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Abstract1

In ecology, the true causal structure for a given problem is o�en not known, and2

several plausible models exist. It has been claimed that using weighted averages of3

these models can reduce prediction error, as well as be�er reflect model selection4

uncertainty. However, a large range of different model averaging methods exists,5

raising the question of how they differ regarding these goals. A core question for an6

analyst is thus to understand under which circumstances model averaging can improve7

predictions and their uncertainty estimates.8

Here we review the mathematical foundations of model averaging along with the9

diversity of approaches available. �e terms contributing to error in model-averaged10

predictions are each model’s bias (i.e. the deviation of each model prediction from the11

∗corresponding author; Tennenbacher Str. 4, 79106 Freiburg, Email: carsten.dormann@biom.uni-

freiburg.de
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unknown truth), variance of, and covariance among, model predictions, and12

uncertainty of model weights.13

If bias of contributing model predictions is substantially larger than their variance,14

the advantage of reduced variance through weighted averages is greatly reduced. For15

noisy data, which predominate in ecology, variance is probably o�en larger than bias16

and model averaging becomes an option to reduce prediction error. Correlation17

between model predictions also reduces the effect of model averaging, and to18

counteract this effect, model weights could be adjusted to maximise the variance19

reduction.20

Model-averaging weights have to be estimated from the data, and this estimation21

process carries some uncertainty, so that “optimised” model weights may not be be�er22

than the use of arbitrary weights, such as equal weights for all models. In the presence23

of inadequate models, however, estimating model weights is still likely to be superior24

to equal weights. Many different methods to derive averaging weights exist, from25

Bayesian over information-theoretical to optimised and resampling approaches, as26

reviewed here.27

We also investigate the coverage of the confidence interval of the prediction for28

different ways to combine model prediction distributions, showing that they differ29

greatly, and that the full model has very good coverage properties. Our overall30

recommendations stress the importance of validation-based approaches and of31

uncertainty quantification to avoid unreflected use of model averaging.32

1 Introduction33

Models are an integral part of ecological research, representing alternative, possibly34

overlapping, hypotheses (Chamberlin, 1890). �ey are also the key approach to making35
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predictions about ecological systems (Mouquet et al., 2015). In many cases it is not36

possible to clearly identify a single most-appropriate model. For instance,37

process-based models may differ in the specific ways they represent ecological38

mechanisms, but several different process models may accord with our ecological39

understanding. Statistical models are limited in their complexity by the amount of data40

available for fi�ing, making several combinations of predictors plausible, and different41

modelling approaches are available for statistical analysis (e.g. Hastie et al., 2009; Kuhn42

and Johnson, 2013).43

Model averaging, as the weighted sum of predictions from several candidate44

models, provides a potential avenue to avoid selecting a single model over others45

similarly plausible. Scientists average model predictions for different reasons, most46

prominently: (a) reducing prediction error through reduced variance, and partially by47

(b) reducing prediction bias (based on arguments described in Madigan and Ra�ery,48

1994), and (c) accommodating/quantifying uncertainty about model parametrisation49

and structure (Wintle et al., 2003, see also section 2.3).50

Here we focus on averaging sets of models that differ in structure, as opposed to51

mere differences in initial conditions or parameter values (Gibbs, 1902; Johnson and52

Bowler, 2009). �e la�er case in the statistical and physical literature is called53

“ensemble”, while in ecology that term is used more loosely. For some ecological54

examples of model averaging see Wintle et al. (2003); �uiller (2004); Richards (2005);55

Brook and Bradshaw (2006); Dormann et al. (2008); Diniz-Filho et al. (2009); Le Lay56

et al. (2010); Garcia et al. (2012); Cariveau et al. (2013); Meller et al. (2014), and Lauzeral57

et al. (2015).58

Several previous publications have reviewed model averaging in ecology and59

evolution, focussing exclusively on ‘information-theoretical model averaging’60

(Johnson and Omland, 2004; Hobbs and Hilborn, 2006; Burnham et al., 2011; Freckleton,61
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2011; Grueber et al., 2011; Nakagawa and Freckleton, 2011; Richards et al., 2011;62

Symonds and Moussalli, 2011), probably under the influence of the AIC-weighted63

averaging popularised by Burnham & Anderson (2002; Posada and Buckley 2004).64

Bayesian model averaging has been treated less frequently in ecology (for an example65

see Corani and Migna�i, 2015), but for an excellent recent review of this topic in the66

context of Bayesian model selection see Hooten and Hobbs (2015, see also Hoeting et al.67

1999; Ellison 2004; Link and Barker 2006). However, none of the above is a68

comprehensive review of the state of knowledge across the available model averaging69

approaches.70

Our aim is to provide such a comprehensive review in the light of developments71

over the last 20 or so years, summarising the actual mathematical reasoning and72

offering an intuitive as well as technical entry, illustrated by case studies. We primarily73

address averaging of predictions from correlative models, although most of the points74

will similarly apply to mechanistic/process-based models (see, e.g., Knu�i et al., 2010;75

Diks and Vrugt, 2010, for a review in the context of climate and hydrological models,76

respectively). We do not concentrate on averaging model parameters, because we agree77

with the criticism summarised in Banner and Higgs (2017): parameters are estimated78

conditional on the model structure; as the model structure changes, parameters may79

become incommensurable (see Posada and Buckley, 2004; Cade, 2015; Banner and80

Higgs, 2017, and Appendix S1 for short review of the parameter-averaging literature).81

�is review is divided into two parts: theoretical and practical. In the first we82

present the mathematical logic behind model averaging, and why this alone puts83

severe constraints on how we do model averaging. �en, in the second part, we review84

the different ways model-averaging weights can be derived, comparing Bayesian,85

information-theoretic and other tactical perspectives (i.e. those not derived from86

statistical theory but still with a clear objective). �is is followed by a brief exploration87
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of how to quantify model-averaged prediction uncertainty. We briefly illustrate model88

averaging with two case studies, before closing with unresolved challenges and89

recommendations.90

2 �e mathematics behind model averaging91

Model averaging refers to the computation of a weighted-average prediction Ỹ based92

on the predictions of several (M ) contributing models, Ŷ1, Ŷ2, . . . , ŶM :93

Ỹ =
M∑

m=1

wmŶm , with

M∑

m=1

wm = 1. (1)

Conceptually, the role of weights wm is to adjust predictions such that the average94

prediction has improved properties over selecting a single among a number of95

candidate models (for example, less bias, lower variance or closer-to-nominal coverage).96

In accordance with virtually all applications of model averaging we encountered, we97

first focus on how model averaging reduces prediction error, here quantified as mean98

squared error (MSE) of a prediction Ŷm of modelm, which is composed of prediction99

bias and prediction variance:100

MSE(Ŷm) =
{
bias(Ŷm)

}2
+ var(Ŷm). (2)

We shall now decompose this equation to understand what contributes to prediction101

error in the context of model averaging.102

Bias, i.e. the difference between the prediction expectation and the truth (y∗), will103

depend directly on the bias of the contributing models, as well as their weights (eqn 1).104

As the truth is unknown (except in simulations), the statistical model-averaging105

literature typically makes the assumption that individual models have no bias (Bates106

and Granger, 1969; Buckland et al., 1997; Burnham and Anderson, 2002). In contrast,107

the focus of averaging process models is primarily on removing bias (e.g. Solomon108

et al., 2007; Gibbons et al., 2008; Dietze, 2017).109
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Prediction variance (arising from n hypothetical repeated samplings) is composed

of two terms, the variance of each contributing model’s prediction,

var(Ŷm) =
1

n− 1

n∑

i=1

(Ŷm − Ŷ i
m)2,

and the covariances between predictions of modelm andm′:

cov(Ŷm, Ŷm′) =
1

n− 1

n∑

i=1

(Ŷm − Ŷ i
m)(Ŷm′ − Ŷ i

m′).

