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ABSTRACT 1 
With the development of increasingly automated vehicles (AVs) comes the increasingly difficult 2 
challenge of comprehensively validating these for acceptable, and ideally beneficial, impacts on 3 
the transport system. There is a growing consensus that virtual testing, where simulated AVs are 4 
deployed in simulated traffic, will be key for cost-effective testing and optimisation. The least 5 
mature model components in such simulations are those generating the behaviour of human agents 6 
in or around the AVs. In this paper, human models and virtual testing applications are presented for 7 
two example scenarios: (i) a human pedestrian deciding whether to cross a street in front of an 8 
approaching automated vehicle, with or without external human-machine interface elements, and 9 
(ii) an AV handing over control to a human driver in a critical rear-end situation. These scenarios 10 
have received much recent research attention, yet simulation-ready human behaviour models are 11 
lacking. They are discussed here in the context of existing models of perceptual decision-making, 12 
situational awareness, and traffic interactions. It is argued that the human behaviour in question 13 
might be usefully conceptualised as a number of interrelated decision processes, not all of which 14 
are necessarily directly associated with externally observable behaviour. The results show that 15 
models based on this type of framework can reproduce qualitative patterns of behaviour reported 16 
in the literature for the two addressed scenarios, and it is demonstrated how computer simulations 17 
based on the models, once these have been properly validated, could allow prediction and 18 
optimisation of AV impacts on traffic flow and traffic safety. 19 
 20 
 21 
 22 
Keywords: automated vehicles, virtual testing, human behavior models 23 
  24 
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INTRODUCTION 1 
In recent years, rapid technological progress has been made on automated vehicles (AVs); vehicles 2 
capable of taking over increasing shares of the driving task, with large hoped-for benefits in terms 3 
of increased mobility, improved traffic safety, reduced environmental footprint, and economic 4 
growth (1). As with any technology, it is important to subject AVs to sufficient testing and 5 
validation to ensure safe and effective operation. This is a daunting task, however, considering the 6 
essentially infinite variations of possible traffic situations that an AV needs to handle (2).  7 

It is increasingly assumed that one important approach in the toolkit for AV validation will 8 
be virtual testing methods, where a computer simulation of an AV, integrating mathematical 9 
models of vehicle and sensors with the actual self-driving algorithms, can encounter a rich variety 10 
of simulated traffic situations (3, 4). These traffic situations can for some purposes be replayed 11 
from large static databases of actual real-traffic recordings, but if the objectives of a virtual test 12 
depends on some form of interaction between the AV and surrounding road users—e.g., by means 13 
of external human-machine interfaces (5)—or interaction between the AV and its onboard 14 
operator, the involved human agents also need to be simulated.  15 

Human road user models do exist, and are currently being actively developed and applied 16 
to AV testing (3, 6), but so far mainly on the relatively coarse-grained level of traffic 17 
microsimulation, where the trajectory of each road user (car, truck, pedestrian, etc) is directly 18 
generated from equations of motion taking into account positions and velocities of surrounding 19 
road users. While this level of granularity might be adequate for some purposes, it seems likely 20 
that in many cases, the outcome of interactions between humans and AVs will hinge on finer 21 
details and time dynamics of human perception, scene interpretation, and decision-making (7, 8). 22 

Capturing such phenomena accurately in virtual simulation is of course very challenging, 23 
but recent literature suggest some possibly fruitful directions: There is by now ample 24 
neuroscientific support for the idea that perceptual decision-making in typical laboratory tasks is 25 
underpinned by noisy neural evidence accumulation, to a decision threshold at which the overt 26 
response is initiated (9). Interestingly, such models have also been proven useful for explaining 27 
human driver reaction times in responding to stimuli in traffic; discrete stimuli such as brake lights 28 
(10) but importantly also graded, dynamic stimuli like the visual looming of approaching road 29 
users or collision threats (11, 12).  30 

