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ABSTRACT 18 
 19 

The role of micro cavitation in Elastohydrodynamic Lubrication is numerically investigated 20 

using a multiscale approach whereby both the small scale topographical features and the 21 

micro-cavitation of the lubricant due to the features are resolved. Micro-cavitation and the 22 

fluid͛Ɛ shear-thinning property are modelled at the small scale of topological feature. The 23 

effects of topographical features on the film thickness of the line contact bearings and friction 24 

coefficient are presented with a focus on the role of micro-cavitation. This highlights how a 25 

mass conserving small scale model can be used to model both micro-cavitation and cavitation 26 

occurring at the bearing scale, and how topological features can be designed to reduce friction 27 

while maintaining bearing load. 28 

  29 
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1 INTRODUCTION 1 
 2 

In this paper the role of cavitation in an Elastodhydrodynamic Lubrication (EHL) converging-3 

diverging line contact is investigated. The bearing surfaces are a smooth moving roller surface 4 

relative to a stationary, textured flat surface. Topographical changes to a lubricated surface of 5 

industrial components have been experimentally and numerically shown to improve their 6 

tribological performance in three main aspects, the load carrying capacity, the friction 7 

coefficient and the lubricant fluid film [1, 2]. Such applications include piston rings [3, 4], 8 

mechanical seals [5, 6], journal bearings [7, 8], pad bearings [9-12] and roller bearings in line 9 

contacts [13-17] and point contacts [18, 19]. 10 

A number of numerical approaches have been proposed to represent lubrication of surfaces 11 

with topographical features [7, 17, 18, 20, 21]. One of the challenges of numerically describing 12 

these problems is the order of magnitudes difference in the size of bearing surface topography 13 

and the bearing itself. This has led to a number of multiscale methodologies to analyse the 14 

problem and overcome the limitation in terms of computing costs [22-26]. Among the 15 

multiscale models, many of them employ an adapted Reynolds equation based on Patir and 16 

CŚĞŶŐ͛Ɛ average flow model [27] to solve the large scale fluid pressure, and the Stokes or 17 

Navier-Stokes equations to solve the small scale fluid flow [22, 24, 26]. Recently, the 18 

homogeneous multiscale approach has been developed, in which the large scale fluid flow was 19 

governed by a homogeneous pressure-gradient function whose coefficient was obtained from 20 

the small scale simulations. These include the work of Nyemeck et al. [25] on the 21 

hydrodynamic lubrication with rigid bearing surfaces of seals͕ ĂŶĚ ƚŚĞ ĂƵƚŚŽƌƐ͛ ǁŽƌŬ [11, 12] on 22 

the EHL simulation of micro-textured pad bearings.  23 

     The role of micro-cavitation on lubrication has been studied by a number of investigators 24 

arising from experimental observation of cavitation occurring in the vicinity of surface 25 

roughness [20, 28]. The role of cavitation raises further questions regarding the validity of 26 

using a form of the lubrication equation, where cavitation effects may not be uniform across 27 

the film thickness due to the underlying topography; this cannot be captured by the lubrication 28 

approximation where a constant pressure is assumed across the film thickness. Olver et al. [29] 29 

proposed ĂŶ ͚ŝŶůĞƚ ƐƵĐƚŝŽŶ͛ ĞĨĨĞĐƚ ĚƵĞ ƚŽ ĨůƵŝĚ ĨůŽǁ ĚƌŝǀĞŶ ďǇ cavitation pressures located in the 30 
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inlet region of the pad bearing surface. Ausas et al. [30] and Qiu and Khonsari et al. [31] 1 

studied micro-cavitation in textured bearing lubrication using a mass conserving model and 2 

compared different boundary conditions of cavitation; the half-Sommerfield condition, Swift-3 

Steiber (Reynolds) condition and the FlobergʹJakobssonʹOlsson (JFO) condition. It was found 4 

that the Reynolds condition largely underestimated the cavitation area and predicted a higher 5 

load-carrying capacity than the JFO results. Other studies of micro-cavitation have used Navier-6 