For the average of two predictions, Ŷ1 and Ŷ2, we have:110

var(Ỹ ) = w2
1var(Ŷ1) + w2

2var(Ŷ2) + 2w1w2cov(Ŷ1, Ŷ2). (3)

When averaging several models, we expand eqn (3) to:111

var(Ỹ ) = var




M∑

m=1

wmŶm


 =

M∑

m=1

w2
mvar(Ŷm) +

M∑

m=1

∑

m′ 6=m

wmwm′cov(Ŷm, Ŷm′)

=
M∑

m=1

M∑

m′=1

wmwm′cov(Ŷm, Ŷm′) =

M∑

m=1

M∑

m′=1

wmwm′ρmm′var(Ŷm)var(Ŷm′),(4)

where ρmm′ is the correlation between Ŷm and Ŷm′ .112

Pu�ing eqns 2 and 3 together we get:113

MSE(Ỹ ) =




M∑

m=1

wm

(
E(Ŷm)− y∗

)



2

+
M∑

m=1

M∑

n=1

wmwm′ρmnvar(Ŷm)var(Ŷm′),

(5)

where E(Ŷm)− y∗ = bias(Ŷm) represents model misspecification bias.114

2.1 Influences on the error of model-averaged prediction115

Equation 5 allows us to make a number of statements about the potential benefits of116

model averaging. Firstly, bias will typically remain unknown, as truth y∗ is unknown,117

but it can be estimated through (cross-)validation, and hence also the relative118

importance of bias to variability of predictions can be quantified (Fig. 1). When each119

model produces a distinct prediction, with variances substantially lower than120
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differences between models, then bias dominates (Fig. 1 top). As variance increases (or121

bias decreases), the different model predictions overlap more and more, until bias is122

small relative to variance (Fig. 1 bo�om). Predictions from any model will now123

typically have higher variance than the averaged prediction. Also, averaging can124

reduce bias, if predictions sca�er around the truth, but not unidirectional bias, that is if125

all (most) model predictions err on the same side (see also Fig. 2 top row). However, if126

predictions sca�er around the truth, bias can be reduced by averaging.127

[Fig. 1 approximately here.]128

We thus conclude that as bias becomes large relative to prediction variance, model129

averaging is less and less likely to be useful for reducing variance – it may still be130

useful for reducing bias (under the condition of bidirectional bias: Fig. 2, lower row).131

[Fig. 2 approximately here.]132

Downweighting of variances is the mathematical reason how model averaging133

reduces the variance over single model predictions. In the unlikely, but didactically134

important case that predictions are independent, their covariance is 0 and the135

correlation matrix ρmn of eqn 5 becomes the identity matrix (or, equivalently, the136

covariance term of eqn 4 vanishes). If we also assume both predictions have equal137

variances (var(Ŷ1) = var(Ŷ2) = var(Ŷ )), and since w2 = 1− w1, the above equation138

simplifies to var(Ỹ ) = (2w2
1 − 2w1 + 1)var(Ŷ ). If one model gets all the weight, we139

have var(Ỹ ) = var(Ŷ ). If the two models receive equal weight, we have140

var(Ỹ ) = (2 · (0.5)2 − 2 · 0.5 + 1)var(Ŷ ) = 0.5var(Ŷ ), a considerable improvement141

in prediction variance (and the minimum of this equation). Other weights fall142

in-between these values. More generally, Bates and Granger (1969) showed that for143

unbiased models with uncorrelated predictions, the variance in the average is never144

greater than the smaller of the individual predictions (making the important145

assumption that the weights are known, which will be discussed below). In other146
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words, model averaging can reduce prediction error because weights enter as quadratic147

terms in eqn 3, rather than linearly.148

�e correlation between model predictions, i.e. the matrix (ρij) ∈ R
M×M ,149

substantially affects the benefit of model averaging (see also Fig. 3 and interactive tool150

in the Appendix Data S2). In the best case, correlations between model predictions are151

negative or at least absent, and the second term of eqn (5) is negative or vanishes. Here,152

the variance in the average is dominated by individual models’ prediction variances. As153

correlation between predictions increases, the covariance-term contributes more and154

more to the overall prediction error, making the averaging of perfectly correlated155

predictions exactly outweigh the benefit gained by the quadratic weights-effect for the156

variances.157

[Fig. 3 approximately here.]158

�is point provides some important insights about why some machine learning159

methods that average a large number of bad models work so well. When averaging poor160

models, e.g. trees in a randomForest, covariance is negligible, but the variance of each161

model prediction is high. Because wm becomes very small with hundreds of models162

(around 1/M ), the variance of many averaged poor models (with similar variance)163

tends to be low: var(Ỹ ) =
∑M

m=1
1

M2 var(Ŷm) + 1
M2

∑M
m=1

∑
m 6=n cov(Ŷm, Ŷn) ≈164

M 1
M2 var(Ŷ ) = 1

M
var(Ŷ ), where the second term disappears due to lack of165

correlations among predictions. We may speculate that poor models typically also166

exhibit substantial but undirected bias, which again would be reduced by averaging.167

�e effect of correlations in the potential reduction of prediction error is rather168

intuitive. If a prediction from a given model is extreme (e.g. on the high end of the169

distribution), negative correlation will tend to balance out, while positive correlation170

will accentuate total variance (e.g. Bohn et al., 2010). Ecologists know an analogous171

effect from biodiversity studies, where it is called the ‘portfolio effect’172
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(e.g. �ibaut and Connolly, 2013). It states that the fluctuation in biomass of a173

community is less than the fluctuations of biomass of its members, because the species174

respond to the environment differently. �is asynchrony in response is analogous to175

negative covariance in community members’ biomass, buffering the sum of their176

biomasses.177

Pu�ing bias, variance and correlation together (Fig. 2), we note that model178

averaging will deliver smaller prediction error when bias is “bidirectional” (i.e. model179

predictions over- and underestimate the true value: bo�om row of Fig. 2) and180

predictions are negatively correlated (Fig. 2 bo�om right). Uni-directional bias will181

remain problematic (top row of Fig. 2), irrespective of covariances among predictions.182

�us, for a given set of weights, the prediction error of model-averaged predictions183

depends on three things: the bias of the model average, the individual model prediction184

variances, and the correlation between individual model predictions.185

2.2 Estimating weights can thwart the benefit of model186

averaging187

Equation 5 assumes that the values of the weights are set a priori, and thus there is no188

uncertainty about them. However, that would imply that an arbitrary set of weights is189

used. Instead, the aim of optimising predictive performance suggests weights need to190

be estimated from the data. But estimation brings associated uncertainty with it, and191

this has implications for the actual benefits of model averaging: estimated “optimal”192

weights will be suboptimal (Nguefack-Tsague, 2014), so the averaged prediction even193

for only mildly correlated predictions will more likely be biased than if the (unknown)194

truly optimal weights were used (Claeskens et al., 2016). It may in fact be o�en no195

be�er than one obtained using some arbitrary weights, e.g. equal weights (Clemen,196
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1989; Smith et al., 2009; Graefe et al., 2014, 2015). �e “simple theoretical explanation”197

provided by Claeskens et al. (2016) demonstrates that estimating weights introduces198

additional variance into the prediction. As a consequence, the predictions averaged199

with estimated weights may be worse than that of a single model (in contrast to the200

assertion of Bates and Granger 1969; see Claeskens et al. 2016 for an example).201

Finding optimal weights now becomes far more involved, and currently no closed202

solution is available, not even for linear models (Liang et al., 2011). �e interactive tool203

we provide (Fig. 3) allows readers to explore this issue in a simple 2-model case. It204

shows that, in this simple case, estimating weights substantially reduces the parameter205

space where model averaging is superior to the best single model.206

�e performance reduction does not however imply that estimated weights are of207

no use, or that the use of arbitrary weights (e.g. equal weights) is generally superior.208

While uncertainty in estimated weights increases prediction error, the ability to209

downweight or wholly remove unsuitable models from the prediction set is a210

substantial benefit. In Claeskens et al. (2016) and similar simulations, all models211

considered are “alright” (bias-free and with similar prediction variance), which212

obviously need not be the case. Model weights are a measure of suitability for213

prediction, which can be derived most logically from validation on (semi-)independent214

data (see section 3 for details). If the unknown optimal model weights deviate strongly215

from 1/m, their estimation uncertainty is then a price worth paying.216

2.3 Model averaging (typically) reduces prediction errors217

�e majority of studies we encountered (as random draws from the results of a218

systematic literature search: see Appendix S7) used an empirical approach to assess219

predictive performance, i.e. forecasting, hindcasting or cross-validation to observed220

data (e.g. Namata et al., 2008; Marmion et al., 2009a,b; Grenouillet et al., 2010;221
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Montgomery et al., 2012; Smith et al., 2013; Engler et al., 2013; Edeling et al., 2014;222

Trolle et al., 2014). Across the 180 studies we examined, model averaging generally223

yielded lower prediction errors than the individual contributing models. Most of these224

studies used test datasets to estimate predictive success, and rely critically on the225

assumption of independence between test and training datasets (Roberts et al., 2017).226

Few studies used simulated data to examine the performance of model averaging under227

specific conditions (e.g. small sample size, model structure uncertainty, missing data:228

Ghosh and Yuan, 2009; Schomaker, 2012). Very few studies provide mathematical229

analyses (Shen and Huang, 2006; Potempski and Galmarini, 2009; Chen et al., 2012;230

Zhang et al., 2013).231

Summarising section 2 so far, we observe that232

1. model averaging reduces prediction error by reducing prediction variance and233

bias;234

2. the more positively correlated predictions are, the smaller is the benefit gained235

from averaging them;236

3. when bias is large relative to the prediction variance of individual models, the237

least-biased model will be a be�er choice than the model average; and238

4. estimating weights introduces additional variance, outweighing, in some239

situations, the benefits of model averaging.240

2.4 �antifying uncertainty of model-averaged241

predictions242

In random sampling, in addition to a statistic of interest, say a point prediction, we are243

typically interested in the uncertainty of this statistic, e.g. as quantified by its variance244

