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Abstract 51 

Aim  52 

To describe, model and assess the relative importance of environmental and climatic factors likely 53 

influencing the regional distribution of coral cover and assemblages with contrasting life histories 54 

and susceptibilities to bleaching. 55 

Location  56 

We compiled the first comprehensive empirical dataset for coral communities in the south-eastern 57 

Indian Ocean (SEIO), incorporating information from 392 sites along the west Australian coast and 58 

offshore atolls/islands across ~19° of latitude. 59 

Methods 60 

We assessed hard coral cover and community composition to genus using point-intercept transects 61 

or point-count analysis of digital images taken along transects. We explored spatial variation in 62 

environmental conditions and in composition of corals with contrasting life histories. After de-63 

trending the temporal patterns, we assessed the relative importance of environmental metrics to 64 

coral cover, life histories and bleaching susceptibility using a full subsets model-selection approach 65 

with generalised additive mixed models, accounting for both temporal and among site variation. 66 

Results  67 

The distribution of temperature, light, the frequency of temperature anomalies and tropical 68 

cyclones, appear to be drivers of coral community structure. Functional diversity of low to mid-69 

latitude coral communities may convey some resilience to thermal stress, while higher-latitude 70 

communities dominated by Competitive and Bleaching-Susceptible taxa may lack this functional 71 

resilience. These patterns likely reflect varying historical exposure to cyclones and temperature 72 

anomalies.  73 

Main Conclusions 74 

As evident in recent years, changing background conditions and regimes of disturbance in coming 75 

decades will shift the distribution, functional diversity and resilience of coral reefs throughout the 76 
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SEIO. The rate and magnitude of environmental change will ultimately determine the future of the 77 

tropical reefs and whether the higher-latitude reefs provide some refuge from climate change. Our 78 

study highlights the need to quantify the distributional properties of key environmental metrics to 79 

better understand and predict reef condition through coming decades.  80 

 81 

1. Introduction 82 

Cycles of disturbance and recovery are a key feature of coral reef ecosystems (Connell, 83 

1978; Rogers, 1993), where multiple diversity-disturbance relationships exist depending on the 84 

interaction between the frequency and intensity of disturbances (Hall et al., 2012). Management 85 

actions aimed at maintaining the diversity, functional integrity and resilience of coral reef 86 

ecosystems are ideally based on understanding how inherent environmental conditions interact with 87 

disturbance regimes to shape coral community structure (Iwamura et al., 2010; Klein et al., 2013; 88 

Maynard et al., 2015a). This type of information is increasingly important, because many reefs face 89 

cumulative threats from a combination of natural and anthropogenic stressors operating at multiple 90 

scales (Hughes et al., 2003, 2010, 2017). 91 

Spatial variation in environmental forces produce different ambient conditions, which 92 

influence the distribution of corals and create heterogeneity in the resilience of coral reefs (Richards 93 

& Hobbs, 2014; Graham et al., 2015). Coral communities are routinely structured by temperature 94 

regimes (McClanahan et al., 2007), light penetration (Anthony & Connolly, 2004; Muir et al., 95 

2015; Sommer et al., 2017), wave energy (Madin & Connolly, 2006; Lowe & Falter, 2014), tidal 96 

amplitude (Richards et al., 2015), sediment delivery and re-suspension (Maina et al., 2013; 97 

Fabricius et al., 2014; Fisher et al., 2015), nutrient dynamics (Kroon et al., 2012), and ocean 98 

currents (Brinkmann et al., 2002; Lowe et al., 2012). For example, areas dominated by relatively 99 

benign conditions associated with shallow, clear waters as well as low wave action and nutrient 100 

loads are often characterised by the proliferation of corals with ‘Competitive’ life-history traits (e.g, 101 

branching Acropora), following the definition of Darling et al. (2012, 2013).     102 
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Acute disturbances, such as extreme temperature anomalies (Selig et al., 2010) and physical 103 

damage from waves associated with tropical cyclones can, however, disrupt normal environmental 104 

conditions and coral assemblages (Harmelin-Vivien, 1994; Fabricius et al., 2008, Beeden et al., 105 

2015). Similarly, longer-term ecological stressors, such as outbreaks of coral-feeding crown-of-106 

thorn starfish (Death & Fabricius 2010; Hock et al., 2014) and coral disease (Bruno et al., 2007; 107 

Ruiz-Moreno et al., 2012; Maynard et al., 2015b), can affect the distribution and composition of 108 

corals. If both the supply of propagules and time before the next disturbance are sufficient, recovery 109 

from these disturbances is possible (Sheppard et al., 2008; Lukoschek et al., 2013, Beeden et al., 110 

2015; Gilmour et al., 2013; Graham et al., 2011, 2015). Major factors that mediate recovery rates 111 

and the impacts of disturbances are local environmental conditions. These conditions can, in some 112 

cases, alter communities by promoting some life-history traits over others (Carreiro-Silva & 113 

McClanahan 2012, Darling et al. 2013, McClanahan 2014a). For example, cooler water at greater 114 

depth (Tyler et al., 2014), or periodic upwelling of cool water (Riegl & Piller 2003), can mediate 115 

the effects of acute warm-temperature anomalies and may produce different coral responses 116 

(McClanahan & Maina 2003). Additionally, the effects of disturbances can be patchy, possibly due 117 

to fine-scale variation in exposure, bathymetry and reef structure interacting with each taxon’s 118 

susceptibility to this stressor variation (Harmelin-Vivien 1994, Hoey et al. 2016). Finally, multiple 119 

stressors may combine to either enhance or reduce coral response to disturbance – such as reduced 120 

thermal stress from sea-surface cooling induced by cyclone wind (Manzello et al., 2007, Carrigan & 121 