Stokes based Computational Fluid Dynamics (CFD) simulations to solve the fluid flow, for 7 

example, Shi and Ni [32], Wahl et al. [33] and Meng and Yang [34]. However, these studies of 8 

micro-cavitation were all modelled at a single scale, where the topographical features were 9 

described over the entire lubrication domain. The number of simulated micro dimples or 10 

grooves in these studies was limited to up to 10 due to the very fine mesh required to resolve 11 

the small scale features and cavitation. In real engineering applications the number of micro 12 

dimples (and roughness) could be much larger on a real textured ďĞĂƌŝŶŐ͛Ɛ surface, and a 13 

multiscale method is especially relevant to solve such problem.  14 

     In this paper the heterogenous multiscale method (HMM) [35] is applied to EHL as derived 15 

by the authors [11, 12, 36] and extended to include cavitation effects, via the application of a 16 

mass-conserving approach at both small and large scales. This enables the model to capture 17 

cavitation at both scales. The pressure gradient-mass flow rate relationship is obtained from a 18 

homogenised local scale solution. This relationship is subsequently used at the global scale as a 19 

governing equation of fluid flow, and solved along with the conservation of mass. In this work 20 

cavitation is considered at the local scale via a predefined threshold cavitation pressure. The 21 

effects of the micro-ƚĞǆƚƵƌĞ͛Ɛ ŐĞŽŵĞƚƌŝĐĂů ƉĂƌĂŵĞƚĞƌƐ ŽŶ ƚŚĞ ďĞĂƌŝŶŐƐ͛ ůƵďƌŝĐĂƚŝŽŶ Ĩŝůŵ 22 

thickness and friction coefficient are presented. The piezo-viscous and shear-thinning effects 23 

are discussed and the importance of the role of micro cavitation at the small scale is 24 

highlighted. 25 

 26 

2 NUMERICAL METHODOLOGY 27 
 28 

2.1 Geometry and Materials 29 
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     In this study, the global geometry of the lubrication model is a two-dimensional cylindrical 1 

line contact. The smooth cylinder rotates relative to a textured stationary surface, as shown in 2 

Fig. 1. The material of the plane is PTFE with an elastic modulus (E) ŽĨ Ϭ͘ϱ GPĂ ĂŶĚ PŽŝƐƐŽŶ͛Ɛ 3 

ratio (߭) of 0.4. The cylinder is assumed to be rigid compared to the soft PTFE bearing surface. 4 

The radius of the cylinder (r) is 25 mm and the rotation speed (߱) is 80 rad/s, and equivalent to 5 

a sliding speed (U0) of 2 m/s. The micro-pocket length (L) ranges from 20 m and 100 m and 6 

the depth (d) from 0 m and 30 m. The geometrical and material parameters are listed in 7 

Table 1.  8 

 9 

2.2 Large Scale Simulation 10 

     The large scale simulation describes the fluid-structure interaction in the global lubrication 11 

domain, where the fluid pressure is solved simultaneously with the elastic deformation of the 12 

bearing surfaces. The difference between the current study and classical EHL analysis is that 13 

the governing equation for the hydrodynamic pressure is a homogenised equation from the 14 

small scale simulations, rather than the Reynolds equation, expressed as 15 

 
ݔƸ݀݀ ൌ ݂ሺ݃ǡ Ƹ ǡ ሶ݉ ሻ (1)  

together with the mass conservation equation 16 

 
݀ ሶ݉݀ݔ ൌ Ͳ (2)  

The pressure gradient (
ௗොௗ௫) is a homogenised function of the pressure (Ƹ), mass flow rate ( ሶ݉ ) 17 

and film gap (g), interpolated from a series of small scale solutions. The large scale boundary 18 

conditions used to solve Eqs. (1) and (2) are that the pressure at the bearing inlet and outlet 19 

boundaries is equal to zero: 20 

Ƹ  ൌ Ƹ௨௧ ൌ Ͳ (3)  

The line contact bearing load is balanced by an integral of the average small scale pressure 21 