(goal 2 at the beginning of the paper). A relevant question is whether the associated245
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confidence intervals have nominal coverage, i.e. whether the true value is in the 95%-CI246

indeed 95% of the time in repeated experiments.247

If we a�empt an analogy between random sampling and model averaging, the first248

catch is that predictions from different models will be non-independent. In this case the249

standard deviation does not decrease as square root of n, but more slowly. �e second250

catch is that models are almost certainly not random draws from the population of251

models (if we just think of all the models which we did not include). Non-random252

draws from a distribution are almost certain to yield biased estimates of that253

distribution’s parameters.254

�e first catch can be taken care of by taking into account the variance-covariance255

matrix of model predictions (see section 2, eqns 3-5). �e second catch (models are256

non-random draws) is harder and the severity of this problem depends on whether257

model predictions are biased in the same direction (the “unidirectional bias” in Fig. 2)258

or in different ways. Model averaging can only successfully unite diverging biased259

predictions when they are biased in different directions. �e approaches to computing260

prediction variance below rely on the assumption that model predictions in fact do261

sca�er around the truth, and that the (weighted) average of model predictions is262

unbiased. Since truth is unknown, this assumption cannot be tested. When models263

share their fundamental structure (e.g. process models relying on the same equations),264

it is more likely that they are unidirectionally biased.265

2.4.1 Simplified error propagation in model-averaged predictions266

To approximate the predictive variance of model-averaged predictions, Buckland et al.267

(1997) proposed a simplification of eqn (5) (for derivation see Burnham and Anderson,268

13



2002, p. 159-162):269

var(Ỹ ) =




M∑

m=1

wm

√
var(Ŷm) + γ2m




2

. (6)

Misspecification bias of modelm is computed as γm = Ŷm − Ỹ , thus assuming270

(explicitly on page 604 of Buckland et al. 1997) that the averaged point estimate Ỹ is271

unbiased and can hence be used to compute the bias of the individual predictions. �is272

assumption can be visualised in Fig. 2 as the situation where the empty triangles273

always sit right on top of ‘truth’. �is assumption is problematic as it cannot be met by274

unidirectionally biased model predictions, nor when weights wm fail to get the275

weighting exactly right and thus Ỹ remains biased. Less problematically, Buckland276

et al. (1997) also assumed that predictions from different models are perfectly277

correlated, making the covariance-term as large as possible, and variance estimation278

conservative. �e distribution theory behind this approach has been criticised as “not279

(even approximately) correct” (Claeskens and Hjort, 2008, p. 207), but shown to work280

well in simulations (Lukacs et al., 2010; Fletcher and Dillingham, 2011).281

Improving on eqn (6) requires knowledge of the correlation matrix ρmn of eqn (5).282

�e key problem is that there is no analytical way to compute the correlation of model283

predictions. While bootstrapping models and their prediction can provide an estimate284

of ρmn, it can more directly provide an estimate of var(Ỹ ), rendering the indirect route285

via eqn (6) unnecessary.286

2.4.2 Coverage of the model-averaged prediction287

Predictions from a selected single-best model always underestimate the true prediction288

error (e.g. Namata et al., 2008; Fletcher and Turek, 2012; Turek and Fletcher, 2012). �e289

reason is that the uncertainty about which model is correct is not included in this final290

prediction: we predict as if we had not carried out model selection but had known from291

the beginning which model would be the best (as if the model had been “prescribed”:292
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Harrell, 2001). �us, even if we were able to choose, from our model set M , the model293

closest to truth, we would still need to adjust the confidence distribution for model294

selection; however, a perfect adjustment was analytically shown not to exist (Kabaila295

et al., 2015).296

For statistical models, it is less clear whether the full model (i.e. prior to any model297

selection; see Appendix S3) or model averaging computes the uncertainty intervals298

correctly. Simulations suggest that model averaging may improve coverage (Namata299

et al., 2008; Wintle et al., 2003; Zhao et al., 2013, none of who tested the full model),300

which can be understood to happen because the process of averaging allows us to take301

into account model uncertainty (Liang et al., 2011). Given that model averages need not302

be normal (at the link scale), Fletcher and Turek (2012) and Turek and Fletcher (2012)303

explore how to improve the tail areas of the confidence distribution, albeit under the304

assumption that the true model is in the model set. �eir approach was re-analysed by305

Kabaila et al. (2015) under model selection. �e key finding of this la�er study is that306

the full model coverage was still superior to all other model averaging approaches,307

suggesting that the full model should currently be kept in mind, both for inference,308

minimal bias and correct prediction intervals (see also Harrell, 2001, p. 59). Such309

findings sit uncomfortably with the bias-variance trade-off (Hastie et al., 2009), which310

states that overly complex models have poor predictive performance; and indeed the311

full model has high prediction variance. However, our statements are about the312

confidence intervals, rather than the point predictions, and those will be incorrectly313

narrow for model selection without selection-correction. Regre�ably, such reasoning314

cannot be extended in an obvious way to models that do not have a “full model”315

(non-nested models, process models, or machine learning models). Here model316

averaging provides a way forward in representing prediction coverage more fairly.317

Given the diversity of approaches to computing model weights encountered in318
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section 3, these studies cannot be seen as conclusive, only as suggestive, for the319

improvement of nominal coverage using model averaging.320

In a different approach to characterising the uncertainty in model predictions, model321

averaging can be interpreted as computing the distribution of a random variable that is322

derived from a collection of random variables (the model predictions), also known as a323

mixture distribution (Claeskens and Hjort, 2008, p. 217). In a two-step process, the324

model weights determine the probability of choosing the model, and then the model325

prediction is drawn from its confidence distribution. If predictions are unbiased, they326

stack up high around the mean, and yield the same value as the equation for the327

standard error of the mean. If predictions differ widely, e.g. due to bias, the mixed328

confidence distribution will be much wider and possibly multi-modal. Mixing329

distributions assumes their independence, i.e. the random draw of a value from one330

model prediction is uncorrelated with the next draw of model and prediction. As model331

predictions are likely to be positively correlated, assuming (conditional) independence332

will underestimate variance (i.e. correlated draws would yield wider confidence333

distributions).334

Overall, this leaves us with the following options for computing the confidence335

intervals of averaged predictions (which we will compute for a set of simple linear336

regressions in Fig. 5):337

1. Make the assumption that model-averaged predictions are unbiased (i.e. that y∗338

can be estimated as Ỹ ). Use bootstrapping to estimate covariances of predictions339

for each model. From these estimates, compute prediction variance according to340

eqn (5). �is solution is computer-intensive, but it takes into account covariance341

of model predictions. (Note that simply averaging predictions from bootstrapped342

models is not correct, as it does not incorporate model misspecification bias.)343
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2. Make again the assumption that model-averaged predictions are unbiased. Use344

Buckland et al. (1997)’s approach (eqn 6). �is will yield wider estimates than345

option 1, because assuming perfect correlation is conservative.346

3. Make the assumption that predictions from different models are effectively347

uncorrelated. Use model mixing to compute the confidence distribution of the348

average.349

4. Fit the full model (if available) and use its confidence distribution, which can350

rarely be improved on (Kabaila et al., 2015).351

[Figure 5 approximately here.]352

When averaging models with largely independent (i.e. uncorrelated) predictions,353

only the bootstrap-estimated covariance matrix (option 1 above) will also compute354

lower variances (according to eqn 4). In our illustration (Fig. 5, see Appendix S8), the355

first three options (“propagation”, “Buckland” and “mixing”) hardly differ, while the full356

model has a different location and is wider. �e coverage of the 95% confidence357

interval, computed through 1000 simulations, is best matched by the full model, while358

the propagation approach is overly conservative. Buckland’s equation and mixing have359

slightly too low coverage.360

3 Approaches to estimating model-averaging361

weights362

When faced with predictions from very different models, estimating weights aims at363

abating poorly, and elevating well predicting ones. For the resulting averaged364

predictions, the actual method for estimating weights has obvious fundamental365

importance. We now review approaches to estimate model-averaging weights and366

17



elucidate on their interconnections (Table 1). Different perspectives on367

model-averaging weights have emerged, which we present in somewhat arbitrary four368

categories of decreasing probabilistic interpretability:369

1. In the Bayesian perspective, model weights are probabilities that model Mi is the370

‘true’ model (e.g. Link and Barker, 2006; Congdon, 2007).371

2. In the information-theoretic framework, model weights are measures of how372

closely the proposed models approximate the true model as measured by the373

Kullback-Leibler divergence, relative to other models.374

3. In a ‘tactical’ perspective, model weights are parameters to be chosen in such a375

way as to achieve best predictive performance of the average. No specific376

interpretation of the model is a�ached to the weights; they only have to work.377

