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Abstract 
Premise of research. Froelichsporites traversei is a prominent palynomorph in the Upper 

Triassic of Northe America which is always occurspermanently found in  tetrahedral 

permanent tetrads. It is an important regional biostratigraphic marker in the Norian ofin North 

America and its abundance rises around 215 Ma associated with a significant floral and faunal 

turnover. Its most striking morphological features are the well-developed distal pores (ulci) on 

each grain and the annulus-like exine thickening around them on each grain. Previous works 

suggested it was produced by spore- producing plants or Cheirolepidiacea, but its botanical 

affinity is still unclear. 

Methodology. The wall ultrastructure of F. traversei was analysed by TEM in order to reveal 

more information on the botanical affinity of the palynomorph.  

Pivotal results. The sporoderm consists of two layers and an inner faint discontinuous 

lamination. The outermost exine layer has homogenous texture (tectum), while the inner layer 

has granular texture (infratectum). The laminae below the granular layer are not continuous, 

but directly contiguous with the granules.  

Conclusions.  

An explanation for the lack of the well-developed lamellate nexine is that it might represent 

an immature pollen grain, but the outer layers of the sporoderm, indicates full development. 

The ultrastructure studies have ambiguous results and, the botanical affinity could not be 

revealed with certainty, although the most likely candidates are Gnetaeles or Bennettitales 

based on the wall ultrastructutre. The unusual morphological and ultrastructural features may 

represent experimentation with angiosperm- related features and functions. The dispersalion 

as permanent tetrads may have provided probably adaptive advantages to the parent plant of F. 

traversei related toexplained by polyembryony or polyploidy. 
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Introduction 

Froelichsporites traversei is an enigmatic palynomorph in the Upper Triassic of North 

America that always occurs aspermanently found in tetrahedral permanent tetrads (Litwin et 

al. 1991, Litwin et al. 1993; Reichgelt et al. 2003). It has peculiar angiosperm- like 

morphological features, including distal pores on each grain and an annulus-like thickening 

around each pore. Unambiguous remains of angiosperm related pollen are known from the 

Cretaceous onwards (Friis et al. 2011), but in the Late Triassic several pollen types existed 

among the gymnosperm pollen that show angiosperm like features (e.g., Afropollis, 

Crinopollis group) (Cornet 1989; Doyle 2005, 2009; Hochuli and Feist-Burkhardt, 2013). 

This period is apparently marked with experimentation with new morphological features and 

functions that have become later became extinct during the evolution of seed plants. In 

addition, dispersed palynomorphs occurring in tetrads have been often associated with 

sterility caused by environmental stress or environmental mutagenesis (e.g., Visscher et al. 

2004; Looy et al. 2005). PEventually permanent tetrads might represent a special reproductive 

strategy (e.g. polymebryony, Mander et al. 2012) that provided adaptive advantages for the 

parent plant during environmental perturbations by increasing the chance for producing viable 

offspring. 

Froelichsporties traversei was first described as Pyramidosporites traversei by Dunay and 

Fisher (1979) from +++ 

Later Litwin et al (1993) erected the new genus Froelichsporites to replace the generic 

assignment to Pyramidosporites. The distribution of the taxon is restricted to Upper Triassic 

formations of North America (e.g, Dunay and Fisher 1979; Fisher and Dunay 1984; Litwin et 

al. 1991, 1993; Cornet 1993, Fowell and Olsen 1993, Fowell et al. 1994) (Fig. 1, Table 1) and 

similar forms have beenare described from Upper Triassic continental strata of Portugal 
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(Adloff et al. 1974). Froelichsporites traversei has been recorded from the Chinle Formation 

in the SW USA (Arizona, Utah, New Mexico) (Gottesfeld 1972; Dunay and Fisher 1979; 

Fisher and Dunay 1984; Litwin et al. 1991; Reichgelt et al. 2013; Lindström et al. 2016), 

Dockum Group (Texas, New Mexico), the Chatham Group (North Carolina) (Litwin and Ash 

1993) and the Newark Supergroup (Cornet 1993) (Table 1). It can be considered as a regional 

biostratigraphy marker of the middle Norian in North America (Litwin et al. 1991; Reichgelt 

et al. 2013). In the Chinle Formation in Arizona and New Mexico peaks of its abundance areis 

associated with a floral and faunal turnover and severe environmental perturbations including 

a shift towards arid climate, and increased seasonality (Reichgelt et al. 2013; Whiteside et al. 