(i.e., load per unit length כ), along the line contact domain. The average small scale pressure 22 

 was defined in Eq. (17) in the Section 2.3.1 ͚Small Scale Simulations͛͘  23 (כ)

ݓ  ൌ න ௫௨௧ݔ݀ כ
௫  (4)  
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The geometry equation is expressed as a sum of the rigid displacement (e, an unknown 1 

constant determined by load w), rigid gap geometry and the surface deformation (ߜ): 2 

 ݄ ൌ ݁  ݎʹଶݔ    (5) ߜ

ߜ  ൌ ࡷ ൈ   (6) כ

where the displacement influence coefficient matrix K ǁĂƐ ŽďƚĂŝŶĞĚ ƵƐŝŶŐ ƚŚĞ GƌĞĞŶ͛Ɛ ĨƵŶĐƚŝŽŶ 3 

[37] for linear elastic contact model.  4 

 5 

2.3 Small Scale Simulations 6 

     The small scale problem is described by the flow equations and those governing the elastic 7 

deformation of the small scale features. The coupling is facilitated through the application of 8 

the Arbitrary Largrangian Eularian (ALE) method to describe the fluid domain as the solid 9 

domain deforms and the inclusion of non-Newtonian, piezo-viscous and cavitation effects are 10 

included. 11 

 12 

2.3.1 Solid Structure Model 13 

     The small scale solid domain is described by a plain strain model with the separation of the 14 

displacement influence coefficient matrix K into local (diagonal, K1) and global (off-diagonal, 15 

K2) terms [12]. The film gap (g) at the small scale is described by the sum of undeformed gap 16 

and the non-local deformation (ࡷଶ ൈ ଵࡷnot including the local deformation ሺ ,( ൈ  ሻ. 17

 ݃ ൌ  ݁  ݎʹଶݔ  ଶࡷ ൈ   (7) 

The local terms are represented as part of the local fluid-structure interaction simulation, and 18 

the global terms are applied as they would be in a conventional EHL simulation. An equivalent 19 

height of the solid domain is introduced in order to ensure that the local deformation in the 20 

small scale simulations is the same as the column deformation obtained from the diagonal 21 

matrix. For further details of the structure model the reader is referred to references [12].  22 

 23 

2.3.2 Laminar Flow Model    24 
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The steady-state, isothermal and laminar flow is governed by the compressible Navier-1 

Stokes equations: 2 

ܝሺߩ  ή ܝሻ ൌ  ή ൣെ۷  ܝ൫ߟ  ሺܝሻ൯ െ ߟʹ ͵ሺ ή ሻ۷Τܝ ൧ (8) 

  ή ሺܝߩሻ ൌ Ͳ (9)  

where, u is the fluid velocity vector and I the unit tensor. ߩ is the generalized fluid density 3 

which is a function of pressure based on Dowson-Higginson formula [38], 4 

ߩ  ൌ ߠ ή ߩ ܿଵ  ܿଶ ή ଵܿ    (10)  

where, ܿଵ and ܿଶ are the density-pressure coefficients, ߩ is the density at ambient pressure, 5 ߠ 

is the density fraction of liquid in the liquid and gas mixture and is defined in the cavitation 6 

model in Section 2.3.2. Piezo-viscous effects are described by an exponential relationship [39], 7 

the viscosity of liquid and gas mixture ሺߟሻ is expressed as:   8 

ߟ  ൌ ߠ ή ߙexp ሺ כߟ ή   ሻ (11)

with the pressure-viscosity coefficient ߙ. Considering the fluid shear-thinning property, the 9 

generalized viscosity * is defined using a Carreau viscosity model [40] below. 10 

כߟ  ൌ ஶߟ  ሺߟ െ ஶሻሾͳߟ  ሺߟ ሶߛ Τܩ ሻଶሿିଵଶ  (12)  

where, ߛሶ  is shear rate.  ߟ and ߟஶ represent the dynamic viscosity at zero shear rate and 11 

infinite shear rate, respectively. ܩ is critical stress at ambient pressure. The piezo-viscous 12 

effect described in Eq. (11) and the shear-thinning property defined in Eq. (12) are illustrated in 13 