4. Assigning fixed, equal weights to all predictions can be seen as a reference naı̈ve378

approach, representing the situation without adjusting for differences in models’379

predictive abilities.380

We shall address these four perspectives in turn, also hinting at relationships381

between them.382

[Table 1 approximately here.]383

3.1 Bayesian model weights384

Our outline of Bayesian model weights follows that of Wasserman (2000), paying385

a�ention to recent computational advances in the field.386

�eory Bayes’ formula can be applied to models in much the same way as to387

parameters. Hence, to perform inference with multiple models, one can write down the388

joint posterior probability P (Mi,Θi|D) of modelMi with parameter vectors Θi, given389

the observed data D, as390
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P (Mi,Θi|D) ∝ L(D|Mi,Θi) · p(Θi) · p(Mi), (7)

where L(D|Mi,Θi) is the likelihood of modelMi, p(Θi) is the prior distribution of the391

parameters of the respective modelMi, and p(Mi) is the prior weight on modelMi.392

�e joint distribution provides all information necessary for inference. O�en, in393

practice, we want to extract some simplified statistics from this distribution such as the394

model with the highest posterior model probability, or the distribution of a parameter395

or prediction including model selection uncertainty. To obtain this information, we can396

marginalise (average, integrate) over parameter space, or marginalise over model space.397

If we marginalise over parameter space, we obtain model weights (whilst398

marginalising over model space yields averaged parameters, which we shall not399

address here). �e first step is to calculate the marginal likelihood, defined as the400

average of eqn (7) across all k parameters for any given model:401

P (D|Mi) ∝

∫

Θ1

· · ·

∫

Θk

L(D|Mi,Θi)p(Θi)dΘ1 · · · dΘk (8)

From the marginal likelihood, we can compare models via the Bayes factor, defined as402

the ratio of their marginal likelihoods (e.g. Kass and Ra�ery, 1995):403

BFi,j =
P (D|Mi)

P (D|Mj)
=

∫
L(D|Mi,Θi)p(Θi)dΘi∫
L(D|Mj ,Θj)p(Θj)dΘj

. (9)

with the multiple integral now pulled together for notational convenience. For more404

than two models, however, it is more useful to standardise this quantity across all405

models in question, calculating a Bayesian posterior model weight p(Mi|D) (including406

model priors p(Mi): Kass and Ra�ery, 1995, ) as407

posterior model weighti = p(Mi|D) =
P (D|Mi) p(Mi)∑
j P (D|Mj)p(Mj)

(10)

Estimation in practice While the definition of Bayesian model weights and408

averaged parameters is straightforward, the estimation of these quantities can be409
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challenging. In practice, there are two options to numerically estimate the quantities410

defined above, both with caveats.411

�e first option is to sample directly from the joint posterior (eqn (7)) of the models412

and the parameters. Basic algorithms such as rejection sampling can do that without413

any modification (e.g. Toni et al., 2009), but they are inefficient for higher-dimensional414

parameter spaces. More sophisticated algorithms such as MCMC and SMC (see Hartig415

et al., 2011, for a basic review) require modifications to deal with the issue of different416

number of parameters when changing between models. Such modifications (mostly the417

reversible-jump MCMCs, rjMCMC: Green, 1995, see Appendix S5.1.1) are o�en418

difficult to program, tune and generalise, which is the reason why they are typically419

only applied in specialised, well-defined se�ings. �e posterior model probabilities of420

the rjMCMC are estimated as the proportion of time the algorithm spent with each421

model, measured as the number of iterations the algorithm drew a particular model422

divided by the total number of iterations.423

�e second option is to approximate the marginal likelihood in eqn (8) of each424

model independently e.g. compute the maximum a posteriori model probability,425

renormalise that into weights, and then average predictions based on these weights.426

�e challenge here is to get a stable approximation of the marginal likelihood, which427

can be very problematic (Weinberg, 2012, see Appendix S5.1.2). Because of the428

relatively simple implementation, this approach is a more common choice than429

rjMCMC (e.g. Brandon and Wade, 2006).430

Influence of priors A problem for the computation of model weights when431

performing Bayesian inference across multiple models, is the influence of the choice of432

parameter priors, especially “uninformative” ones (see section 5 in Hoeting et al., 1999;433

Chickering and Heckerman, 1997).434
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�e challenge arises because in eqns (8) and (9) the prior density p(θi) enters the435

marginal likelihood and hence the Bayes factor multiplicatively. �is has the somewhat436

unintuitive consequence that increasing the width of an uninformative parameter prior437

will linearly decrease the model’s marginal likelihood (e.g. Link and Barker, 2006).438

That Bayesian model weights are strongly dependent on the width of the prior choice439

has sparked discussion of the appropriateness of this approach in situations with440

uninformative priors. For example, in situations where multiple nested models are441

compared, the width of the uninformative prior may completely determine the442

complexity of models that are being selected. One suggestion that has been made is to443

not perform multi-model inference at all with uninformative priors, or that at least444

additional corrections are necessary to apply Bayes factors weights (O’Hagan, 1995;445

Berger and Pericchi, 1996). One such correction is to calibrate the model on a part of the446

data first, use the result as new priors and then perform the analysis described above447

(intrinsic Bayes factor: Berger and Pericchi 1996, fractional Bayes factor: O’Hagan448

1995). If sufficient data are available so that the likelihood is sufficiently peaked449

strongly during the calibration step, this approach should eliminate any complication450

resulting from the prior choice (for an ecological example see van Oijen et al., 2013).451

Bayesian variations In a set of influential publications, Ra�ery et al. (1997),452

Hoeting et al. (1999) and Ra�ery et al. (2005) introduced post-hoc Bayesian model453

averaging, i.e. for vectors of predictions from already fi�ed models. �e key idea is to454

iteratively estimate the proportion of times a model would yield the highest likelihood455

within the set of models (through expectation maximisation, see Appendix S5.2 for456

details), and use this proportion as model weight. In the spirit of the inventors, we refer457

to this approach as Bayesian model averaging using Expectation-Maximisation458

(BMA-EM), but place it closer to a frequentist than a Bayesian approach, as the models459
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were not necessarily (and in none of their examples) fi�ed within the Bayesian460

framework. It has been used regularly, o�en for process models (e.g. Gneiting et al.,461

2005; Zhang et al., 2009), where a rjMCMC-procedure would require substantial462

programming work at li�le perceived benefit, but also in data-poor situations in the463

political sciences (Montgomery et al., 2012).464

Chickering and Heckerman (1997) investigate approximations of the marginal465

likelihood in eqn (9), such as the Bayesian Information Criterion (BIC, as defined466

in the next section; see also Appendix S5.3) and find them to work well for model467

selection, but not for model averaging. In contrast, Kass and Ra�ery (1995) state (on468

p. 778) that eBIC is an acceptable approximation of the Bayes factor, and hence suitable469

for model averaging, despite being biased even for large sample sizes. �ese470

approximations may be improved when using more complex versions of BIC (SPBIC471

and IBIC: Bollen et al., 2012).472

�e “widely applicable information criterion”WAIC (Watanabe 2010 and an473

equivalent WBIC: Watanabe 2013) are motivated and actually analytically derived in a474

Bayesian framework (Gelman et al., 2014). Its uninformative prior implementation475

should be seen as a variation of AIC (see next section), while the implementation with476

model priors is based on posterior distribution of parameter estimates, and computed,477

for each model, from two terms (Gelman et al., 2014): (1) the log pointwise predicted478

density (lppd) across the posterior simulations for each of the n predicted values,479

defined as lppd = log
∏n

i=1 pposterior(yi); and (2) a bias-correction term480

pWAIC =
∑n

i=1 var(log(p(yi|θs))), where var is the sample variance over all S samples481

of the posterior distributions of parameters θ. �en the WAIC is defined as482

WAIC = −2 lppd+ 2 pWAIC. In words, the WAIC is the likelihood of observing the data483

under the posterior parameter distributions, corrected by a penalty of model484

complexity proportional to the variance of these likelihoods across the MCMC samples.485
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Model weights are computed from WAIC analogously to equation 11 below.486

3.2 Information-theoretic model weights487

In the information-theoretic perspective, models closer to the data, as measured by the488

Kullback-Leibler divergence, should receive more weight than those further away.489

�ere are several approximations of the KL-divergence, most famously Akaike’s490

Information Criterion (AIC: Akaike, 1973; Burnham and Anderson, 2002). AIC and491

related indices can be computed only for likelihood-based models with known number492

of parameters (pm), restricting the information-theoretic approach to GLM-like models493

(incl. GAM):494

AICm = −2ℓm + 2pm and wm =
e−0.5(AICm−AICmin)

∑
i∈M e−0.5(AICi−AICmin)

, (11)

where ℓm is the log-likelihood of model m.495

In the ecological literature, AIC (and its sample-size corrected version AICc, and its496

adaptations to quasi-likelihood models such as QIC: Pan 2001; Claeskens and Hjort497

