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The activated phosphoinositide 3-kinase δ syndrome (APDS), also known as p110δ- 

activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency 

(PASLI), is a combined immunodeficiency syndrome caused by gain-of-function muta-

tions in the phosphoinositide 3-kinase (PI3K) genes PIK3CD (encoding p110δ: APDS1 

or PASLI-CD) and PIK3R1 (encoding p85α: APDS2 or PASLI-R1). While the disease is 

clinically heterogeneous, respiratory symptoms and complications are near universal and 

often severe. Infections of the ears, sinuses, and upper and lower respiratory tracts are the 

earliest and most frequent manifestation of APDS, secondary to both respiratory viruses 

and to bacterial pathogens typical of defective B cell function. End organ damage in 

the form of small airways disease and bronchiectasis frequently complicates APDS, but 

despite documented T cell defects, opportunistic infections have rarely been observed. 

Antimicrobial (principally antibiotic) prophylaxis and/or immunoglobulin replacement have 

been widely used to reduce the frequency and severity of respiratory infection in APDS, 

but outcome data to confirm the efficacy of these interventions are limited. Despite these 

measures, APDS patients are often afflicted by benign lymphoproliferative disease, which 

may present in the respiratory system as tonsillar/adenoidal enlargement, mediastinal 

lymphadenopathy, or mucosal nodular lymphoid hyperplasia, potentially causing airways 

obstruction and compounding the infection phenotype. Treatment with rapamycin and 

PI3Kδ inhibitors has been reported to be of benefit in benign lymphoproliferation, but 

hematopoietic stem cell transplantation (ideally undertaken before permanent airway 

damage is established) remains the only curative treatment for APDS.

Keywords: activated phosphoinositide 3-kinase delta syndrome, respiratory infection, pneumonia, bronchiectasis, 

antibody deficiency, lymphoproliferation

iNTRODUCTiON

Following the initial description in 2013 of gain-of-function (GOF) mutations resulting in enhanced 
phosphoinositide 3-kinase (PI3K) δ signaling as the cause of a combined immune deficiency 
syndrome [the activated phosphoinositide 3-kinase δ syndrome (APDS), also known as p110δ-
activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI)], 
multiple case reports and several case series have highlighted the protean clinical feature of this newly 
recognized disease. The first reports (1–3) identified mutations in the gene (PIK3CD) encoding the 
p110δ catalytic subunit of PI3Kδ, and several additional GOF mutations have since been described 
[e.g., Ref. (4–9)]. Subsequently, patients with a highly reminiscent clinical phenotype who did not 
harbor APDS-associated PIK3CD mutations were found instead to have exon-skipping mutations in 
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the Class 1A regulatory PI3K subunit p85α encoded by PIK3R1 
[e.g., Ref. (10–16)]; these mutations disrupt the inhibitory inter-
actions with the catalytic subunit of PI3Kδ (17), increasing both 
basal and stimulated activation. The resulting clinical syndrome, 
termed APDS2 (or PASLI-R1), phenocopies many of the APDS1 
disease manifestations but with a higher incidence of growth 
retardation and in some cases, overlap with SHORT syndrome 
[short stature, hyperextensibility, hernia, ocular depression, 
Rieger anomaly, and teething delay (14, 18)]. More recently, four 
patients with mutations leading to haploinsufficiency of PTEN (a 
lipid phosphatase that opposes PI3K activation) have been found 
to have immunodeficiency with an APDS-like syndrome (9, 19). 
Despite the different genetic underpinnings, the clinical features 
have marked similarities; a recurring theme is that respiratory 
manifestation (predominantly infections but also non-infectious 
complications) affect the majority of patients, occur early in the 
course of the disease, and are challenging to manage clinically.