Puotinen 2011, 2014; Hughes et al., 2017). 122 

Making reasonable predictions about the impacts of climate change on corals is thus 123 

expected to benefit from a better understanding of the interactions between local environmental 124 

conditions and large-scale disturbances. A first essential step towards this is to investigate these 125 

interactions where other human impacts, such as fishing and eutrophication, have not significantly 126 

altered reefs. Commercial, recreational and subsistence fishing occur on many reefs within South-127 

East Indian Ocean (SEIO) and dredging threatens reefs in some areas (Hanley 2011; Fletcher et al 128 
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2017). However, impacts from these activities are localised, and anthropogenic stress at regional 129 

scales is low compared to many other reefs in the world (Burke et al., 2011). Moreover, the region 130 

is exposed to a wide range of background environmental conditions and large-scale natural 131 

disturbances, making it an ideal area for assessing how these processes influence coral assemblages.     132 

Trait-based approaches to classifying organisms can reveal how coral communities, and the 133 

ecosystem services they provide, respond to disturbances (Darling et al., 2012, 2013). For example, 134 

large branching corals provide the structural complexity that supports reef-fish communities 135 

(Graham & Nash, 2013, Rogers et al., 2014). These Competitive corals grow rapidly and often 136 

dominate reefs, but decline rapidly following disturbances like heat stress, cyclones or outbreaks of 137 

predators (Hughes et al; 2017; Shedrawi et al 2017). Moreover, susceptibility of coral to 138 

disturbances varies considerably among taxa, with a meta-analysis of 68 studies revealing that 139 

Acropora and Pocilopora corals readily bleach following heat stress, whilst many of the faviid 140 

genera are less likely to bleach (Hoey et al., 2016). Thus, some corals have life-history traits that 141 

make them more resilient to disturbances, allowing them to persist over longer timeframes (Darling 142 

et al., 2013; McClanahan et al., 2014a-c). Consequently, understanding the spatial distribution of 143 

coral life-history traits may facilitate the prediction of future changes in community structure 144 

(Darling et al., 2013, Graham et al., 2014, Sommer et al., 2014, Done et al., 2015).  145 

Here, we used coral life-history traits (LHTs) to examine regional responses of coral cover, 146 

community structure and bleaching susceptibility along a continuum of environmental conditions 147 

and disturbance regimes of various types. We compiled in situ coral reef survey data collected 148 

between 1998 and 2014 across 392 sites, spanning 19º of latitude, to build the first comprehensive 149 

empirical dataset for coral communities in the SEIO. Specifically, we asked: 1) how coral cover, 150 

coral life histories, and bleaching susceptibility are distributed over time and space; and 2) how key 151 

environmental factors likely shape the coral communities across space. Addressing these questions 152 

provides a basis for identifying resilient reefs and potential refugia from environmental change, 153 

which may be used to inform management of coral reefs.  154 
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 155 

2. Methods  156 

2.1 Study locations 157 

The western coastline of Australia forms the south-eastern margin of the Indian Ocean, 158 

covering nearly 19º of latitude in the southern hemisphere (Figure 1). Southward-flowing currents 159 

(Halloway and Leeuwin) push warm tropical water along the length of the coast (Condi & 160 

Andrewartha, 2008; Feng et al., 2008; Lowe et al., 2012), providing conditions favourable for 161 

extensive coral reef growth and development from the north Kimberley region as far south as the 162 

Abrolhos Islands (Veron & Marsh, 1988). Extensive coral reefs are also found on oceanic atolls and 163 

island territories adjacent to the north-west coast of Australia in the SEIO (Speed et al., 2013).  164 

Data on percent coral cover and abundance at the level of individual genera were obtained 165 

from nine coastal and oceanic SEIO regions from the west coast of Australia (Figure 1). In each 166 

region, information was collated from 3-26 sites at 1 to 15 m depth that were typically sheltered 167 

from prevailing wind and wave exposure (Table S1). Surveys took place between 1998 and 2014, 168 

and include data about impacts from warm-water anomalies and cyclonic activity (Ceccarelli et al., 169 

2011; Moore et al., 2012, Pearce & Feng, 2013). We define sites geographically as low- (North of 170 

17°S), mid- (~17-22°S) or high-latitude (~22-29°S; Tab. S1). Hard coral cover and community 171 

composition (identified to genus) were assessed using point-intercept transects, or point-count 172 

analysis of digital images taken along transects (Table S1). Comparative studies indicate that 173 

differences between these methods arise mainly for corals from the genera Stylophora and 174 

Goniastrea, and estimates of cover from other genera with contrasting growth forms are similar 175 

(Leujak & Ormond, 2007).  176 

 177 

2.2. Environmental data 178 

We examined nine environmental metrics representing potential drivers from 27 variables 179 

(Table 1). Seven metrics were derived from ocean satellite observations and/or modelled databases, 180 
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including: 1) sea surface temperature [SST]; 2) thermal stress metrics; 3) total suspended matter 181 

[TSM], 4) photosynthetically active radiation [PAR]; 5) tidal range; 6) nutrient concentrations 182 

(chlorophyll-a); and 7) frequency of exposure to extreme winds generated by tropical cyclones. The 183 

final two metrics, 8) depth and 9) physical location (latitude, longitude, isolation), were derived 184 

from in situ data. The nine metrics were specifically chosen for their relevance to physiological 185 

processes, productivity, and stress responses in Scleractinian reef corals (Maina et al., 2008; Maina 186 

et al., 2011). All environmental data, where appropriate, were aggregated to capture long-term (~30 187 

years; mean, median) averages, distribution (skewness and kurtosis), extremes (maximum) and 188 

variability (standard deviation (SD); Table 1). We accounted for potential bias in ocean-colour 189 

constituents by extracting estimates for our sites from a reanalysis database (Morel & Belanger, 190 

2006; Maina et al., 2011) that adjusts values for reflectance bias (Gove et al., 2015).  191 

