
This is a repository copy of Deadline, Energy and Buffer-Aware Task Mapping
Optimization in NoC-Based SoCs Using Genetic Algorithms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/127432/

Version: Accepted Version

Proceedings Paper:
Bruch, Jaison Valmor, Alves da Silva, Eduardo, Zeferino, Cesar Albenes et al. (1 more
author) (2017) Deadline, Energy and Buffer-Aware Task Mapping Optimization in NoC-
Based SoCs Using Genetic Algorithms. In: VII Brazilian Symposium on Computing
Systems Engineering (SBESC). Brazilian Symposium on Computing Systems Engineering
(SBESC) . IEEE , pp. 86-93.

https://doi.org/10.1109/SBESC.2017.18

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Deadline, Energy and Buffer-Aware

Task Mapping Optimization in NoC-based SoCs

using Genetic Algorithms

J. V. Bruch, E. A. da Silva and C. A. Zeferino

Laboratory of Embedded and Distributed Systems

University of Vale do Itajaí

Itajaí, SC, Brazil 88302-202

jaison@edu.univali.br, {eas, zeferino}@univali.br

L. S. Indrusiak

Department of Computer Science

University of York

Heslington, York, United Kingdon YO10 5GH

leandro.indrusiak@york.ac.uk

Abstract— In Systems-on-Chip (SoCs) based on Networks-

on-Chip (NoCs), the timing requirements of target applications

can be met by using virtual channels and traffic differentiation

mechanisms to prioritize the most urgent communication

streams. However, the use of virtual channels in NoCs results

in silicon and power overheads as they are usually

implemented by means of additional buffers and multiplexers.

In this context, this paper presents an optimization flow to

perform the mapping of applications on NoC-based SoCs,

aiming to meet the time requirements and minimize the costs

arising from the use of virtual channels. The optimization flow

applies a multi-objective heuristic that minimizes the

communication deadline miss ratio, the number of virtual

channels per router and the static power consumption. The

heuristic is based on the NSGA-II genetic algorithm and

performs task mapping, priority assignment, and virtual

channel configuration. The proposed mapping optimization is

evaluated by measuring the inter-task communication latency

using a cycle-accurate NoC simulator. The optimization flow is

able to identify a series of mappings that represent trade-offs

over the metrics of interest, reducing the deadline miss ratio

and the costs associated with virtual channels.

Keywords— Real-Time System; Systems-on-Chip; Networks-

on-Chip; Task Mapping; Genetic Algorithms.

I. INTRODUCTION

Networks-on-Chip (NoCs) are the communication
backbone in systems consisting of hundreds to thousands of
cores on a single silicon wafer [1]. In NoC-based SoCs,
applications process data and exchange information over the
communication backbone. Some of those applications can
have strict requirements regarding the time for completing
their tasks. In such cases, the communication must be
completed before a given deadline. However, typical NoC
implementations are very susceptible to contention due to
competition for shared resources. This may cause a delay in
the delivery of packets, and, possibly, deadline misses. To
avoid the violation of time constraints, virtual channels may
be employed in conjunction with preemptive arbitration
mechanisms. In such approach, each communication flow
has a priority level that determines the virtual channel to be

used during the transfer of its packets through the network.
In this way, if two or more packets dispute some resource,
the higher priority packet is serviced before the others, and
the most critical communications tend to face fewer
contentions [2].

The implementation of virtual channels is based on
memory elements called buffers. Its adoption improves the
network throughput and allows the providing of QoS
(Quality-of-Service). However, it impacts greatly on the
area occupied by the NoC circuitry and may account for
more than half of the static power dissipated by the routers
[3].

Since the traffic characteristics in a NoC vary depending
on the application type, the virtual channels can be allocated
to match the communication requirements. In this context,
this paper explores the number and depth of virtual
channels, as well as packet priority assignment in an
optimization process based on task mapping.

Mapping an application onto a NoC is known to be an
NP-hard problem [4]. If the target system has n single-task
processing elements and the application has n tasks, n!
different solutions exist in the design space.

To solve the task-mapping problem, one can employ a
multi-objective optimization environment that seeks a set of
trade-offs among the target metrics and leaves to the
designer to choose the most suitable alternative [5].
Heuristics based on genetic algorithms (GAs) have been
shown to be effective in similar formulations of this
problem. These algorithms deal simultaneously with a set of
solutions and allow us to find several members of the Pareto
optimal set in a single run [6].

