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Abstract— In Systems-on-Chip (SoCs) based on Networks-

on-Chip (NoCs), the timing requirements of target applications 

can be met by using virtual channels and traffic differentiation 

mechanisms to prioritize the most urgent communication 

streams. However, the use of virtual channels in NoCs results 

in silicon and power overheads as they are usually 

implemented by means of additional buffers and multiplexers. 

In this context, this paper presents an optimization flow to 

perform the mapping of applications on NoC-based SoCs, 

aiming to meet the time requirements and minimize the costs 

arising from the use of virtual channels. The optimization flow 

applies a multi-objective heuristic that minimizes the 

communication deadline miss ratio, the number of virtual 

channels per router and the static power consumption. The 

heuristic is based on the NSGA-II genetic algorithm and 

performs task mapping, priority assignment, and virtual 

channel configuration. The proposed mapping optimization is 

evaluated by measuring the inter-task communication latency 

using a cycle-accurate NoC simulator. The optimization flow is 

able to identify a series of mappings that represent trade-offs 

over the metrics of interest, reducing the deadline miss ratio 

and the costs associated with virtual channels. 

Keywords— Real-Time System; Systems-on-Chip; Networks-

on-Chip; Task Mapping; Genetic Algorithms. 

I.  INTRODUCTION 

Networks-on-Chip (NoCs) are the communication 
backbone in systems consisting of hundreds to thousands of 
cores on a single silicon wafer [1]. In NoC-based SoCs, 
applications process data and exchange information over the 
communication backbone. Some of those applications can 
have strict requirements regarding the time for completing 
their tasks. In such cases, the communication must be 
completed before a given deadline. However, typical NoC 
implementations are very susceptible to contention due to 
competition for shared resources. This may cause a delay in 
the delivery of packets, and, possibly, deadline misses. To 
avoid the violation of time constraints, virtual channels may 
be employed in conjunction with preemptive arbitration 
mechanisms. In such approach, each communication flow 
has a priority level that determines the virtual channel to be 

used during the transfer of its packets through the network. 
In this way, if two or more packets dispute some resource, 
the higher priority packet is serviced before the others, and 
the most critical communications tend to face fewer 
contentions [2]. 

The implementation of virtual channels is based on 
memory elements called buffers. Its adoption improves the 
network throughput and allows the providing of QoS 
(Quality-of-Service). However, it impacts greatly on the 
area occupied by the NoC circuitry and may account for 
more than half of the static power dissipated by the routers 
[3]. 

Since the traffic characteristics in a NoC vary depending 
on the application type, the virtual channels can be allocated 
to match the communication requirements. In this context, 
this paper explores the number and depth of virtual 
channels, as well as packet priority assignment in an 
optimization process based on task mapping. 

Mapping an application onto a NoC is known to be an 
NP-hard problem [4]. If the target system has n single-task 
processing elements and the application has n tasks, n! 
different solutions exist in the design space. 

To solve the task-mapping problem, one can employ a 
multi-objective optimization environment that seeks a set of 
trade-offs among the target metrics and leaves to the 
designer to choose the most suitable alternative [5]. 
Heuristics based on genetic algorithms (GAs) have been 
shown to be effective in similar formulations of this 
problem. These algorithms deal simultaneously with a set of 
solutions and allow us to find several members of the Pareto 
optimal set in a single run [6]. 

This paper presents a GA-based approach to carry out 
the mapping of tasks on a NoC-based SoC. The aim consists 
in finding trade-off solutions that improve the deadline 
compliance, reduce the number of virtual channels used in 
the routers and, therefore, the static energy consumed by the 
network. From a graph of communication tasks provided by 
the designer, the developed heuristic places the tasks on the 



communication architecture, defines the priority level of 
each communication flow, the number of virtual channels 
and the storage capacity of their buffers. The experimental 
results demonstrate the effectiveness of the proposed 
approach. 

This paper is organized into five sections. Section I 
presented the context and the motivation for this work. 
Section II discusses related work and identifies the 
contribution of this work in comparison to the state of the 
art. Section III describes the optimization flow and the NoC 
platform used to evaluate the proposed approach. Section IV 
discusses the experiments and the obtained results. 
Concluding, Section V presents the final remarks. 