Here, this line of modelling will be taken one step further, and applied to the more complex 31 
decision-making situations that tend to arise in the AV context, where the emphasis of modelling 32 
naturally shifts away from low-level decisions like “more or less braking?” towards a higher-level 33 
assessment of the situation at hand; what is often referred to as situational awareness (8, 13). The 34 
basic modelling idea to be explored here is that situational awareness can be modelled as a number 35 
of interrelated perceptual decisions about the world, where each decision is modelled as an 36 
accumulation process, but where these processes are also interconnected to influence each other in 37 
excitatory or inhibitory fashion. This is reminiscent of connectionist and activation dynamics type 38 
models of cognition (14, 15). However, to our knowledge, the present paper is the first time several 39 
decision-making processes of an evidence accumulator type have been connected in a network 40 
arrangement as a means of modelling complex, multi-stage decision processes. 41 

After a first section below describing the two AV-human interaction scenarios addressed 42 
here, three consecutive sections will pursue the three main objectives of the paper: (i) To suggest 43 
models of human decision-making in the targeted scenarios, as examples of the modeling approach 44 
sketched above. (ii) To illustrate that these models can qualitatively reproduce non-trivial behavior 45 
patterns reported in the literature. These prior findings thus serve as a first high level data set, to 46 
which model parameters are manually fitted. (iii) To illustrate how models at this level of detail 47 
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can be useful in virtual testing of AVs. It is not an aim here to suggest final model formulations, nor 1 
to perform full model validation and tuning; these will be matters for future work.  2 

 3 
TARGETED AV-HUMAN INTERACTION SCENARIOS 4 
Figure 1 shows the two traffic scenarios considered here. The pedestrian interaction scenario in 5 
panel (a) is based on the test track study by Schneemann and Gohl (16). They considered the 6 
question of how an AV should behave at a zebra crossing, by studying the interactive behaviour of 7 
human drivers and pedestrians, as a function of initial car speed ݒ and time to collision (TTC; or 8 
alternatively in this scenario time to arrival) at the moment when the pedestrian was instructed to 9 
step up to the crossing, prompting decelerations from the (uninstructed) drivers. Here, what will be 10 
modelled is the pedestrian’s decision to cross or yield as a function of car movements, as well as of 11 
more direct indications from the car (from either the driver or the AV, as the case may be) about 12 
having seen the pedestrian, and about its possible intentions to yield.  13 

The safety-critical take-over scenario in panel (b) is based on the simulator study by Gold 14 
et al. (17), where drivers either manually drove a vehicle or were driven by an AV at ݒ = 120 km/h 15 
(75 mph), when a lead vehicle changed lane to reveal a stationary vehicle, at a TTC of either 5 s or 16 
7 s, in the AV case prompting a take-over request to the driver. Similar types of take-over scenarios 17 
have recently been subject to intense research efforts; e.g. (7, 18). What will be modelled here is 18 
the human’s decisions, after the obstacle appears, on where to look and how to manoeuvre the car.  19 

 20 
 21 

 22 
FIGURE 1 Schematic illustrations of the scenarios considered in this paper. The modeled 23 
human is indicated with a circle. TTC is short for time to collision. (a) Pedestrian interaction 24 
scenario. (b) Safety-critical take-over scenario.  25 

TTC

TTC

(a) 

(b) 
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MODELS 1 
 2 
Model of pedestrian crossing decisions  3 
The basic hypothesis behind the pedestrian model, illustrated in Figure 2, is that the pedestrian 4 
makes the action decision to cross based on either or both of two perceptual decisions: (i) A 5 
perceptual decision that it is possible to pass the road before the car arrives, made by observing the 6 
visual looming quantity ߬ ൌ ሶߠȀߠ ǡ with ߠ the projected angle of the car on the pedestrian’s retina. ߬  7 
is a close approximation of TTC if assuming constant speeds (19), and is assumed to be compared 8 
to a threshold ߬௦௦. (ii) A perceptual decision that the car (driver or AV, but here “car” will be 9 
used for short) intends to yield, but not if the actual car movements clearly suggest that it is still 10 
unsafe to cross (߬ ൏ ߬௦௦). To make the decision about whether or not the car intends to yield, the 11 
pedestrian is assumed to monitor the quantity ሶ߬ ൌ d߬Ȁdݐ, which is  െͲǤͷ if the car stops at or 12 
before the zebra crossing (19), but also explicit communication acts (e.g., headlight flashes). 13 
However, if the pedestrian decides that the car has not seen him/her (e.g., based on driver head 14 
orientation), this is taken as evidence that the car is not intending to yield.  15 
 16 