For each site, we obtained weekly SST data for the period 1982-2012 for our SEIO sites at a 192 

resolution of ~4x4 km from coral reefs thermal stress database (CoRTAD), which archives data 193 

from NOAA’s Advanced Very High Resolution Radiometer (AVHRR; 194 

http://www.nodc.noaa.gov/sog/Cortad/; Selig et al., 2010). Site level SST time series were used to 195 

characterize the distribution (skewness and kurtosis) and variability (standard deviation) of SST at 196 

each site.  From the same database, we extracted thermal stress anomalies (TSA) and weekly SST 197 

anomalies (SSTA) that define the spatial and temporal patterns of temperature anomalies associated 198 

with coral bleaching and disease (1982 to 2012; Selig et al., 2010).  199 

The bleaching-related anomalies (TSA) occur in the warmest weeks of the year, whereas 200 

disease-related anomalies (SSTA) can occur at any time of year (Podesta & Glynn, 2001; Liu et al., 201 

2003; Selig et al., 2006; Bruno et al., 2007). Following Selig et al. (2010), TSA is defined 202 

as observed weekly averaged temperature >1 °C warmer than the warmest climatological week (52 203 

climatological weeks averaged over 30 years). Following Selig et al. (2010), SSTA are defined as 204 

observed weekly averaged temperature >1 °C warmer than the weekly climatological value for each 205 

week of the year (over 30 years). Mean SST anomalies (mean SSTA) define the average number of 206 

http://www.nodc.noaa.gov/sog/Cortad/
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anomalies in any given year. We calculated both the frequency of TSAs (TSA frequency; Table 1) 207 

and SSTAs (SSTA frequency; Table 1) based on the number of anomalies in each calendar year and 208 

cumulatively over the 30-year study (as per Selig et al., 2010). 209 

Time series data for total suspended matter (hereafter TSM, g m-3) and chlorophyll-a 210 

concentration monthly (2002-2010) were summarised to median values, distribution (skewness and 211 

kurtosis) and variability (standard deviation). Time series data (monthly; 2002-2010) of 212 

photosynthetically active radiation (PAR) were obtained from the Globcolour database 213 

(http://hermes.acri.fr/GlobColour) and summarised to median values, distribution (skewness and 214 

kurtosis) and variability (standard deviation) from the 8-year time series (Table 1).  215 

Extreme winds generated during tropical cyclones can build large seas capable of damaging 216 

reefs.  A particular coral colony’s exposure and vulnerability to damage from such seas depends on 217 

a myriad of local-scale factors (Fabricius et al., 2008), most notably fine-scale bathymetry around 218 

the colony relative to the incoming wave direction during peak conditions. Such data are presently 219 

unavailable for most of our study area. Thus, we derived exposure to tropical cyclone winds as a 220 

proxy for the potential to cause damaging waves, accepting that damage within this zone will be 221 

patchy.  We did this from 1985 to 2013 based on the International Best Track Archive for Climate 222 

Stewardship (IBTRACS – Knapp et al., 2010). Cyclone winds were defined as those of gale force (17 223 

m.s-1) or higher. These were mapped each day based on the reported or estimated radius of gale winds 224 

using methods detailed in Carrigan & Puotinen (2011). We extracted maximum cyclone days and their 225 

standard deviation per year from the 28-year database across the study area (Table 1). 226 

We developed an Isolation Index to quantify each reef’s relative potential for larval 227 

connectivity, given its location with respect to neighbouring reefs, assuming that more isolated 228 

coral communities may differ in structure and composition due to limited accessibility to coral 229 

larvae for recovery (Gilmour et al., 2009; Underwood et al., 2009). To measure isolation, we 230 

grouped reef habitat into 122 spatially distinct large-scale reef complexes, using remotely sensed 231 

reef data from the WCMC 2010 database (UNEP-WCMC et al., 2010) and West Australia habitat 232 

maps from the WA Department of Parks and Wildlife (Bancroft, 2003).  We calculated the distance 233 

http://hermes.acri.fr/GlobColour
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in km between all pairs of reef complexes and calculated the Isolation Index as the normalised 234 

graph-theoretic closeness centrality (0 – isolated, 1 – maximum connected; Beger et al., 2010; 235 

Table 1).   236 

As the data collected here quantified for the first time both the coral community and broad-237 

scale environmental features in this region, the spatial variation in environmental conditions was 238 

first illustrated with Principal Components Analysis (PCA) of normalised environmental data 239 

(Clarke & Warwick 2001). Within the groups of environmental conditions (e.g. different measures 240 

of light, sediment, thermal stress; Table 1), a single combined metric was derived for cases  when 241 

several metrics were highly correlated (>0.7) with each other, resulting in 16 metrics out of the 242 

initial 27. The final metrics used for PCA corresponded to those identified as being the most 243 

important correlates to variation in coral community composition in the Generalised Additive 244 

Mixed Model (GAMM) analyses (Table 2). 245 

 246 

2.3. Coral community data 247 

To evaluate the distribution of coral assemblages across the SEIO, we standardised data to 248 

derive site-level estimates of total coral cover (%), coral life-history trait (LHT) groups (%), and 249 

bleaching susceptibility. Total coral cover was the average of live hard corals observed at each site 250 

for each sampling period. We classified corals into four coral LHT groups – Competitive, Stress-251 

Tolerant, Weedy and Generalist - according to Darling et al. (2012), but adapted the categories for 252 

genera based on our expertise with Western Australia corals (co-authors ZR, JG, GS) (Table S2). 253 

For genera with species that grouped into different life histories, we assigned coral cover to each of 254 

the represented life histories in proportion to the number of species within each life history that 255 

occur in the Western Australian coral fauna (Veron & Marsh, 1988 sensu Darling et al., 2013). 256 

Bleaching susceptibility (BS) of coral communities at each site was based on the relative 257 

abundance (RA) of genus i in the coral community weighted by a corresponding estimate of its 258 
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bleaching response (BRi) and summed across all genera in the community (Equation 1; 259 

