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ABSTRACT

Strategies to reduce domestic heating loads by minimizing the infiltration of cold air through

adventitious openings located in the thermal envelopes of houses are highlighted by the building

codes of many countries. Consequent reductions of energy demand and CO2e emission are often

unquantified by empirical evidence. Instead, a mean heating season infiltration rate is commonly

inferred from an air leakage rate using a simple ratio scaled to account for the physical and

environmental properties of a dwelling. The scaling does not take account of the permeability of party

walls in conjoined dwellings and so cannot differentiate between the infiltration of unconditioned

ambient air that requires heating, and conditioned air from adjacent dwellings that does not.

A stochastic method is presented that applies a theoretical model of adventitious infiltration to predict

distributions of mean infiltration rates and the associated total heat loss in any stock of dwellings

during heating hours. The method is applied to the English and UK housing stocks and provides

probability distribution functions of stock infiltration rates and total heat loss during the heating

season for two extremes of party wall permeability. The distributions predict that up to 79% of the

current English stock could require additional purpose-provided ventilation to limit negative health

consequences. National models predict that fewer dwellings are under-ventilated. The distributions

are also used to predict that infiltration is responsible for 3-5% of total UK energy demand, 11-15% of

UK housing stock energy demand, and 10-14% of UK housing stock carbon emissions.
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HIGHLIGHTS

 Heating season infiltration and heat loss distributions for English housing stock.

 Up to 79% of English dwellings may be under ventilated.

 Exfiltration estimated to be responsible for 3-5% of total UK energy demand.

 Exfiltration estimated to be responsible for 11-15% UK housing stock energy demand.

 Exfiltration estimated to be responsible for 10-14% UK housing stock CO2 emissions.
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1 INTRODUCTION

Many countries are obligated to reduce their greenhouse gas (GHG) emission rates in order to limit the

effects of climate change. The UK is legally required by its Climate Change Act [1] to reduce its 1990

GHG emissions by 80% by 2050. A reduction in the energy demand of the domestic housing stock,

which accounts for more than a quarter of UK energy demand and GHG emissions [2], is a primary

target for cuts via the Green Deal home improvement scheme [3-4]. One strategy is to reduce domestic

heating loads by minimizing the infiltration of cold air and the concurrent exfiltration of conditioned

air through adventitious (unintentional) openings located in the thermal envelope. Although logical,

this strategy cannot be said to be based on empirical evidence that provides measurements of mean

infiltration rates during the heating season and associated heat loss. Instead, measurements of

ventilation are presented that combine adventitious and purpose-provided (intentional) ventilation

(PPV) [2,5], or are for individual houses [6-7] that are not necessarily representative of the broader

housing stock [8]. This is perhaps understandable, because the longitudinal measurement of infiltration

is challenging. Therefore, the resistance of the thermal envelope to airflow is assessed by artificially

and systematically increasing the difference between the internal and external air pressures οܲ (Pa)

and measuring the airflow rate ሶܸ (m3
/h) across it. These parameters are conventionally related by a

power law

https://www.researchgate.net/publication/257126332_Domestic_UK_retrofit_challenge_Barriers_incentives_and_current_performance_leading_into_the_Green_Deal?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
https://www.researchgate.net/publication/257171843_Ventilation_in_European_dwellings_A_review?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
https://www.researchgate.net/publication/228889067_A_Comparison_of_Measured_and_Simulated_Air_Pressure_Conditions_of_a_Detached_House_in_a_Cold_Climate?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
https://www.researchgate.net/publication/47754329_Modeled_infiltration_rate_distributions_for_US_housing?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
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ሶܸ = ܽ{οܲ}௕ (1)

where ܽ (m
3
/h/Pa

b
) and ܾ are a flow coefficient and flow exponent, respectively, determined by

regression [9-10]. It is common to report ሶܸ at 50Pa, interpolated from measurements, when it is

known as an air leakage rate (ALR), ሶܸହ଴ (m
3
/h). In order to compare ALRs measured in different

buildings, it is normalized by a common parameter, such as building volume to become an air change

rate ହܰ଴ (h
-1
), or by the thermal envelope area to become an Air Permeability, ܳହ଴ (m

3
/h/m

2
)
1
[9-11].

Many building codes state limiting values of ହܰ଴ or ܳହ଴; for example, a ܳହ଴ of 10m
3
/h/m

2
is the

maximum permissible for a new UK dwelling [12].

Operational pressure differences are typically an order of magnitude lower than 50Pa at around 4Pa,

and here Etheridge [13] argues that an acceptable value of ܳସ is implicit in the acceptable value of ܳହ଴
because one can be estimated from the other if ܾ is known. The standard procedure used to determineܽ and ܾ measures ሶܸ at intervals between ͳͲ ൑ οܲ ൑ ͳͲͲPa [9-10] to limit the effect of noise from

naturally occurring wind and buoyancy on the measurement of the air leakage rate. Systematic

uncertainty arises from the fact that the shape of the leakage characteristic is not known when 0 <οܲ < 10Pa and here Equation (1) may not hold [13]. A new measurement procedure may be required

that satisfies this knowledge gap [14-15]. Nevertheless, these uncertainties mean that a value of ܳସ,
extrapolated from the high pressure measurements, is not used directly to predict an operational

infiltration rate. Instead, other empirical relationships are used that relate ሶܸହ଴ to a mean heating season

infiltration rate തܸூ (m3
/h), often by a simple ratio known as the leakage-infiltration ratio, ܮ [16].൫ ሶܸହ଴ തܸூΤ = ܳହ଴ തܳூΤ = ହܰ଴ ഥܰூΤ ൯ ൎ .ܮ ܮ(2) is frequently taken to be equal to 20 and then scaled; for example, the National Building Code of

Finland [17] uses 20=ܮ for 3 and 4 storey dwellings and increases ܮ as the number of storeys reduces.

Similarly, British Standard 5925 [18] states, without reference, that ହܰ଴ 20Τ is an indicator of the

average heating season infiltration rate in UK dwellings, ഥܰூ. The UK government’s method of

assessing the energy performance of dwellings is the Standard Assessment Procedure (SAP) and is

1 We note that this formulation cancels unproblematically to m/h, which has a simple and obvious physical

interpretation. However, the units of m
3
/h/m

2
are those most commonly ascribed to air permeability and so are

used herein.

https://www.researchgate.net/publication/245383317_Determining_the_adventitious_leakage_of_buildings_at_low_pressure_Part_1_Uncertainties?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
https://www.researchgate.net/publication/245383246_Determining_the_adventitious_leakage_of_buildings_at_low_pressure_Part_2_Pulse_technique?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
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based on the Building Research Establishment Domestic Energy Model (BREDEM) domestic energy

model [19]. Both SAP and BREDEM apply 20=ܮ in the first instance and attribute further infiltration

(unmeasured by an air leakage test) to fans, chimneys, and ducts, and scale the total infiltration rate

according to the average wind speed and the number of sheltered sides.

The application of a steady-state weather-independent measurement of airflow to predict one that is

highly dynamic and weather dependent is obviously problematic and concern about the widespread

use of this heuristic has been raised. For example, Jones et al. [20] identify great uncertainty in its

predictions for conjoined (multi-family) dwellings, and that it cannot be used to differentiate between

the infiltration of unconditioned ambient air that requires heating and conditioned air from an adjacent

dwelling. This is a phenomenon that has been highlighted by guarded zone tests in apartments where

the airflow through party wall accounts for 31-58% of the total air leakage rate [21]; see [20] for

further examples. Jones et al. [20] propose that two extreme assumptions can be made about the

permeability of party walls of a dwelling at 50Pa indicated by their relative permeability ෨ܳ : A( ෨ܳ = 1)

the party walls have the same permeability as the dwelling and so airflow to and from adjacent

dwellings does occur; or A( ෨ܳ = 0) the party walls are impermeable and so airflow to and from

adjacent dwellings does not occur. Using a theoretical approach the authors predict for assumption

A( ෨ܳ = 1) that ܮ is significantly higher than that used by building codes whereas for assumption

A( ෨ܳ = 0) ܮ� is predicted to be close to that used in practice. The consequences of these findings are

two-fold. Firstly, if A( ෨ܳ = 1) is true, then operational heat losses are less than those predicted by

models that apply ,ܮ and government-funded schemes that aim to tighten the European housing stock

could have longer payback periods than expected. Secondly, if A( ෨ܳ = 0) is true, the same schemes

may be appropriate.

