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DENDROIDAL SPACES, Γ-SPACES AND THE SPECIAL

BARRATT-PRIDDY-QUILLEN THEOREM

PEDRO BOAVIDA DE BRITO AND IEKE MOERDIJK

Abstract. We study the covariant model structure on dendroidal spaces, and
establish direct relations to the homotopy theory of algebras over a simplicial
operad as well as to the homotopy theory of special Γ-spaces. As an important
tool in the latter comparison, we present a sharpening of the classical Barratt-
Priddy-Quillen theorem.

1. Introduction and statement of results

The purpose of this paper is two-fold. The first is to provide a direct relation
between the theory of Γ-spaces and that of dendroidal spaces. The second is to pro-
vide a description, via dendroidal spaces and arguably simpler than the ones in [13]
and [15], of the relation between algebras over operads and their ∞ counterparts.

The category of Γ-spaces was introduced in the 1970s by Graeme Segal as a
model for infinite loop spaces, or equivalently, for connective spectra. Later, this
relation between connective spectra and Γ-spaces was cast in the more informative
form of an equivalence of Quillen model categories by Bousfield and Friedlander [7].
Dendroidal spaces, on the other hand, have been introduced and studied much more
recently. They form a natural extension of simplicial spaces, and model topological
operads in the same way as simplicial spaces model topological categories. More
precisely, there is a so-called complete Segal model structure on simplicial spaces
[20] which is Quillen equivalent to the Dwyer-Kan model structure on topological
categories [4], and this equivalence extends to an equivalence between a complete
Segal model structure on dendroidal spaces and a similar Dwyer-Kan style model
structure on simplicial operads [11]. There are also “discrete” Quillen equivalent
versions of these model categories, namely the category of simplicial sets with the
Joyal model structure whose fibrant objects are the quasi-categories of [14] and [15],
and the category of dendroidal sets with the operadic model structure of [9] whose
fibrant objects are the quasi-operads of [19].

There is a natural contravariant functor from the category Ω of trees to the
category of finite sets and partial maps, opposite to Segal’s category Γ, which simply
assigns to a tree T its set of leaves λ(T ). Our main theorem is that this functor
λ induces a Quillen equivalence between suitable model structures on dendroidal
spaces and on Γ-spaces, respectively:

Theorem 1.1. The functor λ induces a Quillen equivalence between the category
of dendroidal spaces and that of Γ-spaces, where the former is equipped with the co-
variant localisation of the complete Segal model structure, and the latter is equipped
with the model structure for special Γ-spaces of [7].

2000 Mathematics Subject Classification. 55P48, 18G55.

1



2 PEDRO BOAVIDA DE BRITO AND IEKE MOERDIJK

As a consequence, a simple further left Bousfield localisation will then give a
Quillen equivalence between a model structure on dendroidal spaces and the model
structure on Γ-spaces whose fibrant objects are the very special Γ-spaces of Bousfield
and Friedlander, and hence a Quillen equivalence with the category of connective
spectra.

A key step in proving this theorem lies in identifying an explicit fibrant resolution
of the discrete Γ-space Γ(−, L) represented by a finite set L. For the model structure
corresponding to connective spectra, it is known [21] that such a resolution is given
by the Γ-space BΣL corresponding to the symmetric monoidal category ΣL of finite
sets labelled by L and bijections between them. As Segal explains, this is essentially
the content of the Barratt-Priddy-Quillen theorem. We will prove that the same
is true unstably, i.e. for the model structure for special Γ-spaces. Our proof is
partly based on ideas in [21], but does not use the relation to spectra. Instead, it
is based on a careful analysis of the interplay between the (generalised) Reedy and
the projective model structures on Γ-spaces. In fact, we prove:

Theorem 1.2 (Special Barratt-Priddy-Quillen theorem). The canonical map of Γ-
spaces Γ(−, L)→ BΣL is a trivial cofibration in the Reedy model structure localised
for special Γ-spaces.

The Γ-space BΣL is not Reedy fibrant, so the theorem does not give a fibrant
resolution for the Reedy model structure but, as a consequence of the theorem, it
does for the projective model structure. Our proof gives a sharper result than the
one for the very special model structure, but we also believe it is perhaps more
explicit and direct than other proofs in the literature.

Another crucial ingredient for the proof of Theorem 1.1 is a somewhat tech-
nical result which we refer to as a Yoneda lemma for dendroidal spaces, since it
is reminiscent of the Yoneda lemma for small categories. For a family of objects
σ : U → ob(C) in such a category C, this lemma can be interpreted as stating that
the functor U → σ/C given by the identities on these objects gives a resolution of
U → C as a cofibred category over C. We will construct for any dendroidal Segal
space X and any family of objects of X, i.e. any map σ : U → Xη of simplicial sets,
a new dendroidal space σ/X and prove:

Theorem 1.3 (Yoneda Lemma). This construction provides a weak equivalence

Ω[η]⊗ U σ/X

X

in the covariant model structure on dendroidal spaces over X, into a covariant
fibration σ/X → X.