This paper presents a GA-based approach to carry out
the mapping of tasks on a NoC-based SoC. The aim consists
in finding trade-off solutions that improve the deadline
compliance, reduce the number of virtual channels used in
the routers and, therefore, the static energy consumed by the
network. From a graph of communication tasks provided by
the designer, the developed heuristic places the tasks on the

communication architecture, defines the priority level of
each communication flow, the number of virtual channels
and the storage capacity of their buffers. The experimental
results demonstrate the effectiveness of the proposed
approach.

This paper is organized into five sections. Section I
presented the context and the motivation for this work.
Section II discusses related work and identifies the
contribution of this work in comparison to the state of the
art. Section III describes the optimization flow and the NoC
platform used to evaluate the proposed approach. Section IV
discusses the experiments and the obtained results.
Concluding, Section V presents the final remarks.

II. RELATED WORK

Task mapping optimization in NoC-based SoCs has been
of great interest to the scientific community, mainly due to
its critical contribution to cost and performance metrics. The
diversity of adopted approaches can be verified in recent
surveys presented in [7] and [8].

One of the first works to employ multi-objective
optimization in NoC-based systems was described in [5].
The authors applied genetic algorithms to explore the
mapping space with evaluation by simulation. The objective
functions aimed at optimizing performance (latency) and
dynamic power dissipation. However, the minimization of
storage elements was not addressed.

The mapping of hard real-time applications on NoCs
was discussed in [9]. The authors applied genetic algorithms
in the optimization of the execution time and energy
consumption. The assessment was done through static
schedulability analysis, taking into account the worst-case
communication time. In [10], the same authors explored the
task mapping in conjunction with the assignment of
priorities. These works generate schedulable systems.
However, the costs to implement the NoC is quite high,
once they assume that there is a dedicated virtual channel
for each priority level.

The minimization of the number of virtual channels was
addressed in [11] with the adoption of a heuristic based on
Ant Colony Optimization (ACO). The objective functions
attempt to minimize the communication volume in the
network links and the number of virtual channels. This
approach was expanded in [12] with the addition of a
second step in the optimization process, which adopts a
probabilistic model to define the number of virtual channels
required for the application. In both approaches, the
evaluation process was conducted by simulation. In these
works, the priority of each task must be set in advance by
the system designer that also is responsible for deciding on
the use of virtual channels considering the QoS
requirements.

In [13], the proposed algorithm uses information about
the traffic characteristics to determine the optimal buffers
depth on each router port in order to avoid performance

bottlenecks and resources waste. Analytical models were
developed to minimize the average latency by employing a
restricted amount of storage that can be distributed in a non-
uniform way among the routers inputs. However, this
approach includes only networks that use store-and-forward
and virtual cut-through switching.

This study differs from the others because it seeks
solutions that minimize, at the same time, the deadline miss
ratio, the virtual channels costs (quantity and buffers depth)
and the static energy consumed by the network. The
aforementioned works do share similarities with the one
presented in this paper and address some of the same
objective functions, but not all the three simultaneously. As
[5], [11] and [12], this work uses simulation to gather
evidence on how often deadlines are missed, which is
expressed by the deadline miss ratio. In [9] and [10], the
authors applied schedulability analysis to prove that
deadlines will never be missed.

III. OPTIMIZATION FLOW

The optimization flow proposed in this work to perform
the design space exploration is depicted in Fig. 1. It consists
of four steps: Configuration, Optimization, Simulation, and
Evaluation.

Fig. 1. Optimization flow

The process begins by defining the graphs and
parameters of the application and NoC, which are the input
data for the optimization algorithm. Following, the
optimization process starts by running a heuristic that
generates an initial population. It is important to notice that
each member in a population is a mapping solution. In the
next iterations, the mappings with the best performance will
evolve to the next generations until the maximum number of
generations to be evaluated is reached. This limit defines the
stop condition of the optimization algorithm.

Each mapping is simulated in a NoC-based system
simulator composed of a network and traffic generators. The
traffic generators emulate the processing elements (PEs) by
injecting packets into the network. Traffic monitors are used
to gathering performance data about the packets transferred
through the NoC. The simulator is described in SystemC
and is cycle-accurate.