ReSPiRATORY iNFeCTiONS iN APDS

incidence and Age of Onset
While a few isolated cases have been identified who are com-
pletely asymptomatic (20) or who have severe extrapulmonary 
manifestations but minimal or no respiratory symptomatology 
(21), recurrent respiratory tract infections are reported near 
universally in APDS; indeed, they may be the sole manifestation 
of the disease (16), and they may be both very frequent and 
severe (5). Unfortunately, however, differences in definitions 
and nomenclature make direct comparisons between published 
studies challenging at times. For example, Coulter et  al. (20) 
reported that 51 (98%) of a cohort of 53 patients with APDS1 
suffered recurrent respiratory infections, subdividing these epi-
sodes further into radiologically confirmed pneumonia (85%), 
recurrent otitis media (49%, severe enough to cause permanent 
hearing loss in 8% of the total), chronic rhinosinusitis (45%), and 
tonsillitis (28%). By contrast, in their description of 36 patients 
with APDS2, Elkaim et al. (22) noted recurrent upper respiratory 
tract infections (including both otitis media and sinusitis in this 
definition) in 100% of cases, and lower respiratory infections 
(defined as either bronchitis or pneumonitis) in 70% of their 
cohort, without further breakdown. A recently published Dutch 
cohort (8) reporting 13 newly identified patients (11 with APDS1 
and 2 with APDS2) stated that all had both upper and lower 
respiratory tract infections but did not supply further clinical 
details as the focus of the manuscript was B cell differentiation 
and maturation. A Chinese case series of 15 APDS1 patients (23) 
reported pneumonia had been diagnosed in 12 of the cases (80%).

In addition to the high frequency of such infections, their 
onset is early in life [10 months–10 years (22) and <1–7 years 
(20)] and is the commonest reason for presentation to medical/
immunological services. Even in patients whose presentation 
is precipitated by other acute manifestations [e.g., intussuscep-
tion (24) or gut-associated T  cell lymphoproliferation (25)], a 
retrospective history of recurrent respiratory infections is usually 
present. Thus, although precise definitions vary between studies, 
it is possible to conclude that APDS patients suffer early, frequent, 

and severe respiratory infections. This concurs with the accompa-
nying article presenting initial data collected by the ESID APDS 
registry (Maccari et al., personal communication1).

Despite these broad similarities, the severity and pattern of 
infections (as well as other manifestations) varies considerably 
between individual patients, even when grouped according to 
genotype and even within affected family members. In one 
E1021K APDS1 kindred (26) in which three individual affected 
family members exhibited a mild, intermediate, and severe spec-
trum respiratory infections, there seemed to be a broad associa-
tion of severer phenotype with more suppressed IgG and lower 
class-switched memory B cells. However, this correlation was not 
observed in other affected families (2, 27) and does not seem to 
be recapitulated in larger cohort studies. To date, no circulating 
biomarker has been reliably linked to respiratory phenotypes, 
but larger longitudinal studies may enable such correlation to be 
identified in future.

Microbiology of infections
While some microbiological data have been published, milder 
infections are generally self-reported and not supported by 
identification of a causal pathogen. It is therefore likely that most 
of the reported isolates are derived from infections at the severer 
end of the spectrum, in particular those requiring consultation 
with health-care professionals; this could skew the available data.

Bacterial Infections
There is concordance that the commonest respiratory bacterial 
isolates are Haemophilus influenzae and Streptococcus pneu-
moniae (20, 22), Staphylococcus aureus, Moraxella catarrhalis, 
Pseudomonas aeruginosa, and Klebsiella species have also been 
reported (20, 28). This spectrum of pathogens is highly remi-
niscent of other primary antibody deficiency syndromes such 
as common variable immune deficiency. Defective antibody 
production (Figure  1) results in failure of antibody-mediated 
killing mechanisms such as opsonophagocytosis. However, 
abnormalities in immunoglobulin levels are heterogeneous 
in all of the published case series of APDS; Coulter et  al. (20) 
reported that total IgG was reduced in just 43% of their APDS1 
patient group, although defective class switch recombination 
and (when measured) specific antibody formation were more 
frequent; similarly, 50% of the Dutch APDS cohort had low IgG 
and high IgM levels (8). Hypogammaglobulinemia was more 
frequent (87%) in the APDS2 patients reported by Elkaim et al. 
(22). Interestingly, low IgG/IgA levels do not seem to reliably 
predict a more severe respiratory phenotype or correlate with the 
presence of bronchiectasis [for example, Coulter et al. (20) noted 
that 63% of patients with CT proven bronchiectasis had normal 
total IgG levels]. It is uncertain whether this lack of correlation of 
end organ damage with IgG reflects the widespread prevalence of 
more subtle antibody defects, additional aberrant B cell functions 
(e.g., abnormal cytokine production), the additive impact of the 
well-established abnormalities in T  cell function (3) or other, 