Fig. 2.  14 

     The boundary conditions are shown in Fig. 1b. The lower boundary CD (Fig. 1b) is a sliding 15 

wall. The upper fluid-structure interface is a no slip boundary. In heterogenous multiscale 16 

method, periodic boundary conditions are required on the AD and BC boundary in terms of 17 

fluid velocity and pressure. Due to small scale deformation the two boundary geometries are 18 

not exactly the same, therefore, the boundary BC was scaled to the same length of boundary 19 

AD in the reference coordinates (undeformed gap) [12]. Near-periodic velocity boundary 20 

conditions are derived from the mass conservation at the two boundaries, scaled by the local 21 

strain :  22 

ଵሺͳ࢛ଵߩ   ଵሻߝ ൌ ଶሺͳ࢛ଶߩ    ଶ) (13)ߝ
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and a pressure jump (p) is applied onto the scaled boundaries: 1 

ଶ  ൌ ଵ  ο(14)   

where, subscript 1 and 2 represent the scaled boundary AD and BC in Fig. 1b respectively. Since 2 

the moving wall (lower surface) was fully constrained, i.e. there was no deformation allowed 3 

and the strain was zero, the velocities at both sides of the fluid domain on the moving wall 4 

surface were the same. Thus the nearly periodic conditions described in Eq. (Error! Reference 5 

source not found.) are the same as periodic conditions at the moving surface and it satisfies 6 

the no-slip boundary conditions. 7 

The homogenised pressure gradient (
ௗොௗ௫) across a unit cell and a pressure jump across the small 8 

scale cell is described by: 9 

 
ݔƸ݀݀ ൌ οܮ  (15)  

The mass flow rate ( ሶ݉ ) is calculated as: 10 

 ሶ݉ ൌ න ାభൈݕ݀ ݑߩ
  (16)  

An average pressure (p*) is defined to represent the cell pressure in large scale solutions: 11 

כ  ൌ න ݔ݀ 
 ൗܮ  (17)  

The shear stress ߬ (shear force per unit length) is calculated as: 12 

 ߬ ൌ න כߟ ݕ݀ݑ݀ ݔ݀ 
 ൗܮ  (18)  

 13 

2.3.3 Cavitation Model 14 

     The lubricant is assumed to be a homogeneous mixture of liquid and gas. When the fluid 15 

pressure drops below the saturation pressure cavitation occurs and some gas dissolved in fluid 16 

will come out of solution. The density fraction of liquid (ߠ) is defined as a continuous function 17 

of pressure using the hyperbolic tangent function: 18 

ߠ  ൌ ͲǤͷ ൈ ሺͳ  tanh  െ ݇ ሻ (19)  
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The constants ݇ are used to determine the steep gradient of the density fraction with respect 1 

to a threshold cavitation pressure  ൌ െ͵Ͳ KPa. The variation of ߠ against pressure is shown 2 

in Fig. 3. The relationship described here is similar to the polynomial based approach used by 3 

Almqvist and Larsson [41], to describe the density of lubricant with the fluid pressure. The 4 

parameters of fluid properties are given in Table 2, and are based on mineral oil of the type 5 

typically used as bearing lubricant [42, 43]. 6 

 7 

 8 

2.4 Homogenisation of the pressure gradient equation 9 

The homogenised relationship between the pressure gradient and mass flow rate links the 10 

small scale and large scale simulations. This relationship is obtained via interpolation. In order 11 

to obtain an accurate representation of the small scale model, a range of small scale 12 

simulations were undertaken for a range of gaps (g), homogenised pressure gradients ሺο ሻ and 13 

cell inlet pressures (p1). A linear interpolation function was adopted, based on a Delaunay 14 

triangulation of the data using Quickhull algorithm as implemented in Matlab [44]. To obtain 15 

effective data samples for the interpolation, the range of input parameters are selected as 16 

shown in Table 3 with total number of 3000 sample points, based on the corresponding results 17 

of the smooth surface case of Reynolds equation.   18 

 19 

Small scale solutions were obtained using the finite element method as implemented in 20 