2015; Lindström et al. 2016). The highest abundance of F. traversei is coeval with the 

maximum abundance of the Patinasporites group (Patinasporites, Enzonalasporites) 

(Lindström et al. 2016) and Klausipollenites gouldii which is probably associated with an 

opportunistic Voltzialean parent plant.  

Despite the significance of the species in the Upper Triassic of North America and its peculiar 

morphological features the botanical affinity is still unclear. Previous works suggested it was 

produced by spore- producing plants (Litwin et al. 1993), alternatively it could be a prepollen 

(REF) or it was proposed that is was probably produced by Cheirolepidiacea, based on due to 

the resemblance of the tetrads to the Classopollis tetrads (Litwin et al. 1993).  

In order to clarify its botanical affinity, we document its morphology using scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM). This is the first 

documentation of the wall ultrastructure of F. traversei. The exine ultrastructure analyses can 

provide useful insight into the botanical affinity of dispersed palynomorphs and reveal 

relationship between plant groups (e.g., Doyle 2009). The precise botanical assignment of F. 

traversei is also crucial in understanding the role of the taxona during the environmental 

perturbation recorded in the Norian of North America.  
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Material and methods 

The Froelichsporites tetrads investigated here wereare collected from the Chinle Formation, 

at the Petrified Forest National Park, Arizona (PEFO), USA (Fig. 1). Samples BL 1-BL 7 

were taken from the Badlands section, in the upper Jim Camp Wash beds, in the upper part of 

the Sonsela Member from the Badlands locality in the SE corner of the PEFO (Fig. 1). 

Samples MLM 1-MLM 4 were collected from the Mountain Lion Mesa section in the upper 

part of the Sonsela Member, in a higher stratigraphic position compered to BL samples (Fig. 

1). The SEM and TEM studies were carried out on tetrads from one palynological sample, BL 

7, from the Badlands section of theat the Petrified Forest National Park (PEFO) in Arizona 

(GPS coordinates of the locality: 34°50´36.3120´´N 109°47´59.0541´´W) (Fig. 1). SThe 

sample Bl 7 is dark grey mudstone with organic material, it comes from a low energy, 

environment possibly lacustrine horizon or marsh/floodplain, environment. Preparation of the 

palynological samples follows the protocol from Kuerschner et al. (2007). About 10 g of 

sediment was crushed and to dissolve the carbonates and silicates dissolved in, 10% HCl and 

concentrated HF were used. The organic residue was sieved with a 250 µm and a 15 µm mesh. 

Heavy liquid separation or further oxidation of the organic residue was not necessary. 

Palynological slides were mounted using epoxy resin (Entellan) as a mounting medium. The 

organic residues are stored at the Department of Geosciences, University of Oslo. Microscopy 

analysis was carried out with Zeiss No. 328883 microscope connected to an AxioCam ERc5s 

camera and Zen 2011 software.  

The Froelichsporites traversei tetrads were handpicked with an eyelash tool from the organic 

residue and dehydrated in a series of ethanol solutions with increasing concentration (50%, 

70%, 90% and 100% ethanol solution). The tetrads stayed in each solution at least 30 minutes, 

before transferring them into the next solution with higher concentration. The tetrads were 

placed on stubs and coated with gold with a Quorum Q150RS sputter coater. SEM 
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photographs were taken with a Hitachi SU5000 SEM at the Department of Geosciences, 

University of Oslo. SEM stubs are stored in the SEM labor of the Department of Geosciences, 

University of Oslo.  

For ultrastructure analysis handpicked Froelichsporites traversei tetrads were embedded in 

0.1% strength agar (0.1g agar agar dissolved in 10 ml Milli-Q water) and dehydrated with 100% 

ethanol and propylene oxide. As embedding medium, Spurr replacement ERL 4221 was 

applied and the infiltrated blocks were polymerized at 60° for at least 48h. Sectioning and the 

following TEM analysis were carried out at the Department of Animal and Plant Sciences, 

University of Sheffield. Approximately 85 nm thick sections were cut by a diamond knife and 

a Leica UC-6 ultramicrotome. The sections were picked up on 400 mesh copper grids. 