1 Maccari ME, Abolhassani H, Aghamohammadi A, Aiuti A, Aleinikova O, Bangs C, 
et al. Disease evolution and response to rapamycin in Activated PI3Kδ Syndrome: 
the ESID-APDS registry. (submitted to this Research Topic).



FigURe 1 | Aberrant cellular functions contributing to respiratory infection in activated phosphoinositide 3-kinase δ syndrome. (A) Healthy lung defenses.  

(1) Epithelial defenses counteract viral pathogens, aided by (2) effective T cells cytokine production. (3) Antibody production by B cells promotes (4) bacterial  

killing and (5) opsonophagocytosis. (6) Respiratory epithelial surfaces are preserved intact and continue to function to repulse invading pathogens. (B) Lung 

defenses compromised by activating mutations leading to enhanced phosphoinositide 3-kinase (PI3K) δ signaling. (1a) Viral entry and replication in airway  

epithelial cells are promoted, reducing barrier integrity. (2a) Aberrant cytokine production by T cells and (3a) failure of antibody production promote (4a)  

bacterial invasion with (5a) inadequate handling of pathogens by phagocytes. (6a) Repeated cycles of infection lead to long-term airway damage.
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as yet undetermined mechanisms. Of note, PI3Kδ inhibition 
reduced airway epithelial oxidative and endoplasmic reticulum 
stress in response to Aspergillus fumigatus exposure, both in 
cultured cells and in mouse lungs (29), suggesting that excessive 
PI3Kδ activity may be detrimental to local respiratory defenses as 
well as impairing adaptive immunity (Figure 1).

Viral Infections
The susceptibility of APDS patients to systemic infection with 
herpes viruses is well documented; however, they also seem to 
experience an excessive burden of respiratory viral infections. 
Coulter et  al. (20) noted that significant adenovirus infections 
occurred in 17% of their APDS1 cohort, with adenovirus isolated 
from various sites including bronchoalveolar lavage fluid; other 
common viruses identified during respiratory exacerbations 
included respiratory syncytial virus (RSV), parainfluenza virus, 
and echovirus and coxsackie viruses (20). Significant RSV infec-
tions have also been noted by others [e.g., Ref. (14, 15)], and 
additionally a patient with pericarditis caused by echovirus infec-
tion has also been reported (30). While T cell-mediated antiviral 
mechanisms are undoubtedly compromised in APDS patients, it 
is worth reflecting that many viral pathogens subvert local host 
cell PI3K signaling (Figure 1). Herpesviruses in particular express 
multiple proteins that target PI3K/Akt to facilitate viral infection, 
replication, latency, and reactivation (31). Increased PI3Kα, 
rather than PI3Kδ expression and activity in primary bronchial 
epithelial cells isolated from patients with COPD, was found to 
underpin increased susceptibility to H3N2 and H1N1 influenza 
viral infection (32); inhibition of PI3K signaling restored protec-
tive antiviral responses and suppressed infection in this setting. 
It is plausible to extrapolate from these findings that excessive 

airway cell PI3K activity (whatever the isoform responsible) 
might predispose to airway viral invasion (Figure 1). With regard 
to APDS-relevant respiratory viral pathogens, the adenovirus 
E4-ORF1 (early region 4 open reading frame 1) protein enhances 
viral replication by activating PI3K (33). Likewise, infection with 
coxsackie virus activates PI3K/AKT signaling and suppression of 
these pathways diminished viral capsid protein expression and 
viral release (34), and PI3Kδ mediates dsRNA-induced upregula-
tion of airway epithelial PD-L1, a co-inhibitory molecule associ-
ated with the escape of viruses from the mucosal immunity (35).