COMSOL Multiphysics. The variables are transformed to the non-dimensional forms for 21 

convenience of numerical computing, for the global scale, 22 

 ܺǡ ܻ ൌ ǡݔ ݕ ܴு௭ ǡ ܩ ൌ ൗܮ݃ ǡ ܲ ൌ ܷߟܮƸ ǡ ݀ ܲ݀ܺ ൌ ݔƸ݀݀ ή ܷߟଶܮ ǡ ሶܯ ൌ ሶ݉ߩܷ(20) ܮ  

and for the small scale, 23 

 ଵܲ ൌ   ܷ (21)ߟܮଵ

 24 

where ܴு௭ is the Hertzian contact radius, 25 
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 ܴு௭ ൌ ඨͺܧߨݎݓᇱ  (22)  

Subsequently, the pressure gradient equation is obtained via linear interpolation, 1 

 
݀ ܲ݀ܺ ሺ݅ሻ ൌ ݂ ቈ ଵܲǡ ǡܩ ሶܯ ǡ ݀ ܲ݀ܺ ǡ ܲሺ݅ሻǡ ሺ݅ሻǡܩ ሶܯ  ǡ ݅ ൌ ͳǡ ǥ ǡ ݊ (23)  

where the first four parameters on the right-hand side ( ଵܲǡ ǡܩ ሶܯ ǡ ௗௗ) were known and obtained 2 

from small scale analysis. n denotes the mesh points at the large scale domain. The non-3 

dimensional mass conservation equation is expressed as,  4 ݀ܯሶ݀ܺ ሺ݅ሻ ൌ Ͳǡ ǡ ݅ ൌ ͳǡ ǥ ǡ ݊ (24)  

 5 

 6 
3 Results  7 

A non-dimensional large scale domain of X = [െ4, 2] and a fixed load of 2500 N was 8 

considered in this study. Large scale mesh independence tests were undertaken from 60 to 960 9 

points in the large scale domain. For the Newtonian case with a smooth surface, the relative 10 

errors in the large-scale pressure and mass flow rate using different mesh are presented in 11 

Fig.4 (a), and the large-scale pressure distributions are compared in Fig.4 (b) and (c). The 12 

presence of smooth surface solutions allowed comparison with the solution obtained using 13 

Reynolds equation. In current study the number of mesh nodes n was set at 120, at which level 14 

the relative errors were approximately 7% and 5% in pressure and mass flow rate respectively. 15 

Four fluid viscosity models were investigated, i.e. (i) Newtonian, (ii) Newtonian and piezo-16 

viscous, (iii) shear-thinning, and (iv) both piezo-viscous and shear-thinning. In each model, a 17 

range of cell lengths (L = 20, 50 and 100 m) and depths (d = 0 ̱ 30 m, increased by 5 m) 18 

were considered. The friction coefficient and minimum film thickness are presented in Fig. 5. 19 

Typical results showing how cavitation is captured at the large scale is shown in Fig. 6 (a) and 20 

(b) for the case of L = 100 m and d = 30 m, where the large scale homogenised pressure and 21 

viscosity are presented from the small scale simulations, and the elastic deformation of the 22 

bearing surface also presented. The development of cavitation at small scale is demonstrated 23 
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in Fig. 6 (c) and (d), in the large scale outlet zone in the region of X = [0.8, 1.8]. The role of 1 

shear thinning fluid properties is demonstrated in Fig. 7, where the homogenised viscosity is 2 

clearly observed to decrease in the main loading domain at the large scale. The combination of 3 

both piezo-viscosity and shear-thinning effect on the pressure, viscosity and film thickness is 4 

shown in Fig. 8. 5 

 6 

4 Discussion 7 

     8 

4.1. Fluid Rheology 9 

    It can clearly been seen from these results that through the careful selection of small scale 10 

depth and length, that the friction coefficient can be reduced. The friction coefficient is 11 

presented as a function of the depth to length ratio (d/L) in Fig. 5, these results imply that 12 

there is an optimal cell depth and length to achieve minimum friction. For example, in the 13 