II. RELATED WORK 

Task mapping optimization in NoC-based SoCs has been 
of great interest to the scientific community, mainly due to 
its critical contribution to cost and performance metrics. The 
diversity of adopted approaches can be verified in recent 
surveys presented in [7] and [8]. 

One of the first works to employ multi-objective 
optimization in NoC-based systems was described in [5]. 
The authors applied genetic algorithms to explore the 
mapping space with evaluation by simulation. The objective 
functions aimed at optimizing performance (latency) and 
dynamic power dissipation. However, the minimization of 
storage elements was not addressed. 

The mapping of hard real-time applications on NoCs 
was discussed in [9]. The authors applied genetic algorithms 
in the optimization of the execution time and energy 
consumption. The assessment was done through static 
schedulability analysis, taking into account the worst-case 
communication time. In [10], the same authors explored the 
task mapping in conjunction with the assignment of 
priorities. These works generate schedulable systems. 
However, the costs to implement the NoC is quite high, 
once they assume that there is a dedicated virtual channel 
for each priority level. 

The minimization of the number of virtual channels was 
addressed in [11] with the adoption of a heuristic based on 
Ant Colony Optimization (ACO). The objective functions 
attempt to minimize the communication volume in the 
network links and the number of virtual channels. This 
approach was expanded in [12] with the addition of a 
second step in the optimization process, which adopts a 
probabilistic model to define the number of virtual channels 
required for the application. In both approaches, the 
evaluation process was conducted by simulation. In these 
works, the priority of each task must be set in advance by 
the system designer that also is responsible for deciding on 
the use of virtual channels considering the QoS 
requirements. 

In [13], the proposed algorithm uses information about 
the traffic characteristics to determine the optimal buffers 
depth on each router port in order to avoid performance 

bottlenecks and resources waste. Analytical models were 
developed to minimize the average latency by employing a 
restricted amount of storage that can be distributed in a non-
uniform way among the routers inputs. However, this 
approach includes only networks that use store-and-forward 
and virtual cut-through switching. 

This study differs from the others because it seeks 
solutions that minimize, at the same time, the deadline miss 
ratio, the virtual channels costs (quantity and buffers depth) 
and the static energy consumed by the network. The 
aforementioned works do share similarities with the one 
presented in this paper and address some of the same 
objective functions, but not all the three simultaneously. As 
[5], [11] and [12], this work uses simulation to gather 
evidence on how often deadlines are missed, which is 
expressed by the deadline miss ratio. In [9] and [10], the 
authors applied schedulability analysis to prove that 
deadlines will never be missed. 

III. OPTIMIZATION FLOW 

The optimization flow proposed in this work to perform 
the design space exploration is depicted in Fig. 1. It consists 
of four steps: Configuration, Optimization, Simulation, and 
Evaluation. 

 
Fig. 1. Optimization flow 

The process begins by defining the graphs and 
parameters of the application and NoC, which are the input 
data for the optimization algorithm. Following, the 
optimization process starts by running a heuristic that 
generates an initial population. It is important to notice that 
each member in a population is a mapping solution. In the 
next iterations, the mappings with the best performance will 
evolve to the next generations until the maximum number of 
generations to be evaluated is reached. This limit defines the 
stop condition of the optimization algorithm.  

Each mapping is simulated in a NoC-based system 
simulator composed of a network and traffic generators. The 
traffic generators emulate the processing elements (PEs) by 
injecting packets into the network. Traffic monitors are used 
to gathering performance data about the packets transferred 
through the NoC. The simulator is described in SystemC 
and is cycle-accurate. 

After the simulation step, a performance evaluation tool 
analyzes the collected data and obtains the deadline miss 
ratio and the static energy consumed by the network. These 
metrics are used to feed the algorithm in order to rank the 
best mapping alternatives according to the defined 



optimization criteria. The details of each step are described 
in the following sub-sections. 

A. Configuration  

The configuration step consists in defining the 
parameters of the NoC and the characteristics of the 
application.  

The network model comprises a set of n homogeneous 
single-task processing elements Π = {π0, π1, …, πn-1}  
interconnected by a 2-D mesh network .  