 17 
 18 
FIGURE 2 Schematic representation of the model for the pedestrian interaction scenario.  19 
 20 

The remainder of this section provides a full mathematical specification of the model, but is 21 
not crucial for understanding the rest of this paper: Figure 2 shows four interconnected decision 22 
units, and at any point in time, the state of the model is described by the vector of unit activations, 23 ሺݐሻ ൌ ሾܣଵሺݐሻ ǥ ܣସሺݐሻሿ், where each ܣ is a two-sided accumulator, bounded at plus and minus 24 
one, implying “yes” and “no” decisions, respectively, and zero implying maximum uncertainty. 25 
This type of accumulator is often referred to as a “drift-diffusion model for two-choice decisions” 26 
or similar (20), although interconnecting several of these or simulating them beyond a threshold 27 
being reached is possibly novel. At each new simulation time step, the ܣ are updated as follows:  28 
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 1 ddݐ ሻݐሺ ൌ െ ͳܶ ሻݐሺ  ሻ൯ݐሺ൫ߪࢃ  ሻ൯ݐሺǫ൫ߪǫࢃ  ሻ൯ݐሺே൫ߪேࢃ  ሻݐሺࡲ   ሻ (1)ݐሺࣇ

 2 
where ܶ  is a decay time constant, the ࢃ are matrices of connections between decision units, the 3 ߪ are activation functions, ࡲሺݐሻ is a vector of external inputs, and ࣇሺݐሻ is a vector of noise, 4 
accounting for between-trial behavioral variability due to for example variations in brain activity, 5 

modelled here as Gaussian noise with standard deviation ȭξȟt, where ȭ is a parameter and ȟt is 6 
the simulation time step (9). In this first model implementation, to simplify the manual tuning 7 
process, all elements in ࢃ were kept either at zero (no connection) or ±1 (excitatory and 8 
inhibitory connections), rather than being freely tuned. Also for simplicity, the activation functions 9 
were kept piecewise linear: ߪሺܣሻ ൌ Ͳ and 1 for ܣ  Ͳ and ܣ  ͳ, respectively, and linearly 10 
increasing in between, and ߪேሺܣሻ ൌ  ሻ, such that the two functions respond maximally 11ܣሺെߪ
when ܣ indicates “yes” and “no”, respectively. Further, ߪǫሺܣሻ ൌ ͳ െ ሻܣሺߪ െ ܣ ሻ, i.e., zero at 12ܣேሺߪ ൌ േͳ and linearly increasing from both sides to a maximum of one at ܣ ൌ Ͳ. The external 13 
inputs to the decision units were:  14 

 15 
 ܨଵሺݐሻ ൌ ݄ଵ൫߬ሺݐሻ൯ ൌ ݇ଵ൫߬ሺݐሻ െ ߬௦௦൯, corresponding to the perceptual decision about 16 

whether the time margin for crossing is currently above ߬௦௦ ൌ ͵ s.  17 

 ܨଶሺݐሻ ൌ ݄ଶሺ߬ሺݐሻሻ  ݄ଷሺݐሻ, where ݄ ଶሺ߬ሺݐሻሻ ൌ ݇ଶ൫ ሶ߬ሺݐሻ െ ሶ߬௦௧൯, corresponding to the 18 
perceptual decision about whether the car is decelerating to stop before the zebra crossing. Here 19 ሶ߬௦௧ ൌ െͲǤͷͷ was used, to accumulate positive evidence also in the limit case ሶ߬ ൌ െͲǤͷ. The 20 
input ݄ ଷሺݐሻ was set to one to model the case where the car is providing some communicative act 21 
interpreted by the pedestrian as indicating an intention to yield, e.g., flashing the headlights, zero 22 
otherwise. 23 

