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ABSTRACT

We show that liquidity tail risk in credit default swap (CDS) spreads is time-varying and explains variation

in CDS spreads. We capture the liquidity tail risk of a CDS contract written on a firm by estimating the
tail dependence, i.e., the asymptotic probability of a joint surge in the bid-ask spread of the firm’'s CDS
and the illiquidity of a CDS market index. Our results show that protection sellers earn a statistically
and economically significant premium for bearing the risk of joint extreme downwards movements in the
liquidity of individual CDS contracts and the CDS market. This effect holds in various robustness checks
such as instrumental variable regressions and alternative liquidity measures and is particularly pronounced
during the financial crisis.
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1 Introduction

Over the past decades, the emergence and growth of credit derivatives markets have provided market partic-
ipants with additional ways to invest in credit risk. Especially insurers, mutual funds, and pension funds en-
tered these markets as net protection sellers as credit derivatives provided them with previously unattainable
risk-return profiles. During the financial crisis, however, investments in credit derivatives markets exposed
several insurers to extreme tail risk when both prices and illiquidity in the market for credit default swaps
(CDS) as the most widely used credit derivative surged during the height of the crisis. In the case of the
most prominent example of such an insurer, American International Group (AlG) faced bankruptcy and had
to be bailed out as the U.S. government deemed AIG to be systemically important due to its involvement in
the CDS market. Consequently, economists and regulators alike have taken a strong interest in investigating
the role crash and liquidity risk play for investors in the CDS market.

In this study, we try to answer the question whether liquidity tail risk is a significant driver of CDS
spreads. We define a firm’s CDS contract’s liquidity tail risk as the propensity of the contract to experience
a joint crash in its liquidity together with the liquidity of the CDS market. To measure this propensity, we
propose the use of a dynamic copula model to estimate the asymptotic probability of both spread series
jointly being in their extreme upper tail (i.e., their upper tail dependence). As a first result, we find average
liquidity tail risk to be of small magnitude (about 0.2%) before the financial crisis. During the crisis, how-
ever, average liquidity tail risk almost doubled after the bailout of AIG and tripled at the start of 2009. We
then estimate panel regressions of monthly CDS spreads on several proxies of liquidity tail risk in the CDS
market and various controls. Our results confirm that the risk of a joint liquidity crash in the CDS market
is significantly related to CDS spreads with sellers of credit protection demanding a premium for bearing
liquidity tail risk.

The empirical evidence that we find adds to a rich and growing literature on the role of liquidity and
liquidity risk in financial markets. For examp|_e__Le_ap|jnga.Lt_eLt[a.L_(b012) argue that investors in the CDS
market that are crash-averse with regard to liquidity should demand a premium for holding liquidity-crash-
sensitive CDS contracts. Whereas investors may generally disregard the liquidity of assets during normal
market circumstances, it can become a main issue in extreme market crashes when liquidity is fragile and

can suddenly dry up (sée Brunnermeier and Pedersen, 2009). The role liquidity risk (and liquidity tail risk

in particular) plays for prices of CDS contracts, however, is far from being obvious. While the Liquidity
Capital Asset Pricing Model (LCAPM) J).LAQhﬁ.QL&.&Dd.BﬂﬂrJ;_&n_dZOO& shows that liquidity and liquidity
risk should always be priced in assets that are in positive net supply, the role of liquidity risk for deriva-
tives prices is much less clear with empirical studies on this subject yielding only contradicting findings:
Whereamier_ts_e_d A.I._(;bll) show that prices of derivatives should not carry a premium for liquidity
risk,LJ_ung_e_a.nd_'[r_Qllé_(ZQhS) find the exact opposite result by using a different proxy for the liquidity risk
of CDS contracts.

Perhaps most importantly for our analysis, the modél_o_f_B_LunnﬁLm_ei_Qr_and_BEdLeLs_én (2009) predicts
that initial shocks to investors’ funding liquidity can lead to reinforcing spirals of both market and funding
liquidity, and ultimately, falling asset prices. They posit that traders react to initial losses (and reduced
capital) by reducing their positions thus in turn reducing market liquidity and inducing further asset losses.




In this scenario, traders would first reduce the positions whose individual liquidity is highest and thus least
affected by the decreases in overall market quuiditylﬁsﬁm_e_erwnri@r_m&ﬂsén (2009) point out, this
effect could be negligible during normal times but could become significant when market illiquidity spikes.
As such, CDS liquidity tail risk could increase CDS prices even though linear CDS liquidity risk does not.
Moreover, the causality of this relation is testable in case of exogenous shocks to CDS market liquidity.

We test these predictions and show that an important facet of liquidity risk, the probabiégtreme
joint surges in idiosyncratic and market illiquidity, indeed explains CDS spreads. A one standard deviation
increase in our proxy for CDS liquidity tail risk is associated with an increase in a firm's monthly CDS
spread of about 16 basis points (bps). Together with an average yearly CDS spread of 152 bps in our
sample, this shows that the effect we find is not only statistically, but also economically highly significant.
Moreover, this effect holds even when controlling for individual CDS liquidity, known drivers of credit risk
taken from the structural model 74), crash risk in the CDS markelt_(s_e_eﬂeﬂhé;et_él., 2016),
and linear CDS liquidity risk (i.e., correlations).

Consequently, our findings are of significant importance to risk managers and traders as our results
stress the importance of accounting for liquidity tail risk in the pricing of CDS contracts. Moreover, our
results should be of particular interest to long-term investors like insurers and pension funds which pre-
dominantly enter the CDS market as net protection sellers (seé_&g_.M_engJé..ZD.Ol:Mde[ﬂsAt al., 2011,
Hilscher et I.LLOiS). For these investors, offsetting short positions in CDS contracts could become danger-
ously costly when liquidity tail risk increases and market liquidity deteriorates. We confirm that liquidity
tail risk in the CDS market indeed spiked during the financial crisis - a time when the adverse effects of

extreme CDS liquidity risk were accompanied by steep increases in overall default risk.

Our paper contributes to the operational research literature by being the first to propose the use of
dynamic copula models to estimate the time-varying nonlinear dependence between contract-specific and
market liquidity in the CDS market. While copulas have been used extensively, e.g., in the study of stock

rices and banking crises (see, ég Grundke and Eolé 2012; ﬁ t IL;OQ;b_@Lé h, 2016; Calabrese et al.,
@), this study is the first that employs these dependence models in the context of CDS liquidity. Our
modeling approach allows us to capture facets of liquidity risk that have so far been neglected in studies
on CDS market liquidity but which appear to be of significant importance to investors. By doing so, our
paper complements and extends several studies on the determinants of corporate bond credit spreads and
CDS spreads. To start With.&.QUlﬂ;DUIL&&DEAt[&L_@OOl) use variables from a structural model of credit
spreads and employ these in regressions of changes in bond credit spreads. As their main result, they find
the explanatory power of the variables that should in theory drive default risk to be low. In a related study,

mpbell and Tak eL(;dOS) find that levels of corporate credit spreads are driven by idiosyncratic equity

voIatiIityEI In contrast to these studies, however, we employ CDS spreads rather than bond spreads. A
critical advantage of using swaps over bonds is that swaps do not require the specification of a risk-free
yield curve to extract the credit spreads. Our paper is also related to the stJJdi_e_s_oIELigsHm_eﬂ al. (2009) and
Meine et QH(;OJB) who study the determinants of changes in CDS spreads. While the former again finds
the result that variables from structural models of credit risk possess only little explanatory power, the latter

iCremers et all (2008) confirm this result using option-based rather than historical volatility.



study finds CDS tail risk to be a strong driver of banks’ CDS during the crisis.

Next, our paper is also related to several studies on the ambiguous role liquidity risk plays in CDS
markets. While several studies clearly show that CDS spreads increase with contract-specific illiquidity (see,
e.g.,. Tang and Yi\ﬁldd&; Bihler and Tnligp_‘_b@;e_s_ph_ngﬂ{ Et_il| 2012), the question whether liquidity
risk is also priced in CDS spreads remains controversial. For ex [. (2011) show in their
work theoretically and empirically that liquidity risk should not matter for CDS spreads. In contrast, recent
studies by Tang and Yan (2008). Meine et/al. (2015), and Junge and Trolle (2015) all find the opposite result
that liquidity risk measured via linear relations between idiosyncratic and market liquidity does indeed drive
CDS spreads. Extending their work, we focus in this paper on the explanatory power of liqaitifgk
proxied by the tail dependence between contract-specific and market CDS liquidity. Finally, our study is
also related to work on the potentially systemic role of insurers in the CDS market. As noted by, e.g.,
Harringtg]‘u |(;0_d9) and Chen gﬂ Jd_.(;bm), involvement in the CDS market turned out to be a major source of
risk for several insurers during the financial crisis. Our results suggest that one source of this risk exposure
to protection sellers in CDS contracts could be sudden and extreme co-movements in illiquidity leading to a
sudden (and costly) dry-up in contract-specific liquidity.

The paper proceeds as follows: Seclibn 2 describes the construction of our CDS liquidity tail risk prox-
ies, Sectiof 3 presents the data used in this study, S&ttion 4 investigates the pricing of liquidity tail risk,
while Sectiorl b reports results of robustness tests. Sédtion 6 concludes.

2 Methodology

This section deals with the estimation of the proxies for extreme CDS liquidity risk. First, the uni-
variate modeling of CDS spreads and CDS bid-ask spreads is described. Next, we present the copula
model that we use to estimate the tail betas of CDS liquidity in the spirit of the linear liquidity betas of
Acharya and Pgderge{n_(;b%).

Our econometric modeling is based on log-differenced CDS spreads and log differences of the spreads
of a CDS market index. The log-differenced CDS spredtis, are given by

R;: =1log (CDS ;) — log (CDS; +—1) 1)
with CDS;; being the CDS spread of compangt timet (i =1,... N, t =1,...,T).

Next, the CDS market spreads are estimated as the equally-weighted average of all individual spreads
across all sample companies. Thus, the CDS market spread,; CRStimet is defined as

N
1
CDSye = > cDsy, )
=1

and the log differences of the CDS market spreag,, as

Ryri = log (CDSyy,t) — log (CDSyr—1) - 3)



To eliminate the artificial correlation betweé); and itself if it were included in the indek,, ;, we esti-

mate different market spreads for each bivariate analysis of the market index and a ceimpaggregating

all companies excluding the respective comparin addition to levels and log differences of CDS spreads,

we also model contract-specific and CDS market liquidity. We measure a CDS contract’s liquidity by the
use of the contract’s absolute bid-ask spread as the most widely used liquidity proxy in the literature (see,

e.g./Amihud and Mgndglgdn, 1§%)/.ve compute the absolute bid-ask spréads as

BAS; = Ask quote — Bid quotg. 4)

As for the CDS market spreads, we calculate the market liquidity measures as the daily equally-weighted
averages of the bid-ask spread across all sample firms excludingfbrrvhich we intend to measure CDS
liquidity risk.