2008) is by far the most common approach to determine model weights (for recent498

examples see, e.g., Dwyer et al., 2014; Rovai et al., 2015). AIC-weights (eqn (11)) have499

been interpreted as Bayesian model probabilities (Burnham and Anderson 2002, p. 75;500

Link and Barker 2006), although we are not aware of a convincing theoretical501

justification. An alternative interpretation is the proportion of times a model would be502

chosen as the best model under repeated sampling (Hobbs and Hilborn, 2006), but such503

an interpretation is contentious (Richards, 2005; Bolker, 2008; Claeskens and Hjort,504

2008). In an anecdotal comparison, Burnham and Anderson (2002, p. 178) showed that505

AIC-weights are substantially different from bootstrapped model weights. �e506

la�er were proposed by Buckland et al. (1997) and represent the proportion of507

bootstraps a model is performing best in terms of AIC: see case study 1 below. In508
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simulations, AIC-weights did not reliably identify the model with the known lowest509

KL-divergence or prediction error (Richards, 2005; Richards et al., 2011). Instead,510

Mallows’ model averaging (MMA) has been shown to yield the lowest mean511

squared error for linear models (Hansen, 2007; Schomaker et al., 2010). Mallows’ Cp512

penalises model complexity equivalent to −2ℓm−n+ 2pm (for n data points; rather513

than AIC’s −2ℓm + 2pm, eqn 11).514

Other approximations of the KL-divergence include Schwartz’ Bayesian515

Information Criterion (see previous section), which was designed to find the most516

probable model given the data (Schwartz, 1978; Shmueli, 2010), equivalent to having517

the largest Bayes factor (see previous section). BIC uses log(n) rather than AIC’s “2”518

as penalisation factor for model complexity (Appendix S5.3). A particularly noteworthy519

modification of the AIC exist, where the model fit is assessed with respect to a focal520

predictor value, e.g. a specific age or temperature range, yielding the Focussed521

Information Criterion (FIC: Claeskens and Hjort 2008). We are not aware of a522

systematic simulation study comparing the performance of these model averaging523

weights, but AIC’s dominance should not indicate its superiority (see also case study 1524

below).525

�e weighting procedure can additionally be wrapped into a cross-validation and526

model pre-selection, which leads to the ARMS-procedure (Adaptive Regression by527

Mixing with model Screening: Yang, 2001; Yuan and Yang, 2005; Yuan and Ghosh,528

2008). We shall not present details on ARMS here (for cross-validation see next section),529

because we regard model pre-selection as an unresolved issue (see section 5.3).530

3.3 Tactical approaches to computing model weights531

Methods covered in this section share the “tactical” goal of choosing weights to532

optimise prediction (e.g. reduce prediction error). �ese weighting schemes are not533
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explicitly building on Bayes or information theory thus most general in application.534

Cross-validation approximates a model’s predictive performance on new data by535

predicting to a hold-out part of the data (typically between 5 and 20 folds).536

Leave-one-out cross-validation disturbs the data least, omi�ing each single data537

point in turn. �e fit to the hold-out can be quantified in different ways. If the data can538

be reasonably well described by a specific distribution with log-likelihood function ℓ539

(even if the model algorithm itself is non-parametric), the log-likelihood of the data in540

the k folds can be computed and summed (van der Laan et al., 2004; Wood, 2015, p. 36):541

ℓmCV =
k∑

i=1

ℓ(y[i]|θ̂
m
y[−i]

), (12)

where the index [−i] indicates that the data y[i] in fold i were not used for fi�ing model542

m and estimating model parameters θ̂my[−i]
. Cross-validation log-likelihood, specifically543

leave-one-out cross-validation, is asymptotically equivalent to AIC and thus544

KL-distance (Stone, 1977), albeit at a higher computational cost. �e use of hold-out545

data in cross-validation implicitly penalises overfi�ing, and we can hence compute546

model weights wm
CV in the same way as AIC-weights (Hauenstein et al., 2017):547

wm
CV =

eℓ
m

CV

∑
i∈M eℓ

i

CV

. (13)

Other measures of model fit to the hold-out folds have been used, largely as ad hoc548

proxies for a likelihood function (e.g. in likelihood-free models): pseudo-R2 (e.g549

Nagelkerke, 1991; Nakagawa and Schielzeth, 2013), area under the ROC-curve (AUC:550

Marmion et al., 2009a; Ordonez and Williams, 2013; Hannemann et al., 2015), or True551

Skill Statistic (Diniz-Filho et al., 2009; Garcia et al., 2012; Engler et al., 2013; Meller552

et al., 2014). In these cases, weights were computed by substituting ℓCV in eqn (13) by553

the respective measure, or given a value of 1/S for a somewhat arbitrarily defined554

subset of S (out ofM ) models, e.g. those above an arbitrary threshold considered555

minimal satisfactory performance (Crossman and Bass, 2008; Crimmins et al., 2013;556
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Ordonez and Williams, 2013).557

Largely ignored by the ecological literature are two other non-parametric

approaches to compute model weights: stacking and jackknife model averaging (see

Appendix S4 for discussion of averaging within machine-learning algorithms). Both are

cross-validation based, and both optimise model weights on hold-out data. Stacking

(Wolpert, 1992; Smyth and Wolpert, 1998; Ting and Wi�en, 1999) finds the optimised

model weights to reduce prediction error (or maximise likelihood) on a test hold-out of

size H . �is is, for RMSE and likelihood, respectively:

argmin
wm





√√√√√ 1

H

H∑

i=1


y[i] −

M∑

m=1

wmf̂
(
Xi

∣∣∣θ̂m[−i]

)



2




(Hastie et al., 2009) and

argmax
wm




ℓ


y[i]

∣∣∣∣∣∣

M∑

m=1

wmf̂
(
Xi

∣∣∣θ̂m[−i]

)







,

where f̂(Xi|θ̂
m
[−i]) is the prediction of modelm, fi�ed without using data i, to data i.558

�is procedure is repeated many times, each time yielding a vector of optimised model559

weights, wm, which are then averaged across repetitions and rescaled to sum to 1.560

Smyth and Wolpert (1998) and Clarke (2003) reports stacking to generally outperform561

the cross-validation approach from two paragraphs earlier, and Bayesian model562

averaging, respectively (see also the case studies in section 4 and Appendix S5).563

In Jackknife Model Averaging (JMA: Hansen and Racine, 2012), each data point564

is omi�ed in turn from fi�ing and then predicted to (thus actually a leave-one-out565

cross-validation rather than a “jackknife”). �en, weights are optimised so as to566

minimise RMSE (or maximise likelihood) between the observed and the fi�ed value567

across all “jackknife” samples. �e optimisation function is the same as for stacking,568

except that H = N . �us, in stacking, weights are optimised once for each run, while569

for the jackknife only one optimisation over all N leave-one-out-cross-validations is570

required (further details and examples with R-code are given in Appendix S5.6).571

26



�e forecasting (i.e. time-predictions) literature (reviewed in Armstrong, 2001;572

Stock and Watson, 2001; Timmermann, 2006) offers two further approaches. Bates and573

Granger (1969)’s minimal variance approach a�ributes more weight to models with574

low-variance predictions. More precisely, it uses the inverse of the variance-covariance575

matrix of predictions, Σ−1, to compute model weights. In the multi-model576

generalisation (Newbold and Granger, 1974) the weights-vector w is calculated as:577

wminimal variance = (1′Σ−1
1)−1

1Σ
−1, (14)

where 1 is anM -length vector of ones. �is is the analytical solution of eqn 5,578

assuming no bias and ignoring the problem that weights are random variates, under579

the weights-sum-to-one constraint. Equation 14 does not ensure all-positive weights,580

nor is it obvious how to estimate Σ. One option (used in our case studies) is to base Σ581

on the deviation from a prediction to test data in lieu of measure of past performance582

(following recommendation of Bates and Granger, 1969).583

Finally, Garthwaite and Mubwandarikwa (2010) devised a rarely used method,584

called the “cos-squared weighting scheme”, designed to adjust for correlation in585

predictions by different models. It was motivated by (i) giving lower weight to models586

highly correlated with others (thereby reducing the prediction variance contributed587

through covariances in eqn 5), (ii) division of weights when a new, near-identical588

model prediction is added to the set, and (iii) reducing all weights when more models589

are added to the set. Weights are computed as proportional to the amount of rotation590

the predictions would require to make them orthogonal in prediction space, hence the591

trigonometric name of their approach.592

Model-based model combination: varying weights593

Combining model predictions using statistical models, an approach we term594

“model-based model combinations” (MBMC, also called “superensemble modelling”)595
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was first proposed by Granger and Ramanathan (1984). Here a statistical model f is596

used to combine the predictions from different models, as if they were predictors in a597

regression: Ỹ ∼ f(Ŷ1, Ŷ2, . . . , Ŷm) (see Fig. 4 le�). �e regression-type model f can be598

of any type, such as a linear model or a neural network. We call this regression the599