The application is composed of a set of tasks  
Γ = {τ0, τ1, …, τm-1}, where m ≤ n. Each task τi ϵ Γ is defined 
by the tuple {Pi, Fi}, where Pi describes the priority level of 
the task, and Fi = {τd, Li, Di, Ti, Zi} characterizes a 
communication flow.  The elements that define the tuple Fi 
are the destination task (τd), the priority level of the 
communication flow (Li), the communication deadline (Di), 
the interval between successive packets (Ti), and the 
message size (Zi). Li is derived from priority level of the 
source node of the communication flow. This model is 
based on the one described in [14]. 

B. Mapping  

A multi-objective optimization problem seeks to 
optimize two or more conflicting goals, and the use of meta-
heuristics has gained wide acceptance by researchers from a 
variety of disciplines. In this type of problem, there is no a 
single solution. Actually, there is a set of solutions that 
represent a good trade-off among the optimized metrics [6]. 
In this paper, we adopted the multi-objective genetic 
algorithm NSGA-II [15] as the basis to develop the 
heuristic. 

A genetic algorithm is a search and optimization 
procedure based on the principles of genetics and natural 
selection. Some fundamental ideas of these areas are 
artificially applied in order to build robust algorithms that 
require a little knowledge about the problem being treated. 

Fig. 2 illustrates the basic operation flow of a genetic 
algorithm. The first step in building this kind of heuristic is 
the codification of the decision variables as a chromosome. 
After that, many individuals are created to form a 
population of solutions, which is then evaluated by 
calculating the objective functions. Following, the 
population is classified to identify the most promising 
solutions (fitness). If the stop criterion is not met, the 
genetic operators (reproduction, crossover and mutation) 
are applied in an attempt of to evolve into a population of 
better solutions. The reproduction operator seeks to replicate 
good solutions, while the crossover operator combines two 
chromosomes to create two new solutions. The mutation 
operator makes a change in a random position of the 
chromosome in order to maintain the diversity of the 
population [16]. 

1) Problem representation 
The problem representation is based on the approach 

used in [10], which applies a chromosome described by a set 
of genes G = {g0, g1,…, gk} to represent the task mapping 
and the priority assignment. As Fig. 3 depicts, the fragment  
{g0, g1,…, gm-1} , where m = (k – 1)/2 , represents the 
mapping of tasks on the PEs, while the fragment {gm, 
gm+1,…, g2m-1} indicates the priority level of each task. In 
this work, we applied real-valued representation to describe 
the chromosomes and the use of a single-gene fragment 
(g2m) to identify the platform type (which is discussed later). 

The size of the fragment {g0, g1,…, gm-1} is equivalent to 
the number of application tasks. Each gene gj ϵ G | 0 ≤ j < m 
indicates in which processing element πi ϵ Π must be 
mapped the task τi ϵ Γ | 0 ≤ i < n (where n is the number of 
PEs in the platform). The genes gj ϵ G | m ≤ j < 2m define 
the priority level Pi assigned to the task τi ϵ Γ. This level 
depends on the value of the gene {g2m}. 

There are four platforms (Sk) with different priority 
levels: 

• S0: supports only one priority level P = {0} 

• S1: supports up to two priority levels P = {0, 1}  

• S2: supports up to four priority levels P = {0, ..., 3} 

• S3: supports up to eight priority levels P = {0, ..., 7} 
 

 

Fig. 2. Genetic algorithm flowchart 

  …    …   
       Mapping Priority Platform

Fig. 3. Chromosome model to represent the problem 

Fig. 4 illustrates the mapping of seven tasks {τ0, τ1,…, τ6} 
in a platform composed of nine PEs {π0, π1,…, π8} 
interconnected by a 3×3 NoC. Fig. 4.a illustrates a graph 
that describes the communication flows among the tasks, 



while Fig. 4.b shows a possible mapping of tasks on the 
system cores. Finally, Fig. 4.c depicts the chromosome 
representing this mapping. 
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Fig. 4. Example of  a task mapping: (a) task graph; (b) a possible 

mapping; (c) mapping representation 

2) Initialization 
Typically, the initial population of a genetic algorithm is 

randomly created. However, we employed a modified 
initialization process to guarantee a minimum quantity of 
individuals in each considered platform.  

It is important to note that during the optimization 
process the heuristic can generate invalid mappings by 
performing crossover and mutation to produce new 
individuals. These mappings are disregarded. 