Mycobacterial and Fungal Infections
Although pulmonary mycobacterial infections have not been 
reported in APDS, local infection with Bacillus Calmette–Guérin 
(BCG) have been documented following vaccination (20), and in 
a separate study, a failure of patient-derived monocyte-derived 
macrophages to kill internalized BCG, restored by a PI3Kδ inbi-
tor, was demonstrated (36). It would therefore seem prudent to 
ensure patients with APDS have sputum samples screened for 
mycobacteria as well as standard pathogens. To date, despite the 
marked T cell senescence that characterizes APDS, no patients 
with pulmonary pneumocystis pneumonia (PCP) or invasive 
aspergillosis have been reported, but interestingly one of two 
patients reported with a PTEN mutations causing an “APDS-like” 
syndrome contracted PCP at the age of 4 months and the other 
was reported to have suffered from “pulmonary aspergillosis,” 
although further details were not supplied (9). PI3Kδ activity 
supports neutrophil-mediated killing of A. fumigatus hyphae 
(37), and normal neutrophil PIP3 levels and oxidative burst were 
seen in response to soluble stimuli (2), hence increased suscepti-
bility to this organism would not be predicted.



FigURe 2 | Processes leading to airway damage in activated phosphoinositide 3-kinase δ syndrome. Repeated episodes of viral bronchiolitis may lead to small 

airway damage and mosaic attenuation, compounded by local obstruction secondary to focal lymphoid hyperplasia. Recurrent bacterial infection leads to chronic 

inflammatory damage of the larger airways and the development of bronchiectasis; post-obstructive bronchiectasis may also occur secondary airway obstruction, 

which may be extra-luminal (intrathoracic lymphadenopathy) or intra-luminal (focal lymphoid hyperplasia).
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Complications of Respiratory  

infections in APDS
Bronchiectasis
Bronchiectasis (abnormal widening of the bronchi or their 
branches; Figure 2) is one of the commonest and most debilitating 
consequences of recurrent respiratory infection, and compounds 
the problem, increasing the host susceptibility to further lower 
respiratory tract infections and facilitating airway colonization 
with pathogenic bacteria (38, 39). A number of mechanisms may 
lead to the development of bronchiectasis in APDS. First, the 
frequent respiratory infections noted above may lead directly to 
airway damage, weakening the airway wall. Second, focal nodular 
lymphoid hyperplasia may be of sufficient magnitude to obstruct 
segmental or even lobar airways, potentially leading to post-
obstructive bronchiectasis. Third, compromise of the adaptive 
immune response may predispose to bronchiectasis. Aberrant 
neutrophil function has been linked to bronchiectasis and cor-
relates with disease severity and exacerbations (40, 41). Excessive 
(and perhaps dysregulated) neutrophil PI3K activation has been 
linked to airway damage in COPD (42), and inhibition of PI3K 
(using pan-PI3K inhibitors or inhibitors selective for PI3Kδ or 
PI3Kγ) was able to restore neutrophil migratory accuracy in 
both COPD and in the elderly (42, 43). Neutrophil function 
has been little studied in APDS: Angulo et al. (2) presented data 
from just n = 1–2 patients but did show an apparent reduction 
in neutrophil chemotaxis to IL-8 in cells derived from a patient 
with APDS; however, directionality and accuracy or migration 
were not assessed in this limited study. Further assessment of 
neutrophil function in APDS patients or in animal models of 
APDS would be of interest.