“supra-model” in order to distinguish between different modelling levels.600

A very simple supra-model would compute the median of predictions for each601

pointXi (e.g. Marmion et al., 2009a). Different models are used in the “average”602

without requiring any additional parameter estimation. Median predictions imply603

varying weights, as the one or two models considered for computing the median may604

change between different Xi.605

An ideal model combination could switch, or gently transition, between models606

(such as manually constructed by Crisci et al., 2017). Since the predictions are combined607

more or less freely in model-based model combinations to yield the best possible fit to608

the observed data, MBMC should be superior to any constant-weight-per-model609

approach (see Fig. 4 right), as was indeed found by Diks and Vrugt (2010). �is610

advantage comes with a severe drawback: a high proclivity to overfi�ing, as we fit the611

same data twice (once to each model, then again to their prediction regression).612

[Fig. 4 approximately here.]613

�is does not seem to be recognised as a problem (despite being a key message of614

Hastie et al., 2009), as all studies we found incorrectly cross-validate the supra-model615

only, not the entire workflow (if at all; e.g. Krishnamurti et al., 1999; �omson et al.,616

2006; Diks and Vrugt, 2010; Breiner et al., 2015; Romero et al., 2016). To correctly617

cross-validate MBMCs, one has to produce hold-outs before fi�ing the contributing618

models, and evaluate the MBMC prediction on this hold-out (Fig. 4, Appendix S5.9 and619

case studies).620

Note that supra-models may differ substantially in their ability to harness the621

28



contributing models. As it is a yet fairly unexplored field in model averaging, analysts622

are advised to try different supra-model types (Fig. 4).623

3.4 Equal weights624

In many fields of science (climate modelling, economics, political sciences), model625

averaging proceeds with giving the structurally different models equal weight, i.e.626

1/M (e.g. Johnson and Bowler, 2009; Knu�i et al., 2010; Graefe et al., 2014; Rougier,627

2016). In ecology, studies analysing species distributions reported equal weights to be a628

very good choice when assessed using cross-validation (Crossman and Bass, 2008;629

Marmion et al., 2009a; Rapacciuolo et al., 2012), but no be�er than the single models on630

validation with independent data (Crimmins et al., 2013). Equal weights may serve as a631

reference approach to see whether estimating weights reduces prediction error for this632

specific set of models. In that sense, we may argue, all the above weight estimation633

approaches only serve to separate the wheat from the chaff; once a set of reasonable634

models has been identified, equal weights are apparently a good approach.635

4 Case studies636

All methods discussed above can be applied to simple regression models, while some637

explicitly rely on a model’s likelihood and can thus not be used for non-parametric638

approaches. We therefore devised two case studies, the first being a rather simple639

example to illustrate the use of all methods in Table 1, and the second a more640

complicated species distribution case study based on a reduced set of methods. Note641

that we do not include adaptive regression by mixing with model screening (ARMS:642

Yang, 2001) because its more sophisticated variations (Yuan and Yang, 2005) are not643

implemented, and the basic ARMS is barely different from AIC-model averaging for a644
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preselected set of models.645

4.1 Case study 1: Simulation with Gaussian response,646

many models and few data points647

In this first, simulation-based case study, we explore the variability of model-averaging648

approaches in the common case where several partially nested models are fit (see649

Appendix S9 for details and code). �e simulation was set up so that several of the650

fi�ed models have similar support as explanations for the data. �is was achieved by651

generating the response differently in each of two groups (using similar, but not652

identical predictors). We simulated 70 data points with 4 predictors yielding 24 = 16653

candidate models, and another 70 for validation. We computed model weights in 19654

different ways (Table 1) and compared the prediction error of weighted averages as655

well as the individual models to the validation data points. Simulation and analyses656

were repeated 100 times.657

Two results emerged from this simulation that are worth reporting. First,658

prediction error (quantified as RMSE) was similar across the 19 weight-computing659

approaches, with a few noticeable exceptions, and most were no be�er than those of660

the best nine single model predictions (the two MBMC approaches, minimal variance661

and the cos-squared scheme: Fig. 6). Second, most averaging approaches gave some662

weight (w > 0.01) to ten or more models (Table 2), despite models being overlapping663

and partially nested, so that we have actually only five (more or less) independent664

models (those containing only one predictor: m2, m3, m5, m9 and intercept-only m1).665

In real data sets, such spreading of weight is the result of data sparseness or extreme666

noise, making important effects stand out less; indeed, half of our candidate models are667

not hugely different, i.e. within ∆AIC < 4.668
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[Figure 6 approximately here.]669

[Table 2 approximately here.]670

4.2 Case study 2: Real species presence-absence data,671

many data points and a moderate number of predictors672

In the second case study we use data on the real distribution of short-finned eel673

(Anguilla australis) in New Zealand (from Elith et al., 2008). �e data are provided in674

the R-package dismo, already split into a 1000-rows training and a 500-rows test data675

set, and featuring 10 predictors. We ran four different model types (GAM,676

randomForest-rF, artificial neural network-ANN, support vector machine-SVM), along677

with two variations of the GLM (best models selected by AIC and BIC). For details see678

Appendix S10.679

�e number of averaging approaches that can be used to compute model weights is680

smaller than in the previous case study, as three of the six models do not report a681

likelihood or the number of parameters, precluding the use of rjMCMC, Bayes factor,682

(W)AIC, BIC, and Mallows’ Cp. In addition, because we do not know the underlying683

data-generating model, we evaluate the models on the randomly pre-selected test data684

provided.685

[Table 3 approximately here.]686

One interesting result is that model averaging was effectively a model selection tool687

in several cases (Table 3). Stacking, bootstrapping, JMA, and to a lesser degree minimal688

variance, BMA-EM and the model-based model combinations yielded non-zero weights689

for only 1 (or 2) models. Apparently, these approaches yielded sub-optimal model690

weights, as these “model selection”-outcomes of model averaging fared worse than691

those that kept all models in the set (equal weight, leave-one-out and cos-squared).692
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Secondly, the best two model averaging algorithms in this case study, apart from693

the median where varying weights are used, identified an approximately equal694

weighting as optimal strategy. �at is somewhat surprising, given that SVM performed695

relatively poorly (and was excluded by BMA-EM, but favoured by cos-squared as a696

more independent contribution). �e likely reason of high weights for the poor SVM is697

that averaging-in less correlated predictions reduces covariances in eqn (5).698

�e good performance of the median in both case studies suggests that using the699

central value of each prediction, rather than give constant weights to the model itself,700

may be even more effective in reducing variance and thus prediction error.701

5 Recommendations702

Despite se�ing out to review the field of model averaging for ecologists, the complexity703

of the topic prevents us from providing final answers. �e recent mathematical704

explanation why estimating optimal weights makes the averaged predictions perform705

poorly (Claeskens et al., 2016) is an example for fundamental limitations of model706

averaging. Many issues seem to be statistically unresolved, or addressed by quick-fixes707

and even fundamental questions remain open, which we will discuss in the final708

section.709

It is unsatisfactory to see the large variance in weights and performance of the710

different averaging approaches in our case studies. Also the literature provides too few711

comparisons of model weights to provide robust advice. In general, our712

recommendations are thus guided by reducing harm, rather than suggesting an optimal713

solution.714
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5.1 Averaged prediction should be accompanied by715

uncertainty estimates716

Just like any other statistical approach, model averaging can also be misapplied.717

Focussing entirely on the predictions rather than their spread can mislead, as Knu�i718

et al. (2010) showed for combining precipitation predictions: spatial heterogeneity719

cancelled out across models, giving the erroneous impression of li�le change when in720

fact all models predict large changes (albeit in different regions). Similarly, King et al.721

(2008) found that averaging parameters from two competing models led to no effect of722

two hypothesised impacts, although in both models a (different) driver was very723

influential. We thus strongly encourage including at least model-averaged confidence724

intervals alongside any prediction, possibly in addition to the individual model725

predictions, to prevent erroneous interpretation of averaged predictions. Also, more726

a�ention should be paid to the full model. It has many desirable properties (unbiased727

parameter estimates, very good coverage), but suffers from violation of the parsimony728

principle (“Occam’s razor”) and requires more consideration in which form covariates729

should be fit. Its larger prediction error, compared to the over-optimistic single-best730

partial model, is the reason for correct confidence intervals.731

5.2 Dependencies among model predictions should be732

addressed733

Statistical models, which aim to describe the data to which they are fi�ed, will o�en734

have correlated parameters and fits; process models may overlap in modelled processes.735

Having highly similar models in the model set will inflate the cumulative weight given736

to them (as illustrated in Appendix S6) . One way to handle inflation of weights by737

highly-related models is to assign prior model probabilities in a Bayesian framework.738
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Another approach would be to pre-select models of different types (see next point).739