This covariant model structure is a relative version of the model structure fea-
turing in Theorem 1.1, and will be discussed in detail in Section 4.

Using this dendroidal Yoneda lemma, we can also relatively easily deduce two
other results. The first of these concerns the relation between algebras over a
simplicial operad and dendroidal spaces. For this, we recall that for a (coloured)
Σ-free simplicial operad P , the category of P -algebras in simplicial sets carries a
Quillen model structure transferred from the classical Kan-Quillen model structure
on simplicial sets [2].
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Theorem 1.4. For any Σ-free simplicial operad P , there is a natural right Quillen
equivalence from the model category of P -algebras to the category of dendroidal
spaces over the nerve of P , when the latter is equipped with the covariant model
structure.

This covariant model structure can in fact be defined on the category dSpaces/X
of dendroidal spaces over any other dendroidal space X. For dendroidal spaces sat-
isfying a Segal condition, as the nerves of simplicial operads do, it has the following
invariance property:

Theorem 1.5 (Invariance theorem). Let f : X → Y be a map between dendroidal
spaces satisfying the Segal condition. If this map is a Dwyer-Kan equivalence (i.e.
a weak equivalence in the complete Segal model structure), then the induced Quillen
pair

f! : dSpaces/X ⇆ dSpaces/Y : f∗

yield a Quillen equivalence for the covariant model structures over X and over Y ,
respectively.

Using the Quillen equivalence mentioned at the beginning between the complete
Segal model structure on dendroidal spaces and the operadic model structure on
dendroidal sets, we derive some results concerning dendroidal sets. First of all, this
equivalence localises to an equivalence between the covariant model structures on
dendroidal spaces of Theorem 1.1 and the covariant model structure on dendroidal
sets, and hence we obtain the following corollary:

Corollary 1.6. There is a zigzag of Quillen equivalences between the category of
dendroidal sets equipped with the covariant model structure and category of Γ-spaces
with the special model structure.

Next, the invariance theorem implies that for any dendroidal space X satisfying
the Segal condition, the covariant model structure on dendroidal spaces over X is
equivalent to the one over its completion. For a simplicial operad P , the completion
of the nerve of P is equivalent to the homotopy coherent nerve w∗(P ) of P [11].
Hence, the invariance theorem will enable us to relate our comparison theorem to
the work of Heuts, who was the first to study dendroidal covariant model structures
and relate these to algebras over operads. In particular, we recover the following
result, orginally proved by means of a model structure on marked dendroidal sets.

Corollary 1.7 (of Theorems 1.4 and 1.5, [13]). For any Σ-free simplicial operad
P , there is a zig-zag of Quillen equivalences between the category of P -algebras and
that of dendroidal sets over the homotopy coherent nerve of P .

A further localisation of the covariant model structure on dendroidal sets gives a
model structure which is Quillen equivalent to that of very special Γ-spaces (Corol-
lary 1.6), or to group-like E∞-spaces (Corollary 1.7), and hence to infinite loop
spaces. This model structure is studied under the name “stable model structure”
by Bašić and Nikolaus [1].

The plan of our paper, then, is as follows: In Section 2, we begin by reviewing
the Reedy and projective model structures on diagrams of spaces indexed by so-
called generalised Reedy categories, of which the categories Ω and Γ are examples.
In Section 3, we review the basic terminology concerning dendroidal spaces and the
various model structures these carry. In Section 4, we provide the necessary details
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concerning the covariant model structure and we prove our dendroidal Yoneda
lemma. From this lemma, we easily derive in Section 5 the Invariance Theorem and
in Section 6 our Theorem 1.4 about P -algebras. In Section 7, we prove Theorem
1.1. As mentioned above, the proof is based on the Yoneda lemma and our version
of the Barratt-Priddy-Quillen theorem for special Γ-spaces (Theorem 1.2). The
proof of the latter theorem is independent of the dendroidal theory, and can be
read by itself. It only requires some notions from Section 2. For this reason, we
have written this proof in the form of an Appendix.

Acknowledgements. We thank Gijs Heuts for helpful discussions and the referee
for a careful reading and useful comments on an earlier version of this paper. We
thank NWO for supporting several mutual visits. The first author was supported
by FCT through grant SFRH/BPD/99841/2014.

2. Review of generalised Reedy categories

In this section we will review the definition of generalised Reedy categories and
discuss the corresponding projective and Reedy model structures on their categories
of presheaves.