Additional blocks were sectioned at the Electron Microscopy Laboratory of the University of 

Oslo, where machine types was used. Approximately 85 nm thick sections were cut by a 

diamond knife and a Leica UC-6 ultramicrotome. The sections were picked up on 75 mesh 

copper grids. The sections have not been stained. Check with Antje 

Results 

Systematic palynology 

In the morphological description no interpretative terminology was applied to avoid 

premature conclusions. 

 

Genus Froelichsporites, Litwin, Smoot, Weems 1993 

Froelichsporites traversei (Dunay and Fisher 1979) Litwin, Smoot, Weems, 1993 

1979 Pyramidosporites traversei n. sp.; Dunay and Fisher: pl. I, figs 6-9. 

1984 Pyramidosporites traversei Dunay and Fisher; Fisher & Dunay: pl. 2. fig. 4. 

1991 Pyramidosporites traversei Dunay and Fisher; Litwin et al.: pl. II, fig. 7. 
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1993 Froelichsporites traversei (Dunay and Fisher) nov. comb. emend.; Litwin et al.: pl. I 

figs 1-6, pl. 2, figs 1-6, pl. 3, figs 1-12. 

2016 Froelichsporites traversei (Dunay and Fisher) Litwin et al.; Lindström et al.: pl. VI, figs 

1-4. 

Description. Froelichsporites traversei specimens are obligate tetrahedral tetrads with 

slightly to moderately thickened and fused contact areas. The specimens are permanently 

united in tetrads. The proximal face of each sporomorph is in complete contact with all others 

and they are joined at an oblique angle (in polar view). Two wall layers (l1, l2, fig.2A) are 

distinguished, but the outermost layer (l1, Fig.2A) is not always present (fig). The tetrads 

occasionally exhibit only the inner wall-layer (l2, Fig. 2A) on the distal hemisphere of each 

member, and the remnant of the outermost layer is visible only along and the sutures between 

the members. The outer wall layer is thin, psilate, and diaphanous. This layer is thickened 

towards the contact area of the grains to form a thick contact area. The inner layer is thin and 

scabrate. On the distal face of each member a distinct pore structure, ulcus (u, Fig. 2A) is 

present. The ulcus is rimmed by a slight thickening of the inner wall layer to form an annulus- 

like structure, and it is usually 2-4 µm in diameter (observed range 1-7 µm) (Fig. 3). On the 

proximal face of the spores a distinct (but perhaps non-functional) trilete laesurae is present. 

Individual members of the F. traversei tetrads cannot be separated, they are firmly bonded. 

Specimens form the PFNP were well preserved. The colour of the palynomorphs varies 

between pale yellow to golden brown, their SCI index ranges from 2 to 7 (Batten, 2002). The 

specimens from the Newark Supergroup showed increased thermal alteration, their SCI index 

ranges between 8 and 9. 

Dimensions. Thirty specimens of F. traversei tetrads were measured. The tetrad diameter 

ranges between 40µm and 94µm (average 58µm) (Fig. 3). Equatorial diameter of the single 

grains ranges between 29µm and 48µm (with an average of 30µm) (Fig. 3). The diameter of 

Commented [g1]: Can we see this? Is it simply a scar where the 

grain is in contact with the other 3 grainsͶor is it  a true trilete mark 

with lips and a suture? 
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the ulcus is between 3µm and 10µm (with an average of 5.6µm) (Fig. 3). The width of the 

contact area (curvatura perfecta) is 2-7µm with an average of 4µm (Fig. 3). There was no 

difference in size range between the specimens from the PFNP, or the Newark basin.  