After the simulation step, a performance evaluation tool
analyzes the collected data and obtains the deadline miss
ratio and the static energy consumed by the network. These
metrics are used to feed the algorithm in order to rank the
best mapping alternatives according to the defined

optimization criteria. The details of each step are described
in the following sub-sections.

A. Configuration

The configuration step consists in defining the
parameters of the NoC and the characteristics of the
application.

The network model comprises a set of n homogeneous
single-task processing elements Π = {π0, π1, …, πn-1}
interconnected by a 2-D mesh network .

The application is composed of a set of tasks
Γ = {τ0, τ1, …, τm-1}, where m ≤ n. Each task τi ϵ Γ is defined
by the tuple {Pi, Fi}, where Pi describes the priority level of
the task, and Fi = {τd, Li, Di, Ti, Zi} characterizes a
communication flow. The elements that define the tuple Fi
are the destination task (τd), the priority level of the
communication flow (Li), the communication deadline (Di),
the interval between successive packets (Ti), and the
message size (Zi). Li is derived from priority level of the
source node of the communication flow. This model is
based on the one described in [14].

B. Mapping

A multi-objective optimization problem seeks to
optimize two or more conflicting goals, and the use of meta-
heuristics has gained wide acceptance by researchers from a
variety of disciplines. In this type of problem, there is no a
single solution. Actually, there is a set of solutions that
represent a good trade-off among the optimized metrics [6].
In this paper, we adopted the multi-objective genetic
algorithm NSGA-II [15] as the basis to develop the
heuristic.

A genetic algorithm is a search and optimization
procedure based on the principles of genetics and natural
selection. Some fundamental ideas of these areas are
artificially applied in order to build robust algorithms that
require a little knowledge about the problem being treated.

Fig. 2 illustrates the basic operation flow of a genetic
algorithm. The first step in building this kind of heuristic is
the codification of the decision variables as a chromosome.
After that, many individuals are created to form a
population of solutions, which is then evaluated by
calculating the objective functions. Following, the
population is classified to identify the most promising
solutions (fitness). If the stop criterion is not met, the
genetic operators (reproduction, crossover and mutation)
are applied in an attempt of to evolve into a population of
better solutions. The reproduction operator seeks to replicate
good solutions, while the crossover operator combines two
chromosomes to create two new solutions. The mutation
operator makes a change in a random position of the
chromosome in order to maintain the diversity of the
population [16].

1) Problem representation
The problem representation is based on the approach

used in [10], which applies a chromosome described by a set
of genes G = {g0, g1,…, gk} to represent the task mapping
and the priority assignment. As Fig. 3 depicts, the fragment
{g0, g1,…, gm-1} , where m = (k – 1)/2 , represents the
mapping of tasks on the PEs, while the fragment {gm,
gm+1,…, g2m-1} indicates the priority level of each task. In
this work, we applied real-valued representation to describe
the chromosomes and the use of a single-gene fragment
(g2m) to identify the platform type (which is discussed later).

The size of the fragment {g0, g1,…, gm-1} is equivalent to
the number of application tasks. Each gene gj ϵ G | 0 ≤ j < m
indicates in which processing element πi ϵ Π must be
mapped the task τi ϵ Γ | 0 ≤ i < n (where n is the number of
PEs in the platform). The genes gj ϵ G | m ≤ j < 2m define
the priority level Pi assigned to the task τi ϵ Γ. This level
depends on the value of the gene {g2m}.

There are four platforms (Sk) with different priority
levels:

• S0: supports only one priority level P = {0}

• S1: supports up to two priority levels P = {0, 1}

• S2: supports up to four priority levels P = {0, ..., 3}

• S3: supports up to eight priority levels P = {0, ..., 7}

Fig. 2. Genetic algorithm flowchart

 … …
 Mapping Priority Platform

Fig. 3. Chromosome model to represent the problem

Fig. 4 illustrates the mapping of seven tasks {τ0, τ1,…, τ6}
in a platform composed of nine PEs {π0, π1,…, π8}
interconnected by a 3×3 NoC. Fig. 4.a illustrates a graph
that describes the communication flows among the tasks,

while Fig. 4.b shows a possible mapping of tasks on the
system cores. Finally, Fig. 4.c depicts the chromosome
representing this mapping.