2.1. Generalised Reedy categories. A generalised Reedy category - briefly Reedy
category - is a small category R equipped with a degree function

d : objects(R)→ N

and two classes of maps R− and R
+, both closed under composition. This structure

is required to satisfy the following axioms:

(1) If f : r → s belongs to R
+ then d(r) ≤ d(s); and if it belongs to R

− then
d(r) ≥ d(s).

(2) Every morphism f in R factors as f = me where m ∈ R
+ and e ∈ R

−, and
this factorization is unique up to isomorphism.

(3) A morphism belongs to both R
+ and R

− if and only if it is an isomorphism.
Also, if f belongs to R

− or R
+ and f is degree-preserving then f is an

isomorphism.
(4) For any isomorphism θ in R, if there is an f ∈ R

+ with fθ = f or a g ∈ R
−

with θg = g, then θ is the identity.

This definition is that of a dualizable generalised Reedy category of [3], but for

brevity we will refer to these as Reedy categories. We shall write r
+

−→ s to indicate
that the morphism belongs to R

+ and similarly for R
−. We call a morphism in

R
+ positive, and strictly positive if it is not an isomorphism; similarly for negative

morphisms and R
−.

2.2. The projective model structure. Let R be any small category (not neces-
sarily Reedy), and consider the category

R-spaces

of simplicial presheaves on R; i.e. the category of contravariant functors from R

into simplicial sets. If X is such a functor, we shall write f∗ : Xr → Xs (or
f∗ : X(r) → X(s)) for the action of a morphism f : s → r in R. This category
comes equipped with a proper combinatorial model structure, in which a map
X → Y is a weak equivalence (respectively, a fibration) if for each object r in R the
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map Xr → Yr is a weak equivalence (respectively, a fibration) in the Kan-Quillen
model structure on simplicial sets. (See for example [12].)

The category R-spaces is tensored over simplicial sets. Indeed, if X is a sim-
plicial presheaf and M is a simplicial set we can form a new simplicial presheaf
X ⊗M by (X ⊗M)r = Xr ×M . Any object r of R defines a representable set-
valued presheaf R(−, r) which we view as an object of R-spaces with discrete values
(constant simplicial sets). With this notation in place, the generating cofibrations
and trivial cofibrations are the morphisms of the form

R(−, r)⊗ ∂∆[n]→ R(−, r)⊗∆[n]

(for n ≥ 0 and 0 ≤ k ≤ n), and

R(−, r)⊗ Λk[n]→ R(−, r)⊗∆[n]

(for n ≥ 1 and 0 ≤ k ≤ n), respectively.
For later use, we also recall that R-spaces is a category enriched in simplicial

sets, with simplicial hom-sets defined for presheaves X and Y by

map(X,Y )n = HomR(X ⊗∆[n], Y ) ,

the right-hand side being the set of natural transformations between presheaves on
R.

2.3. Resolutions and geometric realisation. In the projective structure, the
cofibrant objects are (retracts of) coproducts of objects of the form R(−, r) ⊗K.
As is well known, each object X has a canonical simplicial resolution X• by such
cofibrant objects, where

Xn =
∐

r0→···→rn

R(−, r0)⊗Xrn .

This means thatX is weakly equivalent to the geometric realization of this simplicial
object. If we express Xrn itself as the realisation of a simplicial space which in each
degree is a sum of standard simplices, then we obtain another canonical simplicial
resolution Y• where each Yn is a coproduct of objects of the form R(−, r)⊗∆n.

Notice that a simplicial object in R-spaces is a bisimplicial R-set and its real-
isation agrees with its diagonal. In particular, there is no need to derive it. In
more general contexts, by the phrase geometric realisation we will always mean the
homotopy colimit (over the opposite of ∆).

We will use this type of resolution and properties of geometric realisation in a
general form that we now state but which will only be used much later, in the
proofs in sections 5, 6, and 7.

Let

g! : F ⇆ E : g∗

be a Quillen pair, which restricts to a Quillen pair

g̃! : Floc ⇆ Eloc : g̃
∗

of given left Bousfield localisations. In the cases of interest to us, F will be the
category of dendroidal spaces with the projective model structure (or a slice of it).

Lemma 2.1. In the setting above, suppose that

(a) Rg∗ commutes with geometric realisation, and
(b) the geometric realisation of a degreewise local simplicial object in E is local.
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If W• is a simplicial object in F for which the derived unit map Wn → Rg̃∗Lg̃!Wn

is a local weak equivalence for each n, then |W•| → Rg̃∗Lg̃!|W•| is a local weak
equivalence as well.

Proof. Let us first observe that Rg̃∗ also commutes with realisation. Indeed, given

a simplicial object E• in E and a degreewise weak equivalence E• → Ẽ• into a
degreewise local object, we have that

|Rg̃∗(E•)| ≃ |Rg
∗(Ẽ•)| ≃ Rg∗|(Ẽ•)| ≃ Rg̃∗|E•|

where the second weak equivalence holds by assumption (a) and the third by as-
sumption (b).