Recurrent respiratory infections precede a diagnosis of bronchi- 
ectasis by several years in most reported cases of APDS 

(see text footnote 1), but this apparent temporal progression may be 
confounded by delays in undertaking CT scans, and uptake of this 
investigation may vary between institutions and on a wider scale 
between countries. Earlier identification of patients and establish-
ing treatment regimens including immunoglobulin replacement 
and antibiotic prophylaxis, or HSCT, might delay or prevent this 
complication, but to confirm this will require longitudinal obser-
vation. An early review (15) of 49 APDS1 and 15 APDS2 patients 
(all that had been published at the time of their review) suggested 
a higher incidence of bronchiectasis in APDS1 versus APDS2.  
In the most detailed study of bronchiectasis in APDS to date (20), 
CT chest scans from 31 patients with APDS1 were independently 
reviewed by 2 specialist thoracic radiologists; bronchiectasis was 
felt by both radiologists to be present in 21 of the 31 available 
scans (60%), with an average of three lobes affected. In one case, 
lobar consolidation was observed to progress to focal bronchi-
ectasis, supporting a causal link between airway infection and 
airway wall damage. In contrast in a study of APDS2 (22), an 
incidence of just 18% bronchiectasis was found, but this study 
relied on the attending physician’s response to a questionnaire, 
and central review of scans was not undertaken. Could this reflect 
a true difference between APDS1 and APDS2? A lower incidence 
of bronchiectasis (only 2 of 10 APDS1 patients in whom CT scans 
were available were diagnosed with this condition) was noted 
in a smaller study (8) although bronchial wall thickening was 
highlighted in an additional four patients; neither of the APDS2 
patients in this cohort had bronchiectasis. In a further case series 
(23), the reported incidence of bronchiectasis in APDS1 was 
just 5/15 (33%). Given the variability in chest CT uptake and 
reporting, it seems reasonable to conclude that bronchiectasis 
is a frequent complication of APDS, whatever the causal muta-
tion; indeed initial data from the ESID APDS both APDS1 and 
APDS2 patients suggest an overall incidence of bronchiectasis of 
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approximately 60%. Apparent differences between studies may 
reflect small sample sizes, geographical differences in CT uptake, 
and interindividual variation in CT reporting; however, larger 
cohort studies and longitudinal observation may be required 
to clarify this and exclude a genuine difference between APDS1  
and APDS2.

Small Airways Disease
Bronchiectasis is an expected complication of recurrent bacterial 
respiratory infection and is well known to be associated with 
primary antibody deficiency. Unexpectedly, the commonest 
radiological abnormality (in 88%) flagged by specialist radiolo-
gists in the APDS1 cohort described by Coulter et al. (20) was not 
bronchiectasis or inflammatory change but mosaic attenuation, 
indicative of reduced perfusion of poorly ventilated lung regions. 
Air trapping (a related finding, secondary to airway obstruction) 
was also noted in 2/9 APDS1 patients in a separate study (8), and 
mosaic attenuation was flagged as a radiological feature of APDS1 
but not enumerated by Angulo et al. (2). These more subtle CT 
abnormalities are likely to reflect the impact of recurrent epi-
sodes of viral bronchiolitis but could also be secondary to focal 
lymphoid hyperplasia (Figure 2 and see below). Further assess-
ment of APDS patients for small airways disease using specialist 
pulmonary function methodologies (e.g., multi-breathe washout 
and forced oscillometry) or imaging modalities such as MRI with 
hyperpolarized helium or xenon might more accurately delineate 
this unexpectedly common radiological abnormality (44).