π
2

π
5

π
8

S P 0 P 0 P 0 P 0

τ 0 τ 1 τ 2 τ 3 τ 6 τ 0 τ 1 τ 2 τ 3 τ 6
P 1 P 1

τ 4 τ 5 τ 4 τ 5

1

Mapping Priority level Platform

g
0

g
1

g
2

g
3

g
4

g
5

g
6

g
7

g
8

g
9

P 0
π

2
π

0
π

3
π

5
π

8
π

1
π

7

(c)

(b)(a)

τ
6

τ
5

τ
4

τ
3

τ
2

τ
1

τ
0

τ
6

τ
3

τ
2

π
1

τ
1

π
4

π
7

τ
0

π
0

τ
5

π
3

τ
4

π
6

g
10

g
11

g
12

g
13

g
14

Fig. 4. Example of a task mapping: (a) task graph; (b) a possible

mapping; (c) mapping representation

2) Initialization
Typically, the initial population of a genetic algorithm is

randomly created. However, we employed a modified
initialization process to guarantee a minimum quantity of
individuals in each considered platform.

It is important to note that during the optimization
process the heuristic can generate invalid mappings by
performing crossover and mutation to produce new
individuals. These mappings are disregarded.

C. Simulation Platform

1) NoC Architecture
The NoC employed in this work is SoCIN [17]. This

network uses a 2-D mesh topology, credit-based flow
control, XY routing, round-robin arbitration and wormhole
switching. Each router has up to five communication ports
named Local, North, East, South and West. The Local port
is used to attach a PE to the network, and the other ports are
used to interconnect the router to its neighbors.

Internally, the router of SoCIN uses a distributed
organization. Each communication port is composed of an
input channel and an output channel. All the input and
output channels are interconnected by a crossbar. In this
work, four different alternatives of SoCIN were designed,
one for each platform type. The difference among them lies
on the number and the depth of the buffers of the input
channels. In all the platform types, each input channel has
the capacity to store 16 flits and the depth of the buffers
decreases with the increase in the number of virtual
channels. Table I presents the available alternatives ranging
from a single 16-flit buffer to eight 2-flit buffers.

Each packet has a header that carries the information
required for routing, including the network address of the
destination router and the virtual channel identifier. This last
information is stored in a 3-bit field named CLS and used
by the network interface of the source node to select the
virtual channel to be used to transfer the packet.

The original router of SoCIN did not have virtual
channels. In [18], it was modified to support two virtual
channels and provide traffic differentiation. Following the
approach used in that work, additional circuitries were
implemented in order to support the number of virtual
channels necessary for each platform type (Table I).

TABLE I. BUFFERS CONFIGURATION IN THE NOC PLATFORMS

Platform type (Sk)
Virtual channels

per input channel
Buffers depth (flits)

S0 1 16

S1 2 8

S2 4 4

S3 8 2

Flow Control

Data

VCid
3

34

Fig. 5. NoC link with virtual channel identification

Each communication port of the SoCIN router is
composed of two modules: input (IN) and output (OUT),
one for each physical channel. The input module (Fig. 6.a)
is composed of N virtual channels (where N depends on the
selected platform and the target application) and a
demultiplexing circuit. Each virtual channel has a FIFO
buffer and a routing circuit (R). The output module (Fig.
6.b) is composed of N virtual channels, each one with a
switch and an arbiter (A), but none buffer. Furthermore, it
includes a multiplexing circuit that uses a fixed priority
encoder (P) to suspend a communication flow whenever
there exists another higher priority stream. The block
diagram of Fig. 6 is a simplified representation of the
modules and does not show their control signals.

R

FIFO

VCN-1

R

FIFO

VC0

P

VC0

VCN-1

A

A

(a) (b)

Fig. 6. Block diagram of a communication port: (a) input module; (b)

output module

2) System Simulation Environment
The evaluation platform was based on the simulator and

the traffic analysis tools of BrownPepper [18], an integrated
environment that allows evaluating different configurations
of SoCIN. The simulator is a cycle-accurate SystemC model
of a system composed of a parameterizable NoC, traffic
generators and traffic monitors. The traffic generators
represent the processing elements and emulate the
communication among the tasks. The traffic monitors are
connected to the Local ports of the routers and gather data
from the outgoing traffic for analysis. The analysis tool
processes these data and calculates the performance metrics.
The SystemC models and the analysis tool were modified to
allow the evaluation of the four platform types used in this
work.