Thus, in the square

|W•| Rg̃∗Lg̃!|W•|

|Rg̃∗Lg̃!W•| Rg̃∗|Lg̃!W•|

the lower map is a weak equivalence by the previous paragraph. The result now
follows since the vertical maps are weak equivalences (the left-hand one is so by
assumption). �

2.4. The Reedy model structure. Now let R be a (generalised) Reedy category
in the sense above. Then the category R-spaces carries another (proper, combinato-
rial) model structure with weak equivalences given objectwise, as in the projective
model structure. The fibrations and cofibrations are defined explicitly in terms
of latching and matching objects deg(X)(r)1 and X(∂r) associated to a simplicial
presheaf X and an object r in R,

deg(X)(r) = colim
r

−

−→s

Xs and X(∂r) = lim
s

+
−→r

Xs

where the colimit ranges over the full subcategory (r/R)− of r/R whose objects are
properly negative morphisms out of r, and the limit ranges over the full subcategory
(R/r)+ of properly positive morphisms into R.

For later use, we observe that the category (r/R)− is obviously a subcategory
of the larger full subcategory of r/R whose objects are those morphisms f : r → s

which factor through a properly negative map g : r
−

−→ r′. Moreover, (r/R)−

is cofinal in this larger subcategory, so we might as well have defined deg(X)(r)
as the colimit over this larger category. In particular, deg(X)(r) is functorial in
r. A similar remark applies to (R/r)+ and the definition of X(∂r). With this
functoriality in r, observe that the obvious maps

deg(X)(r)→ X(r)→ X(∂r)

are natural in r.
We can now define the fibrations and cofibrations of the Reedy model struc-

ture: a morphism X → Y is a (Reedy) cofibration if for each object r in R, the
map

deg(Y )(r) ∪deg(X)(r) Xr → Yr

1deg stands for degeneracies, reflecting the examples we work with.
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is a cofibration in the projective model structure on Aut(r)-spaces, the category
of spaces with a (right) action of the group Aut(r); this means that this map is a
monomorphism of simplicial sets with a free Aut(r)-action on the complement of
its image. And a morphism Y → X is a (Reedy) fibration if for each object r in R,
the map

Yr → Xr ×X(∂r) Y (∂r)

is a Kan fibration of simplicial sets.
For an object r in R, let us write ∂R(−, r) for the subobject of the repre-

sentable presheaf R(−, r) given by those morphisms s → r which factor through

some properly positive morphism r′
+

−→ r. Thus

X(∂r) = map(∂R(−, r), X)

With this notation, the generating (trivial) cofibrations of the Reedy model struc-
ture are the maps of the form

∂R(−, r)⊗B ∪∂R(−,r)⊗A R(−, r)⊗A→ R(−, r)⊗B

where A →֒ B is a generating (trivial) cofibration of simplicial sets.
By definition, an object X is Reedy fibrant if and only if, for each r, the

map X(r) → X(∂r) is a Kan fibration. More generally, let V be a subobject of
∂R(−, r) ⊂ R(−, r). That is, V corresponds to a set of morphisms with target
r which factor through some properly positive morphism and are closed under
precomposition with morphisms in R. Write

X(∂V r) = map(V,X) = lim
t→r∈V

X(t)

Lemma 2.2. Assume R is countable. If X is Reedy fibrant, then for any such V
the map X(∂r)→ X(∂V r) is a Kan fibration.

Proof. The proof is by induction on the degree d(r) of r. The case d(r) = 0 is clear.
Suppose the statement is true for all s with d(s) < d(r) and all V . Let

{sn
+

−→ r}n≥0

be a sequence of properly positive morphisms such that sn → r does not factor
through any si → r with i < n but any properly positive t → r factors through
some sn → r.

Let

Pn = limX(s)

where the limit ranges over all s→ r which are either in V or factor through some
sk → r with k ≤ n. This gives a tower

P−1 ← P0 ← P1 ← . . .

whose inverse limit is exactly the map X(∂r) → X(∂V r) in the statement of the
lemma. Therefore it is enough to prove that each Pn → Pn−1 is a fibration. But
Pn → Pn−1 is the pullback of

X(sn)→ lim
(t

+
−→sn)∈W

X(t)

where the limit is taken over the set W of morphisms t
+

−→ sn which either factor
through some sk → sn with k < n or are in V . This is a fibration by induction
since d(sn) < d(r). This completes the proof. �
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We have added the countability assumption in the lemma above because it is
satisfied in all our examples and it simplifies the notation in the proof. This as-
sumption may be dropped, but the more general argument requires a transfinite
tower of Pi

′s.

Remark 2.3. In exactly the same way, one proves that if Y → X is a generating
Reedy fibration then for any subobject V of ∂R(−, r) the maps

Y (r)→ X(r)×X(∂V r) Y (∂V r) and Y (∂r)→ X(∂r)×X(∂V r) Y (∂V r)

are Kan fibrations.