This predicted divergence of outcomes introduces great uncertainty into the effectiveness of any

policy that aims to reduce energy demand through fabric tightening and there is a need to determine

the distribution of infiltration rates in stocks of houses that have a large number of multi-family

dwellings. To do this, an exhaustive field survey is required to give a reliable empirical basis for the

prediction of ഥܰூ or തܳூ from dwelling characteristics; see Chan et al. [22] who analyse the sizeable US

air leakage database (of size ݊=70,000). In the short term, a modelling approach, such as that

https://www.researchgate.net/publication/257925031_The_Effect_of_Party_Wall_Permeability_on_Estimations_of_Infiltration_from_Air_Leakage?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
https://www.researchgate.net/publication/257925031_The_Effect_of_Party_Wall_Permeability_on_Estimations_of_Infiltration_from_Air_Leakage?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
https://www.researchgate.net/publication/257925031_The_Effect_of_Party_Wall_Permeability_on_Estimations_of_Infiltration_from_Air_Leakage?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
https://www.researchgate.net/publication/273441697_Air_Leakage_Characteristics_and_Leakage_Distribution_of_Dwellings_in_High-rise_Residential_Buildings_in_Korea?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
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described by Persily et al. [8], provides an easier means of predicting the distribution of infiltration

rates in a stock of dwellings using all available data as inputs. The data generated by the model can be

used to investigate the likely forms of, and uncertainties in, relationships between ହܰ଴ and ഥܰூ.
Accordingly, this article uses a stochastic approach to generate distributions of mean infiltration rate

during heating hours and total exfiltration heat loss for both extreme party wall permeability

assumptions for the English housing stock, although the method can be applied to any stock. The

energy demand and carbon emissions for the larger UK housing stock are also estimated. It does this

by using an existing model of dwelling infiltration and exfiltration informed by sources of quantitative

data. Both the model and its inputs are discussed in Section 2. In Section 3 they are used to generate

the distributions, and in Section 4 the predictions are used to investigate the usefulness of ܮ and of

other simplified models that apply it. Finally, the sensitivity of the model to its inputs is assessed in

Section 5.

2 METHODS

There are no known large-scale measurements or models of heating season infiltration rates in English

dwellings and so a modelling approach is proposed. An infiltration model requires three things: a

generic model of dwelling infiltration and exfiltration, knowledge of the properties of a large

representative sample of a dwelling stock that can be applied to the model, and a suitable statistical

approach that enables the stock variability and parametric uncertainty to be captured (measurements of

dwelling properties reflect both). The three requirements are discussed using the English housing stock

as a case study, although the approach is readily transferable to housing stocks in other countries.

Figure 1 shows the proportion of the dwelling types that comprise the English stock. Generally,

detached houses do not share walls with adjacent dwellings, semi-detached and end-of-terrace houses

share one vertical wall with adjacent dwellings, mid-terrace houses share at least two vertical walls,

and apartments share up to five of their horizontal and vertical surfaces. Accordingly, Figure 1 shows

that 78% of the English stock shares at least one of their external surfaces with another dwelling and

so any difference between predictions for the two permeability assumptions A( ෨ܳ = 1) and A( ෨ܳ = 0)

is expected to be clearly observed in four of the five dwelling types.

https://www.researchgate.net/publication/47754329_Modeled_infiltration_rate_distributions_for_US_housing?el=1_x_8&enrichId=rgreq-79201285-5ec1-4be7-8ca9-ed7af6998c07&enrichSource=Y292ZXJQYWdlOzI3Nzk3NzQxODtBUzoyMzg3MzMzMzMxMDI1OTJAMTQzMzkyOTg3MDgzNw==
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In this section, a model of infiltration and exfiltration heat loss during the heating season is selected,

suitable sources of input data are identified, a method of obtaining suitable distributions is established,

and existing simplified models of infiltration are defined for comparison. Finally, a methodology is

given to test the dependence of the model’s outputs on its inputs.

2.1 Modelling infiltration and exfiltration heat loss

For any model there is always a trade-off between model complexity and data on one hand and

computational speed on the other. Variations in the predictions of a model are a function of stock

variability, parametric uncertainty (uncertainties in the inputs to the model), and structural uncertainty

(uncertainty in the model formulation itself). When modelling a stock of dwellings, the sample size is

expected to be large and so a computationally fast model is desirable. Furthermore, the variation in

geometry types across a stock dictates that the model should also be versatile. A final requirement is

that the workings and limitations of the model must be documented and its predictions compared

against empirical data or, less desirably, corroborated against the predictions of other models.

This article applies DOMVENT3D, a model of infiltration and exfiltration through any number of

façades developed initially by Lowe [23] on the basis of a theoretical formulation by Lyberg [24], and

subsequently extended by Jones et al. [25]. It assumes two things about those façades: all are

uniformly porous; and the pressure distribution over a vertical surface is linear. DOMVENT3D

integrates the airflow rate in the vertical plane to predict the total airflow rate through any number of

façades [25]. DOMVENT3D makes further assumptions about the dwelling. Following Etheridge [13],

it assumes that all rooms are interconnected and internal flow resistances are negligible. Each

horizontal and vertical surface of the external envelope requires only a single flow equation linked by

a continuity equation, thus reducing computational time. DOMVENT3D’s final assumption follows

Jones et al. [20] who state that adjacent dwellings are assumed to experience identical environmental

conditions and thus have the same internal air pressure. Therefore, airflow through permeable party

walls and floors does not occur under operational conditions and so is only considered through

external surfaces. DOMVENT3D is implemented using bespoke MATLAB code [26] available online

[27]. Its assumptions, merits (including advantages over other models of infiltration), limitations, and
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the corroboration of its predictions are discussed briefly in Appendix A and in depth elsewhere

[20,25].

DOMVENT3D requires inputs that may be unique to a dwelling or are general to a sub-stock of

dwellings bounded by a geographic region. Unique inputs comprise the flow exponent, internal air

density, the dimensions of all permeable external vertical (façades) and horizontal (ceilings and floors)

surfaces, scaled wind speed (by building height and terrain), and façade wind pressure coefficients.

General inputs are the altitude, ambient air temperature ௘ܶ௫௧ (ºC), regional wind speed, and wind

orientation. Where appropriate, airflow constants are calculated using ASHRAE Standard

Atmospheric Conditions [28]. Other sources of data are discussed in Section 2.2.

The exfiltration heat loss (ݐ)ܪ (W) at an instant in time ݐ is estimated by

(ݐ)ܪ = ூܸሶ ห(ݐ)οܶܿ(ݐ)ҧߩ(ݐ)
{்೔೙೟(௧)ି ೐்ೣ೟(௧)}ஹଷ (3)

where ሶܸூ (m3
/s) is the infiltration rate, ҧߩ (kg/m3

) is the mean of the internal and external air densities, ܿ
is the specific heat capacity of air (Jkg

-1
K

-1
), and οܶ (K) is the difference between the internal and

ambient air temperatures. The internal air temperature, ௜ܶ௡௧ (ºC), of a typical unheated English house

is, on average, approximately 3ºC higher than ௘ܶ௫௧; the difference is attributable to solar and casual

heat gains and fabric properties that affect heat transfer and thermal inertia. Therefore, the heating

system is assumed to function only when ௘ܶ௫௧ is at least 3ºC below ௜ܶ௡௧ [29-31]. Equation (3) is

integrated over the entire heating season to estimate the total heat loss, ூܪ (kWh) via exfiltration.

2.2 Model inputs

The English housing stock comprises 22.3 million dwellings, of which a statistically representative

sample of 16,150 dwellings is documented by the 2009 English Housing Survey (EHS) [32].

Geometric, physical, and environmental information is given for each sample. Although the EHS is

data rich, DOMVENT3D’s inputs are not always explicitly available and so metadata must be derived

from the EHS and other sources, or assumed. Inputs to DOMVENT3D may be divided into three

distinct types and are tabulated in Appendix B: geometric (dwelling dimensions, dimensions of blocks

of dwellings, and orientation), physical (ܳହ଴, ܾ, and façade pressure coefficients), and environmental
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(location, local wind speed and direction, internal and ambient temperatures, terrain type, and local

shielding) parameters. Correlations between the input parameters are considered in Section 2.5. Each

metadata type is discussed in turn, beginning with geometric data.

2.2.1 Geometric metadata

The EHS assumes that two connecting cuboids can reasonably represent the geometry of ~98% of

English dwellings [33]. The proportion of each surface shared with another dwelling is given and is

not always 100%; for example, a terraced house might be staggered in the horizontal plane. The

cuboid model is constructed following the Cambridge Housing Model (CHM) [34] used to estimate

the energy demand and equivalent carbon dioxide (CO2e) emissions of the UK housing stock [2].