 ܨଷሺݐሻ ൌ ݄ସሺݐሻ was set to one to model the car or its driver doing something that the 24 
pedestrian takes as evidence of the car seeing the pedestrian, e.g., eye contact or related head pose 25 
in the case of a human driver, or some external HMI in the case of an AV, or minus one if the car is 26 
doing something that the pedestrian takes as evidence of the opposite, e.g., a car driver is looking 27 
somewhere else.  28 

 ܨସሺݐሻ ൌ ͲǤ 29 
 30 
Manual tuning indicated satisfactory model behavior for ܶ ൌ ʹ sǢ ȭ ൌ ͲǤͷǢ ݇ଵ ൌ31 ͲǤͷǢ ݇ଶ ൌ Ͷ. 32 

 33 
Model of driver behavior during safety-critical take-over  34 

The model for the take-over scenario, illustrated in Figure 3, is slightly more complex. It 35 
does not terminate at the first action decision like the pedestrian model; instead each new action 36 
affects how the scenario continues playing out over time. For reasons of space, all connections 37 
shown in Figure 3 will not be discussed individually here, but the main hypotheses behind the 38 
model are as follows: Driver braking is assumed to function as proposed in (12), as discrete 39 
increases of brake pedal position applied each time a discrepancy between visual looming, 40 
quantified as ߬ିଵ, and predicted visual looming ߬ି ଵ, updated after each new brake adjustment, 41 
accumulates to threshold. The decision to change lane can come about in the model in two ways: 42 
an early detection of catching up with the lead vehicle (which does not in itself prompt braking) or 43 
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a later realisation that attempted braking is not solving the conflict, and both of these are also 1 
modulated by visual looming directly. However, the lane changing decision is in all cases 2 
inhibited—as in made less probable—if the driver does not know that it is safe to change lane. 3 
Gaze sampling is assumed driven to a large extent by the need to resolve uncertainties in the 4 
perceptual decisions (21), and the current gaze target determines what sensory input the model 5 
receives (the “switches” in Figure 3). In this first version of the model, there is no direct account of 6 
the process of actual control take-over; as a first approximation it will be investigated to what 7 
extent the effects of taking over from the AV can be accounted for as a simple time delay, 8 
combined with lower initial awareness of the adjacent lane. 9 
  10 

 11 
 12 
FIGURE 3 Schematic representation of the model for the safety-critical take-over scenario.  13 
 14 

Again, the rest of this section gives mathematical model details: Just as in the pedestrian 15 
model, Equation (1) governs activations in the network. However, decisions between competing 16 
actions about where to look (units 4 and 5) or how to maneuver (units 6 and 7), are here modelled 17 
as “races” (20), bounded downward by zero instead of minus one, and each time an action 18 
threshold ܣ ൌ ͳ is reached, the race in question is restarted by resetting the competing 19 
accumulators to zero. The exception is the “increase braking” action, which has its accumulator 20 
reset to 0.7, to reflect an increased brake readiness after the first brake application (12). Also, 21 
before the first brake application, decision unit 2 is inactive. The looming-related inputs to the 22 
network, all set to zero if the driver’s eyes are off the road, were defined as: 23 
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 ܨଵሺݐሻ ൌ ݇ଵ߬ିଵሺݐሻ, modeling the perceptual decision of whether the vehicle ahead is 1 
coming closer. 2 

 ܨଶሺݐሻ ൌ െ݇ଶሺ߬ିଵሺݐሻ െ ߬ି ଵሺݐሻሻ, modeling the perceptual decision of whether braking is 3 
solving the conflict. 4 