For derivatives markets, the effect of liquidity on prices is not clear since derivatives are in zero net
supply. Therefore, liquidity can have a positive, negative, or zero impact on CDS spreads depending on
whether the supply- or the demand-side predominates. However, the unanimous empirical evidence is that
liquidity exerts a decreasing effect on the level of CDS spreads with protection sellers acting as liquidity
providers (see, e.d., Bongaerts ét@idll; Coro elt_LIJ 2013). Consequently, we also expect a positive
relation between spreads and bid-ask spreads of CDS contracts in our later regression analyses.

2.1 Univariate modeling of CDS data

In this subsection, we model the univariate marginal models for a CDS contract’s idiosyncratic liquidity and
the CDS market’s bid-ask spread. These models will be used later together with a copula model to yield
a bivariate model of the distribution of a contract’s liquidity tail risk. We start our univariate modeling by
describing the mean dynamics of our liquidity proxies.

2.1.1 Mean dynamics

Following the empirical literature (see, elgﬂ_Aghama_a‘nd_P_e_déLs_ed, [ZD_O_E:_B_Qngaér{s_QtJal., 2011), we first

correct for persistence in the levels of CDS liquidity. Therefore, for each time pegaad for each firm
including the CDS market spread= M, we calculate the innovations in the liquidity time series. To obtain
the liquidity innovations, we fit ARMA(, s) models(r, s € {1,...,10}) to the bid-ask spreads:

BAS) = ¢y + Y _$LBAS|  +ei— > Oiei (5)
k=1 k=1

2The vast majority of studies on CDS markets employ bid-ask spreads to measure liquidity, see, e.q., Bonga&rts et al. (2011),
Lesplingart et g1/ (2012), Coro etlal. (2013), and Meine bt al. (2015/ 2016).

4



with {¢!} being a white noise series amds > 0 (see, e.gBLMOS). Consequently, the conditional
mean,., follows the dynamics

py=dh+>_ hBAS, ;=) biel . (6)
k=1 k=1

The ARMA(r, s) model is estimated via Maximum Likelihood. To choose the proper ondarsls in the
ARMA(r, s) processes, we employ the Ljung-Box test with the number of lags equal to 20 to the corre-
sponding ARMA residuals and select the orders € {1,...,10} so that the null of the Ljung-Box test
cannot be rejected at the 10% significance level. If this is true for more than one model, we will choose the
model with the lowest value of Akaike’s Information Criterion (AEL‘).

In the same way, the ARMA residuals of the log-differenced CDS spreads are estimated by substituting
Rifor BAS! (te1,...,T,i€1,...,N,M)) in equation[(5) and{6), since empirical studies have also
revealed that log differences of CDS spreads are characterized by autocorrelal]jgn_(,s_e_e_MJaing_ét al., 2016;

rljh?). In the next step, the residudlss BAS! — i ande™ = Ri — pof) of the
ARMA(r, s) models of the CDS bid-ask spreads and the log-differenced CDS spreads, respectively, are
used for modeling the variance dynamics.

2.1.2 \Volatility dynamics

According to the econometrics literature as well as the empirical results presented in the following Sections
3 and[4, the time series of the log-differences of CDS spreads as well as the CDS bid-ask spreads are
stationary, autocorrelated, and conditionally heteroskedastic (sd&Mdﬂﬂkon, 2017). Therefore, we
test several variants of the original GARCH model to capture the variance dynamics of our data and for each
company and each time series we select the model that fits the data best.

In our empirical study, we also account for skewness and fat tails in the time series of the log-differenced
CDS spreads and CDS bid-ask spreads. Hence, we use the skeligtdbution o*Lem?md_ez_md_S_{eel
@) with the degrees of freedom parametee (2,00) and the skewness parameterc (0, c0) to

account for skewness and fat tails in the marginal distributions (se|g alsgghristgﬁgrgeln_eLlealelz, 2017).

The probability density function (pdf) of the skewed studeditstribution,?, -,, is given by

by (T) = V% [ft (3) Lio,00) (@) + ft (i%) L(—c0,0) (m)] ()
v Vi v

with f; the pdf of a univariate standardlistribution andi € {1,..., N} (seé_Eemhd_ez_and_S_téMQS).
For~; = 1 we get the standarddistribution and fory; # 1 a skewed distribution.

As we do not employ one specific GARCH model for all CDS time series, we give a generic definition
of the models here. More precisely, we fit the so-cafteaily GARCHmodel 0 5) to the

%In an unreported robustness test, we alternatively employ the Bayes Information Criterion (BIC) to select the best-fitting
marginal model. Using BIC for model selection does not change our results.



ARMA(7, s) residuaISei’jH Hence, the conditional volatility follows the dynamics

2V S W 2 B N N o )
€ = 06 > & [P0y~ Ty 8)
q 5 p
A N A 4,7 . . 0 . g
o = WY @ikoen <|et—k = g2kl = i gk (et—j - nz,g,zk)) + E Bij k0541 (9)
k=1 k=1

where}jf’_jl is the information available on the time seriBsas well asBAS’ up to and including time
withi € {1,...,N},j € {R, BAS} andp,q > OH Here, equatior {9) is a Box-Cox transformation for the
conditional standard deviation, in whichis the shape parametériransforms the absolute value function
andny; as well asy,;. allow for rotation and shifts. If we choose= § = 2 andn;, = 19 = 0, we obtain
the standard GARCH model of Boller IMSG) andfoe 6 = 2 andny,. = 0 we get the GJR-GARCH
model oIi_G_ID_SIQn_e_t_M_LlQbB). All GARCH models are estimated via Maximum Likelood.

We choose the appropriate GARCH model by the following procedure: First, we select a number of
suitable GARCH models that are most likely to fit the given time series well and fit these models to the
ARMA residualse)”’. Then, we compute the ARMA-GARCH residuals of the chosen GARCH models for
the orderp, ¢ € {1,2} and select the model, for which the null of the Ljung-Box test with lag 5 cannot
be rejected for the squared ARMA-GARCH residuals anl@(lQSZ) Lagrange multiplier test for
ARCH effects with lag 5 cannot be rejected for the ARMA-GARCH residuals at the 10% significance level.
Again, if this is true for more than one model, we will choose the model with the lowest AIC value. The
possible models for the log-differences of CDS spreads and the CDS bid-ask spreads are the GARCH model
of BollersleV (1986) and the Integrated GARCH (I-GARCH) model of Engle and Bollérslev/(1986). The
GARCH model is most commonly used in the empirical literature and it accounts for all the stylized facts
documented for financial market data. Other popular asymmetric models like the GJR-GARCH model or
the E-GARCH model are not considered for the CDS data, since these models incorporate a leverage effect.

More precisely, they account for the fact that negative returns lead to higher volatility and positive returns
to lower volatility, which is not adequate for our time series of CDS data as they exhibit a reversed pattern
(see alsb_DMeLS_édﬂ.Lbll). Finally, we generate white-noise residtiaishich we will use in our joint
distributional model to estimate extreme CDS liquidity risk together with CDS tail betas.

2.2 Bivariate modeling of CDS spreads and CDS liquidity

In this subsection, we construct proxies for CDS liquidity tail risk based by focusing on the joint ex-
treme movements in individual and market CDS spreads and bid-ask spreads. However, instead of us-
ing simple covariances to estimate the dependence between the different variables like it is done by, e.g.,

The family GARCH model is an omnibus model that encompasses some of the most popular GARCH md@ Hentschel
(1995)).

®For a detailed definition of the family GARCH model 1995). Furthermore, we note that while the distribution
of shocks in log-differenced CDS spreads or in the CDS bid-ask speeAddiffers across the individual sample firms, but is
constant over time, the distribution of the log differences does vary through time due to the dynamics of the conditional means and
variances.

®In addition to the GARCH models, we also consider the stochastic volatility model of Heston and[Nandi (2000) as a candidate
model for the marginals.




Mm@.&&d&t&dnﬂbom_and ka.anOOS)Land.L&spﬂngArd.eLai (2012), we estimate upper tail

dependence coefficients between the variables instead using copula models.We use the dgopubéc
of @Q b) to account for time dynamics in the dependence of our varlfibl_es_as_c_h[islo_ﬁ_e}sen et al.
) have shown that copula correlations are highly time-varying and persistent. Then, the evolution of
the correlation parameter of the dynamicopula follows an ARMA(1,10)-like process (see equaldh)(
To be precise, the (standardfopula is defined as

Cup (ur,u2) =t (6, (u1), t, (u2)) (10)

wheret,, , is the (standard) bivariate Studendistribution with the degree of freedom parameteand the
correlation parameter, ¢, ! is the inverse of the standard univariawistribution andy, us € [0, 1]. Then,

the time variation of the dynamiccopula o@a) is modeled by the following evolution process
for p,,t € {1,...,T}:

pr = A(c—l—bpt 1+a—Zt Mug—i) ty !t (ug— z)) (11)

whereA (z) = (1 — e~*)(1 + e~*)~ ! is the modified logistic transformation in order to kegfn (—1,1)
at all times. Consequently, this dynamic process captures persistence in the dependence parameters by
including p;_1 and variation in the dependence by the mean of the product of the last ten observations of the
transformed variables ! (uy;—;) andt; ! (ua;—;).

Now, the coefficients of the lower and upper tail dependeiceand Xy, are given by

Mg (K1 Xog) = m P | Xoy < Fy (o) | X0 < F{(a)]
Mg (X1 Xo0) = lim P (X0 > F (@) | Xae > FV(a)

with ¢ being theg-quantile andFl‘1 andF2‘1 being the inverse marginal distribution functionsXaf and
Xo, respectively. As the-copula is symmetric, the coefficients can be written as

v+ 1)(1—
At (Xit, Xog) = Ane (Xi4, Xoy) = 2t <—\/#> . (12)

The log-likelihood function of the dynamiccopula is given by
Lyp(u1,uz) ZZOQ fv Pt ty (Ul t),t, ! (U2t))) log (fu ( v (Ul t)) Jv (t;l (U2t))) , (13)

with f, ,, and f, being the density of 4, , and at, distribution, respectively, ang = (p, ... ,pT)T,
up = (upg,... ,ul,T)T as well asuy = (uz1,... ,uZT)T. Using this log-likelihood function, the copula
parameters are then estimated via Maximum Likelihood.



We use the described dynamic copula model to estimate the following tail betas:

Tail betd’'SPASM =\, (BAS!, BASM) (14)
Tail betg DS ODSM vt (Rig, Rare) (15)

where the estimation of the copula and the tail dependence coefficients are done based on the pseudo-
observationsi}, uf; ,, uPA%, andulAS of the corresponding ARMA( s)-GARCH(p, q) residualss for
j € {R,BAS} that are computed as the ranks of these residu@lb.S and BAS refer to a contract’s
spread and bid-ask spreads, respectively, wtiilgS M and BASM are the corresponding market spread
and bid-ask-spread, respectively.