While the EHS gives significant information about each of the sampled dwellings, it is not always

desirable to apply it directly. For example, although the EHS gives the number of storeys in an

apartment block and the vertical location of the apartment within the block, there is no evidence that

this vertical location is important. Accordingly, the vertical location of the apartment is a random

variable uniformly sampled between the boundaries of the block dimensions and commensurate with

the number of apartment floors (some have several floors). Dwelling orientation is not given by the

EHS and so it is assumed to be a uniformly distributed random variable between Ͳ ൑ ߙ < 360 degrees

(°). Other geometric parameters must also be assumed; for example, the number of dwellings in a

block of apartments informs the calculation of physical parameters, such as wind pressure coefficients

(see Section 2.2.3), but is not always given by the EHS. In the absence of any direct measurement of

the aspect ratio (ܴܣ) of a block of terraced houses or apartments (a ratio of block width to depth), the

number of dwellings in a block is arbitrarily assumed to be a uniformly distributed random variable

between 3 and 20. The minimum is chosen because it is the smallest number of houses that can

comprise a terrace, and in the absence of evidence, the maximum is an arbitrary large integer. Variable

inputs introduce a distribution of outputs that enables a sensitivity analysis to be undertaken in Section

5 to evaluate their impact on the predictions of DOMVENT3D. All geometric inputs are given in

Table B1.
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2.2.2 Physical metadata

To the best of the authors’ knowledge, there are no large-scale measurements of operational

infiltration rates in the English housing stock. However, there are a limited number of databases ofܳହ଴ values for UK dwellings and the biggest two are applied here. Pan [35] gives a histogram of ܳହ଴
values for 287 new English houses constructed after 2006, and Stephen [36] gives a histogram of ܳହ଴
values for 384 UK dwellings (also reported in [37]) constructed before 2000. Although there is a

requirement to record ܳହ଴ in a proportion of all dwellings constructed after 2006 [38] they represent a

small percentage of the total stock, ~4% [32], and so there is no direct knowledge of ܳହ଴ for the

majority of English dwellings. The existing data [36] shows there is little variation across age bands

for houses built before 2000 and so inverse cumulative distribution functions are formed from the

published histograms (for all dwelling types together) of Pan and Stephen using Piecewise Cubic

Hermite Interpolating Polynomials and are applied if a dwelling is constructed pre-2000 and post-

2000, respectively. It is acknowledged that Pan’s data is for dwellings constructed post-2006, but its

application to post-2000 dwellings is the best compromise that the EHS dwelling age groupings allow.

The flow exponent, ܾ, characterises the airflow regime through an air leakage path (ALP) and is a

function of its geometry and surface roughness. Its value affects both the pressure difference across an

ALP and the airflow rate through it. Most infiltration models assume a constant value of ܾ = 0.66

[37], but Sherman [16] shows that a Gaussian distribution with a mean of µ=0.65 and a standard

deviation of ı=0.08 best represents more than 1900 measurements made in U.S. dwellings. Sherman’s 

distribution [16] is very similar to the smaller international AIVC data set [37] and so ܾ is assumed to

be a normally-distributed random variable with those parameters safeguarded against negative values.

Wind pressure coefficients are defined for the horizontal and vertical surfaces. For the latter, the

algorithm of Swami and Chandra [39] gives a normalized average wind pressure coefficient for long-

walled low-rise dwellings that is a function of the angle of incidence of the wind (for wind direction

see Section 2.2.1), local sheltering (Section 2.2.3), and the block aspect ratio (Section 2.2.1). The

coefficient is then scaled to account for local shielding (Section 2.2.3). Horizontal surfaces are

assumed to be completely shielded from the effects of the wind following Sherman and Grimsrud [40].

All physical inputs are given in Table B2.
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2.2.3 Environmental metadata

The EHS indicates the region in which each sample is located and allows suitable weather data to be

chosen. The CIBSE Test Reference Year (TRY) weather data set [41] provides synthesised typical

weather years for 10 English regions and is suitable for analysing the environmental performance of

buildings. Each EHS region is mapped to an appropriate CIBSE TRY region and where more than one

CIBSE region is located in an EHS region it is chosen randomly (with equal probability) from all

possible regions. Local altitude, wind speed, wind direction, and ambient air temperature are taken

from a CIBSE TRY file (see Section 2.2.2) but the wind speed must be scaled according to the terrain

and dwelling height using a standard power law formula (see BSI [18]). Dwelling height is obtained

from the cuboid model and the terrain is indicated by the EHS. The four BSI terrain types [18] and the

local wind pressure shielding coefficients of Deru and Burns [42] are mapped to the six EHS terrain

types; see Table B3.

DOMVENT3D is not a thermal model and treats the internal air temperature as an exogenous variable.

Here, a normal distribution of thermostat temperatures ( ௜ܶ௡௧) is chosen with µ=21.1ºC and ı=2.5ºC 

following Shipworth et al. [43] who calculate these values from measurements made in a

representative sample of 196 English dwellings. It is acknowledged that, in practice, a heating system

may not function all day nor provide a constant air temperature throughout a dwelling. Neither the

chosen model nor the available data allows these factors to be accounted for, and so the application of

this distribution may overestimate the internal air temperature in English dwellings. Therefore, the

sensitivity of DOMVENT3D to this input is investigated in Section 5. All environmental inputs are

given in Table B3.

2.3 Stochastic methods

A Monte Carlo approach is used to predict distributions of heating season infiltration and heat loss in

English apartments and their sensitivity to model inputs, following the method of Das et al. [44].

There are five main stochastic inputs to DOMVENT3D: the EHS variant (using dwelling weight), ,ହ଴ܳ,ߙ ܾ, and ௜ܶ௡௧. 100 sets of the five inputs are chosen at a time using a Latin Hypercube [44]. Each

set is applied to DOMVENT3D to predict the mean heating season infiltration rate ഥܰூ (h
-1
) and the
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total heating season heat loss ூܪ (MWh). The total sample size increases incrementally according to

the number of sets, which is chosen to minimize calculation time. After each set of predictions are

made, the mean (µ) and standard deviation (ı) of ഥܰூ for each dwelling type and the whole sample are

calculated and used to decide if a stopping criterion has been met. The total number of samples is

deemed adequate if the change in µ and ı from one set of 100 samples to the next is less than 0.2% for 

each dwelling type and for the whole stock. The sample size is chosen to ensure that all dwelling types

are considered in each set (a 5-fold increase on that used by Das et al. for a single dwelling type), and

the stopping criterion is chosen to reflect the lower limit of accuracy of typical ventilation and Indoor

Air Quality (IAQ) sensors. The model is run twice because an independent distribution is required for

each of the two permeability assumptions, A( ෨ܳ = 1) and A( ෨ܳ = 0).

2.4 The BREDEM and SAP models of infiltration

In Section 4 the predictions of DOMVENT3D are compared against those of two national models that

apply ;ܮ see Equation (2). BREDEM calculates the energy demand and fuel requirements of dwellings

based on its characteristics [19], in accordance with ISO13790 [45]. It is the foundation of models of

energy demand given in the literature, such as the Domestic Energy Carbon Model (DECM) [46], the

Community Domestic Energy Model (CDEM) [47], and the CHM. SAP is the UK Government’s

standard approach to the calculation of the energy performance of dwellings [12,48] and is a derivative

of BREDEM.

Equations (4) and (5) respectively show how BREDEM and SAP calculate the mean infiltration rateഥܰூ (h-1) over a period of time.

ഥܰூ,஻ோா஽ாெ = ൬ܳହ଴ܮ + ௢ܰ௧௛௘௥൰ ቀݑ
4

ቁ ௦ܥ ௗܥ (4)

ഥܰூ,ௌ஺௉ = ൬ܳହ଴ܮ + ௢ܰ௧௛௘௥൰ ቀݑ
4

ቁ (1െ 0.075 (௘ܥ (5)

Both BREDEM and SAP make an initial estimate of infiltration from ܳହ଴ where ܮ = 20, and then add

infiltration from other sources, ௢ܰ௧௛௘௥ (h
-1
), such as vents and stacks. The direct conversion of ܳହ଴

(m
3
/h/m

2
) to an air change rate (h

-1
) either assumes that ܮ has units (m) or, more likely, that the ratio of
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dwelling surface area to volume is assumed to be unity. Neither equation accounts for party wall

permeability, but their use of ܮ = 20 indicates that they implicitly assume party walls to be

impermeable [20]. ഥܰூ is also a function of the mean regional wind speed, ݑ (m/s) (assumed here to be

for the period between 1
st
October and April 30

th
and taken from tables in [19]) divided by 4mh/s.

Equation (4) applies two non-dimensional exposure factors (given by tables in [19]) for the site ,௦ܥ
and the dwelling ,ௗܥ whereas Equation (5) reduces the infiltration rate according to the number of

exposed sides ,௘ܥ and is taken from the EHS, see Section 2.2.2. The mapping of weather regions and

sheltering from the EHS to the BREDEM and SAP models is described by tables B1௅B3. 

2.5 Sensitivity analysis

A sensitivity analysis is required to test the dependence of ഥܰூ and ூܪ on DOMVENT3D’s inputs.

Here, we follow the methodology of Das et al. [44] that tests for linear, monotonic, and non-

monotonic relationships between inputs and outputs. Associated ݌ values are used to assess whether

an input variable is important at a 5% level of significance and three methods are used: correlation,

regression, and sample comparison. Relevant outputs and ranking metrics are given in Table 1 of Das

et al. [44]. For a general overview of the statistics see [49], and for a full and thorough discussion of

the statistical tests applied here, see [44].