 ܨሺݐሻ ൌ ݇ଷሺ߬ିଵሺݐሻ െ ߬ି ଵሺݐሻ െ ߬ି ଵሻ, modeling the decision to increase braking (12). 5 

 ܨሺݐሻ ൌ ݇ସሺ߬ିଵሺݐሻ െ ߬ௌି ଵሻ െ min ሺͲǡ ݇ହሺ߬ିଵሺݐሻ െ ߬ேௌିଵሻሻ, modeling a positive looming 6 
contribution to the decision to change lane and a negative contribution to the same decision 7 
coming into play once ߬ିଵ  ߬ேௌିଵ, where ߬ேௌିଵ  ߬ௌି ଵ. 8 

The remaining inputs were defined as: 9 

 ܨଷሺݐሻ ൌ ݇ and ܨସሺݐሻ ൌ ݇, both if the driver is directing gaze towards the adjacent lane 10 
(whether by mirror checks, shoulder checks, etc, is not defined in the model), zero otherwise.  11 

 ܨହሺݐሻ ൌ Ͳ. 12 

Manual tuning indicated satisfactory model behavior for ܶ ൌ ʹ sǢ ȭ ൌ ͲǤ͵Ǣ ݇ଵ ൌ ݇ଶ ൌ13 ʹͲǢ ݇ଷ ൌ ݇ହ ൌ Ǣ ݇ସ ൌ ͵Ǣ ݇ ൌ ͳǤͷǢ ݇ ൌ ͳǤʹǢ ߬ି ଵ ൌ ߬ௌି ଵ ൌ ͲǤͳ sିଵǢ ߬ேௌିଵ ൌ ͲǤͷ sିଵ. 14 
 15 
MODEL BEHAVIOR – REPRODUCING FINDINGS FROM LITERATURE 16 
 17 
Reproducing pedestrian crossing behavior 18 
Figure 4 shows example simulations with the pedestrian model, all at ݒ ൌ 50 km/h (31 mph) and 19 
with TTC = 4 s at the moment when the pedestrian steps up to the zebra crossing, at which point 20 
the simulated car also initiates a deceleration to stop exactly at the zebra crossing. Panel (a) shows 21 
example simulations both with and without noise, whereas panels (b) and (c) show distributions 22 
for 10,000 simulations with noise. 23 

In panel (a), note in the simulation without noise how the pedestrian comes close to a quick 24 
decision to cross while ߬ is above the threshold ߬௦௦ ൌ ͵ s, but since the margin ߬ െ ߬௦௦ is 25 

small, the evidence accumulation is so slow that ߬ falls below ߬௦௦ before a complete crossing 26 
decision has formed. From that point, despite picking up some signs of car deceleration, the 27 
pedestrian still judges from ߬ that crossing might be risky. Thus, as further illustrated by the delay 28 
time distribution in panel (b), one qualitative human behavior result that the model reproduces is 29 
the finding reported in (16), where 20 % of pedestrians waited until the car came to a complete stop 30 
before crossing. In the model simulations, the remaining 80 % are spread out in time with a wide 31 
peak in the time region while ߬ is still above ߬௦௦, where the model can make the decision to cross 32 
even if it is unsure of the car’s intentions. This aligns well with another finding in (16), where 25 % 33 
of pedestrians stated that they made the decision to cross without having seen the car’s 34 
deceleration. Exactly what activation ܣ of the deceleration-detecting perceptual decision would 35 
yield a positive response to such a question is not defined in the model, but as a rough comparison, 36 
25 % of the light brown dots in panel (b) lie below ܣ ൌ ͲǤ͵.  37 