Alternatively, the cos-square scheme of Garthwaite and Mubwandarikwa (2010) uses740

the correlation matrix of model projections to appropriately change weights of741

correlated models. It is the only approach currently doing so, and, while the jury is still742

out on this method, our case study results look only mildly promising (Fig. 6, Tables 2743

and 3).744

5.3 Validation-based weighting or validation-based745

pre-selection of models746

Madigan and Ra�ery (1994), Draper (1995) and more recently Yuan and Yang (2005)747

and Ghosh and Yuan (2009), have argued that only “good” models should be averaged.748

Different ways of combining model averaging with a model screening step have been749

proposed (Augustin et al., 2005; Yuan and Yang, 2005; Ghosh and Yuan, 2009), in which ,750

model selection precedes averaging (pre-selection). �is will happen implicitly, and in751

a single step, if any of the model weight algorithms discussed above a�ributes a weight752

of effectively zero to a model, as happened in case study 2. How prevalent this effect is753

in real world studies is unclear, as weights are rarely reported.754

In contrast, some studies select models a�er the predictions are made (e.g. �uiller,755

2004; Forester et al., 2013). These studies have averaged models which predict in the756

same direction (along the “consensus axis”: Grenouillet et al. 2010), which are the best757

50% in the set (Marmion et al., 2009a), or however many one should combine to758

minimise prediction error. Such approaches necessitate addressing the challenge of759

using data twice (Lauzeral et al., 2015). Post-selection reduces the ability of “dissenting760

voices” (i.e. less correlated predictions) to reduce prediction error and instead reinforce761

the trend of the model type most represented in the set. As a consequence, their762
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uncertainty estimation will be overly optimistic. We do not advocate their use.763

We suggest to employ validation-based methods of model averaging rather764

than relying on model-based estimates of error, i.e. (leave-one out) cross-validation and765

stacking rather than AIC. On account of us rarely believing our models in ecology, test766

data give us some capacity to make allowances for predictive bias. It is probably of767

li�le practical relevance whether models are pre-selected by validation-based estimates768

of error and then averaged with equal weights or weighted by validation-based769

estimates of error without pre-selection.770

5.4 Process models are no different771

In fishery science, averaging process models is relatively common (Brodziak and Piner,772

2010), as it is in weather and climate science (Krishnamurti et al., 1999; Knu�i et al.,773

2010; Bauer et al., 2015). �ere are at least two connected challenges such enterprises774

face: validation and weighting. O�en process models are tuned/calibrated on all sets of775

data available, in the logical a�empt to describe all relevant processes in the best776

possible way. �at means, however, that no independent validation data are available,777

so that we cannot use the prediction accuracy of different models to compute model778

weights. Consequently, all models receive the same weight (e.g. in IPCC reports, or for779

economic models), or some reasonable but statistically ad-hoc construction of weights780

is employed (e.g. Giorgi and Mearns, 2002). In recent years, hind-casting has gained in781

popularity, i.e. evaluating models by predicting to past data. �is will only be a useful782

approach if historic data were not used already to derive or tune model parameters,783

and if hindcasting success is related to prediction success (which it need not be, if784

processes or drivers change).785

Cross-validation is o�en infeasible for large models, as run-times are prohibitively786

long. However, the greatest obstacle to averaging process models is the absence of truly787
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equivalent alternative models, which predict the same state variable. Fishery science is788

one of the few areas of ecology in which commensurable models exist and are being789

averaged in a variety of ways (e.g. Stanley and Burnham, 1998; Brodziak and Legault,790

2005; Brandon and Wade, 2006; Katsanevakis, 2006; Hill et al., 2007; Katsanevakis and791

Maravelias, 2008; Jiao et al., 2009; Hollowed et al., 2009; Brodziak and Piner, 2010).792

Carbon and biomass assessments are also moving in that direction (Hanson et al., 2004;793

Butler et al., 2009; Wang et al., 2009; Picard et al., 2012). �ese fields would profit from794

averaging methods such as minimal variance and cos-squared, which do not require795

cross-validation and may perform be�er than either equal weights or BMA-EM, and796

probably be�er than MBMC’s potentially overfi�ed supra-models.797

Finally, irrespective of the approach chosen, model averaging studies should report798

model weights, and predictions should be accompanied by estimates of prediction799

uncertainty.800
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consensus in 21st century projections of climatically suitable areas for African942

vertebrates. Global Change Biology, 18:1253–1269.943

Garthwaite, P. H. and E. Mubwandarikwa. 2010. Selection of weights for weighted944

model averaging. Australian & New Zealand Journal of Statistics, 52:363–382.945

Gelman, A., J. Hwang, and A. Vehtari. 2014. Understanding predictive information946

criteria for Bayesian models. Statistics and Computing, 24:997–1016.947

Ghosh, D. and Z. Yuan. 2009. An improved model averaging scheme for logistic948

regression. Journal of Multivariate Analysis, 100:1670–1681.949

Gibbons, J. M., G. M. Cox, A. T. A. Wood, J. Craigon, S. J. Ramsden, D. Tarsitano, and950

N. M. J. Crout. 2008. Applying Bayesian Model Averaging to mechanistic models: An951

example and comparison of methods. Environmental Modelling & So�ware,952

23:973–985. WOS:000255770300002.953

Gibbs, J. W. 1902. Elementary Principles in Statistical Mechanics. Charles Scribner’s954

Sons, New York.955

Giorgi, F. and L. O. Mearns. 2002. Calculation of average, uncertainty range, and956

reliability of regional climate changes from aogcm simulations via the “reliability957

ensemble averaging” (rea) method. Journal of Climate, 15:1141–1158.958

Gneiting, T., A. E. Ra�ery, A. H. Westveld, and T. Goldman. 2005. Calibrated959

probabilistic forecasting using ensemble model output statistics and minimum CRPS960

estimation. Monthly Weather Review, 133:1098–1118.961

Graefe, A., J. S. Armstrong, R. J. Jones, and A. G. Cuzan. 2014. Combining forecasts: An962

application to elections. International Journal of Forecasting, 30:43–54.963
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Table 1: Approaches to model averaging, in particular to deriving model weights, their computational speed, likelihood/number of parameter

requirements, as well as references to implementation in R.

Model averaging approach speed likelihood value |pm required?1 comments (R-package)2

Reversible jump MCMC slow yes|no Requires individual coding of eachmodel. (rjmcmc)

Bayes factor slow yes|no Requires specification of priors. (BayesianTools,

BayesVarSel)

Bayesian model averaging using expectation max-

imisation (BMA-EM)

moderate yes|no Requires validation step. (BMA, EBMAforecast)

Fit-based weights rapid-slow yes|yes3 AIC, BIC and Cp can be easily computed from fit-

ted models (stats, MuMIn). (LOO-CV as option in

MuMIn,4 also in loo, cvTools, caret, crossval). DIC

& WAIC should be implemented in a Bayesian ap-

proach for full benefit. (BayesianTools)

Adaptive regression by mixing with model screening

(ARMS)

moderate yes|yes No up-to-date implementation. (ARMS5)

Bootstrapped model weights slow no|no (MuMIn,4 boot, resample)

Stacking slow no|no Requires validation step. (MuMIn4)

Jackknife model averaging (JMA) slow no|no Computation time increases linearly with n.

(MuMIn,4 boot, resample)

Minimal variance rapid no|no Based only on predictions. (MuMIn4)

Cos-squared rapid no|no Based only on predictions. (MuMIn4)

Model-based model combinations moderate no|no Requires se�ing up regression-type analysis with

model predictions, plus validation step. (2)

1/M rapid no|no M is number of models considered.
1 Does this method require a maximum-likelihood fit and/or number of parameters (pm of the model? Typically these two are linked, since maximum-likelihood approaches

typically employ the GLM, which provides both information.

2 See also appendix for details and case studies for examples of implementation in R.

3 While non-parametric models have no readily extractable number of parameters, a Generalised Degrees of Freedom-approach could be used to compute them (Ye, 1998).

Similarly, but more efficiently, cross-validation can be used to estimate the effective number of parameters (Hauenstein et al., 2017).