C. Simulation Platform 

1) NoC Architecture 
The NoC employed in this work is SoCIN [17]. This 

network uses a 2-D mesh topology, credit-based flow 
control, XY routing, round-robin arbitration and wormhole 
switching. Each router has up to five communication ports 
named Local, North, East, South and West. The Local port 
is used to attach a PE to the network, and the other ports are 
used to interconnect the router to its neighbors. 

Internally, the router of SoCIN uses a distributed 
organization. Each communication port is composed of an 
input channel and an output channel. All the input and 
output channels are interconnected by a crossbar. In this 
work, four different alternatives of SoCIN were designed, 
one for each platform type. The difference among them lies 
on the number and the depth of the buffers of the input 
channels. In all the platform types, each input channel has 
the capacity to store 16 flits and the depth of the buffers 
decreases with the increase in the number of virtual 
channels. Table I presents the available alternatives ranging 
from a single 16-flit buffer to eight 2-flit buffers. 

Each packet has a header that carries the information 
required for routing, including the network address of the 
destination router and the virtual channel identifier. This last 
information is stored in a 3-bit field named CLS and used 
by the network interface of the source node to select the 
virtual channel to be used to transfer the packet. 

The original router of SoCIN did not have virtual 
channels. In [18], it was modified to support two virtual 
channels and provide traffic differentiation. Following the 
approach used in that work, additional circuitries were 
implemented in order to support the number of virtual 
channels necessary for each platform type (Table I).  

TABLE I.  BUFFERS CONFIGURATION IN THE NOC PLATFORMS 

Platform type (Sk) 
Virtual channels 

per input channel 
Buffers depth (flits) 

S0 1 16 

S1 2 8 

S2 4 4 

S3 8 2 
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Fig. 5. NoC link with virtual channel identification 

Each communication port of the SoCIN router is 
composed of two modules: input (IN) and output (OUT), 
one for each physical channel. The input module (Fig. 6.a) 
is composed of N virtual channels (where N depends on the 
selected platform and the target application) and a 
demultiplexing circuit. Each virtual channel has a FIFO 
buffer and a routing circuit (R). The output module (Fig. 
6.b) is composed of N virtual channels, each one with a 
switch and an arbiter (A), but none buffer. Furthermore, it 
includes a multiplexing circuit that uses a fixed priority 
encoder (P) to suspend a communication flow whenever 
there exists another higher priority stream. The block 
diagram of Fig. 6 is a simplified representation of the 
modules and does not show their control signals. 

R

FIFO

VCN-1

R

FIFO

VC0

 

P

VC0

VCN-1

A

A

(a) (b)

Fig. 6. Block diagram of a communication port: (a) input module; (b) 

output module 



2) System Simulation Environment 
The evaluation platform was based on the simulator and 

the traffic analysis tools of BrownPepper [18], an integrated 
environment that allows evaluating different configurations 
of SoCIN. The simulator is a cycle-accurate SystemC model 
of a system composed of a parameterizable NoC, traffic 
generators and traffic monitors. The traffic generators 
represent the processing elements and emulate the 
communication among the tasks. The traffic monitors are 
connected to the Local ports of the routers and gather data 
from the outgoing traffic for analysis. The analysis tool 
processes these data and calculates the performance metrics. 
The SystemC models and the analysis tool were modified to 
allow the evaluation of the four platform types used in this 
work. 

D. Evaluation  

The evaluation consists in the calculation of objective 
functions for each mapping of the evolutionary process. The 
value assigned to each objective function is measured by 
simulation. Algorithm 1 shows the pseudocode of the 
evaluation procedure. 

Algorithm 1 

Input: NoC model, Application model; 
Output: Mapping the application on the NoC; 

Variable: valid_1, valid_2; 

1:   begin 

2:     valid_1, valid_2  false; 

3:     for each chromosome do 

4:       valid_1  is one task per node; 

5:       valid_2  is correct priority assign based on the platform choice; 

6:       if (valid_1 and valid_2) then 

7:          constraint[1]  0;   

8:          switch platform 

9:             case 0    : mapping tasks on platform 0; 

10:           case 1    : mapping tasks on platform 1; 
11:           case 2    : mapping tasks on platform 2; 

12:           default  : mapping tasks on platform 3; 