NON-iNFeCTiOUS ReSPiRATORY 

MANiFeSTATiONS OF APDS

Benign Lymphoproliferation
Tonsillar and adenoidal hypertrophy is a frequent manifestation 
of APDS. A detailed analysis of this complication in APDS2 (22) 
revealed ear, nose, and throat chronic lymphoid hyperplasia with-
out the need for surgical interventions in three (11%) patients, 
adenoidectomies, tonsillectomy, or both in seven (26%) patients 
and multiple surgical resections in three patients; one afflicted 
patient developed postoperative pharyngeal stenosis ultimately 
requiring tracheotomy. Coulter et al. (20) noted recurrent tonsil-
litis in 15/53 APDS1 patients (28%) with a need for tonsillectomy 
in 5/53 (13%) but listed this as an infectious rather than a lym-
phoproliferative complication. While occasional case reports have 
highlighted significant tonsillar hypertrophy in APDS1 (6, 24), 
it seems to be noted more frequently, and to be more severe in 
APDS2 [e.g., Ref. (12, 14, 27, 45)]. Tonsillar biopsies from two 
APDS2 patients demonstrated small B cell follicles rather than 
the atypical follicular hyperplasia reported in biopsies of lymph 
nodes/mucosal follicular hyperplasia from APDS1 (7, 20) and 
APDS2 (14), but other features such as reduced mantle layers and 
infiltration with PD1 +ve T cells were concordant, suggesting a 
related immunopathogenesis.

Benign lymphoproliferation has been widely reported in both 
APDS1 and 2, but in most cases mediastinal lymphadenopathy 
(which requires CT for ascertainment) is not separately reported. 
However, 16/31 APDS patients (20) were noted to have mediastinal 

lymphadenopathy, which was in a regional draining station to 
concurrent lobar consolidation in four instances, compatible with 
an infection-driven etiology. In the same study, 8 of 10 patients 
with persistent intrathoracic lymphadenopathy had bronchiecta-
sis and recurrent consolidation, again suggesting a possible role 
for infection driving lymphoproliferation in this setting. In 
this study, 5/53 patients had mucosal nodular lymphoid hyperplasia 
identified bronchoscopically; the same phenomenon was observed 
in 6/9 of the APDS1 patients reported by Lucas et al. (3), all of 
whom underwent bronchoscopy, suggesting that milder cases will 
go undetected unless this invasive test is undertaken. As noted 
above, it is possible that this process contributes to the mosaic 
attenuation/air trapping noted on CT (Figure 2), and larger nod-
ules might also lead to partial or total airway occlusion, segmental 
collapse, and post-obstructive bronchiectasis (Figure 2).

Of interest, although APDS can present with a CVID-like 
picture, it has not been associated with interstitial lymphoid or 
granulomatous infiltrates (granulomatous lymphocytic intersti-
tial lung disease).

Malignant Lymphoproliferation
Lymphoma has been reported to be a frequent complication of 
both APDS1 and APDS2 (20, 22, 30). The metabolic reprogram-
ming that occurs during malignant transformation through the 
upregulation of aerobic glycolysis has been used to distinguish 
benign lymphoproliferation from malignant disease; this can 
be probed on positron emission tomography by the increased 
uptake of the glucose analog, 18F-fluorodeoxyglucose; biopsy 
is required where clinical or radiological suspicion is high. 
Lymphoma may involve mediastinal lymph nodes, or bronchus-
associated lymphoid tissue, but this would normally be as part 
of a systemic process, and mediastinal nodes are more chal-
lenging to sample for histology than more peripheral nodes. 
While many lymph node stations in the chest are accessible via 
endobronchial ultrasound, and this technique has been used to 
diagnose lymphoma in immunocompetent patients (46), whole 
nodes cannot be removed in their entirety by this route; given 
the challenges in distinguishing between benign or malignant 
disease in immunodeficiency in general and APDS in particular, 
a larger pathological sample may be required. In this setting, if 
other nodes are not readily biopsied, a mediastinoscopy or video-
assisted thoracoscopy might be required.