Ultrastructure 

The preserved sporoderm of F. traversei consists of two distinct layers and innermost faint 

discontinuous laminae (Figs 5-6). The outermost layer (L1; Figs 5-6) is a thin electron dense 

spongy layer with homogenous texture. It contains no discernible internal structures and 

measures 0.2µm and thickens gradually towards the contact areas (Fig. 5G-H). The boundary 

between the outer and inner layer is sharp, no gradation is observed. The layer below (L2, 

Figs 5-6) has granular texture with small cavities. This layer is 0.4-0.6 µm thick and similarly 

to the outermost layer it thickens gradually towards the triple junction areas of three 

individual grains (Fig.5 G-H). The tetrads are flattened due to compression therefore the 

granules and cavities in this layer might be bigger. Occasionally the cavities seem to increase 

in size towards the boundary between L1 and L2 (Figs 5-6). Below the granular layer 

indication of faint lamination is observed (L3) (Figs 5-6), however the laminate layer is not 

continuous. The granules in L2 are directly contiguous with the underlying, dark-staining 

laminae. The individual grains within the tetrad are connected by the outer layer and the inner 

granular layer and they are firmly bonded (Fig. 7). 

DISCUSSION  

Sporoderm preservation and maturity 

A variety of both abiotic and biotic effects such as preservation state, developmental stage, 

can influence the observed ultrastructure in spores and pollen grains (Osborn and Taylor 

1995). The studied F. traversei tetrads are well-preserved and the colour of the wall (SCI 

index) does not indicate significant thermal alteration. Besides preservation and thermal 

maturity, palynomorph wall-ultrastructure may also be obscured or damaged by the processes 

of embedding or sectioning during preparation for TEM examination (e.g. knife marks and 

Formatted: Font color: Auto, English (United Kingdom)
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chatterWellman et al. 2003). The preserved layers of the sporoderm can be interpreted as 

follows: the outer spongy and inner granular layer can be interpreted as the sexine (Fig. 6). 

The homogenous outer layer represents the tectum and the granular layer is the infratectum 

(Fig. 6). The faint lamination below the granular layer represents either the remnants or the 

first indication of a nexine (Fig. 6). The lack of a well-developed nexine might imply that 

circumstances under which an intact nexine would be detectable may have not been 

encountered, although multiple grains were sectioned and all of them show only faint laminae. 

Alternatively, the lack of nexine might suggest that the F. traversei tetrads represent an early 

stage of pollen ontogeny and are not fully developed. In the Gnetales (group with granular 

infratectum) the nexine forms in a later tetrad stage during ontogeny (Doores et al. 2007). 

Similarly, in the pollen of the cycad Ceratozamia the nexine develops after sexine 

development is well advanced (Audran, 1981). The early developmental stage was also 

suggested by Taylor and Alvin (1984) for explaining the permanent tetrads of Classopollis. 

However, in certain groups such as angiosperms and certain pollen with Bennettitalean 

affinity, the nexine (or endexine) is strongly reduced (or absent) even at maturity. However, 

both sexine layers are present in the contact areas that suggest that the tetrad members are 

likely to be fully developed according to Mander et al. (2012). In addition, no individual 

grains of Frohlichsporites traversei have ever been found in the samples from the Chinle 

Formation or the Newark Supergroup. Therefore, the specimens of F. traversei investigated 

here can be most likely considered as fully developed and dispersed as tetrads at maturity 

from the parent plant. 

 

Botanical affinity 

Litwin et al. (1993) assigned the tetrads to spores based on the presence of a distinct but 

probably non-functional trilete mark on the proximal face of the tetrad members. However, 

Formatted: English (United Kingdom)

Commented [g3]: See comment above 



10 

 

the presence of trilete mark is not necessarily an unambiguous feature of spores (e.g. 