13:        end switch 

14:        objective[1]  deadline miss evaluation; 

15:        objective[2]  static  energy  evaluation; 

16:        objective[3]  buffer  depth  evaluation; 

17:     else 

18:        constraint[1]  -1;  

19:     end if 

20:   end for 

21:  end 

 

For each mapping, it is necessary to validate the 
compliance with constraints imposed by the simulation 
platform. Firstly, is needed to check if the generated 
mapping is valid because the initialization process and the 
application of the genetic operators can produce invalid 
individuals. Next, the number of priority levels assigned by 
the heuristic must respect the constraints of the selected 
platform (e.g. mappings onto the S0 platform must use only 
one level of priority). 

Valid mappings are then simulated and a specialized tool 
is used to calculate the metrics of interest, which are the 
return values of the objective functions of the genetic 
algorithm. 

1) Objective functions 
The optimization flow considers three objective 

functions that seek to minimize the deadline miss ratio, the 
static energy consumed by the network, and the number of 
virtual channels.  

The deadline miss ratio is calculated by (1), where 
Pckdeadline_miss indicates the number of packets that did not 
meet their deadlines, and Pcktotal determines the number of 
packets transferred during the simulation. 

 
(1) 

The second objective function is calculated using (2) and 
seeks to minimize the overall static energy consumed by the 
NoC. This calculation considers the power dissipated in 
each router during the transfer of packets belonging to the 
communication flows resulted from the task mapping. The 
static energy is given by the simulated time and the static 
power dissipated by the routers. This one was determined by 
synthesizing the VHDL models of the platforms to the 
SAED 32/28 standard cell technology using Synopsys 
design flow. 

 

 
(2) 

Each platform type supports a maximum number of 
different priority levels and a virtual channel is assigned to 
each level. However, depending on the generated task 
mapping, the number of virtual channels can be smaller than 
the maximum limit of the platform. Thus, the third objective 
function applies (3) to calculate the total storage capacity in 
the NoC routers used by a particular mapping configuration. 
In (3), VCapplication represents the number of virtual channels 
required by the application and VCplatform defines the 
maximum number of virtual channels on the chosen 
platform. 

 
(3) 

 

2) Solutions ranking 
The classification of different mapping solutions is 

performed by the non-dominated criterion. A solution is 
dominant if there exists any other feasible solution that 
would decrease some criterion without increasing at least 
another one [6]. Solutions belonging to the best non-
dominated sets fill the population slots of the next 
generation and are used for reproduction, crossover, and 
mutation to create a new population [14]. The stop criterion 
is the number of simulated generations that is defined by the 
designer, which also defines the crossover and mutation 
rates. 



IV. EXPERIMENTAL RESULTS 

In order to verify the effectiveness of the proposed 
design, we performed several experiments based on 
synthetic applications with different traffic scenarios, as 
follows.  

A. Traffic Scenarios 

For the experiments, synthetic models were generated 
based on the traffic classes proposed in [20]. Four classes of 
communication flow with different characteristics and 
requirements were specified. They are: (i) Signaling – SL, 
urgent and short messages (e.g. interrupts); (ii) Real-Time – 
RT, represents audio and video streams; (iii) Read/Write – 
RW, memory access operations; and (iv) Block Transfer – 
BT, transfer of large amounts of data.  

TABLE II.  TRAFFIC CLASSES ADOPTED IN THE EXPERIMENTS 

Traffic class Payload size Required bandwidth Deadline 

SL 4 flits 320 Mbps 20 ns 

RT 40 flits 320 Mbps 125 μs 

RW 4 flits 2560 Mbps 150 ns 

BT 2000 flits 2560 Mbps 50 μs 
 

The applications evaluated in the experiments were 
composed of 16 tasks with the communication flows 
randomly distributed in pairs of randomly selected tasks. 
Five traffic scenarios were specified. The first four scenarios 
emphasize a particular traffic class with the distribution of a 
larger amount of flows of this class. The fifth scenario has 
the same amount of each pattern of traffic flow, as can be 
seen in Table III. In absolute numbers, there are 50 
communication flows in the first four scenarios and 60 
flows in the last one. 