McClanahan et al., 2007).  260 

   Equation 1 261 

Bleaching responses were estimated by the observed bleaching intensity and mortality of 262 

genera during thermal stress events in the Western Indian Ocean (McClanahan et al., 2007, 2014a; 263 

McClanahan 2014b), which are comparable to bleaching events observed on the Great Barrier Reef 264 

(McClanahan et al., 2004). 265 

 266 

2.4. Environmental metrics and implications for coral communities 267 

To assess the relative contribution of spatial variation in environmental metrics in 268 

explaining the spatial variability of total coral cover, life histories and bleaching susceptibility 269 

whilst controlling for temporal trends, we adopted a full subsets model-selection approach, where 270 

models were compared using Akaike Information Criterion for small sample sizes (AICc) and AICc 271 

weight (Ȧi) values (Burnham & Anderson, 2002). Prior to analyses, all environmental metrics were 272 

tested for collinearity, following Graham et al. (2003). To avoid issues with multicollinearity 273 

among metrics (predictors), we excluded any models where the absolute correlation between the 274 

metrics was greater than 0.28. To limit the maximum complexity of resulting models, we fitted only 275 

models that included up to three metrics (in addition to “null” model terms, see below). Individual 276 

metrics were carefully screened to ensure a relatively even distribution across sites. Three metrics 277 

(Chl a – SD, TSM – SD and TSM median) were transformed to a log scale because they were 278 

highly skewed. TSM – Kurtosis was excluded because it exhibited highly uneven spread across the 279 

study domain. These restrictions reduced the total model set to 360 unique models. 280 

 All models were fit using generalised additive mixed models, via the GAMM function from 281 

the mgcv package (Wood, 2006) in R (version 3.1.0, R Core Team 2014). GAMM was adopted 282 

rather than linear or non-linear parametric multiple regression to allow for possible non-linear 283 

effects of metrics on the response variable, without needing to define the functional form of each 284 

  
Site bleaching susceptibility = (RA

i
i

n

å ´ BR
i
)
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model. Smooth terms were fit using cubic splines (Wood, 2006) and limiting the basis dimension 285 

‘k’, which controls the degree of flexibility in curve fitting, to a maximum value of 5 to avoid over-286 

fitting and to ensure monotonic relationships. Percentage cover, rather than raw count data, were 287 

available for analyses, precluding a model using a binomial distribution. Accordingly, the mean 288 

proportional cover values were logit transformed and modelled using a Gaussian distribution. Site 289 

was included in all models as a random effect nested within Region. In addition, the year of 290 

sampling was included in all models as a continuous cubic regression spline to capture broad-scale 291 

temporal trends, with optimal basis dimension (k) identified via cross validation following Wood 292 

(2006). A null model consisting of a random site effect and year was also included in the model set. 293 

The random site effect was not nested within region, as region was collinear with many of the 294 

environmental metrics of interest. Analyses at the genus level were also carried out for genera 295 

occurring at more than 25% of locations (see Table S3). 296 

 The simplest model within 2 AICc values of the model with the lowest AICc value was 297 

assumed to be the optimal model. To determine the relative contribution of each predictor metric to 298 

the spatial variation in response metrics across the whole model set, we summed the Ȧi values for 299 

all models containing each predictor metric. The higher the combined weights for an explanatory 300 

predictor metric, the more important it was for the analysis (Burnham & Anderson, 2002). 301 

 302 

3. Results 303 

3.1. Environmental gradients 304 

The background environmental conditions at the SEIO reefs and their exposure to disturbances 305 

reflected their geographic setting, with variation being high among regions and comparably low 306 

among reefs within regions (Fig. 2; Table 1). Temperature distributions along the inshore reefs of 307 

northwest Australia had negative kurtosis, indicating flat distributions with frequent but modest 308 

deviations from the mean (Table 1). The distributions are less flat offshore, and were even slightly 309 

peaked or centralized in the further offshore reefs at Cocos Keeling Island, suggesting infrequent 310 
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extreme temperatures. Skewness of temperature data varied among regions.  Positive skewness at 311 

mid- and high-latitude reefs indicate that unusually high temperatures occasionally occur, whilst 312 

positive skewness on high-latitude reefs suggest there are occasions when unusually low 313 

temperatures occur. Variation (SD) in SST was highest at Ningaloo Reef, Shark Bay and the 314 

Rowley Shoals, indicating that these sites are exposed to a wide range of temperatures (Table 1). 315 

Sediment (TSM) concentrations were high at the Montebellos and Ningaloo Reef, and 316 

comparatively low at the offshore reefs, particularly the Rowley Shoals, Christmas and Cocos 317 

Keeling islands (Table 1). The kurtosis and skewness of available light (PAR) were negative at all 318 

sites, with the exception of Ashmore Reef, suggesting most reefs are regularly exposed to the same 319 

levels of light, with few extremes. Chlorophyll concentrations were highest at the Montebello 320 

Islands, Ningaloo and Shark Bay, while chlorophyll skewness and kurtosis were positive at all 321 

reefs, indicating extremely high chlorophyll concentrations were sometimes experienced at these 322 

locations, except at the Abrolhos where kurtosis was negative (Table 1). Tidal range and mean 323 

maximum tides were highest at Ashmore Reef, Scott Reef, the Rowley Shoals and the Montebello 324 

Islands (Table 1).  325 

There was a clear latitudinal pattern to cyclone activity, which was highest from Ningaloo 326 

Reef in the south to Scott Reef in the north, infrequent at the lowest-latitude reefs (Ashmore Reef, 327 

Christmas Island), and rare at the high-latitude reefs (Shark Bay, Abrolhos Islands – Table 1). In 328 

contrast, thermal stress varied according to both regional and local oceanography, with the highest 329 

frequency of temperature anomalies during the warmest months (TSA) at Scott Reef, Ashmore and 330 