The scenario in Figure 4(b) assumes that the pedestrian gets indications of being seen by 38 
the driver (e.g., eye contact) but no explicit communication about yielding intentions, whereas 39 
panel (c) shows variations in this interactive behaviour. In the best case, where the pedestrian gets 40 
indications both of the car being aware of him/her, and of the car’s intention to stop, the model 41 
pedestrian almost never waits until the car is stationary (dotted black line), whereas more than half 42 
of the model pedestrians wait that long in the worst case where neither of those indications are 43 
present (solid gray line). 44 
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   1 
 2 
FIGURE 4 Example simulations of the pedestrian model. (a) Visual looming input (top 3 
panel) and resulting model activations. The black activation traces show a model simulation 4 
without noise, and the lighter colored activation traces show three example simulations with 5 
noise. (b) The black line shows the probability distribution of delay times for the model 6 
pedestrian’s decision to cross the road. The light brown dots show the activation of the “the 7 
car is letting me pass first” unit at the time of crossing decision, as a function of the decision 8 
delay time. (c) Distribution of delay times for variations of the same scenario. 9 

 10 
Reproducing safety-critical take-over behavior 11 
Figure 5(a) shows four example time histories generated by the take-over driver model, all with 12 
TTC = 4 s and intermediate (ܣ ൌ ͲǤͷ) initial awareness of the adjacent lane being empty. These 13 
simulations differ only in the initial seed of the random noise in the decision processes, but it is 14 
notable that the model can nevertheless produce a range of qualitatively different sequences of 15 
behavior, both with and without one or more long or short glances away from the road ahead, and 16 
both with and without some degree of braking before a lane change is initiated (terminating the 17 
simulation). 18 

Figure 5(b) shows the model-predicted frequency of different avoidance maneuvers, as a 19 
function of TTC at obstacle appearance, for a case with intermediate (ܣ ൌ ͲǤͷ) initial awareness of 20 
the adjacent lane being empty, as a possible emulation of a typical manual driving case. The 21 
obtained model distributions, and specifically the frequencies marked by vertical lines in the 22 
figure, align well with the pattern of driver responses reported in (17) for the manual driving 23 
condition: All human drivers (8/8; 100 %) responded with steering in the TTC = 7 s condition, 24 
whereas in the TTC = 5 s condition, also some combined braking and steering was observed (1/5 25 
drivers; 20 %).  26 

Figure 5(c) shows that without any initial awareness of the adjacent lane (ܣ ൌ Ͳ), the 27 
probability of braking increases. This was also reported in (17) for the AV condition. Specifically, 28 
the model frequencies at the initial TTCs marked with vertical lines (4 s and 3.5 s) align 29 
qualitatively with the human responses in (17) for the experimental conditions with take-over 30 

(a) (b) 

(c) 
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request at 7 s and 5 s TTC: A near-50/50 division between steering only and combined 1 
steering/braking was observed in the 7 s condition, whereas in the 5 s condition combined 2 
steering/braking rose to more clearly being the most common maneuver, followed by steering 3 
only, and some observations of pure braking. In other words, overall, the model simulations 4 
suggest the possibility that the take-over process in this scenario can be accounted for as a 5 
combination of reduced situational awareness and an urgency-dependent time delay, longer for the 6 
less critical scenario ( s െ Ͷ s ൌ ͵ s, compared to ͷ s െ ͵Ǥͷ s ൌ ͳǤͷ s) . This aligns with the 7 
report in (17) that hands-on-wheel and eyes-on-road delay times were longer in the less critical 7 s 8 
take-over scenario. 9 

Figure 5(b) and (c) also show simulated crash frequencies. The model’s braking alone was 10 
typically not enough to avoid collision, whereas in (17) seemingly no collisions occurred. This 11 
may indicate some problem with the tuning of the braking model. If the model applied steering 12 
avoidance, avoidance was considered successful as long as the time margin before collision, given 13 
speed and acceleration at time of steering initiation, was above 1 s.  14 

 15 

  16 
 17 
FIGURE 5 Example simulations of the hand-over model. (a) Typical model behavior time 18 
histories, all for the same initial condition. (b) Frequency of avoidance maneuvers 19 
performed by the model when run in a way so as to emulate manual driving (intermediate 20 
initial awareness of the adjacent lane), and resulting crash frequency, as a function of TTC 21 
at the time of obstacle appearance. The vertical lines indicate points of correspondence with 22 
(17), discussed in the text. (c) As panel b, but emulating a transition out of automated driving 23 
(with zero initial awareness of the adjacent lane). 24 