Three correlation coefficients are employed. Spearman’s ranks correlation coefficient ( ௌܵ௣௘௔௥)
measures the strength of the linear correlation between each associated pair of inputs and outputs by

calculating how much the variance of each variable can be explained by a monotonic function of the

other. Similarly, Kendall’s tau (also a rank correlation coefficient, ܵ௄௘௡ௗ) measures the strength of the

linear correlation between each associated pair of inputs and outputs by calculating the difference

between the number of concordant and discordant pairs. We note that this statistic is not used by Das

et al. but is often found to be less sensitive to outliers than ௌܵ௣௘௔௥ and so is a useful addition. Pearson’s

product moment correlation coefficient (ܵ௉௘௔௥) measures the strength of the monotonic correlation

between each related pair of pre-ranked inputs and outputs. All inputs are then ranked according to the

magnitude of the correlation coefficient to indicate the level of their importance.



14

Two regression coefficients are used, and the inputs and outputs are standardized so that they haveߤ = 0 and ߪ = 1. Linear regression (ܵ௥௘௚௥௘௦௦) is used to determine the contribution of each input to its

related output. This regression is repeated using rank-transformed standardized variables (ܵ௥௔௡௞௥௘௚).
All inputs are ranked according to the magnitude of the regression coefficient.

Two sample-comparison methods are used where the greatest differences between the inputs and

outputs indicate relative importance. A two-sample Kolmogorov-Smirnov (KS) test (ܵ௄௢௟௠) sorts the

outputs by the ascending order of their corresponding inputs and then calculates the maximum vertical

distance between the cumulative distribution functions (CDF) of two equal subsamples of the output.

The Kruskal-Wallis test (ܵ௄௥௨௦௞# where # denotes the number of subsamples) divides the inputs into

subsamples according to quantiles in the distribution of the outputs and compares the variance within

and between each subsample.

A fundamental assumption is that all inputs (see Table 4) are independent of each other, and so any

that are themselves correlated are combined. Furthermore, all inputs are ordinal and continuous

variables chosen to represent implicitly geometric ,ହ଴ܣ:ூܣ) ,ܸ:ܣ ,ܴܣ ,(ߙ physical (ܳହ଴, ܾ), and
environmental ,ݑ) οܶ) parameters discussed in Section 2.2. Low correlation between them is

confirmed using Kendall’s tau.

3 RESULTS

Figures 2 and 3 respectively show the CDFs and probability density functions (PDF) of the mean

infiltration rate ഥܰூ (h-1), and the total exfiltration heat loss ூܪ (MWh), in English dwellings during the

heating season for both permeability assumptions. Here, permeability assumption A( ෨ܳ = 1) is

indicated by the continuous line and A( ෨ܳ = 0) by the dotted line. Tables 1 and 2 give descriptive

statistics for each sample and permeability assumption by dwelling type and for the whole stock. They

are also shown in Figure 4 where the lower and upper bars are the 2
nd
and 98

th
centiles, the central box

bounds the inter-quartile range, the central bar is the median, and the cross is the sample mean. The

number of samples required for convergence were 9000 and 10200 for A( ෨ܳ = 1) and A( ෨ܳ = 0),

respectively. Tables 1 and 2, and Figures 2 and 3 show that all distributions are positively skewed and

so the sample medians are used hereon; see Table 3.
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Figures 2 and 3 show that the permeability assumptions effect the predicted distributions of ഥܰூ and ூܪ
for the English housing stock and are predicted to be lower for permeability assumption A( ෨ܳ = 1)

than for A( ෨ܳ = 0). Assumption A( ෨ܳ = 0) increases the variance of the sample, indicated by ı. A two-

sample KS test is used to test the null hypothesis that the A( ෨ܳ = 1) and A( ෨ܳ = 0) samples are from

the same continuous distribution against the alternative that they are not. The null hypothesis is

rejected at 5% significance for ഥܰூ ݌) < 10ି଺) and ூܪ ݌) < 10ି଺) indicating that the two ഥܰூ
distributions and two ூܪ distributions are different. Identical tests for each subsample (by dwelling

type) are also rejected, except for the detached dwelling CDFs where the KS test shows that the twoഥܰூ ݌) = 0.021) and two ூܪ ݌) = 0.076) distributions are related at 2% and 5% significance,

respectively.

3.1 Infiltration

Table 1 shows that the infiltration rate in an English dwelling is predicted to be ͲǤͲʹ ൑ ഥܰூ ൑ ͳǤʹͶh-1
with 96% certainty, whatever the permeability assumption. The differences in predicted ഥܰூ for

assumptions A( ෨ܳ = 1) and A( ෨ܳ = 0) in conjoined dwellings can be explained by considering the

dwelling surface area that allows airflow at 50Pa, ହ଴ܣ (m
2
), and under operational conditions, ூܣ (m2

),

for each permeability assumption. The sum of the cross sectional areas of all ALPs is constant,

whatever the permeability assumption, if the dwelling permeability is also constant. For assumption

A( ෨ܳ = 1) the party walls are permeable and so ALPs are uniformly located in all surfaces. However,

under operational conditions airflow is only assumed to occur through external surfaces (see Section

2.1), and so some ALPs that allow airflow at 50Pa will not allow it under operational conditions

ହ଴ܣ) > .(ூܣ For assumption A( ෨ܳ = 0) the party walls are impermeable and so all ALPs are located in

external surfaces where they allow airflow at 50Pa and under operational conditions ହ଴ܣ) = .(ூܣ The
infiltration rate for A( ෨ܳ = 0) is expected to be greater than A(1 ෨ܳ = 1 because more ALPs are located

in external surfaces. Jones et al. [20] show the ratio of the predicted infiltration rates for the two

permeability assumptions is equal to a ratio of permeable envelope area at a pressure differential of

50Pa ହ଴ܣ (m
2
), where
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ହ଴,஺(ொ෨ୀ଴)ܣ ହ଴,஺(ொ෨ୀଵ)Τܣ = ഥܰூ,஺(ொ෨ୀଵ) ഥܰூ,஺(ொ෨ୀ଴)ൗ (6)

Here, the subscripts indicate the pressure differential and the permeability assumption. Equation (6)

shows that apartments are likely to have a ratio ا ͳ because they have at least one party wall and soܣହ଴,஺(ொ෨ୀଵ) ب .ହ଴,஺(ொ෨ୀ଴)ܣ For detached houses, the ratio approaches unity because they have no party

walls and so ହ଴,஺(ொ෨ୀଵ)ܣ ൎ .ହ଴,஺(ொ෨ୀ଴)ܣ Note that Equation (6) is valid for a single dwelling and not for

an entire distribution. Therefore it is reassuring that Table 3 (last two rows) shows that Equation (6) is

approximately true for the A( ෨ܳ = 1) and A( ෨ܳ = 0) sample medians for all dwelling types.

The difference in variance between the samples (indicated by ı) is attributable to the variation of ܣହ଴
governed by the permeability assumptions. For the A( ෨ܳ = 1) sample, ହ଴ܣ = ܣ for the vast majority of

cases (dwellings with impermeable solid floors are an exception), whereas for the A( ෨ܳ = 0) sample,ܣହ଴ ് ܣ for the majority of apartment, terraced, and semi-detached cases (when at least one party wall

is assumed) and the variation is bound by Ͳ ا ହ଴ܣ ا .ܣ
It is currently impossible to state with any certainty the most likely permeability assumption applicable

to the English or UK stocks. Nevertheless, a limited number of guarded zone tests (݊ = 17) in UK

dwellings [36] that isolate the fraction of total air leakage attributable to party walls may provide an

indication. In end–terraced dwellings (݊ = 2) party walls account for 2–18% of total air leakage, 0–

19% (݊ = 4) in semi–detached dwellings, 4–27% (݊ = 2) in mid–terraced dwellings, and 0–34%

(݊ = 9) in apartments. This suggests that the permeability assumption is closer to A( ෨ܳ = 0) than

A( ෨ܳ = 1) in apartments but the measurements span the range of A( ෨ܳ = 1) to A( ෨ܳ = 0) in the other

dwelling types. This emphasises the need for a field survey in the UK following existing methods [50].

Figure 2 suggests that 79% and 63% of dwellings have ഥܰூ < 0.5ac/h for A( ෨ܳ = 1) and A( ෨ܳ = 0),

respectively. This is significant because 0.5ac/h is a threshold ventilation rate (albeit with great

uncertainty), recommended by many European countries, below which some negative air-quality

related health effects increase [20]. This suggests that effective PPV strategies, such as those described

in the UK Government’s Approved Document F [51], are required in the majority of English

dwellings to minimize health risks to occupants and is an important consideration for policy makers.

Figure 5 shows that the LIR, SAP, and BREDEM infiltration models estimate that 51%, 62%, and
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72% of dwellings have ഥܰூ < 0.5ac/h, respectively, highlighting the likelihood of under-ventilation

from infiltration alone.

The predictions of ഥܰூ given in Table 1 have consequences for those who model ventilation and

pollutant transport in buildings; see [44,52,53]. These studies implicitly applied permeability

assumption A( ෨ܳ = 1) to their models of ventilation and this has two key consequences. Firstly, Figure

2 shows that their predicted infiltration rates will be lower than those predicted using assumption

A( ෨ܳ = 0). Secondly, this could lead to higher predicted concentrations of pollutants from internal

sources and lower concentrations of pollutants from external sources, particularly when there is no

PPV. This highlights that knowledge of party wall permeability is both relevant and important. It

raises an issue with the current building physics modelling methodology that cannot define ALPs

using a single value of ܳହ଴ or its equivalents.