Other Non-infectious Complications
Although congenital abnormalities have been reported, most are 
extra-thoracic. One patient with APDS1 was diagnosed with a 
pulmonary sequestration requiring lobectomy (47). A patient 
with SHORT syndrome associated APDS2 was found to have pul-
monary hypertension, but this was likely secondary to the pres-
ence of mitral stenosis, although significant respiratory infections 
were also present (18). A single patient with a PIK3R1 mutation 
was found to have tracheomegaly as well as megancephaly and 
a double aortic arch in the context of megalencephaly capillary 
malformation syndrome (8). Common airway diseases such as 
asthma have seemingly been observed only at low frequency 
[e.g., Ref. (26)], and it is difficult to draw conclusions from these 
occasional reports.
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MANAgeMeNT OF THe ReSPiRATORY 

MANiFeSTATiONS OF APDS

The majority of patients with APDS1 [87% (20) and 73% (8)] and 
APDS2 [89% (22)] are reported as receiving immunoglobulin 
replacement, often from an early age; this high proportion exceeds 
the numbers reported to have low IgG levels, suggesting that the 
drivers for commencing therapy include recurrent infections in 
the setting of specific antibody deficiency or subclass deficiencies. 
More patients in the APDS1 cohorts (62 or 63%) than the APDS2 
cohort (17%) noted above received additional prophylactic anti-
biotics (most commonly co-trimoxazole or azithromycin); the 
reason for this difference is unclear. There are little available data 
on the efficacy of these interventions; Coulter et al. (20) stated 
that there was “reported benefit in most cases,” with none of the 
other case series specifically addressing this issue. Case reports 
have suggested that some patients exhibit marked (14, 23, 30, 36) 
or partial improvements (27), but others have flagged patients 
who had significant ongoing respiratory sepsis in the face of these 
treatments (15, 18). Of note, 42/68 patients currently listed on the 
APDS registry are currently receiving immunoglobulin replace-
ment (see text footnote 1), with an overall reported decrease in 
respiratory infection and no withdrawals from therapy.

Rapamycin has been used to treat benign lymphoproliferative 
disease in APDS with some reported success (3), but respiratory-
specific outcomes have not been published to date. A 12-week 
experimental medicine study (48) of the selective PI3Kδ inhibi-
tor Leniolisib in six patients with APDS1 (three of whom had 
bronchiectasis) again did not report respiratory outcomes, but 
the observed improvements in B cell abnormalities characteristic 
of this disease (e.g., a reduction in circulating transitional B cells) 
suggest the potential for restoration of B cell function and hence 
a pulmonary protective role. Longer treatment regimens will be 
required to fully evaluate the benefits (and potential risks) of such 
interventions. Concerns have been raised that long-term PI3Kδ 
blockade increases genomic instability in B cells (49); however, 
these experiments were undertaken in mouse cells, and it is not 
clear that the same issues would complicate a therapeutic strategy 
aimed at normalizing, rather than abolishing PI3Kδ activity (48). 
Improvements in sinopulmonary infection have been reported 
following hematopoietic stem cell transplantation, with the 

majority of surviving patients no longer requiring immuno-
globulin therapy (50); however, this procedure carries a signifi-
cant mortality and will not alleviate established structural lung 
damage such as bronchiectasis. Early identification of patients 
with APDS (16) may allow transplantation before the develop-
ment of such complications; however, the clinical heterogeneity 
makes prediction of future disease severity challenging.

CONCLUSiON AND OUTLOOK

Despite the varied clinical manifestations of APDS, respiratory 
infections are a near-universal feature and often predominate 
in the early phase of the disease. A number of mechanisms may 
lead to this enhanced respiratory susceptibility (Figure 1). Viral 
pathogens subvert host PI3K signaling, and this may contribute 
to recurrent upper respiratory infections and impaired airway 
epithelial defensive function. Compromised antibody produc-
tion, perhaps combined with aberrant cytokine production 
and the viral-induced airway damage, contributes to increased 
susceptibility to bacterial pathogens and recurrent lower respira-
tory infections. Cycles of infection lead to permanent damage to 
the lower airways, with the development of bronchiectasis, 
and may further drive the benign lymphoproliferation that is a 
prominent feature of APDS. In addition to supportive treatment 
(with immunoglobulin replacement and prophylactic antibiot-
ics), the use of PI3Kδ inhibitors has the potential for a highly 
personalized treatment strategy. The identification of biomarkers 
to predict specific complications and disease severity would be of 
value in selecting patients for potentially curative bone marrow 
transplantation.
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