TABLE III.  TRAFFIC SCENARIOS 

Scenario SL RT RW BT 

1 40% 20% 20% 20% 

2 20% 40% 20% 20% 

3 20% 20% 40% 20% 

4 20% 20% 20% 40% 

5 25% 25% 25% 25% 
 

The genetic algorithm was configured with a population 
of 140 individuals evolving for 200 generations. In the 
initialization, we set 25 individuals for each platform and 
other 40 individuals were generated with the using of 
random distribution. The single-point crossover and real 
polynomial mutation rates were set to 0.9 and 0.03, 
respectively. Only individuals with valid mappings in each 
generation were simulated. For each individual, the 
simulation was performed for 50000 clock cycles (or 50 μs 
for Tclk = 1 ns), with an average transfer of about 1850 
packets per simulation. The number of packets transferred 
during the simulated time depends on the application, as 
Table IV shows. 

TABLE IV.  SIMULATION ROUNDS FOR EACH SCENARIO  

Scenario 
Number of simulations 

(valid mappings) 

Transferred packets 

(average) 

1 12433 2218 

2 15294 932 

3 15976 1762 

4 16030 3773 

5 15309 580 
 

B. Trade-off Discovery 

Table V presents data that express a comparison 
between the mappings with the lowest deadline miss ratio 
and those randomly generated in the first generation. It can 
be seen that the optimization flow obtained improvements in 
the deadline miss ratio and in the energy consumption in 
almost all the scenarios. It was possible to reduce the energy 
consumption for all the scenarios, except for Scenario 2. 

TABLE V.  REDUCTIONS IN THE   DEADLINE MISS RATIO 

Scenario 
Deadline miss ratio 

reduction 

Energy consumption 

reduction 

1 17.0 % 7.2 % 

2 4.8 % -2.8 % 

3 10.0 % 6.1 % 

4 0.2 % 27.8 % 

5 3.7 % 21.8 % 

Average 7.1 % 12.2 % 
 

Table VI compares the mappings with the higher 
reduction in the energy consumption with the first mapping 
of each scenario. In this case, all the mappings with the 
lowest energy consumption degraded the deadline miss ratio 
in comparison with the random mapping. 

TABLE VI.  REDUCTIONS IN THE   ENERGY CONSUMPTION 

Scenario 
Deadline miss ratio 

reduction 

Energy consumption 

reduction 

1 -7.8 % 12.2 % 

2 -10.6 % 24.3 % 

3 -13.1 % 32.0 % 

4 -36.0 % 24.0 % 

5 -7.7 % 47.0 % 

Average -16.9 % 27.9 % 

 

Table VII presents how the optimization flow selects 
and configures a platform in order to reduce the deadline 
miss ratio and the network costs, which is given by the 
number and depth of virtual channels (buffers) in each input 
channel. It first presents the costs of the platform (Sk) used 
in the best mapping of the first generation in each scenario. 
Then, the table presents the costs of the platform adopted by 
the solutions that more reduced the deadline miss ratio 
among the other generations.  



TABLE VII.  PLATFORM SELECTION 

Scenario 

Best mapping of the first 

generation 

Best mapping of the other 

generations 

Sk VCs Cost Sk VCs Cost 

1 S2 3 x 04 flits 12 S3 5 x 02 flits 10 

2 S0 1 x 16 flits 16 S3 6 x 02 flits 12 

3 S3 7 x 02 flits 14 S3 6 x 02 flits 12 

4 S2 4 x 04 flits 16 S3 6 x 02 flits 12 

5 S2 4 x 04 flits 16 S3 6 x 02 flits 12 

  Obs: The Cost column indicates the number of flits per input channel 

The presented results indicate that, for the studied 
scenarios, it is preferable to use a large number of shallow 
(2-flit) virtual channels. It is also important to note that, 
although there were available up to 8 virtual channels, the 
best results employed 5 or 6 channels. The input channel 
costs reduced by 21% on average, as Objective3 aims at 
reducing the number of necessary buffers in order to lower 
the static energy consumption. 

The following charts present the evolution of the 
deadline miss ratio and the energy consumption along the 
simulations. Fig. 7 presents the results for the first scenario. 
The deadline miss is around 18% in the first generation and 
then is reduced to 1.1% in the 94th generation. The lowest 
rate (0.9%) is reached in the 161st generation, with an 
energy consumption of about 0.45μJ. This is not the 
minimal consumed energy, but it is the smallest for the 
lowest deadline miss ratio. 