3.2 Energy and Carbon Emissions

Table 2 shows that heating season infiltration heating demand in an English dwelling is predicted to beͲǤͲͺ ൑ ூܪ ൑ ͻǤͶ͸MWh with 96% certainty, regardless of the permeability assumption. Table 2 shows

that the median total heat losses are 1.33MWh and 1.95MWh for A( ෨ܳ = 1) and A( ෨ܳ = 0),

respectively, which is equivalent to running approximately eight and eleven 20W light bulbs non-stop

for a year, respectively.

It is now possible to use the CDFs given in Figure 3 to estimate the total ூܪ for the entire English

housing stock of 22.3m dwellings. This is done by repeatedly sampling from them using sets of

uniform random variables, of a size equal to the number of English dwellings, until the change in µ

and ı of the total ܪூ differs by <0.01%. The total ூܪ for the entire English housing stock is estimated

to be 45.78TWh (ı=0.0098TWh) and 60.12TWh (ı=0.0122TWh) for A( ෨ܳ = 1) and A( ෨ܳ = 0),

respectively. Corresponding CO2e emissions are estimated
2
to be 11.43MtCO2e and 15.01MtCO2e for

A( ෨ܳ = 1) and A( ෨ܳ = 0), respectively. The UK stock comprises 27.42m dwellings. If the English

stock is assumed to be a statistically random subsample of the UK (England, Scotland, Wales, and

2
The EHS [32] estimates that 90% of UK dwellings have an efficient gas fired central heating system with an

average efficiency of 82.5% [2] while the remaining 10% are assumed to have electric heaters. We use an

emissions factor for natural gas of 0.184kgCO2e/kWh and 0.49kgCO2e/kWh for consumed electricity that

includes grid losses [54].
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Northern Ireland) stock the same approach predicts that the total ூܪ for the UK housing stock is

56.2TWh (ı=0.0115TWh) and 73.81TWh (ı=0.0151TWh) for A( ෨ܳ = 1) and A( ෨ܳ = 0), respectively.

These predictions can be compared to UK government figures for the total UK energy demand in 2012

[2], where they represent 3.4% and 4.5% of the total UK energy demand (1635TWh for all sectors) or

11.2% and 14.7% of the total energy demand of all UK houses (502TWh). Corresponding CO2e

emissions are estimated to be 14.04MtCO2e and 18.43MtCO2e for A( ෨ܳ = 1) and A( ෨ܳ = 0),

respectively, or 10.2% and 13.5% of the 137MtCO2e estimated [2] for the whole UK stock.

Official UK Government statistics [2] describing dwelling heat loss are predicted using CHM and SAP

and reported using a mean thermal conductance ഥԢܪ (W/K), where the ഥԢܪ for an average dwelling is

290.4W/K. The contribution of all heating season ventilation (purpose-provided and adventitious) for

an average dwelling is estimated to be 73W/K or 25% of dwelling .ഥԢܪ We predict that the ഥԢܪ
attributable to infiltration is 28.3W/K and 37.2W/K for A( ෨ܳ = 1) and A( ෨ܳ = 0), respectively. These

are 39% and 51% of the ventilation ഥԢܪ or 10% and 13% of the dwelling .ഥԢܪ
In addition to the infiltration described by Equation (5), SAP accounts for PPV through elements such

as fans and windows. This paper does not investigate PPV. However, it is acknowledged that PPV

could affect adventitious airflow rates, although any changes are likely to be insignificant in

comparison to the PPV airflow rates. The national statistics [2] rely on SAP’s implementation of

Equation (2) and so the differences between the predictions of SAP and DOMVENT3D are

investigated in Section 4. Nevertheless, It is reassuring that the predictions made here appear plausible

in the context of the national energy statistics [2].

This analysis of ூܪ suggests that exfiltration heat loss accounts up to 15% of all dwelling energy

demand. The vertical walls of an average UK house are predicted to account for 33% of its heating

demand [2] and so infiltration energy demand is comparatively small. The remediation of leaky houses

requires skilled labour, is invasive and expensive, and can have unpredictable outcomes. Nevertheless,

a pragmatic approach may be to address air tightness when retrofitting other energy efficiency

measures, such as insulation (floors, ceilings, and walls) or double glazing. Here, it is important to

insure that sufficient PPV is provided to mitigate avoidable negative impacts on indoor air quality and
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occupant health [52,53]. This approach may limit potential reductions in ூܪ and CO2e and so savings

would have to be found elsewhere, even in other sectors. Finally, we note that there are no existing

measurements or predictions of heating season energy demand attributable to infiltration and

exfiltration and so validating field work is required to corroborate these assertions; see Section 4.

4 ASSESSING SIMPLIFIED MODELS

The predictions of DOMVENT3D are now compared against the BREDEM and SAP simplified

models given in Equation (2) and Section 2.4. Firstly, Equation (2) is evaluated by the linear

regression of ഥܰூ and ହܰ଴ to estimate ,ܮ and key performance statistics are calculated: the Coefficient

of Determination (R
2
), Root Mean Squared Error (RMSE), and Maximum Absolute Error (MAE).

Values of ܮ are given in Table 6 by permeability assumption and dwelling type, along with the

performance statistics. Initially these statistics show for assumption A(1 ෨ܳ = 1) that there is

considerable variability in ܮ between dwelling types, but for assumption A( ෨ܳ = 0) they show thatܮ ൎ ʹͲ for all dwelling types. However, the values of R
2
suggest that Equation (2) is a poor model of

the relationship between ഥܰூ and ହܰ଴ for each dwelling type and for the whole stock. Furthermore, the

RMSEs and MAEs are large for all dwelling types and for the whole stock when compared to their

mean and median statistics (see Table 1); for example Table 6 shows that the smallest RMSE is 3.48h
-

1
for end-terrace dwellings for assumption A( ෨ܳ = 1), which is 74% greater than the sample mean. An

analysis by intervals of dwelling façade height, ௦ݖ (m), shows that ܮ decreases with ௦—threeݖ intervals

of ௦ݖ investigated where ௦ݖ ൑ 4.8m, 4.8 < ௦ݖ < 6m, and ௦ݖ ൒ ͸m for all dwellings and each dwelling

type by permeability assumption giving 36 subgroups—in 35 of 36 subgroup, but the values of R
2

indicate that the relationships are generally weak (R
2
<0.7 in 33 of 36 subgroups). Further analysis to

create subgroups parsed by terrain and shielding types gives no improvement in the performance

statistics. When considering the A( ෨ܳ = 1) and A( ෨ܳ = 0) samples together, hereon known as the

combined sample, 93% of the dwellings are located in an urban environment and 77% have heavy

shielding (see Table B3), and so it is likely that other parameters are responsible for the variation ofഥܰூ. A distribution of ഥܰூ, predicted using Equation (2) and the combined sample, is given in Figure 5
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and is purely a function of dwelling geometry and the applied distributions of ܳହ଴ [35,36]. It predicts

that ~50% of dwellings have ഥܰூ < 0.5h-1.

Next, the inputs of the combined sample are applied to the BREDEM and SAP models (see Section

2.4) and in Table 1 and Figure 5 their distributions of predicted ഥܰூ are compared against those of the

A( ෨ܳ = 1) and A( ෨ܳ = 0) distributions. Figure 5 and Equations (4)௅(5) show that the exposure and 

shielding factors (see Section 2.4) reduce the predicted ഥܰூ when compared to the ܮ =20 distribution,

and those constants applied to the BREDEM model have the greatest effect. Both distributions are

right skewed and have less variance than the A( ෨ܳ = 1) and A( ෨ܳ = 0) samples. The models cannot

account for geometric or physical parameters such as party wall permeability; for example, Figure 5

shows that the BREDEM and SAP distributions cross both the A( ෨ܳ = 1) and A( ෨ܳ = 0) distributions.

Critically, neither the BREDEM nor the SAP distribution is exclusively bounded by the A( ෨ܳ = 1) and

A( ෨ܳ = 0) distributions. This suggests that the exposure and shielding factors discussed in Section 2.4

are either incorrect or are not exclusively responsible for the variation of ഥܰூ. Other influential

parameters are explored in Section 5.

Of course, this analysis assumes that the DOMVENT3D model makes more accurate predictions than

Equation (2), BREDEM, and SAP, which may not be true. Nevertheless, if BREDEM or SAP based

models (such as [34,47,48]) are used by those advocating or making policy to estimate the potential

national benefits of reducing infiltration heating demand, they will predict a more significant impact

than the DOMVENT model.