Newtonian cases, for the cell length L = 50 µm the minimum friction coefficient was observed 14 

with the cell depth d = 10 µm and the reduction in the friction coefficient is 42% compared to 15 

the smooth surface; for the cell length L= 100 µm the friction coefficient is reduced by 52% 16 

when the cell depth d is 15 µm. This is similar to the results previously obtained by Gao and 17 

Hewson [36] who obtained a similar trend for a slider bearing with the same small scale 18 

surface features. In these cases there was a monotonic decrease in the friction with increasing 19 

small scale length to depth ratio (d/L). What is interesting to note is that contrary to the 20 

previous case there is a clear minimum friction coefficient predicted for a cell depth to length 21 

ratio of around 0.15 for the cases of  ܮ  ͷͲ µm. In the previous case it was observed that the 22 

friction coefficient decreased then plateaued out to a near constant friction coefficient with 23 

increasing cell depth.  24 

While the different fluid rheologies considered all exhibit similar characteristics it should be 25 

noted that the reduction in friction is most pronounced for the shear thinning fluid 26 

characteristics, where there is a 3 fold decrease in the friction coefficient for the largest cell 27 

geometry L = 100 µm. The effect of piezo-viscous is not significant for a low pressure values 28 

encountered in the current study. The variations in the pressure, viscosity and film thickness 29 
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are less than 10% by comparing the results with or without piezo-viscous effect considered, as 1 

shown in Figs. 7 and 8. 2 

The minimum film thickness decreases with increasing cell depth as shown in Fig. 5, and this 3 

has been reported in other EHL studies of textured surface [18, 20, 45]. Examining the 4 

minimum film thickness shows how there is a clear compromise to be made between reducing 5 

friction and maintaining a reasonable fluid film, as the effect of topography is to reduce the 6 

minimum film thickness, with the greatest effect observed for the shear thinning fluid model. 7 

The reasonable fluid film should have a minimum value which is double or triple the surface 8 

roughness, i.e. the lambda ratio is 2 or 3, which means the bearing could operate in the mixed 9 

or full film lubrication regime. 10 

      11 

4.2. Micro-Cavitation 12 

     Cavitation was included in the small scale geometry, permitting the modelling of the 13 

converging-diverging geometry to be modelled without a specific large scale treatment of 14 

cavitation. The pressure distributed over the whole lubrication domain was governed by the 15 

homogenised pressure equation. This is different from classical EHL models, where the 16 

Reynolds boundary condition (pressure is positive everywhere) is commonly applied in the 17 

diverging geometry. Since the small scale pocket itself is a divergent-convergent geometry, the 18 

local pressure usually decreases at the inlet divergent edge, and then increase at the outlet 19 

convergent edge. When there is limited cavitation in the small scale the local pressure 20 

distributed is nearly anti-symmetrically (as shown by the top curve in Fig. 6 (c), at location X = 21 

0.8). When cavitation extended towards outlet zone, i.e. X increases, the pressure field 22 

diverges from this. The cavitation region can be observed in Fig. 6 (d) where the region of low 23 

density fraction indicates a larger cavitated zone as X increases. As the region of cavitation 24 

increases further the local pressure became nearly constant of െ30 KPa (as shown by the 25 

bottom curve in Fig. 6 (c), at location X = 1.8). 26 

     What is interesting is that there is a rise in viscosity in the diverging region before cavitation 27 

occurs as shown in Fig. 7. This can also be observed when piezo-viscosity is also added to the 28 

model as is shown in Fig. 8. 29 
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 1 

5 CONCLUSION 2 

     A heterogeneous multiscale model has been developed for the fluid-structure interaction in 3 

cylindrical line contact EHL with the bearing surface topography addressed. Fluid cavitation is 4 

explicitly modelled at the small scale via a continuous function of the fluid density and viscosity 5 

with pressure. The small scale cavitation effects are passed to the large scale model via the 6 

homogenised small scale relationship without further large scale treatment of cavitation. Such 7 

an approach also allows a range of rheological models to also be considered. The shear-8 

thinning effects have been found to have significant effect on the bearing performance as well 9 

as the optimum small scale features required for optimum performance.  10 

 11 
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 16 
NOMENCLATURE 17 
 18 
d Cell depth [m] 

E YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ [Pa] ܧᇱ EƋƵŝǀĂůĞŶƚ YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ [Pa] 

e Rigid displacement [m] 

h Large scale film thickness [m] 

g locally undeformed gap [m] 

K Displacement influence coefficient matrix [mଷȀN] 

L Cell length [m] 

n Number of large-scale mesh grid 

p Pressure [Pa] 

pc Threshold cavitation pressure [Pa] ሶ݉  Mass flow rate per unit length [kg/m/s] 

r Radius of cylinder [m] ݐᇱ Equivalent small-scale cell height [m] 

U0 Sliding speed of the roller [m/s] 
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u Fluid velocity vector [m/s] 

w One-dimensional load per unit length [N/m] 

x Coordinate in direction of fluid flow [m] 

X Dimensionless coordinate of x ߙ Pressure-viscosity coefficient ߛሶ  Shear rate [1/s] ߜ Elastic deformation [m] ߝ Strain  ߟ Viscosity at zero shear rate [Pa s] ߟஶ Viscosity at infinite shear rate [Pa s] ߟ Generalized viscosity in Carreau model [Pa s] ߠ Density fraction in cavitation model  ߤ Friction coefficient ߪ Normal stress [Pa] ߬ Shear stress [Pa] ߥ PŽŝƐƐŝŽŶ͛Ɛ ƌĂƚŝŽ ߩ Ambient fluid density [kgȀmଷ] ߩ Generalized fluid density [kgȀmଷ] ߱ Rotation velocity of cylinder [rad/s] 

 1 
 2 
 3 
 4 
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Tables and Figures 1 

 2 
Table 1 Geometrical and material parameters 3 

Table 2 Fluid Properties 4 

Table 3 Date selection of small scale simulations 5 

 6 
Fig. 1 (a) Global geometry of a cylinder bearing in line contact, (b) micro pocket geometry of a 7 
unit cell on the stationary wall surface 8 
Fig. 2 Shear-thinning and piezo-viscous fluid property 9 

 10 

Fig. 3 Variations of the density fraction against fluid pressure described by hyperbolic tangent 11 

function 12 

 13 

Fig. 4 Mesh sensitivity analysis on smooth surface: (a) relative errors in the large-scale pressure 14 

and mass flow rate using the solution of the finest mesh (960) as reference, (b) the large-scale 15 

pressure distributions, and (c) enlarged local pressure details of figure (b) 16 

 17 

Fig. 5 Friction coefficient against ratio (d/L) and the minimum film thickness against cell depth 18 

(d) 19 

 20 

Fig. 6 Newtonian solutions: (a) pressure and density fraction, (b) film thickness (textured 21 

surface with optimal parameters compared to smooth surface), (c) small scale pressure and (d) 22 

density fraction variations at different locations convergent zone ܺ ൌ ሾͲǤͺͷǡ ͳǤͻሿ in the large 23 

scale geometry 24 

 25 

Fig. 7 Piezo-viscous solutions: (a) pressure and viscosity, (b) film thickness (textured surface 26 

with optimal parameters compared to smooth surface; the arrow shows location of the 27 

minimum film thickness) 28 

 29 

Fig. 8 Shear-thinning solutions: (a) pressure and viscosity, (b) film thickness (textured surface 30 

with optimal parameters compared to smooth surface; the arrow shows location of the 31 

minimum film thickness) 32 

 33 

Fig. 9 Shear-thinning and piezo-viscous solutions: (a) pressure and viscosity, (b) film thickness 34 

(textured surface with optimal parameters compared to smooth surface; the arrow shows 35 

location of the minimum film thickness) 36 
  37 
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 1 
Table 1 Geometrical and material parameters 2 