 
Fig. 7. Deadline miss ratio and energy consumption for Scenario 1 

The communication pattern on Scenario 2 has a greater 
amount of RT flows. As Fig. 8 shows, the best deadline 
miss ratio (8.8%) was obtained in the 4th generation. The 
subsequent generations presented none improvement in this 
metric. However, the last generations consumed less energy. 

 
Fig. 8. Deadline miss ratio and energy consumption for Scenario 2 

The results for Scenario 3 are illustrated in Fig. 9. The 
experiment characterizes applications with a higher density 
of read/write flows. The best result was obtained in the 58th 
generation with 2.2% of missed deadlines. From this point, 

there is no more improvement in this metric. However, as 
occurred in Scenario 2, the energy consumption is improved 
in the last generations. 

 
Fig. 9. Deadline miss ratio and energy consumption for Scenario 3 

Scenario 4 (Fig. 10) showed little progress in the 
deadline metric, which reached 2.8% in the first generation 
and later stabilized at 2.6%. However, the energy 
consumption was reduced by 27% when comparing the 41st 
generation with the first one. 

 
Fig. 10. Deadline miss ratio and energy consumption for Scenario 4 

In the last scenario, there is no numerical prevalence of 
any traffic pattern. As Fig. 11 shows, the lowest deadline 
miss ratio (6.2%) was obtained in the 46th generation. On 
the other hand, the lowest energy consumption was reached 
in the 97th generation, and with the same deadline miss ratio. 

 
Fig. 11. Deadline miss ratio and energy consumption for Scenario 5 

C. Computational cost 

The experiments were run on a server computer with 
eight 2.3 GHz cores and 8 GB of RAM running Ubuntu 
Linux operating system (version 14.04.2 LTS) with the 
virtual environment VMware ESXI 5.0.0. The total time for 
carrying out all the simulations for all the scenarios was 
about 955 hours. This high runtime is due to the fact that the 
assessment is based on the simulation of a SystemC model 
described at the Register-transfer Level. It is also due to the 
nature of the genetic algorithm. The evolutionary process is 
sequential and a new generation only can be created after 
the results of the current generation are obtained. 



Despite the high computational cost, the proposed 

approach is justified by allowing the reduction of the silicon 

costs to meet the application requirements. In addition, there 

are opportunities to accelarate the simulation through the 

use of more abstract models, or even replacing it by 

hardware emulation, approaches that were not in the context 

of this work. Considering the state of the art, such 

approaches could speed up the design space exploration up 

to three orders of magnitude [21]. 

V. CONCLUSIONS 

This work presented an optimization flow based on 
genetic algorithm to map applications in NoC-based SoC 
platforms. The experiments demonstrated the ability of the 
proposed approach in finding good mapping solutions in 
light of the optimization criterion. The paper extends the 
state-of-the-art by tackling the problem of applications that 
are time sensitive, but not time-critical such as those 
addressed in [9] and [10], thus using simulations to guide 
the optimization process. Furthermore, this work also 
considers the minimization of the number and depth of 
virtual channel buffers as an optimization objective, which 
has not been seen in previous work. 

In the evaluated scenarios, it was possible to reduce the 
communication deadline miss ratio and the amount of buffer 
storage used in the network. In addition, the energy 
consumption was also reduced in most of the scenarios in 
comparison with a random mapping.  

We consider that this technique can be utilized in early 
stages of a design, as it requires little information regarding 
the application characteristics. Furthermore, due to the 
flexibility of the genetic algorithm, it is very simple to 
configure other metrics for optimization. It is noteworthy 
that the designer can use intermediate solutions found on the 
early generations and adjust the optimization process to 
evolve in a larger or smaller number of generations. 

As future work we intend to: (i) explore the adjustment 
of the NoC operating frequency to meet the deadline 
requirements of all the packets; (ii) extend the traffic 
generation model to enable analysis of the mapping and 
scheduling across heterogeneous and multitask systems; (iii) 
improve the convergence and quality of solutions by 
customizing the genetic operators; (iv) speed up the 
simulation by using transaction-level modeling and 
multithreading programming; (v) implement an FPGA 
platform for hardware emulation; and (iv) perform 
experiments with larger applications and platforms. 
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