Shark Bay, followed by Abrolhos and Rowley Shoals (Table 1). 331 

 332 

3.2. Coral community patterns 333 

Coral cover and community composition varied through time at all reefs (Fig. 3), influenced 334 

by their regional exposure to cyclones and particularly the impacts of temperature anomalies and 335 

coral bleaching across regions in 1998 and 2011 (Fig. 4). However, this temporal variation differed 336 
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among coral life-history groups, with large changes observed for the Bleaching-Susceptible and 337 

Competitive groups, and small changes for the Stress-Tolerant group (Fig 3b-d). The coral groups 338 

varied predictably according to their life-history traits (e.g. growth form) and susceptibility to 339 

disturbances, and the genera within groups generally displayed comparable temporal variation, 340 

although there were exceptions (Figs. S1-S3). For example, among the Stress-Tolerant genera, 341 

Lobophyllia changed little, but massive Porites displayed relatively large temporal change (Fig. 342 

S2). Furthermore, within the Generalist life-history group, the many contributing genera displayed a 343 

range of variation through time (Tab. S3).  344 

After accounting for temporal trends, coral cover and the bleaching susceptibility of 345 

communities were similar among the broad regions, with few notable trends (Fig 3a, b; Figs. S4-346 

S8). Of the life-history groups, only the cover of Weedy corals showed a slight trend, with highest 347 

cover at low to mid-latitudes, and higher-latitude reefs showing very low cover (Fig. 3e; Fig, S7) 348 

 349 

3.3. Environmental metrics and coral communities 350 

After temporal trends were accounted for, spatial variation in total coral cover was best 351 

explained by temperature variation (SST kurtosis) and anomalies (mean SSTA), and exposure to 352 

cyclones (maximum days) (Table 1, Figs. 4 and 5). Total coral cover declined at most sites with 353 

increasing temperature anomalies (mean SSTA) and with increasing exposure to cyclones, and was 354 

highest when SST kurtosis was negative (even spread of temperatures lacking extremes) (Figure 5). 355 

Temperature variation (SST SD) alone explained the small spatial variation in the Bleaching 356 

Susceptibility of the coral communities (Table 2; Figs. 4 and 5), with cover remaining constant 357 

before declining when SST SD was greater than 2.0 (Figs. 4 and 5).   358 

Among the life-history groups, the variation in cover after the temporal trends were 359 

removed was often explained by measures of temperature distribution, in addition to the 360 

environmental metrics that reflected the group’s susceptibility to disturbances and their life-history 361 

traits (Figs. 4 and 5). For the Competitive corals, there were six models of similar explanatory 362 
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power (Table 2), but most included exposure to temperature anomalies (SSTA) and cyclones, and 363 

the distribution of available light (PAR skewness) (Figs. 4 and 5). Competitive corals declined in 364 

cover with increasing PAR skewness (more extreme outliers) and SSTA, but there were some sites 365 

with high cover and SSTA (Figure 5). Within the assemblage of Competitive corals, Acropora was 366 

the dominant and most typical genus, and a similar pattern of change was explained by their 367 

exposure to temperature anomalies (SSTA) and cyclones (Table S3, Figs. S1-S3).  368 

For the Stress-Tolerant corals, three competing models explained their spatial variation in 369 

cover, but all models included measures of their temperature distribution (Figs. 4 and 5; Table 2). 370 

The cover of Stress-Tolerant corals decreased as both SST skewness and kurtosis became more 371 

positive, but there was little change when kurtosis was above -1.0. Within the assemblage of Stress-372 

Tolerant corals, massive Porites was the most abundant genus, and its variation was best explained 373 

by water depth and exposure to cyclones (Figs. S1-S3). The cover of massive Porites increased to a 374 

depth of approximately 8 m, and was low in both the absence of cyclones and at intermediate levels 375 

of exposure. In response to cyclone exposure, the variation in cover of massive Porites, the 376 

dominant Stress-Tolerant genus, was inverse to that displayed by Acropra, the dominant 377 

Competitive genus (Figs. S1-S8; Table S3). 378 

Of all the life-history groups, the Weedy corals showed the only latitudinal variation in 379 

cover once the temporal trends were removed. Five competing models in which measures of water 380 

quality were consistently represented best explained this variation, especially the distribution of 381 

available light (PAR) (Table 2; Figs. 4 and 5). Weedy coral cover was lowest at high-latitude reefs, 382 

when PAR distribution was flat or had negative kurtosis (< -1.2), or when the distribution of 383 

suspended solids (TSM) was positively skewed (Table 1). The most widespread and typical of the 384 

Weedy corals was Seriatopora, whose variation in cover was also best explained by the distribution 385 

of available light (PAR kurtosis, skewness) (Figs. S1-S3; Table S3).  386 

The maximum number of cyclone days and depth best explained the variation in cover of 387 

Generalist corals (Table 2; Table S3; Figs. 4 and 5). Cover of Generalist corals was highest at 388 
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intermediate depths (4-10 m), but varied unpredictably with exposure to cyclones, other than being 389 

highest when maximum cyclones days were low to moderate (4-8 days) (Figures 5). For the many 390 

(12) diverse genera (Table S2) within the Generalist life-history group, there was a corresponding 391 

range in the number of competing models and physical metrics explaining their variation once the 392 

temporal trends were removed (Table S3; Figs. S1-S3). For example, the cover of Turbinaria, 393 

Pocillopora and Isopora predominantly varied in response with their background physical 394 

conditions (Figs. S1-S3).  Tides (mean maximum, range) were the dominant metric affecting the 395 

Turbinaria cover.  Pocillopora cover varied with available light (PAR skewness) and water quality 396 

(chlorophyll kurtosis).  Isopora cover varied with latitude and depths (Figs. S1-S3; Table S3). 397 