The interpretation of each tail beta is as follows. Tail ﬁéf specifies the upper right tail of the
bivariate distribution between the individual liquidity of a CDS of compaand the CDS market liquidity.
As a consequence, this tail beta captures a contract’s risk of experiencing a joint surge in its illiquidity
together with liquidity in the CDS market. In addition to theuidity tail beta we denote the CDS talil
beta as Tail bef%lDSpDSM, which describes the dependence between the log differences of CDS spreads of
company: and the log differences of the CDS market spreads in the upper-right tail of their joint distribution.
We expect that the protection seller of the CDS contract demands a premium for bearing the risk of a joint
increase in the firm’s and market CDS spreadsl As Meingl 4t_¢|(2016) show in their empirical study, this
CDS tail beta was a significant driver of banks’ CDS premia during the financial and we thus include it as a
control variable in our stu

ASM

3 Data and Variables

This section presents the data used in our empirical analysis. First, we present the CDS data set and, second,
introduce the determinants of CDS spreads. We further discuss alternative CDS liquidity measures.

3.1 Sample construction

The CDS data set is constructed from all available single-name CDS time series for U.S. firms that have
traded CDS contracts on their debt. Our sample consists of 228 financial and non-financial companies for
the time period from January 1, 2004 to September 30, EGI(E available daily five-year CDS mid, bid,

’In robustness tests, we also employ the upper tail dependence between the individual log-differences of CDS spreads and
the CDS market liquidity, Tail befg”*”#5* . Diminishing opportunities for hedging default risk via a CDS contract due to
market-wide illiquidity could not only affect the contract’s liquidity, but also the reference unit's default risk itself. As shown
by|Subrahmanyam etlal. (2014), the default risk of reference firms increases upon the inception of CDS trading due to the empty
creditor problem. Accordingly, extreme dry-ups of CDS market liquidity and thus diminished CDS trading could affect default
risk reflected in CDS spreads as well. Also, Tail j&td“”*" describes the dependence between a company’s CDS liquidity
and the log-differences of the CDS market spreads in the upper-right tail of their joint distribution. We expect that this tail beta is
positively correlated with CDS spreads since protection sellers will demand a premium for the risk that a company’s CDS liquidity
drops at the same time when the average default risk of the market increases. In times of market crashes, financial intermediaries
sometimes withdraw from providing liquidity or investors withdraw funds, hence, causing potential problems in fulfilling the
payment obligations of the protection buyer (see Coval and Stafford, 2007; Brunnermeier and Pedersen, 2009).

8A list of all sample companies is reported in the Internet Appendix.
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and ask quotes are downloaded fr@redit Market AnalysifCMA) via Thomson Reuters’ Datastrem
Moreover, we filter our data by using several criteria. We start by considering all U.S. companies with
traded CDS contracts. Next, we delete from our sample all entities that refer to U.S. sovereign debt issues
and all companies without a stock market listing. Since we are also interested in the associated equity data
of the companies, we extract the equity symbol and match it with the Thomson Reuters’ CDS symbol after
which we end up with 228 entities. We assign each firm to one of the 19 different industrial sectors based on
the Industry Classification Benchmark (ICB) Level 3 Supersector Codes, which are takeDdtastream

based on the equity symbols of the compEes.

3.2 Determinants of CDS spreads

In our empirical analysis, we control for known determinants of CDS spreads suggested by the structural
model o@ 4) and previous empirical literature.

VOLATILITY : According t4), debt is equivalent to a risk-free loan combined with a short
put-option on the firm’s assets. Thus, a higher equity volatility, implying a higher asset volatility, will
increase the probability of default and eventually CDS spreads. We estimate asset volatility as the annualized
monthly stock return volatility.

LEVERAGE AND FIRM VALUE : Higher leverage reveals a shorter distance to default barrier, since
default occurs when the leverage ratio nears unity. Hence, the probability of default increases and the CDS
spreads will also increase. As we perform our empirical analysis on monthly data, it is difficult to measure
the leverage ratio based on balance sheet data. Therefore, we foIIO\kz._Qg“_C_Qum;DuILQl;rhg_Qdal. (2001)
as well a.J. Annaert et Ia‘._(;dlS) and use the firm’s arithmetic stock return as a proxy for leverage, since
decreasing stock returns will increase leverage, which leads to higher credit spreads.

INTEREST RATE : The impact of the risk-free rate on CDS spreads is not obvious. On the one hand,

[LQngsla.ﬁ_a.nd_S_Qhwa}ti_(lQQS) emphasize that a higher risk-free rate increases the risk-neutral drift of

the firm value process, which reduces the probability of default and, thus, decreases CDS spreads (see

[LQngslaﬁ_and_S_QhMLa}thiz_C_Qlﬂn;DuILans_étLaLi001). On the other hand, higher risk-free rates may

reflect that the stance of monetary policy is tightened, which would increase the probability of default and,
thus, the CDS spreads (see, &é@ . JZD.O.Q..M.QIHH&L&J 2016). We use the two-year U.S. Treasury
benchmark yield as a proxy for the risk-free interest rate.

Empirical evidence shows that default probabilities and recovery rates are also influenced by economic

cycles (see, e.d_._B_Lugh_e_and_G_ané.lﬁz_AddadQJ 2010). IAISQ..ELLCﬁSAr{_e_t_éI (2009) reveal that the explana-

There are several reasons for using CMA data. First, Mayordomo et all (2014) find that CMA quoted CDS spreads are more
preferable than those from other databases regarding the price discovery process. Furthermore, CMA data capture quotes from
intra-day CDS market activity, which are reported only if there are a sufficient number of quotes available. Hence, the data account
for the actual daily market situation and for low levels of liquidity, which suggests that they are reliable and appropriate for the use
of investigating tail risks.

1%0ur sample firms are distributed across all 19 industrial sectors. While most of the companies are in the Industrial Goods &
Services sector (a total of 32 companies), only one company is in the Telecommunications sector.

In addition, arithmetic stock returns are also a proxy for changes in firm vaII., 2015). The Model lof Merton
@) also provides a connection between the firm value and the probability of default. A higher firm value will decrease the
probability of default, since it is less likely that the default barrier is reached. Therefore, CDS spreads will decrease as well. Hence,
we expect a negative relation between CDS spreads and firm value.




tory power of the variables suggested by the structural model is very low. Therefore, we include some

further control variables that reflect global macro-economic and financial conditions.

BUSINESS CLIMATE : One indicator of the market condition is the business climate, which influences the

probability of default and the expected recovery rates| (see Altman and ﬁl hor »Zh r{g_e_|al 2009;
i ILZQbQ). We proxy for the business climate using monthly values of the S&P 500 index and

expect a negative relation between the index and CDS spreads.

MARKET-WIDE VOLATILITY : As an additional explanatory variable, we include the option-implied

volatility index of the S&P500 (VIX) as a proxy for market-wide volatility. Similar to equity volatility, we

expect a positive sign of the coefficient in our regression analyses.

SLOPE OF THE YIELD CURVE : The slope of the yield curve serves as a control variable for overall

economic health in our empirical analysis. The effect of this variable on CDS spreads is undetermined

(se e{ Callin-Dufresne gtlal . ddﬁ We calculate the slope of the yield curve as the difference between the

ten-year and the two-year U.S. Treasury benchmark yield.

GDP GROWTH: As another determinant of CDS spreads that proxies for the overall stance of the economy
is the growth of the economy. Therefore, we foIbMMﬁlMt]_aLdZOlG) and include the GPD growth rate of
the U.S. obtained from the OECD as a control variable in our empirical study. We expect GDP growth to be
negatively related to CDS spreads, since an increase in economic growth will increase the firm-level growth
rate which implies a decrease of default probabilities and lower CDS spreab_s_(§_e_elmgj @djan, 2010).
SYSTEMIC RISK : Motivated by the fact that systemic risk can also emerge from liquidity squeezes as
seen in the financial crisis of 2008 (see, @Mm 2009), we employ a measure of
systemic risk proposed B;LQIgJJQjJHL_(ZblG) as additional control. The Partial Quantile Regression (PQR)
measure combines 19 individual systemic risk measures into one and has shown to have strong predictive

power for future macroeconomic shocks.

3.3 Alternative measures of CDS (il)liquidity

Our main analysis is based on CDS bid-ask spreads to construct our proxy of liquidity tail risk in the CDS

market. This is most suitable as bid-ask spreads are available on a daily basis and thus, allow us to model

the time-series and tail dependence as outlined aljdverthermore, we employ two alternative measures

of liquidity to ensure the robustness of our main results. First, we adapt the 'P-zero’ measure introduced in
I]_(19_§9) to CDS contracts which counts the number of 'zero-return days’, the number of days

the CDS price did not change over a given time frame. We calculate the p-zero measure on a daily basis

120n the one hand, a negative relation with CDS spreads is expected, since according to Fama and French (1989) a steeper slope
indicates a better economic growth or future economic activity. This also increases the recovery rates, which reduces CDS spreads.
On the other hand, an increase of the slope may also predict a tightening of monetary policy and an increasing inflation rate, which
would increase CDS spreads (see Zhanglet al. 2009; Meinelet al., 2016).

4Junge and Trolle (2015) capture CDS market illiquidity by comparing CDS-implied and actual index levels and thus, require
the CDS contract to be part of a credit index. As contract-specific illiquidity measures, they also use bid-ask spreads. Other
measures of illiquidity such as Mu@mz) for equities or respective measures for bonds cannot be easily adapted to CDS
contracts due to the lack of volume data. Data providers such as The Depository Trust & Clearing Corporation (DTCC) provide
information on notionals and (average) number of trades, which could serve as a substitute for transaction volume. However, this
data are only available on a quarterly frequency and cannot be used to estimate tail dependence measures. Also, the data provided
do not cover the time period investigated in this study.
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using a 30 day rolling window (sla_e_S_Qh_e_slag_}eLa_L._IZ016) as follows:

#zero return days
30 ’

P-zerQ gaily = (16)

Second, we use the P-zero measure of CDS illiquidity and further compute P-zero FHT as suggested in
Fong et al. (2Qj7) which is derived from comparing the theoretical probability of experiencing zero-return
days with its empirical frequency:

. (17)

1+ P-zerggai
P-zero FHT gaiy = 2 - o(CDS) - & <—+ Q""‘"”) :
wheres (CDS) is the standard deviation of CDS spreads over a 30 day rolling windowbahig the inverse
function of the standard normal distribution. Daily value$ of (L6) (17) are later used to model alternative

liquidity tail betas used for additional regressions.

4 Empirical results

4.1 Descriptive statistics and stylized facts of CDS spreads

Figure[1 presents the time-variation of the CDS mid quotes and of the log-differenced CDS spreads by
plotting the corresponding equally-weighted cross-sectional averages (black line) and the range between
their cross-sectional 5th and 95th percentiles (gray-shaded area).

Panel (a) illustrates that average CDS premia are relatively low, less than 100 bps, from 2004 until
mid-2007. However, during the financial crisis, starting with the sub-prime crisis in August 2007, CDS
spreads rise dramatically, thus, indicating the great change in the market’s perception and valuation of credit
risk. After the maximum is reached at the beginning of 2009, premia decrease. Besides, the cross-sectional
variation is also low during the pre-crisis period and it widens significantly after the mid of 2007. However,
we find an overall large cross-sectional variation in CDS spreads within the full sample@eriod.