(a) 

(c) 

(b) 
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MODEL APPLICATIONS IN VIRTUAL TESTING AND TUNING 1 
This section will give examples of how the proposed models could be put to applied use in virtual, 2 
testing of AVs. It should be emphasized that since the models have yet to be fully validated and 3 
parameterized, the actual results given below are preliminary at best; especially for the transition 4 
scenario where the model is both more complex and showed signs of possible limitations in its 5 
braking behavior. The main aim here is to illustrate the type of results that can be obtained. 6 
 7 
Optimizing AV traffic flow at a pedestrian crossing 8 
If an AV intends to yield to a pedestrian, how should it behave so as to help the pedestrian make 9 
the crossing decision as quickly as possible? To answer this question, it was assumed that once the 10 
pedestrian starts walking, the AV adapts acceleration to pass behind the pedestrian, and then 11 
accelerates at 1 m/s2 back up to the initial 50 km/h (31 mph). The time lost in the interaction was 12 
then calculated by comparing the distance travelled before regaining the initial speed, to the 13 
distance that would have been travelled in the same amount of time at constant speed, i.e., as if 14 
there had been no pedestrian. 15 

Figure 6 shows, across a range of pedestrian appearance TTCs, (i) the model’s predicted 16 
effect on time loss, of applying more than the deceleration needed to stop exactly at the zebra 17 
crossing, i.e., rising above the curved edge of the gray shaded area in each panel, and (ii) the effect 18 
on time loss of external AV-human communication. Panel (a) shows a “minimal communication” 19 
case where the AV does not give any explicit external signs of being aware of the pedestrian (i.e., 20 
nothing to replace eye contact) nor any signs, besides deceleration, of its intentions to yield, and 21 
panel (b) is a case where the AV does show such explicit external signs.  22 

Perhaps counter to what one might expect, the model predicts that increased deceleration 23 
can save considerable time. This is especially true for the AV without external communication 24 
means, where for some TTCs (e.g. TTC = 4.5 s) an extra 0.5 m/s2 of deceleration can change a 12 25 
s time loss to near zero. The reason this happens in the model is that the pedestrian’s judgment of 26 
whether the car will stop before the crossing (i.e., of whether ሶ߬  െͲǤͷ) is difficult when the 27 
margin is narrow (i.e., when ሶ߬ ൎ െͲǤͷ), and the exaggerated deceleration makes this perceptual 28 
decision much easier and quicker. 29 

The model predicts that time savings can also be achieved by letting the AV communicate 30 
its situational awareness and intentions (assuming that this can be achieved by some external HMI 31 
that is understandable to the pedestrian). The benefits of exaggerated decelerations are still 32 
present, but less pronounced, except for the lowest TTCs, where it starts being questionable 33 
whether the AV should at all yield to a waiting pedestrian, considering the comfort and safety of 34 
AV occupants and any following vehicles. 35 

 36 
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    1 
 2 
FIGURE 6 Model estimation of time lost for the AV in the pedestrian interaction, as a 3 
function of TTC at time of pedestrian presentation, and AV deceleration applied at the same 4 
moment.  5 
 6 
Minimising crash risk in time-critical AV hand-overs  7 
It has been suggested that detriments in performance during AV-human hand-overs are the result 8 
of a loss of situational awareness (8), with a recommendation that designers need to give deep 9 
consideration as to how best to facilitiate the process of bringing drivers back “into the loop” 10 
during transitions from automation (18). Exactly how to do so is of course a non-trivial matter, but 11 
here it is examined what benefit it might have in the studied scenario if a solution could be devised 12 
ensuring that the driver quickly knows, without having to look away from the road ahead, that it is 13 
possible to change lane, emulated here by initializing the “it is safe to change lane now” decision at 14 
full certainty. It is also examined here whether any such benefit might interact, according to the 15 
model, with emergency braking applied by the AV itself. 16 