 398 

4. Discussion 399 

Coral communities of the SEIO have varied considerably through time due to episodic 400 

disturbances. Pervasive changes in coral cover were likely a consequence of extreme temperature 401 

anomalies in 1998 and 2011 (Gilmour et al., 2013, Moore et al., 2012; Hughes et al., 2017), whilst 402 

localised impacts within some regions are attributable to cyclones (Speed et al., 2013).  Declines 403 

were evident across all coral life-history groups following broad-scale temperature anomalies, 404 

although the magnitude of this impact varied.  Declines were most noticeable among bleaching-405 

susceptible taxa with competitive life histories.  406 

Once these broad-scale disturbances were accounted for, our models indicated that coral 407 

community composition across the SEIO was associated with gradients in background 408 

environmental conditions. Importantly, the variance and frequency distribution of environmental 409 

metrics were generally better predictors of coral cover and community composition than the mean 410 

values. Indeed, kurtosis, skewness, and standard deviation of temperature (SST) or water quality 411 

(PAR, TSM) commonly explained observed variation in cover and some life-history traits. This 412 

indicates that models based on mean values that do not consider a full set of environmental 413 

predictors and the distribution of these predictors may not accurately predict coral niches or their 414 
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responses to disturbances (McClanahan & Maina, 2003, McClanahan et al., 2015, van Hooidonk et 415 

al., 2013; Cacciapaglia & van Woesik, 2015).  416 

Our results also indicate that exposure to cyclones may exert a strong effect on coral 417 

distribution in the SEIO, as was found for coral cover across the Great Barrier Reef over the period 418 

1985-2012 (De’ath et al 2012). Tropical cyclones typically damage large branching or plating 419 

colonies, which can lead to a predominance of smaller encrusting or massive Generalist and Stress-420 

Tolerant corals, as demonstrated for the Great Barrier Reef (Cheal et al., 2017; Massel & Done, 421 

1993, Madin et al., 2012, 2014). Intermittent cyclones maintain community diversity by preventing 422 

fast-growing, competitively-dominant, species from monopolising space (Connell et al., 1997). 423 

Recovery from cyclones may, however, be rapid as asexual fragmentation can facilitate 424 

proliferation of Weedy corals. Such corals were common at mid-latitude reefs. Levels of cyclone 425 

exposure at mid to low-latitude SEIO reefs may rise in future, with an increase in total wind energy 426 

from cyclones predicted for Australia’s NW shelf (Emanuel 2006) as the most intense cyclones 427 

become more frequent worldwide (Kossin et al., 2016). If, as predicted, cyclones track further 428 

poleward when at their most intense (67±55 km per decade for the South Indian basin – Kossing et 429 

al 2014), this may also increase exposure of high-latitude SEIO reefs to cyclones. How this 430 

increased exposure will effect SEIO reefs depends on interactions with other stressors. For example, 431 

repeated cyclone exposure combined with overfishing led to severe degradation in the Caribbean 432 

(Gardner et al., 2005). 433 

Despite the recent bleaching events along the SEIO, the Competitive corals and their 434 

dominant taxa (Acropora) were common at many sites, suggesting the historic disturbance regime 435 

has not been so severe as to cause their total replacement by Stress-Tolerant and Generalist corals. 436 

Additionally, consistent exposure to a range of water temperatures may confer some resistance to 437 

coral bleaching (McClanahan & Maina, 2003; McClanahan et al., 2007; Ateweberhan et al., 2011). 438 

This may change, however, if the frequency and intensity of warm water anomalies increases 439 

(Hughes et al 2017).   440 
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Across all study regions, the coral community was composed of taxa susceptible to 441 

bleaching, but the dominance of susceptible taxa declined when temperature variation exceeded 2.5 442 

SD. A study of coral mortality after the 1998 El Niño found that mortality declined as sea surface 443 

temperature variation increased up to ~2.5 SD but increased for variations >2.5 SD, thus producing 444 

a U-shaped mortality curve  (Ateweberhan and McClanahan 2010). Consequently, while 445 

background temperature variation and distributions may infer some ability to acclimate to acute 446 

temperatures, there are limits. Extreme temperature anomalies are increasingly likely to reduce 447 

Bleaching-Susceptible taxa and change the structure of SEIO reefs possibly at both the low and 448 

high ends of background SST SD (Halpern et al., 2015; Ainsworth et al., 2016). Indeed, in the last 449 

two decades, abnormally intense warm-water events have affected both high and low-latitude reefs 450 

in the SEIO, of which the 2011 heatwave was the most severe (Abdo et al., 2012; Depczynski et al., 451 

2013; Feng et al., 2013; Hobbs & McDonald, 2010; Moore et al., 2012; Wernberg et al., 2012; 452 

Zinke et al., 2015; Zhang et al., 2017). Moreover, since 2011, anomalously warm SSTs have caused 453 

persistent summer heat stress and severe coral bleaching at many SEIO reefs (Caputi et al., 2014; 454 

Feng et al., 2015; Lafratta et al., 2016). These stresses are likely to interact with aspects of 455 

background temperature variation to produce changes in coral communities that may not be linearly 456 

related to historical temperature variation.  457 

Coral life histories provided a useful approach to understanding how gradients of 458 

environmental conditions and disturbances across the SEIO reefs likely shape reef communities. 459 

Reefs with a relatively higher frequency of environmental disturbances (e.g. cyclones, bleaching) 460 

were characterized by communities with more diverse life histories, whilst at less-frequently 461 

disturbed reefs, Competitive corals were more common. This is in accord with studies showing 462 

Stress-Tolerant, Generalist and fast-growing Weedy corals as more common in disturbed 463 

communities in Kenya (Darling et al., 2013), the Maldives (McClanahan & Muthiga, 2014), the 464 

Red Sea (Riegl & Piller, 2003), the Great Barrier Reef (Graham et al., 2014), and subtropical 465 

Australian reefs (Sommer et al., 2014). Here, we provide the first analysis of how different life-466 



 19 

history coral groups respond to putative environmental drivers on reefs with limited exposure to 467 

local human impacts. The patterns of change in the different life-history groups and their key 468 

environmental correlates are also often similar for dominant and most-representative taxa, such as 469 