We perform several tests to obtain stylyzed facts of our time series of interest. First, we find that the
time series of log differences of CDS spreads are stati@8ycond, a Ljung-Box (LB) test (with 20 lags)
for the log differences of CDS spreads is rejected at the 1% level for about one quarter of our sample CDS
contracts and thus, we conclude that most of the time series exhibit linear serial dependence. Further, we
employ the Lagrange multiplier (LM) test fr@g@b&) to test for ARCH ef@fﬁhe hypothesis
that there is no ARCH effect is rejected at the 5% and 10% level for about 91% of our time series. Finally,
we check for non-normality in the log-differences of the CDS spreads, which we find by applying several

4additional descriptive statistics on the percentiles and moments of CDS spreads (by year) that are available from the authors
upon request suggest that most of the data are located in the lower tail of the distribution and that CDS mid quotes exhibit a
significant autocorrelation of about 97%.

*We employ the Augmented-Dickey-Fuller (ADF) test (see Said and Dickey, 1984), the Phillips-Perron (PP) test, and the
Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test.

e estimate an AR model for each series in order to manage linear serial dependence and tHen follow Méine ét al. (2016) and
choose the orders of the AR model so that the null of the LB test (with 20 lags) cannot be rejected at the 10% significance level.
Afterwards, we use the AR residuals for the LM test.
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Figure 1: Time evolution of CDS spreads and log differences of CDS spreads

This figure depicts the time evolution of CDS mid quotes in Panel (a) and the time-series variation of log differences of CDS spreads

in Panel (b). In each panel, we plot the equally weighted cross-sectional averages of the mid quotes or the log-differenced CDS
spreads (black line) and the range between their cross-sectional 5th and 95th percentiles (shaded area). CDS mid quotes are denoted
in basis points (bps) and log differences of CDS spreads are measured in %. Our sample consists of daily data of 228 financial and
non-financial companies for the period of January 2004 to September 2010.
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statistical tes@ Bringing the same set of tests to CDS (absolute) bid-ask-spreads, we also find evidence
for stationarity, linear serial dependence, and ARCH effects in most of the time series.

For reasons of efficiency and due to previous findings in the empirical literature, we first fi) AR(
models to all CDS spread and CDS liquidity time series by choosing the order of the model according
to the Ljung-Box test described in Sectlonl2.1. If the ARfodels are not adequate, we filter the data
by ARMA(r, s) processe@ Estimation results suggest that AR models of order up to five are sufficient
to model the persistence in the c@aGARCH model orders vary between one and two. The parameter
estimates of the degrees of freedamsuggest fat tails in the conditional distribution. Lastly, the estimates
for parametery indicates positive skewness. Altogether, we have generated white-noise residuals for all
data which is necessary for our dynamic copula model.

In the following, we present the estimates for the liquidity tail beta using the dynacapula Mn

Figure[2 plots the time evolution of the liquidity tail beta based on CDS bid-ask spreads.

Figure 2: Time evolution CDS liquidity tail betas

This figure shows the time evolution of liquidity tail betas based on CDS (market) bid-ask spreads. We plot the equally weighted
cross-sectional averages of the liquidity tail beta (black bars) and their 95th percentiles (grey area). Our sample consists of daily data
of 228 financial and non-financial companies for the period of January 2004 to September 2010. The tail betas are estimated from
the dynamica-copula oa) and the definition of each tail beta is reported in Apjiendix I. All tail betas are denominated

in %.
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7Qverall, we employ three tests: the Jarque-Bera (JB), the Kolmogorov-Smirnov (KS), and the Shapiro-Wilk (SW) test.

BEurthermore, the procedure of fitting the volatility models described in Séctibn 2.1 is not always sufficient for all time series
so that we need to employ further methods. First, if the suggested GARCH models generate residuals for which the Ljung Box
test and the ARCH-LM test with lag 5 cannot be rejected at the 10% significance level, we fit all these GARCH models up to lag
p = q = 4. If this is not adequate as well, we fit other GARCH models such as the Integrated GARCH, the Exponential GARCH,
the GJR-GARCH, the Asymmetric Power ARCH, the Absolute Value GARCH, the Threshold GARCH, the Nonlinear ARCH,
the Nonlinear Asymmetric GARCH, the Component GARCH and the ALLGARCH model. In a last step, we would increase the
number of lags to 10, 12, 15 and 20 in the Ljung Box test and to 12 in the ARCH-LM test until there is one model for which both
tests on the corresponding residuals cannot be rejected at the 10% significance level.

19The CDS market spreads, however, require a slightly higher order.

20\We also compare the dynamic copula model with a different time-varying model of the standard#stagia}a. This copula
is computed on a daily basis as the standacdpula defined in equatidn_{10) over a rolling window of 100 data points. We compare
the two models using Akaike’s Information Criterion (AIC) and find that the dynamic copula model is chosen much more often
than the static approach.
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Black bars represent average values of tail betas and the 95th percentiles are given by grey-shaded
areas. The dynamic liquidity tail beta varies between 0% and 3% during the sample period. Average tall
dependence stays flat, especially during the pre-crisis period where the values are about 0.2%. However,
the average tail beta spikes several times with the maximum values being reached at a little less than 0.5%
during the financial crisis. The highest value of the 95th percentile of the liquidity tail beta is higher than
2% in September 2008. During the crisis, the cross-sectional variation increases slightly as well, most likely
depending on whether the firm’s industry was immediately affected by the crisis.

4.2 Univariate sorts

We continue our empirical analysis by presenting the results of univariate sorts of CDS spreads according
to the liquidity tail risk measure. To investigate the relation between the liquidity tail risk variables and
CDS spreads, we calculate average CDS spreads for observations that are in the first and fifth quintiles of
the CDS liquidity tail betas. We divide our sample in two periods, the pre-crisis and the crisis=pérod.

each sub-sample we compute quintiles of the liquidity tail beta across all sample firms. We then rank the
observations for CDS spreads according to these quintiles and calculate the average CDS spread in each
quintile for each sub-sample. The results using the basic CDS tail betas are shown by boxplots|[ih Figure3.

Figure 3: Univariate sorts of average CDS spreads

This figure shows boxplots of CDS spreads in the pre-crisis (left panel) and crisis period of observations that are in the 20th or 80th
percentile of liquidity tail betas for each subsample period. Our sample consists of daily data of 228 financial and non-financial
companies for the period of January 2004 to September 2010. The pre-crisis period lasts from January 1, 2004 to August 8, 2007
and the crisis period comprises August 9, 2007 to September 30, 2010. For illustration purposes, CDS spreads are winsorized at the
95% level. The tail betas are estimated from the dynadrticpula oa) and the definition of each tail beta is reported

in Appendix].
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We first observe that the distribution of CDS spreads differs significantly both across observations ranked
by quintiles of the liquidity tail beta and between crisis versus pre-crisis periods. Observations in the fifth
quintile of the liquidity tail beta exhibit a wider range of values in the middle part, i.e., between the 25th and

2We employ August 9, 2007 as our cut-off date for the beginning of the financial crisis (see, e.g.,
http://news.bbc.co.uk/2/hi/business/7521250.stn=.
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75th percentile of CDS spreads, with all values being higher than their counterpart where observations are
in the first quintile of the tail betas. This is true for both pre-crisis and crisis period although the magnitude
of this difference is much higher in the latter period. The difference in averages of the CDS spreads in the
high and the low tail beta quintile is significant and is higher in the crisis period than in the pre-crisis period.
Before the crisis, the difference between average CDS spreads in the first versus the fifth quintile is only
about 10.3 bps while in the crisis subsample the difference is 62@ bps.

4.3 Baseline panel regressions

We continue our main empirical analysis by performing a set of OLS panel regressions using our full sample
of observations. We regress CDS spreads on our main variable of interest, the (lagged) liquidity tail beta, and
various lagged controls. All regressions include industry-fixed effects with standard errors being adjusted
for heteroskedasticity. Hence, we account for the variation of our sample companies across several industrial
sectors so that market downturns in the U.S economy can have different effects in each sector. First, we start
with the results of our benchmark industry-fixed effects regressions of the CDS spreads. The results are
presented in Tablé |. For an easy interpretation, all coefficients are standardized.

In Panel A of Tabléll, results for our full sample are shown. The estimated coefficient of the liquidity
tail beta is positive and significant, which is consistent with our expectations that protection sellers earn a
premium when writing a CDS contract that carries a higher liquidity tail risk. A one standard deviation
increase in the liquidity tail beta is associated with an increase in monthly CDS spreads of 26.9 bps. The
regression of which the results are shown in column (2) further include time-fixed effects and reduce the
impact of the liquidity tail beta to 23.4 bps.

Next, we include our full set of lagged control variables. The liquidity tail beta remains a statistically
significant determinant of CDS spreads with a coefficient estimate of 15.79 bps per month. Given that the
average annual CDS spread in our sample is 152 bps, we find that the effect of CDS liquidity tail risk on
spreads is highly economically significant.

The Merton-type variables enter the regressions with the expected sign as in other empirical studies
(see, e.gLE_ric_S_S_On_e_tl MOQ). When additionally controlling for the slope of the yield curve, GDP growth
rate, business climate, market-wide volatility, and systemic risk, we find that our main variable of interest
remains significant. One could argue that the regression model in column (3) exhibits multicollinearity
as some of the firm-invariant variables proxy for certain aspects of the current economic envirdnment.

In order to mitigate this concern, we drop all macroeconomic control variables in column (4) and replace
them with time-fixed effects that would absorb any omitted time-varying effects influencing CDS spreads.
Our variable of interest is still significant and remains at a coefficient estimate of about 16 bps per month.
Further, as expected, the level of CDS bid-ask spreads is an important determinant of CDS spreads as shown
by other empirical studies (e[glang_andjm 'ltnapd 2009).

22Both differences are statistically different from zero, which is confirmed by Welch Two Sample t-tests that yield t-statistics of
5.82 and 9.82, respectively.

ZFor example, the interest rate and the value of the S&P 500 exhibit a high correlation of about 72.6%. However, the CDS tail
beta and liquidity tail beta exhibit a positive correlation of about 9.4%. Generally, the absolute pairwise correlation of the liquidity
tail beta and other covariates is less than 10% and correlations among other firm-specific variables are also low.
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Table I: Panel benchmark regressions

The table presents results from the panel regressions of monthly sampled CDS mid quotes on the CDS liquidity tail beta, variables suggested by
theory, and further controls. We estimate the following regression model for eachifirsector; for the period from January 2004 to September
2010 on a monthly basis:

CDSi,t =a+p- L|qU|d|ty tail betq’t_l + - Xi,tfl + wj + e + €,

whereX; ;1 describes lagged control variables. In Panel B, we run the same regressions as in column (2) and (4) of Panel A but split our sample
into a pre-crisis and crisis period. The pre-crisis period lasts from January 1, 2004 to August 8, 2007 and the crisis period comprises August 9,
2007 to September 30, 2010. We run all regressions with industry-fixed effgctsased on the ICB Level 3 Supersector Codes. Monthly-fixed
effects are denoted ag. Variable definitions and data sources are outlined in App€&hdixI. Standard errors are adjusted for heteroskedasticity. We
present the standardized coefficients and the corresponditagistics are reported in parentheses. ***, ** and * indicate that the coefficients are
significantly different from zero at the 1%, 5% and 10% level, respectively.

