore we made appro-

priate modiications. Negligible bowing of the spin orbit split-

ting energy was used in accordance with the work of Cripps 

[30]. The bowing parameters used for the non-linear inter-

polation of the conduction and valence band energies were 

CCB  =  +0.65 eV and CVB  =  −0.98 eV based on a non-zero 

value of CVB with the bowing split between CB and VB at 

40:60 ratio, as suggested by Liu [17]. The overall bowing 

parameter of 1.63 eV for InAsSb provides a best it to our 

experimental PL results, and is larger than the highest value of 

0.938 eV previously reported by Webster [29]. The agreement 

of the experimental 4 K PL data from igure 5 with the simula-

tion is shown in igure 6.

Figure 7 shows for example a comparison between the 

MQW and SLS structures of similar Sb composition. The 

effect of reducing the QW separation is to raise the energy 

of the e1 level from 1.941 eV to 1.953 eV and similarly the 

energy of the hh1 level is increased from 1.579 eV to 1.583 eV. 

In each case the calculated transition energies are in good 

agreement with the PL transitions observed at 4 K.

Considering the electron and hole wavefunctions (igure 8) 

the heavy hole wavefunction is strongly localised within the 

InAsSb QW regions in both the MQW and SL structures, how-

ever in the SLS structure of thinner layers the electron wave-

function spreads out through the structure with signiicant 

probability of residing in the QW regions. Since the overlap 

of the electron and hole wavefunctions is directly related to 

the radiative recombination rate it is expected that with shorter 

periods the increased wavefunction overlap results in a corre-

sponding increase in PL emission intensity. Increased anti-

mony content increases the type II behaviour resulting in the 

opposite effect of reducing wavefunction overlap and is there-

fore detrimental to PL emission intensity.

The wavefunction overlap is proportional to the matrix ele-

ment M, which can be used as a igure of merit to compare 

Figure 6. Dependence of the 4 K PL peak energies on Sb content 
for the InAs/InAsSb SLS structures. The best agreement with the 
experimental data (black circles) was obtained with an InAsSb 
bowing parameter of 1.63 eV split at the ratio of 40:60 between the 
conduction and valence bands (red line). The dotted line represents 
the previously highest InAsSb bowing parameter of 0.938 eV 
reported by Webster [29], also split at a 40:60 ratio.

J. Phys. D: Appl. Phys. 51 (2018) 075103
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different structures. As light propagates through the QW 

structure, photons are emitted by electrons of energy Ei in an 

initial state |i in the conduction band recombining with holes 

to a inal state |f  of energy Ef  in the valence band.

The matrix element for this transition is deined as:

M = f |x|i =

∫
Ψ∗

f (r)Ψi(r)d
3r (5)

which can be separated into two terms:

M = McvMnn′ (6)

where Mcv is the valence-conduction band dipole moment:

Mcv = uc|x|uv (7)

and Mnn′ is the electron–hole overlap:

Mnn′ = en′|hn =

∫
∞

−∞

ψ∗

en′
(z)ψhn

(z)dz. (8)

Since electric dipole transitions between the conduction and 

valence bands are strongly allowed then it can be assumed 

that Mcv is non-zero, hence the matrix element M for optical 

transitions is proportional to the overlap of the electron and 

hole states [32].

Considering the ground state transition, electrons in the 

n′ = 1 state in the conduction band recombine with holes into 

the n = 1 state in the valence band. Furthermore, the wave-

function overlap can be considered for a single period of the 

periodic SL structure spanning from z = −

P
2
 to z = +P

2
 con-

taining a single QW region. Therefore, the expression for the 

electron–hole wavefunction overlap can be simpliied:

MP = e|h =

∫ +P/2

−P/2

ψ∗

e1
(z)ψh1

(z)dz. (9)

The wavefunction overlap was calculated for each structure 

and decreases with increasing Sb in both the MQW and SLS 

structures, giving a reduction of ~2.1% in the SLS and a 

decrease of ~1.7% in the MQW for a change of 1% of the 

antimony content in the InAsSb well in each case. The radia-

tive recombination rate is proportional to the matrix element 

squared M2
P which was calculated for each sample and the 

values are given in table 2. The reduction of 13×  in the exper-

imental PL spectra of the SLS samples as the antimony con-

tent increases in the QW layers (igure 1) is more than the 

calculated approx. 5.4×  decrease in M2
P shown in the table. 

Consequently, we attribute the remaining reduction to non-

radiative recombination mechanisms which are dominated by 

Auger processes.

The calculated ground state transition energy (e1  −  hh1) 

and the split off energy (ET −∆SO) used to determine the 

dominant Auger process in the MQW and SLS structures 

as well as the corresponding activation energies are given in 

tables 2 and 3. In order to consider the non-radiative processes 

the principal Auger activation energies were determined using 

the transition energies and spin orbit split-off energies calcu-

lated using Nextnano. The values obtained are given in table 3 

alongside the experimentally determined activation energies 

obtained from Arrhenius plots for each sample. Increasing 

the spin orbit split off energy such that it becomes larger than 

the band gap (∆SO  >  Eg) suppresses the CHSH process [32]. 

This excess is larger in the SLS samples than in the MQW 

samples, so CHSH Auger recombination is more suppressed 

in the SLS samples than in the MQW samples of similar anti-

mony composition and CHCC dominates instead. For the SLS 

samples the condition given by equation  (4) is satisied for 

all samples except Sample 3, which has the lowest antimony 

content. Hence, CHCC Auger recombination is the dominant 

recombination process for the SLS samples and the calcu-

lated activation energy for CHCC is found to decrease with 

antimony content. The corresponding experimental values 

have uncertainties that arise due to CO2 absorption which 

complicates Gaussian deconvolutions at high temper atures. 