Next, let us take a closer look at cofibrations and cofibrant objects in the Reedy
model structure. The examples below all have the property that every negative
morphism in the Reedy category R has a section, and that every diagram of the

form s
−

←− r
−

−→ s′ has an absolute pushout. This fact is well-known for ∆, while
a proof for Ω can be found in [18, Lemma 2.2] and the same argument applies to
Γ. Under these assumptions, for every simplicial presheaf X and every object r in
R, the map deg(X)(r)→ X(r) is automatically injective. To see this, observe that

the map X(s)→ X(r) is a split mono for every negative morphism r
−

−→ s since the

latter is split epi. Moreover, for any two negative morphisms r
−

−→ s and r
−

−→ s′

with pushout t we have that

X(t) = X(s)×X(r) X(s′)

by absoluteness of this pushout. Thus the colimit defining deg(X)(r) maps into
X(r) by a monomorphism. Similarly, and under the same assumptions on R, for a
morphism X → Y between presheaves the map deg Y (r) ∪degX(r) X(r) → Y (r) is
injective for each r if and only if X → Y is itself (objectwise) injective.

Thus, a map X → Y is a Reedy cofibration if and only if it is a monomor-
phism with the property that, for each r ∈ R, the group Aut(r) acts freely on the
complement of deg(Y )(r) ∪deg(X)(r) X(r) → Y (r). We call such monomorphisms
X → Y normal monomorphisms, and call an objectX normal if ∅→ X is a normal
monomorphism, i.e. if Aut(r) acts freely on the complement of deg(X)(r) →֒ X(r)
for each r. For the record, we summarize this observation as follows.

Lemma 2.4. Let R be a generalised Reedy category in which every negative mor-
phism has a section and in which every diagram of the form · ← · → · of negative
morphisms has an absolute pushout. Then the Reedy cofibrations are the normal
monomorphisms, and the cofibrant objects are the normal objects.

Remark 2.5. Remark 2.3 implies, by taking V = ∅, that every Reedy fibration is
an objectwise (projective) Kan fibration. Since the projective and Reedy model
structures have the same weak equivalences, this means that the identity functors
form a Quillen equivalence

(R-spaces)P ⇆ (R-spaces)R

between these model structures (P for projective, R for Reedy and left adjoint goes
from left to right).



DENDROIDAL SPACES, Γ-SPACES AND THE SPECIAL BPQ THEOREM 9

3. Dendroidal spaces

The category Ω of trees is the category indexing dendroidal sets and spaces. Its
objects are non-empty finite rooted trees, possibly with leaves, as in

Each such tree generates a coloured symmetric operad Ω(T ) whose colours are
the edges of the tree and whose operations are generated by the vertices. The
morphisms in Ω from a tree S to a tree T are precisely the operad maps Ω(S) →
Ω(T ). Any such morphism is a composition of elementary morphisms: besides the
isomorphisms between trees, these are degeneracies, internal and external faces,
much as for ∆, and illustrated in the following picture.

∂v

∂e

σv ∂r

r
e

v

r
e

v

e

v

In the picture, ∂v is an external (top) face, ∂r an external (root) face, ∂e an inner
face and σv a degeneracy map.

Among all objects of Ω, some have a special status and deserve their own no-
tation: η is the tree consisting of a single edge; for a non-negative integer n, the
n-corolla Cn is the tree with a single vertex and n+ 1 edges.

The category dSets of dendroidal sets is the category of contravariant functors
from Ω into sets, while the category dSpaces is that of dendroidal spaces, i.e. con-
travariant functors from Ω into simplicial sets. The action of a morphism α : S → T
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on a dendroidal set or space X is denoted α∗ : XT → XS . The dendroidal set rep-
resented by a tree T is denoted Ω[T ]. The category Ω and the associated categories
of dendroidal sets and spaces are discussed in detail in [19], [9] and [10].

The simplicial category ∆ embeds in Ω, where we regard [n] as a linear tree with
n vertices. We denote this inclusion by i.

In the definition below, and unless stated otherwise, we write Rmap for the
homotopy-invariant (alias derived) mapping space in the category of dendroidal
spaces with respect to levelwise weak equivalences.

Definition 3.1. A dendroidal space X is called a Segal dendroidal space if the
map

Rmap(Ω[T ], X)→ Rmap(Sc[T ], X)

is a weak equivalence of spaces for each tree T . Here Sc[T ] is the Segal core of T ,
i.e. the union of all the corollas of T . (This union is indexed over the vertices v of
T .)