Panel A: Baseline Regressions 1) 2) 3) (4)

Dependent variable: CDS spreads

(Tail beta BAS / Market BAS) 1 26.8821***  23.4269***  15.7898*** 15.9748***

(10.83) (10.59) (8.08) (8.49)
Laggedcontrols:
Tail beta CDS / Market CDS -4.6259** -3.6754
(-2.02) (-1.57)
Firm value -27.3911%*  -22.0732%*
(-4.18) (-2.70)
\olatility 96.1519**  102.4506***
(10.08) (9.98)
BAS 168.8815**  168.3621***
(6.13) (6.14)
Interest rate -68.0426***
(-5.22)
GDP growth -22.5189***
(-6.14)
Business climate -4.0384
(-1.27)
Slope -39.6150%**
(-3.05)
VIX -19.7865***
(-3.04)
Systemic Risk -3.4071
(-0.52)
N 18,240 18,240 18,120 18,120
Adjusted R? 0.071 0.195 0.500 0.508
Industry FE YES YES YES YES
Time FE NO YES NO YES
Panel B: Crisis Subsample Regressions (1) 2) 3) 4)
Dependent variable: CDS spreads
Pre-Crisis Crisis

(Tail beta BAS / Market BAS) 1 11.9298***  11.9452**  17.8462*** 17.8003***

(9.49) (9.68) (4.93) (5.03)

N 9,491 9,491 8,629 8,629

AdjustedR2 0.575 0.583 0.482 0.487

Lagged controls YES YES YES YES
Industry FE YES YES YES YES
Time FE NO YES NO YES
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In summary, the panel regressions yield strong evidence that investors in the CDS market are crash-
averse regarding liquidity as they demand a premium for liquidity tail risk, i.e., the risk of a joint extreme
co-movement of a company’s CDS illiquidity with the CDS market illiquidity. As we include the CDS tall
beta and the liquidity tail beta in the same regression and find that both coefficients remain significant, we
find that an investor’s liquidity crash aversion is different from a general crash aversion regarding default
risk.

4.4 Sub-sample analysis

So far, the panel regressions have strongly supported the notion that liquidity tail risk is an important de-
terminant of CDS spreads. In the following, we check the explanatory power of the liquidity tail beta in
different regimes and whether the impact of liquidity tail risk increases during the financial crisis. There-
fore, we split our data set into two sub-samples associated with two different regimes: the pre-crisis and
crisis period.

We expect that the CDS protection sellers and buyers are less concerned about liquidity crashes
and, therefore, about liquidity tail risks in the pre-crisis period. The reason is that an asset’s liquid-
ity might not be as important during normal market conditions as it is during extreme market crashes.
Indeed, the dramatic fall of liquidity during the financial crisis has shown how fragile liquidity is (see

i 08). Hence, protection sellers should be more sensitive to higher illiquidity
during extreme market downturns since it can cause increased default risk and lower recovery rates. The
[Lnlﬁtnalignaumgn_elaQLEqu_(ZdOS) reported rising default risks as well as systemic risk in the global fi-
nancial system since the beginning of the financial crisis. On the other hand, protection buyers will also be
more concerned about illiquidity during financial distress as counterparty credit risk rose in the CDS market
during the financial crisis.

We use the same sub-samples as in the univariate sorts in Eigure 3 and split the sample on August 9,
2007, so that the crisis period reflects the recent financial crisis. Regarding the CDS liquidity tail betas,
we repeat the benchmark panel regression of Panel A in [Table | for each sub-sample and report the results
in Panel B of the table. We observe that the liquidity tail beta is statistically highly significant in both
periods. However, the economic effect of this variable on CDS spreads is larger in the crisis period with
the standardized estimated coefficient increasing from 11.9 bps in the pre-crisis period to 17.8 bps in the
crisis period. Thus, we do find evidence in line wi i (2009) that the effect of
illiquidity spirals during crisis times are more pronounced for contracts that have a higher CDS liquidity
crash sensitivity, i.e., a higher liquidity tail beta.

4.5 Instrumental variable and system GMM regressions

The OLS estimates given above could be biased due to endogeneity problems. First, extremely high CDS
spreads might also affect the propensity to experience liquidity tail risk so that estimates are biased because
of reversed causality. Second, although we lag all independent variables by one month, some endogeneity
concerns are still present as omitted variables can influence both liquidity tail risk and CDS spreads simul-
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taneously. To mitigate some of these concerns, we perform two-stage least squares (2SLS) regressions in
which we instrument the liquidity tail beta as our endogenous variable. As instrument we employ a firm’s
extreme equity exposure to changes in the market capitalization of the group of 14 major credit derivatives
dealers during our sample period ( n n Il 1S)nce we instrument tail liquidity risk,

we construct our instrument to measure the sensitivity of a firm to extreme downturns in the G14-Dealers’
market capitalization. This is motivated by empirical evidence givEn inJunge and Juol_ké (2015), who show
that the G14-Dealers’ market capitalization as a proxy of risk-bearing capacity of the intermediary sector
is strongly correlated with CDS (market) liquidity). We define 'G14-Dealer Sensitivity’ as the average re-
turn of a firm’s equity on the days the returns on the aggregate market capitalization of G14 are below the
5%-quantile (multiplied by minus one so that higher values indicate higher exposure). In this way, we en-
sure that our instrument satisfies the relevance condition (which is also confirmed by respective statistics).
While we cannot directly test whether the exclusion restriction is fulfilled_(§_e_eﬂoger_ts_md_|\:m4d, 2013),
we argue that this is likely to be the case. If extreme exposure to the group of major CDS dealers influenced
CDS spreads directly, it would require firms to have direct business links to all of these major dealers in the
cross-section, a situation that is highly unlikely given the diversity of firm sizes and industries in our sample.
Finally, our instrument is directly linked with the theoretical model of Brunnermeier and P d|(3L$_eL1 (2009)
as it measures a drop in funding liquidity and its subsequent effect on (CDS) market liquidity.

As an alternative to the 2SLS approach based on our instrument, we also run system GMM regressions
in which the lagged endogenous variables are instrumented using their second lag. [[3 Tablell we report
results of the two different regression analyses.

Panel A of Tablé 1l shows results of the 2SLS estimation. In the first stage, the liquidity tail beta is
regressed on the lagged instrument and other control variables as well as industry- and time-fixed effects.
Second stage regressions employ CDS spreads as dependent variable and use the instrumented liquidity tail
beta as main explanatory variable. We first notice that the Kleibergen-Paap rank test on underidentification
and the Wald test on weak identification both reject the null hypothesis at statistically relevant levels. Thus,
we can infer that our chosen instrument is relevant and our model is well identified. Higher values of G14-
Dealers Sensitivity result in higher liquidity tail betas as expected. The second stage results presented in
column (2) further confirm that our variable of interest is highly relevant when explaining the variation of
CDS spreads.

Panel B of Tabl€]l shows the main results of a dynamic system GMM panel regression of CDS spreads
on the first lag of the dependent variable, the liquidity tail beta, and the same set of lagged controls as in
Panel A. The system GMM regression further includes firm-fixed and time-fixed effects and thus, controls
for further omitted firm-specific variables. The first lag of CDS spreads, liquidity tail beta, and CDS tail beta
are instrumented using their respective second lag. The AR(2) test and Hansen test are both insignificant
at conventional levels and validate our model choice. The estimated coefficient of the liquidity tail beta is
positive and statistically significant at the 10% level. This confirms our main result even after controlling
for persistence in the dependent variable and only looking at within-firm variation.

%The G14-Dealers are Bank of America, Barclays, Bear Stearns, Citigroup, Credit Suisse, Deutsche Bank, Goldman Sachs,
HSBC, J.P. Morgan, Lehman Brothers, Merrill Lynch, Morgan Stanley, UBS, and Wachovia (see Junge and Trolle, 2015, p.38).
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Table II: Instrumental variable and system GMM regressions

The table presents results from two-stage least squares (2SLS) and system GMM panel regressions of monthly sampled CDS mid quotes on the
CDS liquidity tail betas and lagged controls. In Panel A, we report results of 2SLS regressions where in the first stage we regress the liquidity
tail beta on an instrumental variable and lagged controls such as firm value, volatility, CDS bid-ask spreads, CDS tail beta, as well as time- and
industry-fixed effects. The instrument used is 'G14-Dealer Sensitivity’ which is the average return of a firm’s equity on the days the returns on the
aggregate market capitalization of G14 are below the 5%-quantile multiplied by minus one. In the second stage, CDS spreads are then regressed on
the instrumented liquidity tail beta and the same set of control variables and fixed effects. Panel B shows the main results of a dynamic system GMM
panel regression of CDS spreads on the first lag of the dependent variable, the liquidity tail beta, and the same set of lagged controls as in Panel
A. The system GMM regression further includes firm-fixed and time-fixed effects. The first lag of CDS spreads, liquidity tail beta, and CDS tail
beta are instrumented using their respective second lag. We report corresponding AR(2) tests and Hansen test results. Variable definitions and data
sources are outlined in Appendix I. Standard errors are adjusted for heteroskedasticity and correspstatists are reported in parentheses.

*** *x and * indicate that the coefficients are significantly different from zero at the 1%, 5% and 10% level, respectively.

Panel A: Instrumental Variable Regressions (2SLS) (1) (2)
Stage: 1st 2nd
(G14-Dealers Sensitivity) o 0.0124***
(5.31)
Tail Beta BAS / Market BAS_; 219,588.8%*
(4.82)
N 16,886
Kleibergen-Paap rk LM test (underidentification) 31.38***
Kleibergen-Paap Wald test (weak identification) 28.22%**
Lagged controls YES YES
Industry FE YES YES
Time FE YES YES
Panel B: System GMM Regression (8]
Dependent variable: CDS spreads
(CDS spreads) | 0.0956***
(6.87)
(Tail Beta BAS / Market BAS) 1 1,541.218*
(1.81)
(Tail Beta CDS / Market CDS).1 99.5781
(-1.03)
N 18,120
AR(2) test -1.58
Hansen 167.35
Lagged controls YES
Firm FE YES
Time FE YES
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5 Robustness and further analyses

The purpose of this section is to convey the robustness our main findings in the presence of other types of
(CDS) risk measures, alternative measures of CDS liquidity, and the possibility that CDS spreads might be
affected not by CDS liquidity tail risk, but by extreme spillovers from the equity market.