D. Evaluation

The evaluation consists in the calculation of objective
functions for each mapping of the evolutionary process. The
value assigned to each objective function is measured by
simulation. Algorithm 1 shows the pseudocode of the
evaluation procedure.

Algorithm 1

Input: NoC model, Application model;
Output: Mapping the application on the NoC;

Variable: valid_1, valid_2;

1: begin

2: valid_1, valid_2 false;

3: for each chromosome do

4: valid_1 is one task per node;

5: valid_2 is correct priority assign based on the platform choice;

6: if (valid_1 and valid_2) then

7: constraint[1] 0;

8: switch platform

9: case 0 : mapping tasks on platform 0;

10: case 1 : mapping tasks on platform 1;
11: case 2 : mapping tasks on platform 2;

12: default : mapping tasks on platform 3;

13: end switch

14: objective[1] deadline miss evaluation;

15: objective[2] static energy evaluation;

16: objective[3] buffer depth evaluation;

17: else

18: constraint[1] -1;

19: end if

20: end for

21: end

For each mapping, it is necessary to validate the
compliance with constraints imposed by the simulation
platform. Firstly, is needed to check if the generated
mapping is valid because the initialization process and the
application of the genetic operators can produce invalid
individuals. Next, the number of priority levels assigned by
the heuristic must respect the constraints of the selected
platform (e.g. mappings onto the S0 platform must use only
one level of priority).

Valid mappings are then simulated and a specialized tool
is used to calculate the metrics of interest, which are the
return values of the objective functions of the genetic
algorithm.

1) Objective functions
The optimization flow considers three objective

functions that seek to minimize the deadline miss ratio, the
static energy consumed by the network, and the number of
virtual channels.

The deadline miss ratio is calculated by (1), where
Pckdeadline_miss indicates the number of packets that did not
meet their deadlines, and Pcktotal determines the number of
packets transferred during the simulation.

(1)

The second objective function is calculated using (2) and
seeks to minimize the overall static energy consumed by the
NoC. This calculation considers the power dissipated in
each router during the transfer of packets belonging to the
communication flows resulted from the task mapping. The
static energy is given by the simulated time and the static
power dissipated by the routers. This one was determined by
synthesizing the VHDL models of the platforms to the
SAED 32/28 standard cell technology using Synopsys
design flow.

(2)

Each platform type supports a maximum number of
different priority levels and a virtual channel is assigned to
each level. However, depending on the generated task
mapping, the number of virtual channels can be smaller than
the maximum limit of the platform. Thus, the third objective
function applies (3) to calculate the total storage capacity in
the NoC routers used by a particular mapping configuration.
In (3), VCapplication represents the number of virtual channels
required by the application and VCplatform defines the
maximum number of virtual channels on the chosen
platform.

(3)

2) Solutions ranking
The classification of different mapping solutions is

performed by the non-dominated criterion. A solution is
dominant if there exists any other feasible solution that
would decrease some criterion without increasing at least
another one [6]. Solutions belonging to the best non-
dominated sets fill the population slots of the next
generation and are used for reproduction, crossover, and
mutation to create a new population [14]. The stop criterion
is the number of simulated generations that is defined by the
designer, which also defines the crossover and mutation
rates.

IV. EXPERIMENTAL RESULTS

In order to verify the effectiveness of the proposed
design, we performed several experiments based on
synthetic applications with different traffic scenarios, as
follows.

A. Traffic Scenarios

For the experiments, synthetic models were generated
based on the traffic classes proposed in [20]. Four classes of
communication flow with different characteristics and
requirements were specified. They are: (i) Signaling – SL,
urgent and short messages (e.g. interrupts); (ii) Real-Time –
RT, represents audio and video streams; (iii) Read/Write –
RW, memory access operations; and (iv) Block Transfer –
BT, transfer of large amounts of data.

TABLE II. TRAFFIC CLASSES ADOPTED IN THE EXPERIMENTS

Traffic class Payload size Required bandwidth Deadline

SL 4 flits 320 Mbps 20 ns

RT 40 flits 320 Mbps 125 μs

RW 4 flits 2560 Mbps 150 ns

BT 2000 flits 2560 Mbps 50 μs

The applications evaluated in the experiments were
composed of 16 tasks with the communication flows
randomly distributed in pairs of randomly selected tasks.
Five traffic scenarios were specified. The first four scenarios
emphasize a particular traffic class with the distribution of a
larger amount of flows of this class. The fifth scenario has
the same amount of each pattern of traffic flow, as can be
seen in Table III. In absolute numbers, there are 50
communication flows in the first four scenarios and 60
flows in the last one.