Cylinder radius r = 25 mm 

Micro pocket length L= 20 m - 200 m 

Micro pocket depth d = 5 m - 30 m 

Young’s modulus of PTFE E = 0.5 GPa 

Poisson’s ratio of PTFE  = 0.4 

Sliding speed of smooth surface u= 2 m/s 

 3 
Table 2 Fluid Properties 4 

 5 
Ambient pressure   ൌ ͳͲହ Pa 
Ambient fluid density ߩ ൌ ͺͲ kgȀmଷ 
Viscosity at zero shear rate ߟ ൌ 0.01 Pas 

Viscosity at infinite shear rate ߟஶ ൌ ͲǤͲͲ Pas 

Density-pressure coefficient ܿଵ ൌ ͷǤͻ ൈ ͳͲ଼ Pa  ܿଶ ൌ ͳǤ͵Ͷ 

Pressure-viscosity coefficient ߙൌ ʹǤʹ ൈ ͳͲି଼ Paିଵ 
Critical stress at ambient pressure ܩ ൌ ʹ ൈ ͳͲସ Pa  
Power in Carreau viscosity model ݉ ൌ ͲǤ 

Constants in cavitation model 
݇ଵ ൌ ͷ ݇ଶ ൌ ͳǤͷ ൈ ͳͲହ Pa 

 6 
 7 

Table 3 Date selection of small scale simulations 8 
 Range Number of 

mesh point 
Gap  1- 55 m 30 

Pressure gradient  -2e10 -2e10 (N/m^3) 10 
Cell inlet pressure -0.2 – 4 (MPa) 10 

 9 
 10 

 11 
  12 
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 1 
 2 
 3 

(a)         (b)  4 
Fig. 1 (a) Global geometry of a cylinder bearing in line contact, (b) micro pocket geometry of a 5 

unit cell on the stationary wall surface (side lengthȁAEȁ ൌ ȁFGȁ ൌ ȁHBȁ ൌ ܮ ͷΤ , ȁEFȁ ൌ ȁGHȁ ൌ6 ඥሺܮ ͷΤ ሻଶ  ݀ଶ. ) 7 

 8 
 9 

 10 
 11 
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Fig. 2 Shear-thinning and piezo-viscous fluid property 1 
 2 
 3 
 4 

 5 
 6 
Fig. 3 Variations of the density fraction against fluid pressure described by hyperbolic tangent 7 

function 8 
  9 
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(a)  3 

(b)  4 

(c)  5 
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Fig. 4 Mesh sensitivity analysis on smooth surface: (a) relative errors in the large-scale pressure 1 
and mass flow rate using the solution of the finest mesh (960) as reference, (b) the large-scale 2 

pressure distributions, and (c) enlarged local pressure details of figure (b) 3 
  4 
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a)        1 

b)    2 

c)    3 
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d)    1 

Fig. 5 Friction coefficient against ratio (d/L) (left) and the minimum film thickness against cell 2 

depth (d) (right); a) Newtonian; b) Peizo-viscous; c) Shear-thinning; d) Shear-thinning & Piezo-3 

viscous 4 

 5 
 6 
 7 
 8 
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a)  b) 1 

  2 
 3 
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c)     d)1 

 2 
 3 
Fig. 6 Newtonian solutions: (a) pressure and viscosity fraction, (b) film thickness (textured 4 
surface with optimal parameters compared to smooth surface), (c) small scale pressure and (d) 5 
density fraction variations at different locations convergent zone ܺ ൌ ሾͲǤͺͷǡ ͳǤͻሿ in the large 6 
scale geometry 7 
  8 
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 1 

a)  b)2 

  3 
Fig. 7 Shear-thinning solutions: (a) pressure and viscosity, (b) film thickness (textured surface 4 
with optimal parameters compared to smooth surface; the arrow shows location of the 5 
minimum film thickness) 6 
 7 
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a)  b) 1 

 2 
Fig. 8 Shear-thinning and piezo-viscous solutions: (a) pressure and viscosity, (b) film thickness 3 
(textured surface with optimal parameters compared to smooth surface; the arrow shows 4 
location of the minimum film thickness) 5 
 6 