5.1 Alternative measures of (systemic) risk

As our first robustness test, we control for various additional (systemic) risk measures that might serve
as an alternative explanation of the effects of liquidity tail betas on CDS spreads. Motivated by the
fact that systemic risk can also emerge from liquidity squeezes as seen in the financial crisis of 2008
(see, e.g.L_LlemaI.iQna_LMQn_ela_uLELJ 009), we employ the Marginal Expected Shortfall (MES) from
Acharya et él.L(;Oi?) based on equity log returns and test if MES is different from the CDS liquidity tail
beta in explaining CDS spredffs As an additional measure, we consider the CoVaR measure introduced
in |Adrian and Brunnermglel’_(;dm) which measures an individual equity’s contribution to distress in the
market. It is calculated as the equity market beta times the difference in value at risks of the firm’s stock
returns at the 95% and 50% percentile, i.e., the firm being in distress versus in a median state.

We also consider three measures that capture linear co-movement risk: the regular liquidity beta, the
upside liquidity beta, and the liquidity cokurtosis. Further, we control for these risk measures based on CDS
spreads rather than bid-ask spreads. We estimate our baseline regression including time-fixed effects and
include the linear measures of co-movement risk as further covariates_Tablelll shows results of regressions
that include these alternative risk measures as control variables.

We find no significant change in the significance of the CDS liquidity tail beta which enters all regres-
sions with a significant positive coefficient. Altogether, our estimation results indicate that the CDS liquidity
tail beta is not simply another proxy for a company’s contribution to systemic risk, but has a different impact
on CDS spreads than the MES aadoVaR. MES is positively correlated to CDS spreads indicating that
investors require a premium for bearing the exposure of the underlying equity to extreme equity market
movements. The effects of the systematic risk measures on CDS spreads that we find are in line with the
literature (see, e.&., Tang and }fhn di_&Le_s_ph_ngﬁM 2012). In particular, this confirms that the impact
of CDS liquidity tail beta on CDS spredas is not explained by liquidity risk calculated as regular beta, upside
beta, or cokurtosis.

5.2 Alternative measures of CDS liquidity

We now employ the two additional CDS liquidity measures introduced in Sé¢tion3, P-zero and P-zero FHT,
to ensure that our results are not driven by the specific choice of bid-ask spreads as a proxy for CDS liquidity.
For both the P-zero and P-zero FHT time series, we again consider ARMA-GARCH specifications and
select the best fitting model via BIC. The tail dependence coefficients are then again estimated via pseudo-

Zacharya et al.[(2017) find evidence that a financial firm's MES as a proxy for systemic relevance is a significant driver in
explaining CDS spreads of financial institutions during the recent financial crisis. In particular, they consider the MES, which is
defined as the average return of a firm when the market is collapsing, based on equity returns and on changes of CDS spreads.
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Table Ill: Alternatives measures of (systemic) risk

The table presents results from the panel regressions of monthly sampled CDS mid quotes on the basic CDS liquidity tail betas, alternative (systemic risk) measures, and further controls. We estimate the
following regression model for each firivin sector; for the period from January 2004 to September 2010 on a monthly basis:

CDSi’t = a + [ - Liquidity tail bEtQ"til +v- X1+ §- RISK; ¢+ —1 + wj + pt + €5ty

whereX; ;1 describes lagged control variables. RJSK represents various alternative measures of (systemic) risk such as an equity’s marginal expected shortfal Qd#&, beta, upside beta,
and cokurtosis based on either CDS or equity market data. We run all regressions with industry-fixedugffieat®d on the ICB Level 3 Supersector Codes. Monthly-fixed effects are denqied as
Variable definitions and data sources are outlined in App&hdixI. Standard errors are adjusted for heteroskedasticity. We present the standardized coefficients and the-statesiosratiegeported
in parentheses. ***, ** and * indicate that the coefficients are significantly different from zero at the 1%, 5% and 10% level, respectively.

@ &) ®3) 4 ®) (6) ) (€
Dependent variable: CDS spreads
Tail beta BAS / Market BAS_ 1 13.2916**  16.3892**  16.1811** 16.1578*** 16.1802*** 16.1661***  17.9094*** 16.8109***
(6.80) (8.50) (8.29) (8.27) (8.29) (8.28) (9.23) (8.69)
MES;_; 102.9871***
(9.69)
ACoVaR._; 73.2125%**
(4.12)
Beta (CDS)_1 0.7861
(1.40)
Beta (BAS)_ -5.1549%**
(-3.95)
Upside Beta (CDS) 1 -0.2876
(-1.10)
Upside Beta (BAS) ; 2. 5772%%
(-3.05)
Cokurtosis (CDS)-1 -19.4731%**
(-4.37)
Cokurtosis (BAS)-1 -12.0956***
(-3.86)
N 17,212 17,211 17,219 17,219 17,219 17,219 17,177 17,186
AdjustedR2 0.530 0.514 0.508 0.508 0.508 0.508 0.509 0.509
Lagged controls YES YES YES YES YES YES YES YES
Industry FE YES YES YES YES YES YES YES YES

Time FE YES YES YES YES YES YES YES YES




maximum likelihood using the dynamic Student’s t copula. The time evolution of liquidity tail betas yield

a comparable pattern to those based on CDS bid-ask spreads. Also, the distribution of CDS spreads after
univariate sorting according to the alternative liquidity tail betas in the (pre-)crisis period is very similar to
our main analysis] We repeat our baseline regressions of Table | for the two alternative CDS liquidity
measures and report OLS estimation results in V.

Both alternative liquidity tail betas exhibit positive coefficient estimates that are statistically significantly
different from zero at the 1% level, regardless of the specification chosen. The economic impact of changes
in liquidity tail risk using the alternative liquidity measures is even more pronounced than in the case of
CDS bid-ask spreads. For example, a one standard deviation increase in the liquidity tail beta based on
P-zero results in CDS spreads increasing by 27.83 bps on average (column (4) of Panel A). Not surprisingly,
this effect is much stronger in the crisis period where the coefficient estimate is 51.02 bps. Interestingly, the
magnitude of the impact of liquidity tail risk on CDS spreads is extremely small in the pre-crisis period (ca.

9 bps), compared to the average effect measured over the whole sample period. Thus, we find that there is a
higher variation in the effect of the liquidity tail beta on CDS spreads when using P-zero as CDS illiquidity
measure (compared to bid-ask spreads). This variation is lower for the regressions shown in Panel D of
Table[TV, where P-zero FHT is used, but is still higher than for our baseline case. Finally, both P-zero and
P-zero FHT are significantly positively related to CDS spreads as higher values of those measures proxy for
more illiquid CDS contracts.

5.3 Liquidity spillover from the equity market to the CDS market

CDS contracts are often traded together with equity securities, for example, in the context of capital structure
arbitrag@ Therefore, equity liquidity complements CDS liquidity and affects CDS spreads, because, for
instance, an illiquid equity market leads to more expensive hedging costs for sellers of CDS contracts,
which then are recovered through higher CDS spreads (se ILZD_O_Q_Da.s_anJJI Hanouna,
M; Lesplingart et iaL,;QhZ).

Some of the empirical studies on the pricing of CDS have already focused on potential liquidity spillover
effects between the equity and the CDS market (see,@@_@{nﬁl&nl&ﬁ;ﬁpﬁ_@@ al., 2012;
[M_Qins_el_ai.l_ZQJlEl;_lung_e_a_nd_'[Lbh_e._Zbl5). Most of them show that an increase in equity liquidity signif-

icantly reduces CDS spreads, Whemmﬂ t al./(2012) find an insignificant relation. Furthermore,
considering the fact that there is a strong commonality in liquidity across the bond and the CDS market, it
has also been found that stock liquidity is priced in the cross-section of corporate bon@dﬂmm})ver,

Ruenzi et AI.L(;OJG) show that equity returns contain a premium for liquidity tail risk in the equity market.
Thus, it can be argued that sellers of credit protection such as capital structure arbitrageurs also want to be

compensated for liquidity tail risk in the equity market and not only in the CDS market. This is because they

2Respective figures are provided in the Internet Appendix.

2"\We also rerun our instrumental variable and system GMM regressions using both alternative CDS liquidity measures and
again refer to the Internet Appendix for respective estimation results.

2The strategy of capital structure arbitrage is to sell or buy credit protection and delta-hedge it by taking short or long positions
in equity depending on the relation between the stock price and the CDS spread.

%For the pricing of stock liquidity in the bond market see Lin etlal. (2011), Acharya et al. (2013), or Bongaerts et al. (2017) and
for the commonality between CDS and bond marke(2009).
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Table IV: Alternative measures of CDS liquidity

The table presents regressions of monthly sampled CDS spreads on liquidity tail betas based on the P-zero (Panel A & B) and P-zero FHT (Panel C & D) (il)liquidity measures as defined in_esmond et al.
(1999) and Fong et A[. (2017), respectively. We estimate the following regression model for eaiin fieator; for the period from January 2004 to September 2010 on a monthly basis:

CDS;,; = a + - Alternative liquidity tail betazsy,tf1 +v-Xit—1 +wj +pe+ €,

whereX; ;1 describes lagged control variables. Panel A and C show results for the full sample period whereas Panel B and D show regressions where the sample is split into pre-crisis and crisis periods.
The pre-crisis period lasts from January 1, 2004 to August 8, 2007 and the crisis period comprises August 9, 2007 to September 30, 2010. We run all regressions with industryfinadeeffects,

on the ICB Level 3 Supersector Codes. Monthly-fixed effects are denotad Mariable definitions and data sources are outlined in App€hdix|. Standard errors are adjusted for heteroskedasticity. We
present the standardized coefficients and the corresponditagistics are reported in parentheses. *** ** and * indicate that the coefficients are significantly different from zero at the 1%, 5% and 10%

level, respectively.

P-zero as CDS illiquidity measure

Panel A: Baseline regressions 1) 2) 3) (4) Panel B: Crisis subsample regressions 1) ?) 3) )
Dependent variable: CDS spreads Dependent variable: CDS spreads
Pre-crisis Crisis
(Tail Beta P-zero / Market P-zerp) 1 42.4409%** 38.0871**  28.6180***  27.8312%* (Tail Beta P-zero / Market P-zerp) 1 9.9500%** 9.5315%** 53.7861% 51.0210%*
(15.20) (15.42) (11.84) (11.61) (10.40) (9.97) (11.30) (10.19)
(P-zero) 4 4.5958** 4.5379* (P-zero} 4 -11.8046*** -12.3129*** 22.1294*+* 18.0543***
(2.16) (2.04) (-14.73) (-14.51) (4.74) (3.86)
N 18,012 18,012 17,897 17,897 N 9,268 9,268 8,629 8,629
Adjusted R? 0.078 0.201 0.315 0.328 Adjustee? 0.222 0.235 0.310 0.319
Lagged controls NO NO YES YES Lagged controls YES YES YES YES
Industry FE YES YES YES YES Industry FE YES YES YES YES
Time FE NO YES NO YES Time FE NO YES NO YES
P-zero FHT as CDS illiquidity measure
Panel C: Baseline regressions 1) (2) (3) 4) Panel D: Crisis subsample regressions (5) (6) 7) (8)
Dependent variable: CDS spreads Dependent variable: CDS spreads
Pre-crisis Crisis
(Tail Beta P-zero FHT / Market P-zero FHT) | 27.7612% 25.7172%*  22.4219***  21.7288** (Tail Beta P-zero FHT / Market P-zero FH{T) | 5.9279%+* 5.9489%** 40.7831*+* 39.3489%*
(9.02) (9.10) (9.56) (9.19) (5.75) (5.70) (8.98) (8.59)
(P-zero FHT) _¢ 93.3460*** 91.4695*+* (P-zero FHT) _¢ 22.9619*+* 23.3853*** 131.1253*** 127.7621***
(6.37) (6.33) (5.19) (5.14) (6.21) (6.17)
N 18,012 18,012 17,618 17,618 N 9,161 9,161 8,457 8,457
Adjusted R> 0.071 0.196 0.376 0.386 Adjustee? 0.245 0.258 0.372 0.377
Lagged controls NO NO YES YES Lagged controls YES YES YES YES
Industry FE YES YES YES YES Industry FE YES YES YES YES

Time FE NO YES NO YES Time FE NO YES NO YES




need to hedge their credit protection in the equity market at the same time when the market is extremely
illiquid, which should result in higher hedging costs. Hence, investors in the CDS market might be more
crash-sensitive to liquidity shocks in the equity market than in the CDS market itself.