Triadispora). The affinity to spore- producing plants is challenged by its occurrence as 

permanent tetrads, the granular ultrastructure and the presence of a distal pore. In the case of 

spores, the occurrence of permanent tetrads is usually the result of mutagenesis and it 

represents sterile or immature specimens (Visscher et al. 2004). Various bryophyte groups 

disperse permanent tetrads (reviewed in Gray 1985 and Edwards et al. 1999). However, these 

all have very different wall ultrastructure compared to F. traversei (for example in the 

Andreaopsida as described by Brown and Lemmon 1984).Only one bryophyte group 

(Andreaopsida) (Brown and Lemmon 1984) is known to shed as permanent tetrads. The 

Andreaopsida have different sporoderm structure compared to F. traversei (Table 2). In the 

Permian increased abundances of fused lycophyte spore tetrads have been interpreted aswas 

an indication of environmental mutagenesis due to the destruction of the ozone layer, but even 

in that case single specimens were also found (Visscher et al. 2004; Looy et al. 2005). Such 

occurrences of unusual abundances of trilete spores dispersed as permanent tetrads have also 

been reported from the Devonian (e.g. Lavender and Wellman 2002). In contrast, permanent 

tetrads can normally occur among the gymnosperms e.g., Classopollis spp. and, or 

Riccisporites tuberculatus (Mander et al. 2012, Kürschner et al. 2013) (Table 2). According to 

the observation of Litwin et al. (1991) Froelichsporites possesses a distal thinning similar to 

Classopollis but he also noted that it differs from the members of the Circumpolles group by 

the lack of a ring tenuitas, the high degree of proximal contact of tetrad members, and by 

possession of a double-layered wall. Ultrastructure studies can help identifying the botanical 

affinity of dispersed spores and pollen grains but it should not be considered as the basis for 

assigning sporomorphs to any botanical groups (e.g., Doyle 2005, 2009). The double layered 

exine and the faint lamination suggest that the parent plant of F. traversei was a gymnosperm. 

The homogenous tectum and granular infratectum observed in F. traversei occur in non-

Formatted: Font: Italic
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saccate conifers such as the Araucariaceae and Cupressaceae, as well as in Gnetales, 

Pentoxyales, Bennettitales, and certain angiosperms (Doyle 2009). The majority of Mesozoic 

gymnosperms have a stratified sporoderm (Kurmann 1992; Osborn and Taylor, 1994; Osborn 

2000) and possess a laminate nexine, while nexine or (or equivalent laminated inner layer of 

the sporoderm) might be reduced and discontinuous or absent in angiosperms (Doyle 2005). 

The wall ultrastructure analysisUS studies of F. traversei providesd ambiguous results, as 

there is no well-developed nexine layer while the spongy outer and the granular middle layer 

indicate an affinity within the gymnosperms. However, there are several Mesozoic pollen 

grains that show extraordinary ultrastructure patterns, e.g. Mesozoic bennettitalean pollen 

grains. They exhibit various ultrastructure patterns and in several cases deviate from the 

typical stratified pattern of the gymnosperm pollen grains (e.g., Zavada 1990; Zavialova et al. 

2009). A thin lamellate inner layer is present in the bennettitalean pollen Granamonocolpites 

luisae from the Chinle Formation, while its ultrastructure is otherwise homogenous (Zavada 

1990). The pollen grains found in situ in Williamsoniella coronata (Zavialova et al. 2009) 

have also a homogenous ultrastructure. The wall of the pollen found in situ in Cycadeoidea 

dacotensis possess stratified pattern characteristic for other gymnosperms (Osborn and Taylor 

1995) with homogenous tectum and granular infratectum and a thick darker-staining 

homogenous nexine with only faint indication of lamellae.  

Another exception is Cyclusphaera psilata (Taylor et al. 1987) a diporate pollen grain with 

affinity within Araucariaceae (Del Fueyo and Archangelsky 2005) that has columellar 

ultrastructure which is unusual in the Araucariaceae. 

Based on the results of the ultrastructure study the precise botanical affinity still remains 

ambiguous, but at least the assignment to the Cheirolepidiaceae as suggested previously by 

Litwin et al. (1993) can be excluded. The members of the Circumpolles group possess 

completely different exine stratification and characteristic columellar infratectum (e.g., Taylor 
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and Alvin 1984; Zavialova, 2003; Zavialova and Roghi 2005; Zavialova et al. 2010) in 

contrast to the granular texture in F. traversei. The most likely candidates are Gnetales, or 

Bennettitales, but F. traversei cannot be precisely assigned to any groups based on solely on 

the morphology or wall-ultrastructure.  