Remark 3.2. These Segal cores are discussed in detail in [10]. In particular, it
follows from Proposition 2.5 there that X is a Segal dendroidal space if and only if
the map

Rmap(Ω[T ], X)→ Rmap(Λe[T ], X)

is a weak equivalence of spaces for each tree T and each inner edge e in T . Here
Λe[T ] ⊂ ∂Ω[T ] is the union of all faces except the one given by contracting e.

Let E denote the simplicial set given as the nerve of the groupoid with two
objects x and y and exactly two non-identity morphisms x→ y and y → x. Recall
from [20] that a simplicial space is complete if the evaluation at one of the points
Rmap(E,X) → Rmap(∆[0], X) is a weak equivalence. The following definition is
equivalent to the one given in [10].

Definition 3.3. A Segal dendroidal space X is complete if the underlying Segal
space i∗X is complete.

3.1. Homotopy theories. The tree category Ω is a generalised Reedy category:
the degree function d is defined by d(T ) = number of vertices in T , while Ω+ is
generated by faces and isomorphisms and Ω− by degeneracies and isomorphisms.
Therefore, the category of dendroidal spaces has a Reedy model structure. A den-
droidal space X is Reedy fibrant if the map

XT = map(Ω[T ], X)→ map(∂Ω[T ], X)

is a Kan fibration for each tree T , where Ω[T ] is the representable dendroidal set
(viewed as a dendroidal space) and ∂Ω[T ] is its boundary. It is Reedy cofibrant
if Aut(T ) acts freely on X(T )\ deg(X)(T ), and this happens to be equivalent to
acting freely on all of X(T ).

There is a diagram of model categories and left Quillen functors:

(3.1)

dSpacesP dSpacesPS dSpacesPSC

dSpacesR dSpacesRS dSpacesRSC

≃ ≃ ≃
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where P and R stand for projective and Reedy, S stands for Segal and C for
complete. The fibrant objects in dSpacesPS are the Segal dendroidal spaces which
are projectively fibrant, whereas the fibrant objects in dSpacesRS are the Segal
dendroidal spaces which are Reedy fibrant. Similarly for PSC and RSC. From
left to right, the model structures on each column are obtained via left Bousfield
localisation.

Remark 3.4. Definitions 3.1 and 3.3 are in agreement with [10]. Indeed, if X is
a Reedy fibrant dendroidal space, then the maps in those definitions are Reedy
fibrations, and all the derived mapping spaces are identified with their non-derived
versions. This is the case because Sc[T ]→ Ω[T ], Λe[T ]→ Ω[T ] and i!(∆

0)→ i!(E)
are inclusions into normal objects and hence Reedy cofibrations.

Definition 3.5. A map f : X → Y between Segal dendroidal spaces is a Dwyer-
Kan equivalence if i∗f is essentially surjective (as a map of Segal spaces) and f is
fully faithful in the sense that the square

(3.2)

XCn
X×n+1
η

YCn
Y ×n+1
η

is homotopy cartesian, for each n. Here the horizontal maps are induced by the
inclusion ∐n+1η → Cn which selects the n leaves and the root of the corolla.

In the complete model structures dSpacesRSC and dSpacesPSC , the weak equiv-
alences between Segal dendroidal spaces (which are not necessarily complete as
such) are precisely the Dwyer-Kan equivalences [20]. Furthermore, many fibrations
in these model structures can be identified:

Proposition 3.6. Suppose B is a projective (or Reedy) fibrant Segal dendroidal
space, but not necessarily complete. A map f : X → B is a projective (or Reedy)
complete fibration if and only if it satisfies the following conditions:

(i) X is a Segal dendroidal space and f is a projective (or Reedy) fibration;
(ii) i∗f : i∗X → i∗B is a fibrewise complete Segal space, that is, the map

Rmap(E, i∗X)→ Rmap(E, i∗B)×h
Rmap(∆[0],i∗B) Rmap(∆[0], i∗X)

is a weak equivalence. In other words, the square

(i∗X)he1 (i∗X)0

(i∗B)he1 (i∗B)0

is homotopy cartesian, where (Z1)
he denote the space of homotopy invertible

morphisms of a Segal space Z.

Remark 3.7. As before, in the Reedy case, point (ii) is equivalent to the statement
that the non-derived map

map(E, i∗X)→ map(E, i∗B)×map(∆[0],i∗B) map(∆[0], i∗X)

is a trivial Reedy fibration.
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Proof. We prove this for the Reedy model structure, the projective case is identical.
One implication is immediate: if f is a fibration in dSpacesRSC then (i) holds

since f is in particular a fibration in dSpacesRS , and (ii) holds since the inclusion
i!∆[0] → i!E is a trivial cofibration by definition of the complete model structure
(and so f , being a fibration, has the right lifting property with respect to it).

For the reverse implication, factor f as a trivial cofibration j followed by a
fibration g in dSpacesRSC

X
∼
→֒ Y → B .