To control for liquidity tail risk in the equity market, we folldw Ruenzi g{ &I. (2016) and repeat our
benchmark regression by using tail dependence coefficients associated with the equityimeokieé
precise, we compute the following tail dependence coefficients:

Tail betd 2P = A, (RIS, RS (18)
Tail betd 2745 FQPASM T\, (BASR, BASY) (19)

wherethQ andBASftQ are the equity returns and the equity bid-ask spread, respectively, of each company
and the market = M Again, the estimation of the tail dependence coefficients is done via pseudo-
maximum likelihood estimation using pseudo-observations based on the ARKARARCH(p, q) resid-

uals of the marginal equity returns/spreads time series. We apply the same procedure as ial Section2 to
calculate the tail dependence coefﬁci@ts.

It could be argued that the risk premium for holding CDS spreads that are illiquid when the CDS market
is extremely illiquid results from the fact that the equity market is extremely illiquid. As investors like
capital structure arbitrageurs need to hedge their CDS contract on the equity market, the liquidity in the
equity market affects the CDS market. Thus, a seller of credit protection may not price a firm’s exposure to
liquidity in the CDS market but in the equity market. To model this dependence in extreme market situations,

0As pointed out by a referee, the spillover effects could also manifest themselves in other forms of dependence. For example,
the equity spillover effects could be characterized by weaker forms of quantile dependence like, e.g., intermediate tail dependence
(se€ Coles et al., 1999; Hefferhan, 2000; Bernard and Czadd, 2015). The use of intermediate tail dependence, however, does not
yield any new conclusions in our case as all available models suffer from significant drawbacks compared to our baseline model
(e.g., the coefficients of intermediate tail dependence are equal to one for the Student’s t copula and alternative Archimedean copulas
are outperformed by our dynamic t-copula).

3IFor empirical studies using equity bid-ask spreads see| e.qg., Amihud and Mehdelsonl(1986), Chdrdia et al. (2000) as well as
.5). We note that we cannot usi2002) measure for the equity liquidity factor due to the lack of volume
data.

%2First, we fit ARMA(r, s) models to the equity data (that are the equity bid-ask spreads and the equity log returns) of the
individual firms and of the market since previous empirical analyses have shown that stock returns and equity bid-ask spreads
are autocorrelated (see, elg.. Amihud and Mendelson/ 1986; Fama and Frenth, 1989; Acharya andlPedetsen, 2005;|Ruenzi et al.,
M). The market indexes are calculated as daily equally-weighted averages of the corresponding individual measures across all
sample companies which is line with the computation of the CDS market spreads in eddation (2). Then, these residuals are filtered
by an appropriate GARCHi(q) model p,q € {1,2}), so that we obtain white-noise residuals for the joint distribution model.

In this context, we use the following GARCH models: GARCH, GJR-GARCH and E-GARCH, as empirical studies have shown
that stock returns are asymmetric in volatility, skewed, and fat tailed (seé, e.q. Christoffersen etlal., 2017). Besides, the time-series
analysis of our equity data confirms that our equity bid-ask spreads are also stationary, autocorrelated, conditionally heteroskedastic
as well as skewed and fat tailed. When calculating the tail dependence coefficients from equity returns, we need to take into account
that stock returns decrease during extreme market downturns in contrast to CDS spreads or bid-ask spreads. This phenomenon is
important when estimating the dependence structure between equity returns and equity bid-ask spreads because tail dependence
coefficients can only model tail dependencies either in the lower or in the upper tail of both variables. To solve this problem, we
follow .6) and convert the algebraic sign of the equity returns. For simplicity, we filter these new measures by
individually chosen ARMA models and by employing the same GARCH models that we used for the positive equity returns. The
GARCH models mostly fit very well. Hence, we apply the method of choosing an adequate GARCH model explained in section
[2.7 only for the negative returns, for which the GARCH models of the positive equity returns are inappropriate.
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we estimate the upper tail dependence between a company’s CDS liquidity and the equity market liquidity
using the dynami¢-copula oh @a) and call this coefficient ¢pdlover liquidity tail beta(Tall
betedf ASFRBASMY 3] The results of our additional regressions using various tail betas that are related to

equity markets are shown in Table V.

Table V: Liquidity spillover from the equity market to the CDS market

The table presents results from panel regressions of monthly sampled CDS mid quotes on the liquidity tail betas, lagged control variables, and an
equity liquidity spillover tail beta or equity-based tail betas. We estimate the following regression model for eaci fa@ator; for the period
from January 2004 to September 2010:

CDS;; = a+ - CDStail beta;—1 + v - X; +—1 + ¢ - Spillover Tail bet@’t_1 +r-EQTailbeta, 1 +wj + pt + €z

where X; ;1 describes lagged control variables. We run all regressions with industry-fixed efigdimsed on the ICB Level 3 Supersector

Codes. Monthly-fixed effects are denoted;as Column (1) and (4) use the full sample period while the other columns report results from
subsample regressions where the sample is split into pre-crisis and crisis periods. The pre-crisis period lasts from January 1, 2004 to August 8, 2007
and the crisis period comprises August 9, 2007 to September 30, 2010. Variable definitions and data sources are outlined fh Appendixl. Standard
errors are adjusted for heteroskedasticity. We present the standardized coefficients and the corressptaititics are reported in parentheses.

*** ** and * indicate that the coefficients are significantly different from zero at the 1%, 5% and 10% level, respectively.

1) ) ®3) (4) (5) (6)

Dependent variable: CDS spreads
Full Pre-crisis Crisis Full Pre-crisis Crisis
(Tail Beta BAS / Market BAS) 1 16.2214**  11.9740*** 18.4662*** 12.8965*** 15.3992*** 12.9081***
(8.73) (9.72) (5.32) 4.77) (7.89) (3.25)
Laggedequity (spillover) tail betas:
(Spillover Tail Beta BAS / Market EQ) 1 -6.4707*** -1.0351 -15.9695***
(-3.56) (-1.43) (-4.15)
(Tail beta EQBAS / Market EQBA$) 1 11.1836*** 2.9500** 12.9081***
(4.40) (2.11) (3.53)
(Tail beta EQ / Market EQ)-1 -78.6962***  -14.3066***  -99.1865***
(-12.55) (-8.72) (-12.08)
N 18,120 9,491 8,629 11,789 3,328 8,461
Adjusted R? 0.509 0.583 0.488 0.522 0.642 0.513
Lagged controls YES YES YES YES YES YES
Industry FE YES YES YES YES YES YES
Time FE YES YES YES YES YES YES

In columns (1) - (3) of Tablel, we report the results of the panel regressions including the basic CDS
liquidity tail betas and the tail beta for liquidity spillover effects between the CDS and equity markets. We
find our main finding to be robust to the inclusion of the proxy for these liquidity spillover effects. For
both our full sample and the crisis/pre-crisis sub-periods, the liquidity tail beta remains statistically and
economically significant. In contrast, the spillover tail beta is significant only in the regression based on the
crisis sub-sample.

Next, in columns (4) - (6), we repeat our main regressions using the basic CDS liquidity tail beta and
the equity tail betas of equatiofiss)) and (I9). Our main findings regarding the CDS liquidity tail beta and
the CDS tail beta are robust to the inclusion of the company’s equity tail betas. In add@ibbeta EQ /
Market EQis highly significantly and negatively correlated with changes in CDS spreads during the crisis.
In contrast, the Tail beta EQBAS / Market EQBAS which is the counterpart of the CDS liquidity tail beta in

%The copula is estimated on the basis of the ARMA}-GARCH(p, ¢) filtered CDS bid-ask spreads of a company and the
equity market bid-ask spreads as described above.
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the equity market, is significantly positively related to CDS spreads both before and during t crisis.

In summary, we can deduce that the CDS liquidity tail beta is different from liquidity tail risks that
arise from the equity market. However, we note that in theory it is ambiguous, in which direction the link
between the CDS and the equity market goes. On the one hand, we have stated reasons for a spillover
effect from the equity to the CDS market. On the other hand, there also exist arguments for a spillover from
the CDS to the equity market. For instar{g_e_‘ﬁo_eh_meﬂelt_& 2015) deal with the effect of CDS markets on
equity market quality categorized by liquidity and price efficiency. They argue that in the context of capital
structure arbitrage the corresponding hedging strategies can decrease equity liquidity because these trades
are in the same direction of overall order flow.

5.4 Other robustness checks

We also run additional robustness tests the results of which we summarize in this@ection.

A possible problem with our main findings could be that the significance of our tail betas are simply
due to the omission of a simpler non-linear liquidity effect. In fact, it could simply be that liquidity (rather
than liquidity risk) exerts both a linear and non-linear effect on CDS spreads. To control for this source
of a potential bias, we estimate additional regressions in which we include squared CDS bid-ask spread
or the exponential function of bid-ask spreads as additional control variables. While the former non-linear
proxy is statistically significant, the latter is not. In neither of the two cases does the inclusion of these non-
linear terms alter our main insight as the liquidity tail beta coefficient estimate is still positive and highly
significant.

Our main independent variables of interest are liquidity tail betas, which we estimate using various
statistical models. Therefore, our independent variables could suffer from errors-in-variables biases (EIV
biases). To account for such measurement errors, we run EIV regressions in levels of CDS spreads assuming
a reliability of 95%, 75%, and 50%. However, our results do not change.

In our baseline regressions, we control for various (macroeconomic) variables from the empirical litera-
ture that have been found to explain CDS spreads. To make sure our first results do not suffer from choosing
the wrong indices for economic growth and business climate, we employ different indices such as the sea-
sonally adjustedndustrial Production Indexand theCoincident Economic Activity Indexespectively (see
Appendix] for detailed definitions). Also, we include additional tail dependence coefficients that proxy for
the probability of joint surges in CDS (market) spreads and CDS (market) illiquidity (see also subsection
[2.2). All our main results are robust to including these additional and alternative control % ables.