TABLE III. TRAFFIC SCENARIOS

Scenario SL RT RW BT

1 40% 20% 20% 20%

2 20% 40% 20% 20%

3 20% 20% 40% 20%

4 20% 20% 20% 40%

5 25% 25% 25% 25%

The genetic algorithm was configured with a population
of 140 individuals evolving for 200 generations. In the
initialization, we set 25 individuals for each platform and
other 40 individuals were generated with the using of
random distribution. The single-point crossover and real
polynomial mutation rates were set to 0.9 and 0.03,
respectively. Only individuals with valid mappings in each
generation were simulated. For each individual, the
simulation was performed for 50000 clock cycles (or 50 μs
for Tclk = 1 ns), with an average transfer of about 1850
packets per simulation. The number of packets transferred
during the simulated time depends on the application, as
Table IV shows.

TABLE IV. SIMULATION ROUNDS FOR EACH SCENARIO

Scenario
Number of simulations

(valid mappings)

Transferred packets

(average)

1 12433 2218

2 15294 932

3 15976 1762

4 16030 3773

5 15309 580

B. Trade-off Discovery

Table V presents data that express a comparison
between the mappings with the lowest deadline miss ratio
and those randomly generated in the first generation. It can
be seen that the optimization flow obtained improvements in
the deadline miss ratio and in the energy consumption in
almost all the scenarios. It was possible to reduce the energy
consumption for all the scenarios, except for Scenario 2.

TABLE V. REDUCTIONS IN THE DEADLINE MISS RATIO

Scenario
Deadline miss ratio

reduction

Energy consumption

reduction

1 17.0 % 7.2 %

2 4.8 % -2.8 %

3 10.0 % 6.1 %

4 0.2 % 27.8 %

5 3.7 % 21.8 %

Average 7.1 % 12.2 %

Table VI compares the mappings with the higher
reduction in the energy consumption with the first mapping
of each scenario. In this case, all the mappings with the
lowest energy consumption degraded the deadline miss ratio
in comparison with the random mapping.

TABLE VI. REDUCTIONS IN THE ENERGY CONSUMPTION

Scenario
Deadline miss ratio

reduction

Energy consumption

reduction

1 -7.8 % 12.2 %

2 -10.6 % 24.3 %

3 -13.1 % 32.0 %

4 -36.0 % 24.0 %

5 -7.7 % 47.0 %

Average -16.9 % 27.9 %

Table VII presents how the optimization flow selects
and configures a platform in order to reduce the deadline
miss ratio and the network costs, which is given by the
number and depth of virtual channels (buffers) in each input
channel. It first presents the costs of the platform (Sk) used
in the best mapping of the first generation in each scenario.
Then, the table presents the costs of the platform adopted by
the solutions that more reduced the deadline miss ratio
among the other generations.

TABLE VII. PLATFORM SELECTION

Scenario

Best mapping of the first

generation

Best mapping of the other

generations

Sk VCs Cost Sk VCs Cost

1 S2 3 x 04 flits 12 S3 5 x 02 flits 10

2 S0 1 x 16 flits 16 S3 6 x 02 flits 12

3 S3 7 x 02 flits 14 S3 6 x 02 flits 12

4 S2 4 x 04 flits 16 S3 6 x 02 flits 12

5 S2 4 x 04 flits 16 S3 6 x 02 flits 12

 Obs: The Cost column indicates the number of flits per input channel

The presented results indicate that, for the studied
scenarios, it is preferable to use a large number of shallow
(2-flit) virtual channels. It is also important to note that,
although there were available up to 8 virtual channels, the
best results employed 5 or 6 channels. The input channel
costs reduced by 21% on average, as Objective3 aims at
reducing the number of necessary buffers in order to lower
the static energy consumption.