The Reproductive Biology of the parent plant of Froelichsporites traversei 

The morphology of pollen grains and some aspects of exine organization may relate 

functionally to pollination mechanism (e.g. Bolinder et al. 2015). Dispersalion of mature 

pollen grains as tetrads or other compound units is widespread among angiosperms (e.g. 

Cyperaceae, Juncacea) but very rare in gymnosperms (Shukla et al. 1998; Blackmore et al. 

2007). In angiosperm the dispersal of pollen grains as permanent compound units (tetrads, 

dyads) is a common phenomenon in order to fertilize several ovules during one fertilization 

event (Shukla et al. 1998). In the case of the gymnosperm pollen Riccisporites tuberculatus 

Mander et al. (2012) suggested that simple polyembryony (Webber 1940) is the explanation 

for the dispersal as permanent tetrads. Polyembryony is the formation of more than one 

embryo within a single ovule due the fertilization of more than one archegonia by different 

pollen grains (Shukla et al. 1998). This type of fertilization is present in the life cycle of 

several conifers (e.g., Picea, Larix, Pseudotsuga, Pseudolarix), and in Gnetum (Gnetales) the 

process is especially common (Sporne 1974; Williams 2007). Mander et al. (2012) argued that 

the simple polyembryony provided the parent plant of R. tuberculatus an adaptive strategy to 

avoid self-fertilization and increasing the chances of producing viable offspring.  

Iin the original description Litwin et al. (1993) reported the occurrence of F. traversei triads, 

but iIn the present material only tetrads werehave been found, but in the original description 

Litwin et al. (1993) reported the occurrence of F. traversei triads however; no example was 

documented. The presence of permanent tetrads and the occurrence as triads together with 

aberrant uneven tetrads was explained by polyploidy (unreduced 2n pollen) in the case of 
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Classopollis (Kürschner et al. 2013). Polyploidy increases the fitness of the offspring which 

tends to be more vigorous and healthier than the diploid parent plants  

 

This process is common in flowering plants, but a rare phenomenon in gymnosperms (e.g. Li  

et al. 2015), with the exception of Ephedra (Gnetales) where it can be prevalent (Ahuja, 2005).  

In addition to the dispersal as compound units, the exine structure and thickness have been 

proposed to relate to transport mechanisms (e.g., Bolinder et al. 2015). The granular exine 

with no or very thin endexine is an early specialization trend in some Magnoliales in order to 

reduce exine thickness (Doyle 2009). The reduction of exine thickness was explained as an 

adaptation to beetle pollination (Doyle 2009). By contrast, switching to granular exine in 

Fagales was most likely a response to wind pollination and exine reduction (Doyle 2009). As 

the parent plant of F. traversei is not precisely known, itsthe pollination mechanism of the 

parent plant is unknown. Among the potential candidates for the parent plant opf F. traversei, 

the Bennettittales are considered to be primarily insect- pollinated based on the huge pollen 

size and thick granular infratectum (Bolinder et al. 2014). In the case of fossil Gnetales 

entomophily was suggested to be the main pollination mechanism, but Bolinder et al. (2015, 

2016) observed a shift to anemophily in several modern Ephedra species which is also 

evident in the slight differences in ultrastructure: entomophilous species have a thicker 

infratectum and the granules in the infratectum are more densely spaced compared to the 

anemophilous species. The thickness of the infratectum in F. traversei is uneven and the 

surface is smooth that could probably enable wind pollination. However, the granules are 

densely spaces in the infratectum of F. traversei and during the routine light microscopy 

analysis F.traversei seemed to have high settling velocity which is more characteristic 

ofrather for insect-transported pollen. The revelation of the pollination mechanism is beyond 

the scope of this paper as the parent plant is uncertain. Most likely the exine structure and the 
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previously listed special fertilization strategies (polyembryony, and/or polyploidy) provided 

advantages in the transport and reproduction of the parent plant of F. traversei.  