Since g is a fibration in dSpacesRSC , it is also a fibration in dSpacesRS , and so
it follows from the assumption that B is a Segal dendroidal space that Y is also
a Segal dendroidal space. Weak equivalences between dendroidal Segal spaces in
dSpacesRSC are precisely the Dwyer-Kan equivalences, therefore j is a Dwyer-Kan
equivalence. The claim is that j is in fact an objectwise weak equivalence. This is
enough to conclude that f is a fibration in dSpacesRSC since in any left Bousfield
localisation LSM of a model category M at a set of maps S, if a map f : X → B is
a fibration in M , g : Y → B a fibration in LSM , and j : X → Y satisfying f = gj
is a weak equivalence in M , then f is a fibration in LSM .

We deduce the claim from the corresponding statement for Segal spaces. Namely,
applying i∗ we obtain maps of Segal spaces

i∗X → i∗Y → i∗B

where the composite i∗f and the right-hand map i∗g are fibrewise complete Segal
spaces, and i∗j is a Dwyer-Kan equivalence. It follows from [6, Proposition B.8]
that i∗j is an objectwise weak equivalence. In particular j(η) : Xη → Yη is a weak
equivalence of spaces. Together with the assumption that j is fully faithful, this
implies that j is an objectwise weak equivalence. �

4. Covariant fibrations and the Yoneda lemma for dendroidal spaces

After some important definitions, we state and prove the main technical result
of the paper which we call the Yoneda lemma.

4.1. Covariant fibrations. We begin with the definition of a covariant fibration
(also called left fibration). In line with the previous section (cf. Remark 3.4), we first
give a formulation in homotopical terms, i.e. only depending on the levelwise weak
equivalences of dendroidal spaces and irrespective of a particular model structure.

Throughout this section, B will denote a fixed Segal dendroidal space.

Definition 4.1. A map X → B of dendroidal spaces is a covariant fibration if for
each tree T the diagram of simplicial sets

(4.1)

XT map(λ(T ), Xη)

BT map(λ(T ), Bη)

is homotopy cartesian, where λ(T ) denotes the set of leaves of T .

Since we assume that B is a Segal dendroidal space, an equivalent requirement is
that X is a Segal dendroidal space and that the square (4.1) is homotopy cartesian
when T is a corolla. This reformulation, and a few others, is made explicit below.
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Remark 4.2. A map X → B is a covariant fibration if and only if the square

Rmap(V,X) Rmap(U,X)

Rmap(V,B) Rmap(U,B)

is homotopy cartesian for any of the following sets of maps U → V of dendroidal
discrete spaces:

(1) λ(T )⊗ η ⊂ Ω[T ], for T ∈ Ω
(2) λ(Cn)⊗ η ⊂ Ω[Cn] and Sc[T ] ⊂ Ω[T ], for n ≥ 1 and T ∈ Ω
(3) λ(Cn)⊗η ⊂ Ω[Cn] and Λe[T ] ⊂ Ω[T ], for n ≥ 1, T ∈ Ω and e an inner edge
(4) Λe[T ] ⊂ Ω[T ], for T ∈ Ω and e an inner edge or a top vertex

Indeed, point (1) is a trivial restatement of the definition. For the remaining points,
we introduce some notation: for a dendroidal set W , F (W ) denotes the homotopy
fiber of the map Rmap(W,X) → Rmap(W,B). To prove that (1) is equivalent to
(2) we look at the composite

λ(T )⊗ η → Sc[T ]→ Ω[T ]

which induces a composite

F (λ(T )⊗ η)→ F (Sc[T ])→ F (Ω[T ]) .

By an easy inductive argument, the left-hand map is a weak equivalence if we
assume that either (1) or (2) holds. By the two-out-of-three property for weak
equivalences, we conclude that (1) is equivalent to (2). For the equivalence between
(2) and (3), see Remark 3.2. Condition (4) clearly implies (3). The reverse impli-
cation is a bit more involved and since we will not use this fact we will only outline
an argument. Consider the class of maps U → V rendering the square above homo-
topy cartesian. This class is saturated and has the property that if a composition
U → V → W as well as the first map U → V belong to the class, then so does
V → W . One then shows by induction on the size of the tree T and downwards
induction on a non-empty set Φ of top vertices that the inclusion of the union of all
the faces of T except the ones corresponding to vertices of Φ belongs to the class.
For Φ a singleton, this is condition (4).

We will add the adjective Reedy or projective whenever we require a covariant
fibration to be a fibration in one of these two senses.