An alternative model of the relationship between ഥܰூ and ହܰ଴ may be required using empirical or

theoretically generated data. In the long term, an exhaustive field survey is required to give a reliable

empirical basis for the prediction of ഥܰூ from dwelling characteristics following the analysis of Chan et

al. [22]. In the short term, further work could apply meta-modelling techniques to develop a quick and

simple model of the relationship between ହܰ଴ and ഥܰூ and ,ூܪ which use the predictions given here as

training and validation data. This will be the subject of a future paper.
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5 SENSITIVITY ANALYSIS

It could be argued that the salient assertions made in Sections 3 and 4 are dependent upon the

assumptions made in Section 2. Accordingly, the sensitivity analysis described in Section 2.5 is used

to determine the relative importance of inputs to DOMVENT3D.

All of the inputs are perturbed simultaneously by the Latin Hypercube sampling method (see Section

2.3) and so any interactions between them (including those that are synergistic) are accounted for [55].

The relationship between each input and the two outputs are first explored using the scatter plots given

in Figure 6 for the combined data set. These show approximate linear relationships (with scatter)

between ܳହ଴, ܾ, and both outputs. The relationship between ହ଴ܣ:ூܣ and both outputs may be linear,

tri-modal, or parabolic. The relationships between ݑ and οܶ and both outputs look parabolic. The

relationship between ܸ:ܣ and ഥܰூ looks either bi-modal or parabolic, whereas ܸ:ܣ looks exponentially

related to .ூܪ Finally, the relationships between ܴܣ and both ഥܰூ and ூܪ could be exponential, whereas

the relationships between ߙ and both outputs looks random. From Figure 5 one can conclude that the

relationships between the inputs and outputs are varied and largely non-linear, justifying a broad

sensitivity analysis.

The test statistics for the combined data are given in Table 4 for ഥܰூ and in Table 5 for .ூܪ They show

that ܳହ଴ and ܾ are ranked highest by all tests for both outputs and that they are approximately linearly

related. This shows that the accuracy of these predictions could be improved with more robust

distributions of ܳହ଴ by dwelling age and type; current limitations are discussed in Section 2.2.3. This

also shows why ܾ should be recorded when ܳହ଴ is measured in-situ.

Elsewhere, the inputs are consistently ranked by all tests for both ഥܰூ and ,ூܪ although each output is

dependent on different inputs; for example, ܸ:ܣ is more important for predicting ூܪ than ഥܰூ. The
consistency in the ranks is corroborated by ݌ values that are 0.05ا for the derived correlation

coefficients (ܵ௄௘௡ௗ, ܵ௉௘௔௥, ௌܵ௣௘௔௥, ܵ௄௢௟௠, and ܵ௄௥௨௦௞#) given in Tables 4 and 5, except for οܶ forܵ௄௘௡ௗ and ௌܵ௣௘௔௥ where ݌ > 0.08. This indicates that the outputs are dependent on all of the inputs to

some degree and so meta-modelling techniques should consider all inputs in the first instance.
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Nevertheless, it is reassuring that the model is less dependent on ܴܣ than many of the other

parameters given the arbitrary limits imposed on it in Section 2.2.1.

It is interesting to note that the ranking coefficients for ௌܵ௣௘௔௥ and ܵ௥௔௡௞௥௘௚, and ܵ௉௘௔௥ and ܵ௥௘௚௥௘௦௦
are equal for all inputs and both outputs. This is because the correlation coefficients used to rank both

ௌܵ௣௘௔௥ and ܵ௉௘௔௥ are, in this case, identical to the regression coefficients used to rank ܵ௥௔௡௞௥௘௚ andܵ௥௘௚௥௘௦௦.
The non-parametric ܵ௄௢௟௠ and ܵ௄௥௨௦௞# tests are used to detect any non-monotonic relationship, but

Tables 4 and 5 show that these may not be stronger than the others because the inputs are not ranked in

a radically different way.

This analysis shows that there are many parameters that influence the prediction of both ഥܰூ and ூܪ and
it highlights the limitations of simplified models used to predict ഥܰூ, such as those given by Equations

(2), (4), and (5).

6 CONCLUSIONS

This paper presents a stochastic method for predicting distributions of mean infiltration rates and the

associated total heat loss in any stock of dwellings during heating hours. The method is applied to the

English and UK housing stocks, which have a significant proportion of multi-family dwellings that

share at least one of their external surfaces with another, based on two extreme assumptions of party

wall permeability. The first assumption assumes that they are permeable whereas the second assumes

that they are not. A statistically significant difference ݌) < 10ି଺) between the distributions for each

permeability assumptions is predicted, and the mean infiltration rate and total heat loss are

significantly less for the first assumption than for the second. This shows that an understanding of

party wall permeability is both important and relevant, but also introduces uncertainty into the

effectiveness of current policies that aim to reduce energy demand through fabric tightening. The

predicted distributions of heating season mean infiltration rate and total heat loss for each permeability

assumption are useful tools that policy makers of countries whose housing stocks contain multi-family
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dwellings can use to make informed decisions about party wall permeability, fabric tightness, and

exfiltration heat loss.

The distributions of infiltration rate are used to show that at up to 79% of dwellings could require

additional PPV to limit negative health consequences. The distributions of the total heat lost by

exfiltration are used to estimate the associated total heating demand for the entire English and UK

stocks. Exfiltration is estimated to be responsible for 3-5% of the total UK energy demand, 11-15% of

the total energy demand of the UK housing stock and 10-14% of its CO2e emissions, whatever the

party wall permeability assumption. Remediation measures are challenging but could be undertaken

alongside other retrofitted energy efficiency measures. It is imperative that sufficient PPV is provided

to mitigate negative impacts on occupant health.

The predicted infiltration rates are compared against those made using a leakage-infiltration ratio.

Concern is raised about its use in building codes because a linear relationship between a measurement

of the air leakage rate and the operational infiltration rate during the heating season is not found to be

a robust model. This is independent of the dwelling type and the party wall permeability assumption

because the LIR cannot account for the variation in geometric, environmental, and physical

parameters. The BREDEM and SAP simplified energy models, which apply a LIR and account for

some environmental parameters, are also shown to have limitations and so their predictions of heating

season infiltration rates and associated heat losses should be treated with caution.

The limiting metrics of scaled Air Leakage Rate specified by building codes do not, in exclusivity,

give an indication of expected operational infiltration rates because they are obtained under artificial

high-pressure steady-state conditions and do not describe the influence of, or variation in, geometric,

environmental, and physical parameters and so are only useful as arbitrary indicators of build quality.

A new approach may be required to give a set of useful metrics that can be used to determine mean

infiltration rates during the heating season and its associated heating demand.
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APPENDIX A: DOMVENT3D

This appendix provides an overview of DOMVENT3D, a model of infiltration and exfiltration. The

following equations are derived in [25] and are reproduced assuming no mechanical ventilation. The

net airflow rate through a system of vertical and horizontal surfaces that comprise the thermal envelop

of a building is zero and described by the continuity equation

෍ ሶܸ௜௝
௜ୀଵ = 0 (A1)

where ሶܸ௜ (m3
/s), is the airflow rate through the i

th
of j vertical and horizontal surfaces. Airflow through

a vertical surface ሶܸ௩ (m
3
/s) of height ௦ݖ (m), is given by

ሶܸ௩ = ሶܸଵ + ሶܸଶ where (A2)

ሶܸଵ = 2)ܧ ҧΤߩ )௕ߩ)ߝݓா െ ܾ(ூߩ + 1 ாߩ)|} െ ூ)|݃}௕ߩ ൥ ଴ݖ)଴௕ାଵห௭బவ௭೘೔೙െݖ+ െ ௠௔௫)௕ାଵห௭బவ௭೘ೌೣݖ ൩ (A3)

ሶܸଶ = 2)ܧ ҧΤߩ )௕ߩ)ߝݓூ െ ܾ(ாߩ + 1 ாߩ)|} െ ூ)|݃}௕ߩ ൥+(ݖ௠௔௫ െ ௕ାଵห௭బழ௭೘೔೙(଴ݖെ)଴)௕ାଵห௭బழ௭೘ೌೣെݖ ൩ (A4)

Here ,ாߩ ,ூߩ and ҧߩ are the external, internal, and mean air densities (kg/s), respectively, ௠௔௫ݖ and ௠௜௡ݖ
are the are the top and bottom surface heights (m) above ground level (so that ௦ݖ = ௠௔௫ݖ െ ,(௠௜௡ݖ
respectively, ݓ is the surface width (m), ܾ is a flow exponent, and ݃ is the gravitational acceleration

(m/s
2
). The flow direction function (ݔ)ߝ = 1 if ݔ > 0, (ݔ)ߝ ൌ െͳ if ݔ < 0, and (ݔ)ߝ = 0 if ݔ = 0.