Acropora within the Competitive corals, and the massive Porites within the Stress-Tolerant corals. 470 

Nonetheless, taxa within the life-history groups can show substantial variation in their responses to 471 

environmental drivers, suggesting that approaches encompassing life-history traits may benefit from 472 

further refinement. This was especially evident among corals in the Generalist life-history category, 473 

where environmental variables best predicting coral distribution varied among genera.  474 

 475 

5. Conclusion 476 

In summary, we find that a diverse, and possibly more resilient, community prevails at reefs 477 

exposed to regular disturbances. However, extreme, extensive warming events have had a major 478 

impact on the current distribution, cover and community composition of corals in the SEIO, raising 479 

questions about the long-term stability of these patterns. Where and how frequently intense 480 

warming occurs will have a major impact on corals across the region. Reefs at high latitudes that 481 

have historically had little exposure to disturbances could be among the most susceptible to future 482 

climate change because climate impacts, including more intense cyclones (Kossin et al 2014), 483 

penetrate further into subtropical reefs (Hobday & Lough, 2011; van Woesik et al., 2011; van 484 

Hooidonk et al., 2013; Cacciapaglia & van Woesik, 2015). Conversely, functionally diverse corals 485 

at lower latitudes that are regularly exposed to some level of disturbance may be more resilient to 486 

ocean warming and environmental disturbances even as exposure to cyclones increases (Emanuel 487 

2006). Overall, regional compilations of community patterns are important to disentangle the 488 

effects of natural environmental variability. Our results provide a unique perspective on how natural 489 

environmental drivers likely shape coral community structure in the SEIO, providing a reference 490 

point to evaluate ongoing impacts of global change on coral reef ecosystems (Hughes et al., 2017). 491 

 492 
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Figure captions 970 

 971 

Figure 1 Study sites and regions in the southeast Indian Ocean Reefs (SEIO):  A) Cocos Keeling, 972 

B) Christmas Island, C) Ashmore and Scott Reefs, D) Rowley Shoals, E) Montebello Islands, F) 973 

Ningaloo Reef, G) Shark Bay, and H) Houtman Abrolhos Islands. 974 

  975 

Figure 2 Spatial variation in physical conditions across the southeast Indian Ocean Reefs (SEIO).  976 

Principal Components Analysis of environmental predictor metrics at replicate reefs at each of the 9 977 

coral reef regions. The vectors and environmental predictor metrics (Table 1) responsible for the 978 

spatial separation among reefs are in grey; predictor metric abbreviations are PAR 979 

(Photosythetically Active Radiation), TSM (Total Suspended Materials), Chl (Chlorophyll a), SST 980 

(Sea Surface Temperatures), SSTA (Sea Surface Temperature Anomalies), TSA (Thermal Stress 981 

Anomalies) and skew (skewness), kurt (kurtosis), med (median), max (maximum), freq (frequency) 982 

and av (average).  983 

 984 

Figure 3 Temporal and spatial trends in community patterns of total hard coral cover (a), bleaching 985 

susceptibility index (b) and the four coral life-history groups (c-f) following Darling et al. (2012, 986 

2013) across the southeast Indian Ocean Reefs (SEIO).  Left hand panels show temporal trends 987 

fitted via GAMM smoothers (see methods) and right hand panels show boxplots of residuals for 988 

each region, once this temporal trend is accounted for (these are effectively de-trended regional 989 

patterns). The box highlights the interquartile range with the mean for each indicated by a solid line. 990 

The whiskers show the maximum range and the open circles are outliers.  991 

 992 

Figure 4 Variable importance (summed AICc weights) of environmental spatial predictor metrics 993 

in driving summed coral cover, coral groups with contrasting life-history traits (LHT) following 994 
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Darling et al. (2012, 2013) and the estimate of bleaching susceptibility for the southeast Indian 995 

Ocean (SEIO) Reefs. Environmental metrics are defined in Table 1. 996 

 997 

Figure 5  Generalised Additive Mixed Model (GAMM) fits for the best models for coral cover (a), 998 

bleaching susceptibility (b) and the four coral life-history groups following Darling et al. (2012, 999 

2013) (c-f; Table 2). Partial residuals for each smooth term are the residuals that would be obtained 1000 

by dropping the predictor metric concerned from the model, while leaving all other estimates fixed 1001 

(Wood, 2006). Note that all models were fit with year included to ensure temporal trends were 1002 

accounted for. Where multiple models scored within 2 AICc of one another, the most 1003 

“parsimonious” model (least summed estimated degrees of freedom) was plotted. All model plots 1004 

are available in the supplementary material.  1005 



 41 

Table captions  1006 

Table 1 Regional mean of environmental metrics used in this study grouped into nine overarching 1007 

categories. All environmental metrics included in this study and their mean values are summarised 1008 

in Supplementary Table 1. The environmental factors analysed in this study include changes in 1009 

background conditions (e.g. sediment, chlorophyll, temperature, tidal amplitude, light and depth) 1010 

and periodic disturbances (e.g. extreme temperature anomalies, cyclones). 1011 

Latitude Low Mid High 

Environmental 
metric 

units Cocos 
Keeling 

Christ-
mas 

Ash-
more 

Scott 
Reef 

Rowley 
Shoals 

Monte
-bello 

Ninga-
loo 

Shark 
Bay 

H. 
Abrolhos 

Location 

Depth  m 5.17 8.71 7.00 6.73 7.26 4.87 1.34 1.75 10.33 

Latitude 
(South) 

° 12.11 10.45 12.24 14.02 17.32 20.67 22.57 25.50 28.70 

Thermal stress 

SSTA (mean)  No. yr-1 

30yrs 
16.87 15.88 15.89 16.91 18.21 20.98 19.99 20.88 17.78 

SSTA 
(frequency) 