The distal ulcus is a conspicuous feature of the morphology of F. traversei. Generally, the 

aperture plays an important role in the reproductive biology of the plant as this is the place 

where the fertilization starts (Furness and Rudall 2004). Spores of bryophytes, lycophytes and 

ferns have a single proximal trilete or monolete aperture that forms at the contact area 

between four spores in the tetrad (Rudall and Bateman 2007). By contrast, apertures are 

predominantly distal in extant seed plants, e.g. Ginkgo, most conifers, most cycads, and basal 

angiosperms (Rudall and Bateman 2007). The shift from proximal to distal germination 

aperture has been regarded as one of the key innovation of seed plant evolution (Furness & 

Rudall, 2004). The distal pore is derived from the reduction of a monosulcate germination 

aperture in (Furness and Rudall 2004; Rudall and Bateman 2007). The number, position and 

orientation of pollen apertures are considered to be related to the meiotic cytokinesis in the 

anther (e.g. Ressayre et al. 2002, 2005). The orientation of the distal sulci in F. traversei 

resembles the aperture pattern that forms in the case of monosulcate angiosperm pollen grains 

during simultaneous cytokinesis. Similarly, the tetrahedral tetrad configuration, as observed in 

F. traversei, is more common in simultaneous cytokinesis (Furness and Rudall 20014). This 

microsporogenesis type characterizes the majority of extant gymnosperms with the exception 

ofin the cycads where different sporogenesis types are present (successive, simultaneous, 

intermediate) (Furness and Rudall 2004).  

Angiosperm like features  

EarlyThe earlies cladistics analyses already indicated that the angiosperm line, or at least 

some angiosperm features, originated in the Triassic (Doyle and Donoghue 1986). More 

recentlyBy now, various works have showed that several Late Triassic gymnosperm pollen 

types exhibit angiosperm- like morphological features (e.g. Afropollis, Hochuli and Feist-
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Burkhardt, 2013; Crinopollis group, Cornet 1989). Froelichsporites traversei also possesses 

also a series of angiosperm like features, such as a distal pore (ulcus), annulus, reduced 

discontinuous nexine and the dispersalion as compound units (permanent tetrads). 

Dispersalion as permanent tetrads and a distal ulcus are also observed in the early angiosperm 

Walkeripollis gabonensis (Doyle et al. 1990), even if the ultrastructure and pollen 

morphology (Doyle and Hotton 1991) differ. On the basis of these unusual features of F. 

traversei, the question arises whether F. traversei is related to the predecessors of the 

angiosperms, or these morphological and ultrastrucutre features merely represent an extinct 

evolutionary pathway. Previously, boat-shaped monosulcate pollen and granular exine was 

considered as the ancestral pollen type among angiosperms (Doyle 2005, 2009). However, 

contrary to thise previous views, the globose monosulcate pollen and columellar exine were 

ancestral in almost all basal angiosperms (Doyle 2005, 2009). GThe granular infratectum 

developed in angiosperms secondarily in the Magnoliales, Nympheales and Laurales (Doyle 

2005, 2009). The Annonaceae, within the Magnoliale,s represents the only exception, as in 

this group granular exine is considered to be the ancestral exine structure (Doyle 2005, 2009). 

These recent developments refute the previous hypothesis that linked Gnetales, Bennettitales, 

Pentoxylales and angiosperms. It is equally likely that the angiosperms are related to 

Caytoniales with alveolar exine and/ or the Triassic Crinopollis group which has columellar 

exine (Doyle 2005, 2009). Therefore, the relation between early angiosperm, or angiosperm 

related pollen grain, and F.traversei is unlikely. The morphological features of this species 

most likely represent extinct evolutionary pathways among gymnosperms.  

Paleoenvironmental significance 

Froelichsporites traversei has a long stratigraphic range in the Chinle Formation where, it is 

present in Zone II and III of Litwin et al (1991). Lindström et al. (2016) found it in the 

topmost part of the Petrified Forest Member in New Mexico (Zone III) and it is also present in 
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the Newark Basin (Cornet 1993; Fowell and Olsen 1993, Fowell et al. 1994). Its 

abundanceratio considerably increases after a faunal and floral turnover in the Sonsela 

Member in the PEFO around 215 Ma (Reichgelt et al. 2013) (Fig. 8) and at the floral turnover 

in the upper part of the Petrified Forest Member in New Mexico about 4 Ma years later (ca. 