The following charts present the evolution of the
deadline miss ratio and the energy consumption along the
simulations. Fig. 7 presents the results for the first scenario.
The deadline miss is around 18% in the first generation and
then is reduced to 1.1% in the 94th generation. The lowest
rate (0.9%) is reached in the 161st generation, with an
energy consumption of about 0.45μJ. This is not the
minimal consumed energy, but it is the smallest for the
lowest deadline miss ratio.

Fig. 7. Deadline miss ratio and energy consumption for Scenario 1

The communication pattern on Scenario 2 has a greater
amount of RT flows. As Fig. 8 shows, the best deadline
miss ratio (8.8%) was obtained in the 4th generation. The
subsequent generations presented none improvement in this
metric. However, the last generations consumed less energy.

Fig. 8. Deadline miss ratio and energy consumption for Scenario 2

The results for Scenario 3 are illustrated in Fig. 9. The
experiment characterizes applications with a higher density
of read/write flows. The best result was obtained in the 58th
generation with 2.2% of missed deadlines. From this point,

there is no more improvement in this metric. However, as
occurred in Scenario 2, the energy consumption is improved
in the last generations.

Fig. 9. Deadline miss ratio and energy consumption for Scenario 3

Scenario 4 (Fig. 10) showed little progress in the
deadline metric, which reached 2.8% in the first generation
and later stabilized at 2.6%. However, the energy
consumption was reduced by 27% when comparing the 41st
generation with the first one.

Fig. 10. Deadline miss ratio and energy consumption for Scenario 4

In the last scenario, there is no numerical prevalence of
any traffic pattern. As Fig. 11 shows, the lowest deadline
miss ratio (6.2%) was obtained in the 46th generation. On
the other hand, the lowest energy consumption was reached
in the 97th generation, and with the same deadline miss ratio.

Fig. 11. Deadline miss ratio and energy consumption for Scenario 5

C. Computational cost

The experiments were run on a server computer with
eight 2.3 GHz cores and 8 GB of RAM running Ubuntu
Linux operating system (version 14.04.2 LTS) with the
virtual environment VMware ESXI 5.0.0. The total time for
carrying out all the simulations for all the scenarios was
about 955 hours. This high runtime is due to the fact that the
assessment is based on the simulation of a SystemC model
described at the Register-transfer Level. It is also due to the
nature of the genetic algorithm. The evolutionary process is
sequential and a new generation only can be created after
the results of the current generation are obtained.

Despite the high computational cost, the proposed

approach is justified by allowing the reduction of the silicon

costs to meet the application requirements. In addition, there

are opportunities to accelarate the simulation through the

use of more abstract models, or even replacing it by

hardware emulation, approaches that were not in the context

of this work. Considering the state of the art, such

approaches could speed up the design space exploration up

to three orders of magnitude [21].

V. CONCLUSIONS

This work presented an optimization flow based on
genetic algorithm to map applications in NoC-based SoC
platforms. The experiments demonstrated the ability of the
proposed approach in finding good mapping solutions in
light of the optimization criterion. The paper extends the
state-of-the-art by tackling the problem of applications that
are time sensitive, but not time-critical such as those
addressed in [9] and [10], thus using simulations to guide
the optimization process. Furthermore, this work also
considers the minimization of the number and depth of
virtual channel buffers as an optimization objective, which
has not been seen in previous work.

In the evaluated scenarios, it was possible to reduce the
communication deadline miss ratio and the amount of buffer
storage used in the network. In addition, the energy
consumption was also reduced in most of the scenarios in
comparison with a random mapping.

We consider that this technique can be utilized in early
stages of a design, as it requires little information regarding
the application characteristics. Furthermore, due to the
flexibility of the genetic algorithm, it is very simple to
configure other metrics for optimization. It is noteworthy
that the designer can use intermediate solutions found on the
early generations and adjust the optimization process to
evolve in a larger or smaller number of generations.

As future work we intend to: (i) explore the adjustment
of the NoC operating frequency to meet the deadline
requirements of all the packets; (ii) extend the traffic
generation model to enable analysis of the mapping and
scheduling across heterogeneous and multitask systems; (iii)
improve the convergence and quality of solutions by
customizing the genetic operators; (iv) speed up the
simulation by using transaction-level modeling and
multithreading programming; (v) implement an FPGA
platform for hardware emulation; and (iv) perform
experiments with larger applications and platforms.