No. yr-
130yrs 

4.99 4.83 4.64 5.55 6.15 7.67 6.93 7.60 5.83 

TSA 
(frequency) 

No. yr-
130yrs  

1.35 1.42 2.18 2.51 1.72 1.26 1.57 2.18 1.82 

Temperature variability 

SST (kurtosis) °C 0.19 -0.42 -0.66 -0.82 -1.05 -1.13 -0.81 -0.71 -0.67 

SST (skewness) °C 0.03 -0.23 -0.14 -0.13 -0.07 0.10 0.32 0.25 0.19 

SST (SD) °C 1.05 1.36 1.44 1.52 1.89 2.58 2.09 2.02 1.57 

Cyclones 

Cyclone days 
(mean) 

counts/ 
yr 

1.63 0.55 1.30 2.75 3.68 2.39 1.34 0.72 0.03 

Cyclone days 
(SD) 

counts/ 
yr 

2.67 1.31 2.31 3.71 3.14 3.28 2.66 1.91 0.18 

Cyclone days 
(max) 

counts/yr 11.00 5.00 8.00 14.00 10.52 12.00 10.41 7.90 1.00 

Sediment 

TSM (kurtosis) g cm3 1.99 0.64 15.00 16.22 3.03 5.43 7.54 7.62 2.65 

TSM (median) g cm3 0.35 0.35 0.45 0.50 0.30 0.74 0.62 0.49 0.42 

TSM 
(skewness) 

g cm3 -1.01 0.06 0.67 2.61 0.45 1.52 0.96 -0.74 0.20 

TSM (SD) g cm3 0.08 0.10 0.09 0.53 0.10 0.36 0.58 0.09 0.12 

Light 

PAR skewness E.m2.d -0.24 -0.25 0.05 -0.10 -0.31 -0.21 -0.21 -0.15 -0.09 

PAR kurtosis E.m2.d -0.94 -0.72 -1.06 -1.11 -1.08 -1.34 -1.36 -1.41 -1.43 

Tide 

Average tidal 
range 

m/day 0.68 0.77 1.57 1.59 1.68 1.37 0.78 0.56 0.51 

Tide mean 
maximum 

m/day 0.28 0.34 0.92 0.95 1.02 0.79 0.34 0.18 0.14 

Nutrients 

Chl (kurtosis) mg.cm3 2.36 1.53 1.01 3.91 2.14 4.69 10.95 0.91 -0.14 

Chl (median) mg.cm3 0.11 0.12 0.38 0.36 0.13 0.73 0.62 0.48 0.38 

Chl (skewness) mg.cm3 1.48 1.34 0.63 1.09 1.26 1.67 2.59 1.05 0.49 

Chl (SD) mg.cm3 0.04 0.07 0.12 0.28 0.05 0.38 0.46 0.18 0.12 

Isolation 

normalized 
centrally 

 0.01 0.36 0.43 0.56 0.78 0.98 0.86 0.53 0.28 

distance 
(median) 

km 2379 1688 1273 1035 621 355 394 660 1012 
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distance 
(skewed) 

km -2.10 -0.83 0.21 0.64 1.71 0.85 0.75 0.69 0.46 

distance 
(kurtosis) 

km 11.05 6.37 2.78 3.57 6.81 2.82 2.22 2.09 2.34 

 1012 

Table 2 Generalised Additive Mixed Model (GAMM) fits for best models (the simplest model 1013 

within 2 AICc of the lowest AICc) for environmental predictor metrics influencing changes in 1014 

cover of all corals, and those with contrasting life-history traits (LHT; following Darling et al., 1015 

2012, 2013) and bleaching susceptibility. Shown are the predictor metrics included in the best 1016 

models, Akaike Information Criterion (AICc), Delta AICc, AICc weight (Ȧi) values, R2, and the 1017 

number of other competing models within 2 AICc. Best models illustrated in Figure 6 are shown in 1018 

bold. TSM = total suspended matter, PAR = Photosynthetically Active Radiation, TSA = Total 1019 

stress anomaly, Dist = Isolation metric (distance). 1020 

 1021 

LHT All best models (<2 AICc of min AICc) AICc ǻAICc Ȧi R2 

Coral cover SSTA (mean)+SST (kurtosis)+Cyclone days (max) 1139.3 0.0 0.492 0.41 

Competitive SSTA (frequency)+Cyclone days (max) 960.7 0.0 0.117 0.39 

 PAR (skewness)+SSTA (frequency) 961.1 0.4 0.094 0.35 

 SSTA (mean)+SST (kurtosis)+Cyclone days (max) 961.3 0.6 0.086 0.41 

 SSTA (mean)+Cyclone days (max) 961.7 1.1 0.069 0.38 

 SSTA (frequency)+Cyclone days (max)+log[TSM 
(median)] 

961.9 1.2 0.065 0.42 

 PAR (skewness)+SSTA (frequency)+log[TSM (SD)] 962.5 1.8 0.048 0.36 

Stress-
Tolerant 

SST (kurtosis)+SST (skewness)+log[TSM (SD)] 593.1 0.0 0.319 0.42 

SST (kurtosis)+SST (skewness) 593.9 0.8 0.214 0.38 

PAR (skewness)+SST (kurtosis)+SST (skewness) 594.1 1.0 0.193 0.39 

Weedy PAR (skewness)+PAR (kurtosis) 374.7 0.0 0.14 0.37 

 Isolation+Tide (mean maximum) 374.9 0.2 0.125 0.35 

 Isolation+average tidal range 375.6 0.9 0.09 0.35 

 PAR (skewness)+PAR (kurtosis)+TSM (skewness) 375.9 1.3 0.074 0.38 

 PAR (kurtosis)+TSM (skewness) 376.4 1.7 0.058 0.36 

Generalist Depth+Cyclone days (max) 701.2 0.0 0.692 0.31 

Bleaching- 
Suscepti-
bility 

SST (SD) -195.2 0.0 0.463 0.30 

 1022 