211.9 Ma ago), (Whiteside et al. 2015; Lindström et al. 2016). During both turnovers the high 

abundance of F. traversei is accompanied by an increase in Klausipollenites, which is a 

bisaccate pollen with Voltzialean affinity, and the Patinasporites group (Patinaporites spp., 

Enzonalasporites vigens, Daughertyspora chinleana). Whiteside et al. (2015) explained the 

abundance of these groups as a consequence ofby harsh environmental conditions and 

climatic extremities. Most likely Froelichsporites traversei belonged to a plant group which 

had greater stress tolerance and thrived in disturbed areas, or during arid periods. The unusual 

morphological features together with the proposed reproductive biology provided adaptive 

advantages for the parent plant of F. traversei that made it successful during the 

environmental perturbation. Among the plant groups that can be related to F. traversei, the 

fossil Gnetales are often regarded as an indicator of extremely dry climate (Hoorn et al. 2012). 

However, modern Gnetales inhabit various environments and live under various climatic 

conditions therefore their occurrence does notabundance cannot be reduced to represent one 

ecological signal (dry climate).  

Concluding remarks 

More and more palynological data from the Late Trissic provide evidence for the 

“experimentation” with angiosperm related morphological features and probably functions in 

gymnosperm pollen. The enigmatic palynomorph, Froelichsporites traversei from the Norian 

of North America exhibits a number of angiosperm like features such as distal pore (ulcus) 

with annulus like thickening, simple granular wall-ultrastructure with discontinuous nexine 

lamination. The sporoderm structure suggests that the F. traversei grains were mature at 
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dispersion and shed as permanent tetrads. The wall-ultrastructure and the palynomorph 

morphology provided ambiguous results and the botanical affinity of F. traversei could not be 

determined precisely. The prevailing information suggests that the parent plant was probably 

related to the Gnetales, or Bennettitales. Dispersalion as permanent tetrads provided probably 

adaptive advantage of the parent plant of F. traversei.  
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Figure captions 

Figure 1: A, Position of the Petrified Forest National Park within North America. The 

numbers indicate the Froelichsporites traversei occurrences: 1) Texas (Tecovas Formation) 

holotype locality, 2) Utah (Chinle Formation), 3) Arizona (Chinle Formation) (present study), 

4) New Mexico (Chinle Formation), 5) Texas (Eagle Mills Formation), 6) South Carolina 

(South Georgia Basin), 7) North Carolina (Deep River Basin), 8) Virginia (Culpeper Basin), 9) 

Maryland (Gettysburg Basin), 10) Pennsylvania (Gettysburg Basin), 11) New Jersey (Newark 

Supergroup). Modified from Litwin et al. (1993). B, Location of the sampling sites withi the 

Petrified Forest Nation Park. Map modified from Parker and Martz (2011). C, 

Paleogeographic position of the Chinle sedimentary during the Late Triassic Triassic. Map 

modified from Trendell et al. (2013). D, Stratigraphic positon of the studied palynological 

samples. Logs modified from Reichgelt et al. (2013). 
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Figure 2 LM photoplate 

 

Figure 3 SEM Photoplate  

LM photoplate: A bl 2_2, B Bl 7_2, D MLM 2-2, E Bl 7_2, F Bl 7_1, G bl 4_1, H MLM 2-2, 

I Bl 6_1, J BL 7-2, K Newark 1, L Newark 1. Scale bars represent 20µm. 

 

Figure 4: Abundance distribution of the measured morphological characters based on 30 

specimens.  

 

Figure 5: TEM images of Froelichsporites traversei showing the ultrastructure of the 

palynomorph wall.  

 

Figure 6: TEM images showing the inner tetrad structure and the wall-US in a series of 

sections from the outside toward the center of the tetrad. Position of the section within the 

tetrad is marked in Fig. 7. 

 

Figure 7: Schematic interpretation of the sporoderm of Froelichsporites traversei.  

 

Figure 8: Simplified pollen diagram with the abundance distribution of Froelichsporites 

traversei and selected ecologically important pollen taxa in the Chinle Formation during the 

Norian. The dashed line indicates the horizon of the faunal and floral turnover, after Parker 

and Martz (2011).  