As shown in Figure 7, the model predicts a range of initial TTCs between 1.5 s and 3.5 s 17 
(remember that factoring in the take-over process, this might correspond to a considerably higher 18 
obstacle appearance TTC) where benefits of increased situational awareness may exist. For 19 
example, even if the AV decelerates with 6 m/s2 in a TTC = 2 s scenario, immediate driver 20 
awareness of the feasibility of steering avoidance changes the model-predicted crash risk from 21 
about 80 % to about 20 %.  In fact, according to the model, this low crash risk remains nearly 22 
unchanged even if the AV does not apply any emergency braking at all, which seems beneficial 23 
from a perspective of minimising risk of being struck from behind. 24 

(a) (b) 
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    1 
 2 
FIGURE 7 Model estimated effect of driver awareness of possibility to change lane, and AV 3 
emergency braking, on crash risk in the studied take-over scenario. 4 
 5 
DISCUSSION AND CONCLUSIONS 6 
This paper has presented first draft versions of novel models of human decision-making and 7 
behavior in two scenarios relevant to development and testing of AVs. Both models seem to offer 8 
useful developments beyond what is currently available in the literature for these scenarios.  9 

Pedestrian road-crossing has been modeled here as an interrelated set of perceptual 10 
decisions about oncoming vehicle movement and intentions. The model has illustrated how a car 11 
that applies exactly the right amount of deceleration for stopping might make it difficult for a 12 
waiting pedestrian to decide on crossing before the car has come to a complete stop, thus 13 
explaining empirical observations of such late pedestrian crossing decisions (in (16), but 14 
anecdotally also in many people’s everyday experience). In contrast, existing microsimulation 15 
pedestrian models tend to emphasise the question of whether a pedestrian accepts a certain time 16 
gap between passing cars (22), and less on when the pedestrian accepts it, as a function of exact 17 
movement and communicative acts of a vehicle, making the model proposed here a potentially 18 
useful addition to the toolkit for virtual testing and tuning of AV behavior.  19 

With regards to the other scenario targeted here, focusing on human avoidance 20 
maneuvering close to a potential rear-end crash, existing driver models for such situations 21 
typically decide on braking and/or steering by drawing from fixed, situation-independent 22 
probability distributions (23), whereas it is well known that human avoidance responses vary 23 
significantly with not least urgency (16, 24), in ways similar to what is exhibited by the model 24 
proposed here. The present work also provides some first steps towards modeling the actual 25 
process of taking over from an AV, suggesting that, at least in the presently studied scenario, the 26 
take-over could be thought of as an urgency-dependent time delay, combined with a low initial 27 
situational awareness. 28 

Indeed, a striking feature of both models is that they provide concrete operationalizations 29 
of the concept of situational awareness in the given scenarios, in terms of neurobiologically 30 
plausible models of perceptual decisions. This may be a useful complement to existing 31 
computational models of situational awareness; e.g., (13). Overall, the results presented here seem 32 
promising for the general modeling approach of interconnecting several perception and action 33 
decision accumulators.  34 

(a) (b) 
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Related but different models have been developed from connectionist and dynamical 1 
systems perspectives (14, 25), as well as in the field of naturalistic decision-making (15). One 2 
useful next step would be to benchmark the present modeling framework against these existing 3 
ones, and ideally also against more conceptually different alternatives based on cognitive 4 
architectures such as ACT-R (26), or from robotics (27).  5 

An obvious next step will be to properly test and parameterize the models on detailed data 6 
sets of human behavior in the studied scenarios. If such validation tests are successful, the (so far 7 
very preliminary) virtual testing results presented here suggest that models at this level of detail, 8 
capable of predicting full AV-human interaction sequences unfolding in dynamic traffic scenarios, 9 
could be of great use when testing, validating, and optimising future automated transport systems.  10 
 11 
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