The surface neutral height ଴ݖ (m) is given by

଴ݖ = 1
2

ଶܿ௣ݑாߩ െ ூ݌
ாߩ) െ ݃(ூߩ (A5)

where ݑ is the wind speed (m/s) at building height ௨ݖ (m), ܿ௣ is the surface wind pressure coefficient,

and ூ݌ is the gauge internal air pressure (Pa). The airflow rate through a horizontal surface ሶܸ௛ (m
3
/s),

is given by
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ሶܸ௛ = ൫2)݀ݓܧ ҧΤߩ )௕൯ ூߩ}| െ ݖ݃{ாߩ െ ூ|௕݌ ூߩ})ߝ െ ݖ݃{ாߩ െ (ூ݌ (A6)

Where ݀ is the surface depth (m) and ݖ is the surface height (m). In all relevant equations ܧ is a

dimensionless relative leakage area given by

ܧ =
ܳହ଴ܣ

ହ଴(100ܣ3600 ௌ்௉Τߩ )௕ (A7)

Where ௌ்௉ߩ (kg/m
3
) is the air density at standard temperature and pressure, ܣ (m

2
) is the dwelling

envelope area, ܳହ଴ (m
3
/h/m

2
) is the air permeability measured at οܲ = 50Pa, and ହ଴ܣ (m

2
) is the

dwelling’s permeable οܲ = 50Pa.

APPENDIX B: SOURCES OF DATA

Tables B1, B2, and B3 to be placed here.
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FIGURES

Figure 1: English housing stock by type.

Figure 2: Predicted cumulative distributions and probability density functions of mean heating season

infiltration rate ഥܰ (h
-1) for the English housing stock.   ࡳ ࡳ ࡳ ࡳ ࡳ , Assumption A( ෨ܳ = 1); ….…

, assumption

A( ෨ܳ = 0).

Figure 3: Predicted cumulative distributions and probability density functions of total heat loss ூܪ
(kWh) during the heating season for the English housing stock.   ࡳ ࡳ ࡳ ࡳ ࡳ , Assumption A( ෨ܳ = 1); ….…

,

assumption A( ෨ܳ = 0).

Figure 4: Predicted distributions of the mean heating season infiltration rate ഥܰ (h
-1
) and total heat lossܪூ (MWh) during the heating season for permeable and impermeable party walls by dwelling type

and stock. A, apartments; MT, mid-terrace; ET, end-terrace; SD, semi-detached; D, detached; ALL,

stock.

Figure 5: Predicted cumulative distributions of mean heating season infiltration rate ഥܰ (h
-1
) for the

English housing stock. Black, A( ෨ܳ = 1); Cyan, A( ෨ܳ = 0); Blue, BREDEM; Green, SAP; Red, .20=ܮ
Figure 6: Sensitivity of model outputs to inputs. ܳହ଴, air permeability; ܾ, flow exponent; ;ହ଴ܣ:ூܣ area
of façade permeable under operational conditions : area of façade permeable at 50Pa; ,ݑ mean wind

speed; ,ߙ dwelling orientation; ,ܸ:ܣ dwelling envelope area : volume; ,ܴܣ block aspect ratio; οܶ,
mean difference between internal and external temperatures.
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FIGURE 1
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FIGURE 2
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FIGURE 3
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FIGURE 4
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FIGURE 5 [Intended for colour reproduction]
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FIGURE 6
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TABLES

Table 1: Statistical summary of mean heating season infiltration rate (h
-1
) by dwelling type and stock.

Assumption A( ෨ܳ = 1): permeable party walls. Assumption A( ෨ܳ = 0): impermeable party walls.

Table 2: Statistical summary of total heating season heat loss (MWh) by dwelling type and stock.

Assumption A( ෨ܳ = 1): permeable party walls. Assumption A( ෨ܳ = 0): impermeable party walls.

Table 3: Median values of key descriptive parameters of sampled dwellings. Assumption A(1 ෨ܳ = 0):

permeable party walls. Assumption A( ෨ܳ = 0): impermeable party walls.

Table 4: Ranking of input variables according to the sensitivity of the predicted mean heating season

infiltration rate (h
-1
) to them using the format rank(ranking statistic) where a rank of 1 is the highest.

Table 5: Ranking of input variables according to the sensitivity of the predicted total heating heat loss

(MWh) to them using the format rank(ranking statistic) where a rank of 1 is the highest.

Table 6: Predicted leakage infiltration ratio ܮ and performance statistics. Assumption A( ෨ܳ = 1):

permeable party walls. Assumption A( ෨ܳ = 0): impermeable party walls.

Table B1: Geometric Inputs

Table B2: Physical Inputs

Table B3: Environmental Inputs
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TABLE 1

Type Apartment Mid-terrace End-terrace Semi-detached Detached All ܮ = 20 SAP BREDEM

Assumption A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0)

Minimum 0.00 0.00 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01

2% 0.01 0.03 0.03 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.02 0.05 0.06 0.06 0.05

25% 0.05 0.19 0.13 0.22 0.16 0.22 0.17 0.20 0.20 0.19 0.13 0.20 0.30 0.26 0.23

50% 0.11 0.35 0.24 0.42 0.31 0.38 0.32 0.40 0.37 0.35 0.26 0.38 0.50 0.43 0.37

75% 0.19 0.55 0.40 0.68 0.51 0.60 0.52 0.64 0.59 0.57 0.46 0.61 0.70 0.59 0.52

98% 0.46 1.34 0.79 1.31 0.96 1.27 1.01 1.25 1.13 1.13 0.98 1.24 1.23 0.97 0.87

Maximum 0.95 2.90 1.23 1.99 1.45 1.88 1.89 2.05 2.77 2.24 2.77 2.90 2.45 1.54 ߤ1.56 0.14 0.42 0.28 0.48 0.35 0.45 0.37 0.45 0.43 0.41 0.32 0.44 0.52 0.44 ߪ0.39 0.12 0.33 0.20 0.32 0.24 0.32 0.26 0.32 0.29 0.29 0.25 0.31 0.29 0.24 0.21

Sample (݊) 1739 1877 1711 1904 912 1064 2757 3148 1881 2207 9000 10200 19200 19200 19200
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TABLE 2

Type Apartment Mid-terrace End-terrace Semi-detached Detached All

Assumption A( ෨ܳ = 1) A( ෨ܳ = 0) A(1 ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0)

Minimum 0.04 0.04 0.07 0.09 0.00 0.00 0.04 0.04 0.07 0.09 0.00 0.00

2% 0.18 0.23 0.33 0.30 0.08 0.21 0.18 0.23 0.33 0.30 0.08 0.21

25% 0.83 0.99 1.43 1.32 0.56 0.95 0.83 0.99 1.43 1.32 0.56 0.95

50% 1.61 2.05 2.84 2.71 1.33 1.95 1.61 2.05 2.84 2.71 1.33 1.95

75% 2.90 3.68 4.92 4.84 2.75 3.64 2.90 3.68 4.92 4.84 2.75 3.64

98% 7.35 9.13 13.84 13.66 8.55 9.46 7.35 9.13 13.84 13.66 8.55 9.46

Maximum 22.80 20.09 31.04 38.63 31.04 38.63 22.80 20.09 31.04 38.63 31.04 ߤ38.63 2.13 2.67 3.73 3.62 2.05 2.70 2.13 2.67 3.73 3.62 2.05 ߪ2.70 1.88 2.33 3.33 3.51 2.28 2.59 1.88 2.33 3.33 3.51 2.28 2.59
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TABLE 3

Type Apartment Mid-terrace End-terrace Semi-detached Detached All

Assumption A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0) A( ෨ܳ = 1) A( ෨ܳ = 0)

Permeability, ܳହ଴ (m3
/h/m

2
) 9.0 8.6 8.9 8.8 8.7 8.9 9.2 9.1 9.1 9.1 9.0 8.9

Volume, ܸ (m
3
) 141.8 140.4 211.9 211.9 217.6 213.6 216.9 217.5 313.3 308.6 214.5 214.8

Envelope area, ܣ (m
2
) 191.3 190.9 228.9 228.4 226.9 224.1 230.6 230.6 307.1 309.9 233.6 233.0

Permeable area under operational

conditions, ூܣ (m2
) 55.4 54.5 124.2 123.1 161.5 158.7 169.8 170.0 256.0 254.6 153.3 153.8

Permeable area at 50Pa, ହ଴ܣ (m2
) 175.3 54.5 206.8 123.1 199.9 158.7 205.2 170.0 256.2 254.6 208.8 ܸ:ܣ153.8 (m

-1
) 1.3 1.4 1.1 1.1 1.0 1.0 1.1 1.1 1.0 1.0 1.1 ହ଴,஺(ொ෨ୀ଴)ܣ:ହ଴,஺(ொ෨ୀଵ)ܣ1.1 0.31 0.59 0.78 0.83 1.00 0.74ഥܰூ,஺(ଵ): ഥܰூ,஺(ଶ) 0.31 0.57 0.81 0.80 1.06 0.68
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TABLE 4