However, the general trend is that activation energy decreases 

with increasing antimony content. Note that the sample which 

appears to have larger activation energy with increased anti-

mony content (Sample 6) has a thickness that exceeds the 

critical thickness for this structure. It is therefore reasonable 

to say that the overall trend of the results is consistent with the 

calculated CHCC Auger activation energies which dominate 

Figure 7. Simulated band structure (at 4 K) of the MQW and SLS samples with comparable Sb content; (a) MQW (Sample 1) and (b) SLS 
(Sample 3). Reducing the thickness of the InAs layers raises the energy level of the eigenstates which enables convenient tuning of the 
emission wavelength.

J. Phys. D: Appl. Phys. 51 (2018) 075103
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the SLS samples. Meanwhile, for the MQW samples, the cal-

culated CHSH Auger activation energy in the higher antimony 

sample (Sample 2) is larger, consistent with CHSH being sup-

pressed due to ET ∼ ∆0 detuning, which is strongly dependent 

on antimony content. The exper imentally determined activa-

tion energy is larger than both the calculated activation ener-

gies for the CHCC and CHSH processes, which indicates 

that Auger recombination is reduced in these type-II MQW 

structures. The experimental activation energies for the SLS 

samples are also signiicantly higher than those calculated for 

CHCC based on Nextnano. However, the calculated activation 

energies do not include Coulombic effects or band bending 

and more detailed calcul ations which account for the differ-

ence in e–h overlap and the corresponding radiative recom-

bination are required to properly reconcile the calculated and 

experimental values. Nevertheless, we observed clear differ-

ences in the temper ature dependent PL spectra which show 

that the holes remain better conined at higher temperatures 

in the SLS than in the MQW. We attribute this to Coulombic 

attraction arising from the increased e–h overlap in the SLS 

because of the thinner InAs barriers between the InAsSb wells.

Conclusion

High quality InAs/InAs1−xSbx (x  =  3.7–13.5) type-II MQW 

and SLS structures on InAs substrates have been fabricated 

by MBE and investigated using XRD and PL spectroscopy 

as the basis for the active region of MIR LEDs operating 

at room temperature. The 4 K PL spectra of these samples 

exhibit the expected peak shift to longer wavelength and a 

Figure 8. Simulation of electron (red line) and heavy hole (blue line) probabilities within structures having comparable Sb content;  
(a) MQW (Sample 1) and b) SLS (Sample 3). In both cases the heavy holes are strongly localised within the InAsSb QWs. The electron 
probability distribution inside the InAsSb QWs is signiicantly higher for the SLS structure, resulting in a larger overlap of the electron and 
heavy hole wavefunctions.

Table 2. Calculated and experimental values for the MQW and SLS structures at 4 K.

Sample Sb (%)
Exp. 4 K PL peak 
energy (eV)

Calculated e1  −  hh1 
transition at 4 K (eV) M2

P ET −∆SO (meV)

1 (MQW) 3.7 0.376 0.377 59 39

2 (MQW) 4.3 0.367 0.369 45 54

3 (SLS) 3.8 0.367 0.369 1225 46

4 (SLS) 6.2 0.318 0.335 778 117

5 (SLS) 9.5 0.279 0.287 428 180

6 (SLS)a 13.5 0.242 0.231 228 246

a This sample exceeds the critical layer thickness limit calculated by Mathews Blakeslee model [24, 25].

Table 3. A comparison of the experimentally determined activation energies and the calculated values of the main Auger recombination 
processes. Activation energies for Auger recombination mechanisms calculated using Nextnano compared with experimentally determined 
values from PL.

Sample Sb (%) |ET −∆| (meV)
(ET−∆)/ET

me/mSO
ECHCC

a  (meV) ECHSH
a  (meV) Ea expt. (meV)

1 (MQW) 3.7 39 0.7 20 9 33  ±  3

2 (MQW) 4.3 54 1.0 19 13 46  ±  4

3 (SLS) 3.8 46 0.9 19 11 32  ±  3

4 (SLS) 6.2 117 2.5 17 27 28  ±  4

5 (SLS) 9.5 180 4.5 15 42 22  ±  4

6 (SLS)a 13.5 246 7.1 13 58 24  ±  5

a This sample exceeds the critical layer thickness limit.
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reduction in intensity as the Sb content is increased. Band 

structure simulations highlight the effects of changing the 

structure, speciically the antimony content and the layer 

thicknesses, to tailor the overlap of the electron and hole 

wavefunctions to maximise the radiative recombination rate. 

Analysis of the PL data along with Nextnano modelling of 

the structures enabled a comparison of the experimentally 

derived activation energies with calculated activation ener-

gies for the characteristic non-radiative Auger processes and 

e–h overlaps. The dominant Auger process was determined 

to be CHCC in the SLS structures and CHSH in the MQW 

structures. In the SLS structures the activation energies 

follow a downward trend with increasing antimony content, 

whereas the MQW exhibited the opposite behaviour. In both 

cases the experimental activation energies are larger than the 

calculated values, indicating some degree of Auger suppres-

sion. PL studies revealed the desired InAs to InAsSb ground 

state transition exists up to room temperature in the SLS 

structures, but not in the MQW which exhibit increasingly 

InAs bulk-like behaviour above ~100 K. This is attributed 

to an increased e–h overlap and a larger Coulomb attraction 

which keeps the holes better conined in the SLS, thus pre-

serving the transition up to high temper atures. We consider 

that the SLS structures are therefore an excellent prospect 

for room temper ature LEDs.
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