34Note that the observation size drops in column (5) due to missing values for the equity tail betas.

%Respective regression results can be found in the Internet Appendix.

%%In unreported regressions, we also employ a different approach to proxy for equity volatility: instead of calculating annualized
stock return volatility from raw’ returns, we take the volatility estimates from GARCH models that were used to estimate equity
tail betas. Subsequent regression results, however, are unaffected by this change.
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6 Conclusion

In this paper, we show that liquidity tail risk in the CDS market significantly comoves with CDS spreads.
We make use of a dynamic copula model to estimate the upper tail dependence between a CDS contract's
idiosyncratic bid-ask spreads and illiquidity in the CDS market (i.e., liquidity tail betas). In panel regres-
sions, we then regress the CDS spreads of our sample firms on the contracts’ liquidity tail betas and various
controls for the firms’ default risk.

The results that we find have important implications for risk managers and investors that enter the CDS
market as net protection sellers like insurers and pension funds. Our results provide ample evidence for
the presence of time-varying liquidity tail risk in the CDS market. Liquidity tail risk spiked across our full
sample during the financial crisis with peaks in liquidity tail risk appearing shortly after the bailout of AIG
and at the start of 2009. Moreover, monthly CDS spreads comove significantly with liquidity tail betas with
protection sellers demanding a premium for bearing liquidity tail risk.

Our empirical finding that liquidity tail risk matters for CDS investors is intuitive and in line with experi-
ences made during the financial crisis. Writing a CDS contract is more costly in case the contract’s liquidity
could suddenly dry up with the market’s liquidity thereby diminishing the opportunity to hedge the position.
However, given the fact that the related literature on the pricing of liquidity risk in derivative markets is
divided the correlation we find between CDS spreads and liquidity tail betas is particularly surprising.

Our findings also have several important implications for risk managers and investors alike. Sudden
downward comovements in idiosyncratic and market CDS liquidity are not always of a linear nature, but
tend to exhibit significant upper tail dependence and thus non-linear dependence. For insurers and funds that
are usually net short invested in CDS markets, hedging their positions can become costly for contracts with
higher liquidity tail betas. Finally, such investors face additional risk from two sides. First, liquidity tail
betas exhibit considerable time-variation making their pricing a challenging task for risk managers. Second,
and more importantly, liquidity tail risk makes hedging CDS positions more costly when investors need
hedging the most: during a crisis.

A topic not covered in our analysis is the question, whether liquidity tail risk also exists in other markets
like, e.g., the bond market. We intend to explore this in the future.
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Appendix I: Variable definitions and data sources

This table presents the definitions of all dependent and independent variables used in the study as well as their data sources. The data are
downloaded from Thomson Reuter's Datastream (DS), Credit Market Analysis (CMA), and the OECD statistics Database (OECD Stat). The
sample consists of 228 financial and non-financial companies from January 2004 to September 2010. Mare@adc, indicates that we have

estimated or calculated the variable ourselves based on the data from the corresponding data source.

Variable Description Data source
CDS and CDS liquidity variables
(Market) CDS End-of-month (market) CDS mid quote, denoted in basis points (bps). The A (own calc.)

market spread and is calculated as the cross-sectional average of the CDS spreads
across all sample firms excluding the current firm.

(Market) BAS End-of-month absolute (market) bid-ask spread, calculated as ask minusChié\ (own calc.)
price, denoted in bps. The CDS market bid-ask spreads and is calculated as
the cross-sectional average of BAS across all sample firms excluding the current
firm.

(Market) P-zero End-of-month value of the fraction of number of zero return days of CDS @MA (own calc.)
quotes over a 30 day rolling window ($ee Lesmond et al..|1999). Market P-zero
is calculated as the cross-sectional average of P-zero across all sample firms
excluding the current firm.

(Market) P-zero FHT P-zero FHT is calculated ds inFonglet al. [2017), i.e., P-zero BHT(€DS)- CMA (own calc.)
o1 (”P%O) wheres (CDS) is the standard deviation of CDS spreads over

a 30 day rolling window an@—1! is the inverse function of the standard normal
distribution. Market P-zero FHT is calculated as the cross-sectional average of
P-zero across all sample firms excluding the current firm.

Equity and equity liquidity variable

(Market) EQ End-of-month firm’s (market) stock log returns, denoted in %. EQM denotes & (own calc.)
equity market return and is calculated as the cross-sectional average of the equity
log returns across all sample firms excluding the current firm.

(Market) EQBAS End-of-month absolute bid-ask spread of the firm’s (market) stock price, calz8-(own calc.)
lated as daily ask minus bid price, denoted in bps. EQBASM denotes the absolute
equity market bid-ask spread and is calculated as the cross-sectional average of
EQBAS across all sample firms excluding the current firm.

Tail dependence variables

Tail Beta CDS / Market CDS End-of-month upper tail dependence (UTD) coefficients between the log dEfelA (own calc.)
ences of the company’s CDS spreads and the log differences of the CDS mar-
ket spreads. The UTD coefficients are computed from the dynawipula of
a).

Tail Beta BAS / Market BAS End-of-month upper tail dependence (UTD) coefficients between the comp&iyia (own calc.)
CDS bid-ask spreads and the CDS market bid-ask spreads. The UTD coefficients
are computed from the dynamiecopula of Pattdr (2006a).

Tail Beta P-zero / Market P-zero End-of-month upper tail dependence (UTD) coefficients between the comgavigown calc.)
P-zero measure and the market P-zero. The UTD coefficients are computed from
the dynamict-copula of Pattdr (2006a).

Tail Beta P-zero FHT / Market P- End-of-month upper tail dependence (UTD) coefficients between the compaiGfgA (own calc.)
zero FHT P-zero FHT and the market P-zero FHT. The UTD coefficients are computed

from the dynamic-copula of Pattdr (2006a).

Tail Beta EQ / Market EQ End-of-month lower tail dependence (LTD) coefficients between the compdd@'sown calc.)
equity log returns and the equity market log returns. The LTD coefficients are
computed from the dynamiecopula of Pattdr (2006a).

Tail Beta EQBAS / Market End-of-month upper tail dependence (UTD) coefficients between the compam& (own calc.)
EQBAS absolute equity bid-ask spreads and the equity market bid-ask spreads. The UTD
coefficients are computed from the dynaricopula [(2006a).

Spillover Tail Beta BAS / Market End-of-month upper tail dependence (UTD) coefficients between the cdd®, CMA,
EQBAS pany’s absolute CDS bid-ask spreads and the absolute equity market bidfask calc.)
spreads. The UTD coefficients are computed from the dynarnaimpula of
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Appendix |: Variable definitions and data sources (continued)

Variable Description Data source
Main control variables

Firm value Monthly arithmetic average of a firm’s stock returns. DS (own calc.)
Volatility Annualized monthly stock return volatility. DS (own calc.)
Interest rate End-of-month two-year U.S. Treasury Benchmark yield, denoted in %. DS

Slope End-of-month ten-year minus two-year U.S. Treasury Benchmark yield, denoted in %. DS

VIX End-of-month values of the option-implied volatility index of the S&P500. DS
Business climate End-of-month values of the S&P 500 index. DS

GPD growth

Systemic Risk

U.S. GDP growth rate in comparison to previous quarter, linearly interpolated to estimate monthly gro®@tCD Stat,
figures (denoted in %). (own calc.)

Partial Quantile Regression (PQR) measure as introdUced in Giglié et dl. (2016), which combines 19@idlio et al. [2016)
vidual systemic risk measures into one.

Measures of (systemic risk) and instrumental variable

G14-Dealers Sensitivity (V)

Beta (CDS or BAS)

U90beta (CDS or BAS)

Cokurtosis (CDS or BAS)

MES

ACoVaR

G14-Dealers Sensitivity is the average return of a firm's equity on the days the returns on the aggrBgte
market capitalization of G14 are below the 5%-quantile. Daily values are calculated on the basis of a (@@n calc.)
day rolling window and are multiplied by minus one so that higher values represent higher sensitivity.

Realized regular beta is computed on the basis of the ARMMGARCH(p, g) residuals of the com- CMA (own calc.)
pany’s log-differenced CDS (bid-ask) Spread%,’R, and of the log-differenced CDS (bid-ask) market
(i,R _M,R
Spreadsciw‘ R, from rolling windows of 100 data points: Beta: W(EtiMEtR
var (71 F)
Realized upside beta as the regular beta conditional on the ARMAZARCH(p, q) residuals of the ~ CMA (own calc.)
log-differenced CDS (bid-ask) market spreads being above its 90% quantile. The computation is based
on the ARMA(r, s)-GARCH(p, q) residuals of the the company’s log-differenced CDS (bid-ask) spreads
i,R M,R, M,R
o(ep T I s agi0)

MR , where
€t

and on rolling windows of 100 data points: U90beta

M,R
leg >090%>
gy, denotes the 90% quantile of the ARMA(s)-GARCH(p, q) residuals of the log-differenced CDS
(bid-ask) market spreads.

Realized cokurtosis of the ARMAE)-GARCH(p, g) residuals of the company'’s log-differenced CDS CMA (own calc.)
(bid-ask) spreads and of the log-differenced CDS (bid-ask) market spreads based on rolling windows of

E{(*R—MR) (EV'R—#M,R)S]

100 data points is defined as: Cokurtasis -
\/ ( iR M,R\3/2
var Et )W(L’V‘(Et )

The Marginal Expected Shortfall (MES) accordinfito Acharyaklal. {2017), which is calculated from rolliS (own calc.)
windows of 100 data points. The MES is computed as the daily average equity log returns of a firm on the
5% worst days of the equity market log returns.

UnconditionaACoVaR as defined in_Adrian and Brunnermeler (2016). Itis calculated on the basis o8 (own calc.)
100 day rolling window as the equity market beta times the difference in value at risks of the firm’s stock
returns at the 95% and 50% percentile.

Variables used in robustness checks

Business climate (alternative index)

Industrial Production Index

Tail beta CDS / Market BAS

Tail beta BAS / Market CDS

Monthly values of @ancident Economic Activity Indéer the United States, which includes four in- FRED
dices on nonfarm payroll employment, the unemployment rate, average hours worked in manufacturing and
wages and salaries.

Monthly values of the seasonally adjustaktrial Production Indexas economic indicator that measures FRED
real output for all facilities located in the United States manufacturing, mining, and electric, and gas utilities
(excluding those in U.S. territories).

End-of-month upper tail dependence (UTD) coefficients between the log differences of the company’s CId& (own calc.)
spreads and the CDS market bid-ask spreads. The UTD coefficients are computed from the dynamic

copula of Paftdr{2005a).

End-of-month upper tail dependence (UTD) coefficients between the company’s CDS bid-ask spreadsMAdown calc.)
the log differences of the CDS market spreads. The UTD coefficients are computed from the dynamic

t-copula of Pattd(2005a).
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