Input\Test ܵ௄௘௡ௗ ܵ௉௘௔௥ ௌܵ௣௘௔௥ ܵ௥௘௚௥௘௦௦ ܵ௥௔௡௞௥௘௚ ܵ௄௢௟௠ ܵ௄௥௨௦௞ଶ ܵ௄௥௨௦௞ହ ܵ௄௥௨௦௞ଵ଴ ܵ௄௥௨௦௞ଶ଴ܳହ଴ 1 (0.59) 1 (0.74) 1 (0.78) 1 (0.74) 1 (0.78) 1 (0.60) 1 (8007) 1 (10956) 1 (11533) 1 (11655)ܾ 2 (-0.37) 2 (-0.53) 2 (-0.54) 2 (-0.53) 2 (-0.54) 2 (0.43) 2 (2957) 2 (5611) 2 (5844) 2 ହ଴ܣ:ூܣ(5972) 3 (0.23) 3 (0.32) 3 (0.31) 3 (0.32) 3 (0.31) 3 (0.16) 3 (1235) 3 (1717) 3 (1858) 3 ݑ(1994) 4 (0.11) 4 (0.19) 4 (0.17) 4 (0.19) 4 (0.17) 4 (0.11) 4 (273) 4 (462) 4 (659) 4 ܸ:ܣ(732) 5 (-0.08) 7 (-0.09) 5 (-0.12) 7 (-0.09) 5 (-0.12) 6 (0.09) 6 (258) 5 (375) 5 (446) 6 ߙ(474) 6 (-0.08) 6 (-0.10) 6 (-0.12) 6 (-0.10) 6 (-0.12) 5 (0.10) 5 (269) 6 (310) 6 (342) 5 ܴܣ(348) 7 (-0.07) 5 (-0.10) 7 (-0.11) 5 (-0.10) 7 (-0.11) 7 (0.07) 7 (158) 7 (230) 7 (250) 8 (256)οܶ 8 (0.01) 8 (0.03) 8 (0.01) 8 (0.03) 8 (0.01) 8 (0.04) 8 (6) 8 (163) 8 (186) 7 (197)

TABLE 5

Input\Test ܵ௄௘௡ௗ ܵ௉௘௔௥ ௌܵ௣௘௔௥ ܵ௥௘௚௥௘௦௦ ܵ௥௔௡௞௥௘௚ ܵ௄௢௟௠ ܵ௄௥௨௦௞ଶ ܵ௄௥௨௦௞ହ ܵ௄௥௨௦௞ଵ଴ ܵ௄௥௨௦௞ଶ଴ܳହ଴ 1 (0.44) 1 (0.50) 1 (0.62) 1 (0.50) 1 (0.62) 1 (0.46) 1 (5263) 1 (7000) 1 (7253) 1 (7366)ܾ 2 (-0.33) 3 (-0.43) 2 (-0.49) 3 (-0.43) 2 (-0.49) 2 (0.37) 2 (2615) 2 (4450) 2 (4707) 2 ହ଴ܣ:ூܣ(4778) 4 (0.25) 4 (0.29) 4 (0.33) 4 (0.29) 4 (0.33) 6 (0.14) 4 (1407) 4 (2079) 4 (2397) 4 ݑ(2547) 5 (0.15) 5 (0.24) 5 (0.23) 5 (0.24) 5 (0.23) 4 (0.16) 6 (511) 5 (862) 5 (1008) 5 ܸ:ܣ(1084) 3 (-0.33) 2 (-0.44) 3 (-0.47) 2 (-0.44) 3 (-0.47) 3 (0.30) 3 (2569) 3 (3713) 3 (4263) 3 ߙ(4462) 8 (-0.09) 8 (-0.12) 8 (-0.14) 8 (-0.12) 8 (-0.14) 8 (0.11) 7 (327) 8 (389) 8 (423) 8 ܴܣ(441) 6 (-0.15) 7 (-0.17) 6 (-0.22) 7 (-0.17) 6 (-0.22) 7 (0.13) 5 (609) 6 (823) 6 (913) 6 (948)οܶ 7 (0.11) 6 (0.19) 7 (0.17) 6 (0.19) 7 (0.17) 5 (0.14) 8 (192) 7 (605) 7 (687) 7 (739)
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TABLE 6

A( ෨ܳ = 1) A( ෨ܳ = ܮ(0 R
2

RMSE MAE ܮ R
2

RMSE MAE

apartment 68.87 0.01 6.79 46.69 24.15 0.13 6.33 45.94

mid-terrace 32.11 0.51 3.96 21.35 18.70 0.55 3.65 15.11

end-terrace 25.01 0.60 3.48 14.11 19.07 0.57 3.61 16.33

semi-detached 24.25 0.45 4.21 25.38 19.66 0.49 4.06 24.68

detached 19.86 0.44 3.96 25.80 19.82 0.42 3.99 20.39

all 25.67 -0.05 6.06 41.88 20.22 0.39 4.56 34.53
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TABLE B1

Input (symbol) Units Value(s), comment, or PDF assumed Source

Dwelling surface width, depth,

height, and top and bottom

heights above ground level

(w,݀, ,௦ݖ ௠௔௫ݖ , (௠௜௡ݖ
m Defined by EHS for each storey and surface.

Constructed following the Cambridge Housing Model.

[32]

[34]

Block aspect ratio - Product of ݓ) ݀Τ ) and the number of houses in a block or terrace.

Apartment block floors - Number of floors in a block of apartments. [32]

Number of houses in a terrace ܷ(3,20)
Location in an apartment

block, (ܺ,ܻ) - For apartments only. X: if the dwelling has 3 sides or 2 perpendicular

sides, then the dwelling is assumed to be located at the edge of a block. If

the dwelling has one façade or two opposite façades then the dwelling is a

uniformly random location along the block's width. Y: a uniformly random

variable between the lowest (basement or ground floor) and the highest

storey.

Dwelling orientation (ߙ) º ܷ(0,360)
Dwelling height (௨ݖ) m The ceiling height of the top floor of the dwelling. [32]

Dwelling type - Apartment, end-terrace, mid-terrace, semi-detached, detached. [32]
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TABLE B2

Input (symbol) Units Value(s), comment, or PDF assumed Source

Permeability (ܳହ଴) m
3
/h/m

2 ݈݈݃݊݅݁ݓ݀)݂ ܽ݃݁) pre-2000, post-2000. [36], [35]

Party wall relative permeability ෨ܳ - Party walls have a permeability equivalent to a dwelling

when ෨ܳ = 1 and are impermeable when ෨ܳ = 0.

Dwelling age years EHS parameter indicating construction pre-2000 and post-

2000

[32]

Airflow exponent (ܾ) - ܰ(0.651, 0.077) [16]

Façade wind pressure coefficient (௣ܥ) - ݂൫ݓ,ߠ, ௨ݖ ௣଴൯ܥ,݀, Low-rise dwelling,
High-rise dwelling.

[39];

[38]

Wind pressure coefficient for front

surfaces of dwelling with wind normal

to them ( (௣଴ܥ
.(݃݊݅ݎ݁ݐ݈݄݁ݏ)݂ Product of 0.6 and the LBL shielding

factor. For basement apartments no wind driven infiltration

is assumed; then ௣଴ܥ = 0.

[39]

[56]
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TABLE B3

Input (symbol) Units Value(s), comment, or PDF assumed Source

Dwelling location - EHS region (CIBSE region){BREDEM region}:

North East (Newcastle){Thames}, North West (Manchester){North West},

Yorkshire and the Humber (Leeds){East Pennines},

East Midlands (Nottingham){Midlands}, West Midlands (Birmingham){Midlands},

East (Norwich){East Anglia}, London (London){Thames}, South East (Southampton){South},

South West (Plymouth{South West} or Swindon{Severn} [chosen as a uniform random variable])

[32]

[41]

[19]

Altitude (݄) m .(݊݋݅ݐܽܿ݋݈)݂ Given by weather file. [41]

Wind direction (ߠ) º .(݊݋݅ݐܽܿ݋݈)݂ Given by weather file. [32]; [41]

Weather station

wind speed (଴ݑ) m/s (݊݋݅ݐܽܿ݋݈)݂ [41]

Terrain

coefficients (݇,݉)

- ,݊݋݅ݐܽܿ݋݈)݂ (݃݊݅ݎ݁ݐ݈݄݁ݏ [18]; [32]

Wind speed at

dwelling height (ݑ) m/s ,଴ݑ)݂ ,௨ݖ ݇,݉, location) [18]

Sheltering - EHS sheltering {LBL shielding coefficient}[BSI terrain coefficients]|BREDEM|:

City {very heavy shielding}[city]|city|,

Urban {heavy shielding}[urban]|average|,

Suburban {heavy shielding}[urban]|average|,

Rural residential {moderate local shielding}[urban]|average|,

Village centre {moderate local shielding}[urban]|average|,

Rural {light local shielding}[scattered wind breaks]|average|

special case:|apartment on 10
th
floor or above, exposed|

special case:|apartment on 6-9
th
floors, above average|

special case:|sheltered 3 storey houses, below average|

[32]

{[56]; [42]}

[[18]]

|[19]|

Internal dry bulb

temperature ( ௜ܶ௡௧) °C ܰ(21.1,2.5) [43]

External dry bulb

temperature ( ௘ܶ௫௧) °C .(݊݋݅ݐܽܿ݋݈)݂ Given by weather file. [41]