4 Implemented in MuMIn as part of this publication.

5
http://users.stat.umn.edu/∼sandy/courses/8053/handouts/Aaron/ARMS/
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Table 2: Model weights (averaged across 100 repetitions) given to the 16 linear regression models of case study 1 by different weighting methods

(see Table 1 for abbreviations), arranged by increasing prediction error (last column, median across replications). Only the best (m10) and the full

model are shown from the 16 candidate models. LOO-CV: leave-one-out cross-validation using R2 or RMSE as measure of model performance. For

code see case study Appendix S9.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 RMSE

rjMCMC median 0.00 0.01 0.00 0.11 0.00 0.00 0.08 0.11 0.00 0.14 0.00 0.09 0.14 0.13 0.10 0.09 1.069

BIC 0.00 0.01 0.00 0.18 0.00 0.03 0.17 0.04 0.00 0.19 0.00 0.04 0.24 0.05 0.05 0.01 1.074

median1 – – – – – – – – – – – – – – – – 1.075

m102 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1.076

rjMCMC weights 0.00 0.01 0.00 0.11 0.00 0.00 0.08 0.11 0.00 0.14 0.00 0.09 0.14 0.13 0.10 0.09 1.076

boot 0.00 0.01 0.00 0.15 0.00 0.04 0.17 0.03 0.00 0.16 0.00 0.08 0.22 0.04 0.07 0.03 1.076

AIC 0.00 0.00 0.00 0.13 0.00 0.02 0.13 0.08 0.00 0.14 0.00 0.08 0.18 0.09 0.09 0.05 1.077

WAIC 0.00 0.00 0.00 0.13 0.00 0.02 0.11 0.09 0.00 0.14 0.00 0.08 0.16 0.10 0.11 0.06 1.078

MMA 0.00 0.00 0.00 0.13 0.00 0.02 0.12 0.08 0.00 0.14 0.00 0.09 0.18 0.10 0.10 0.06 1.078

stacking 0.00 0.07 0.02 0.08 0.04 0.06 0.13 0.07 0.04 0.06 0.06 0.07 0.11 0.07 0.08 0.04 1.079

JMA 0.00 0.01 0.00 0.16 0.00 0.05 0.22 0.01 0.00 0.19 0.03 0.01 0.29 0.02 0.02 0.00 1.079

full2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.086

BMA-EM 0.00 0.08 0.01 0.08 0.02 0.07 0.14 0.06 0.03 0.08 0.10 0.04 0.15 0.06 0.06 0.03 1.104

BayesFactor 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 1.109

1/M 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 1.110

LOO-CV (R2) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 1.110

LOO-CV (RMSE) 0.09 0.06 0.08 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 1.123

MBMC (LM)3 – – – – – – – – – – – – – – – – 1.135

MBMC (rF)3 – – – – – – – – – – – – – – – – 1.181

minimal variance −1.15 0.42 0.19 0.00 0.64 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.208

cos-squared 0.00 0.00 0.30 0.00 0.21 0.21 0.02 0.01 0.00 0.00 0.24 0.00 0.00 0.00 0.01 0.00 1.209

1 Weights not available, as different models contribute to the median at each replication.
2 Prediction from individual model.
3 Weights are variable. LM and rF refer to a linear model and a randomForest as supra-model, respectively,
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Table 3: Model weights given to the six model types of case study 2 (GLM, GAM, randomFor-

est, artificial neural networks and support vector machine) by different weighting methods

(see Table 1 for abbreviations), arranged by decreasing fit of the averaged predictions to test

data, assessed as log-likelihood (ℓ) (last column). LOO-CV: leave-one-out cross-validation

using R2 or RMSE as measure of model performance. For code see case study Appendix S10.

Method GLMAIC GLMBIC GAM rF ANN SVM ℓ

median 1 (0.176) (0.216) (0.212) (0.162) (0.146) (0.088) −182.84

LOO-CV 0.168 0.168 0.166 0.169 0.165 0.164 −184.82

equal weight 0.167 0.167 0.167 0.167 0.167 0.167 −184.86

cos-squared 0.122 0.104 0.178 0.188 0.186 0.221 −185.02

BMA-EM 0.388 0.192 0.000 0.420 0.000 0.000 −185.24

stacking 0.000 0.000 0.000 1.000 0.000 0.000 −186.82

bootstrap 0.000 0.000 0.000 1.000 0.000 0.000 −186.83

minimal variance 0.155 0.469 −0.036 0.58 −0.026 −0.141 −188.45

MBMC (GAM) 3 – – * * – – −198.23

MBMC (rF) 3 – – – – – – −200.20

JMA 0.000 0.000 0.000 0.000 0.000 1.000 −214.68

MBMC (GLM) 3 – – * * – – −268.52

rF 2 0 0 0 1 0 0 −186.83

GAM 2 0 0 1 0 0 0 −193.40

ANN 2 0 0 0 0 1 0 −194.28

GLMAIC
2 1 0 0 0 0 0 −197.48

GLMBIC
2 0 1 0 0 0 0 −197.73

SVM 2 0 0 0 0 0 1 −214.68

1 Weights are proportion of times this model was actually used to compute the median value divided by two.

2 Prediction from individual model.

3 Weights are variable. Asterisk indicates that a model’s prediction was a significant term in the supra-model.

GAM, rF and GLM refer to three different types of supra-model: a generalised additive model, a randomForest,

and a generalised linear model.
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Figure 1: Conceptual depiction of 50% model averaging uncertainty intervals (blue) for

different cases of bias and variance in four models (using equal weights). Distributions

are the sampling distribution of a prediction from the four models. Truth is indicated by a

vertical line. Shaded areas are outer 50% predictions of the best model, illustrating that the

best model increasingly predicts to outside the model average’s interval as variance becomes

large relative to bias. From top to bo�om, the source of error morphs from between-model

variance to within-model variance. Accordingly, model selection would be more appropriate

in the top situation, while model averaging would be superior in the lower situation.
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Figure 2: Conceptualised outcomes of model averaging. Sampling distributions of model

predictions are depicted as stylised empty triangle on the see-saw (taller means less uncer-

tain). Filled triangles represent the model predictions with unidirectionally bias (top row)

or straddling truth (bo�om row), and positive, no, or negative covariances among model

predictions in columns. In the top row, grey shaded quadrants indicate model combinations

with bias in the same direction, leading to a biased average (tilted see-saw). In the bo�om

row, grey shaded quadrants indicate opposite biases, which may lead to less biased aver-

aged prediction, assuming optimal model weights were found. Changes in the covariance

(columns) affect the uncertainty of the average, with negatively correlated predictions (right)

yielding lowest uncertainty.
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Figure 3: When to average, in the simplest case of two models that make correlated Gaussian

predictions. �e models are here described by their biases (b1, b2, not shown), their standard

deviations (σ1, σ2), and by the correlation (ρ) between them. Each panel shows the regions

in the (σ1, ρ) plane where model 1 is best (blue shading and contour line), model 2 is best

(orange shading and contour line), and where the optimal average is best (colour gradient

between blue and orange). Top row represents the case where weights are known (i.e.

without error: σw = 0), while the second row represents exactly the same se�ings, but

with estimated weights (with uncertainty σw = 0.2). Notice that when w is estimated with

uncertainty, the contours marking the transition between each single model and the average

move into the washed-out colours, i.e. deviate from the fixed w situation in the upper panels.

�ese curves now represent a level set at the values w̄∗
1 = 1− σw (blue curve) and w̄∗

2 = σw

(orange curve). As a consequence, the area where model averaging with estimated weights

is superior to the be�er single model decreases substantially relative to the fixed w case,

and disappears completely for σw ≥ 0.5. Formal derivations for the contours and the critical

weights is given in Appendix S2, the interactive tool itself in Data S1. Biases are set to b1 = 3

and b2 = 2.
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Figure 4: A simple model-based model combination example. Le�: �ree models (solid grey

lines: constant, linear and quadratic) fi�ed separately to a data set (points, following the thin

black line). Using a linear model (with quadratic terms: red) to combine the three models’

fits may improve fit, even more so than the full model (green), and with narrower confidence

intervals. Do�ed lines indicate the weight that each model receives at each point in the

linear model. Such MBMC did not necessarily improve fit, as randomForest-based model

combinations showed (blue). Right: Using 5-fold cross-validation around the entire workflow

shows that the linear supra-model (Supra-LM) indeed improved prediction (decreased root

mean squared prediction error), while the randomForest-supra-model (Supra-rF) did not. �e

full model (as reference) comprised all terms present in Supra-LM, but was fi�ed directly.
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Figure 5: A comparison of different approaches to quantifying uncertainty when combining

predictions from four linear models (dashed curves) with equal weights. Top: Truth is

indicated by the vertical line. Error propagation based on bootstrapped estimates for eqn (5),

Buckland et al.’s correction and model mixing yield similar averaged confidence distributions,

while the full model is shi�ed. Bo�om: Histograms of Bayesian p-values (the quantile of the

true value in the posterior distribution across 1000 simulations) for each of the four methods

, which should be uniform (black background). Number gives actual coverage for the 95%

confidence interval. The error propagation estimate is too conservative with coverage close

to 100%. Coverage of the approach of Buckland et al. and mixing are slightly too low in this

example.
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Figure 6: Prediction error of different model averaging approaches (100 repetitions) for case

study 1. Box represents quartiles, white line the median. Approaches to the le� of the vertical

line are very similar, and no be�er than nine of the candidate models. See Table 1 for list of

approaches, and Appendix S9 for list and fits of the individual models.
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