ACKNOWLEDGMENTS

The authors thank for the support of Capes – the
Brazilian Federal Agency for Support and Evaluation of
Graduate Education. The authors also thank the Kanpur
Genetic Algorithms Laboratory of the Indian Institute of
Technology, Kanpur, India, which provided the source code
of NSGA-II genetic algorithm.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,” in Proc.
Design Automation Conference (DAC), 2007, pp. 746–749.

[2] A. Burns, L. S. Indrusiak, and Z. Shi, “Schedulability Analysis for
Real Time On-Chip Communication with Wormhole Switching,” Int.
J. of Embedded and Real-Time Communication Systems, v. 1, n. 2,
pp. 1-22, Apr. 2010.

[3] L. Chen and T. M. Pinkston, “NoRD: Node-Router Decoupling for
Effective Power-gating of On-Chip Routers,” in Proc.
Microarchitecture (MICRO), 2012, pp. 270–281.

[4] S. Tosun, “New heuristic algorithms for energy aware application
mapping and routing on mesh-based NoCs,” J. of Systems
Architecture (JSA), v.57, n.1, pp. 69-78, 2011.

[5] G. Ascia, V. Catania, M. Palesi, “A multi-objective genetic approach
to mapping problem on Network-on-Chip,” J. of Universal Computer
Science (JUCS), v. 12, n. 4, pp. 370-394, Feb. 2006.

[6] C. A. C. Coello, “Evolutionary multi-objective optimization: a
historical view of the field,” IEEE Computational Intelligence
Magazine, v. 1, n. 1, pp. 28-36, Feb. 2006.

[7] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-core Systems: Survey of Current and Emerging Trends,”
in Proc. Design Automation Conference (DAC), 2013, pp.1-10.

[8] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping
strategies for Network-on-Chip design,” Journal of Systems
Architecture (JSA), v. 59, n. 1, pp. 60-76, Jan. 2013.

[9] M. N. S. M. Sayuti and L. S. Indrusiak, “Real-time low-power task
mapping in Networks-on-Chip,” in Proc. IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2013, pp. 14-19

[10] M. N. S. M. Sayuti and L. S. Indrusiak, “Simultaneous optimisation of
task mapping and priority assignment for real-time embedded NoCs,”
in Proc. Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), 2015, pp. 692-695.

[11] M. A. A. Faruque, J. Henkel,“Transaction specific virtual channel
allocation in QoS supported on-chip communication,” in Proc. of
ASAP, 2007, pp.48-53.

[12] M. A. A. Faruque, J. Henkel, “Minimizing virtual channel buffer for
router in on-chip communication architectures,” in Proc. Design,
Automation and Test in Europe (DATE), 2008, pp. 1238-1243.

[13] H. Jingcao, R. Marculescu, “Application-specific buffer space
allocation for networks-on-chip router design,” in Proc. Int. Conf. on
Computer-Aided Design (ICCAD), 2004, pp. 354-361.

[14] L. S. Indrusiak, “End-to-end schedulability tests for multiprocessor
embedded systems based on networks-on-chip with priority-
preemptive arbitration,” JSA, v. 60, n. 7, pp. 553-561, June 2014.

[15] K. Deb, A. Pratap, S. Argawal and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, v. 6, n. 2, pp. 182-197, Apr. 2002.

[16] K. Deb, Multi-objective optimization using evolutionary algorithms,
Chichester, 2001, pp.80–85.

[17] C. A. Zeferino, A. A. Susin, “SoCIN: a parametric and scalable
network-on-chip,” in Proc. Symp. on Integrated Circuits and Systems
Design (SBCCI), 2003, pp. 169-174.

[18] M. D. Berejuck, C. A. Zeferino, “Adding mechanisms for QoS to a
network-on-chip,” in SBCCI, 2009, pp. 153-158.

[19] J. V. Bruch, M. Pizzoni, C. A. Zeferino, “BrownPepper: A SystemC-
based simulator for performance evaluation of Networks-on-Chip,” in
Proc. Very Large Scale Integration (VLSI-SoC), 2009, pp. 223-226.

[20] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” Journal of
Systems Architecture (JSA), vol. 50, no. 2-3, pp. 105-128, Feb. 2004.

[21] T. Van Chu, S. Sato, and K. Kise, “Ultra-fast NoC Emulation on a
Single FPGA,” in Proc. Field Programmable Logic And Applications
(FPL), 2015. p. 1-8