4.2. The covariant model structure. Let B be a projectively fibrant Segal den-
droidal space. The projective covariant model structure (alias left fibration model
structure) on dSpaces is the left Bousfield localisation of

(dSpacesPS)/B ,

the overcategory of the projective Segal model structure over B, at the maps se-
lecting the leaves

(4.2)
∐

λ(T )

η →֒ Ω[T ]
x
−→ B

for any tree T and any x ∈ B(T ). Its fibrant objects are precisely the covariant
projective fibrations.
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These projective and Reedy model structures will be denoted

(dSpaces/B)P,cov and (dSpaces/B)R,cov ,

respectively. As for any left Bousfield localisation, a map f : X → Y of dendroidal
spaces over B is a projective (or Reedy) covariant weak equivalence if for every
projective (or Reedy) covariant fibration Z → B, the induced map

f∗ : RmapB(Y, Z)→ RmapB(X,Z)

is a weak equivalence.
In either setting, we have the following straightforward characterization of weak

equivalences:

Lemma 4.3. A map f : X → Y between covariant fibrations over B is a covariant
weak equivalence if and only if the map on colours Xη → Yη (over Bη) is a weak
equivalence.

Proof. A map between fibrant objects in the localised setting (i.e. covariant fibra-
tions over B) is a weak equivalence if and only if it is a levelwise weak equivalence.
And from the definitions we have that a map between covariant fibrations over B
is a weak equivalence at every tree T if and only if it is a weak equivalence at η,
which proves the lemma. �

The projective and Reedy covariant model structures are in fact localisations of
the corresponding complete model structures by virtue of the following Proposition.

Proposition 4.4. If f : X → B is a covariant fibration, then it is a complete
fibration. In particular, if B is a complete dendroidal Segal space, then so is X.

Proof. If f is a covariant fibration of dendroidal Segal spaces then i∗f is a covariant
fibration of Segal spaces. But covariant fibrations of Segal spaces are fibrewise
complete by [5, Proposition 1.18]. Therefore, using Proposition 3.6, we conclude
that f is a fibration in the complete Segal dendroidal space model structure. �

Corollary 4.5. If X → Y is a map of Segal dendroidal spaces over B which is a
Dwyer-Kan equivalence, then it is a covariant weak equivalence.

4.3. The stable model structure. When B is the terminal object, a further
localisation of

dSpacesR,cov = (dSpaces/∗)R,cov

at the maps

k∐

i=1

η →֒ Ck+1

for k ≥ 1, selecting the root and all leaves except one, defines the stable model
structure [1]. (It is in fact enough to localise at a single map given by k = 2.)

We denote this model category by dSpacesR,stable and the corresponding projec-
tive version by dSpacesP,stable.
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In summary, the ladder (3.1) of localisations and Quillen equivalences can be
prolonged as

(4.3)

dSpacesPSC dSpacesP,cov dSpacesP,stable

dSpacesRSC dSpacesR,cov dSpacesR,stable

≃ ≃ ≃

Remark 4.6. It is proved in [10] that there are left Quillen equivalences in both
directions between complete dendroidal Segal spaces and dendroidal sets with the
operadic model structure,

dSetsoper
∼
−→ dSpacesRSC

∼
−→ dSetsoper

Thus, the lower row in diagram (4.3) is also equivalent to a row of localisations

dSetsoper → dSetscov → dSetsstable

The analogous Quillen equivalent rows for the categorical structures are

sSpacesRSC → sSpacesR,cov = sSpacesR,stable

and
sSetscat → sSetscov = sSetsKQ .

4.4. The Yoneda lemma. In order to state the main technical result, Theorem
4.10 below, we need a few more definitions.

Given a tree T , let C(T ) be the groupoid whose objects are inclusions T →֒ T ♯

where the tree T ♯ is obtained from T by attaching a corolla Cn with n ≥ 0 to each
leaf of T . (In other words, the objects of C(T ) are in bijective correspondence with
functions from λ(T ) to N. In particular, for any tree T without leaves, C(T ) has
exactly one object, namely the identity map T → T ♯.) A morphism in C(T ) is an
isomorphism under T . It is easy to see that the groupoid C(T ) breaks up a product
of λ(T )-many copies of Σ, where Σ is the groupoid of finite sets and bijections.

The assignment T 7→ C(T ) is functorial, i.e. C(−) is a dendroidal object in
groupoids. To see this, let α be a morphism S → T in Ω. Then each leaf e of S is
mapped to an edge α(e) of T , thus by contracting all the inner edges in T ♯ above
α(e) we obtain a tree S♯ and a diagram

T T ♯

S S♯

i

α∗i

α i∗α

By construction, S♯ is obtained from S by gluing corollas on leaves, and the map
i∗α defines an injection λ(S♯)→ λ(T ♯). We leave to the reader the verification that
α 7→ α∗i indeed defines a map of groupoids C(T )→ C(S) that is functorial in α.

In the following definition, we fix one of the standard functorial models for the
homotopy colimit of a diagram of spaces, e.g. the one in [8, Chapter XII].

Definition 4.7. Let X be a Segal dendroidal space, and σ : U → Xη a map of
simplicial sets. We define σ/X as the dendroidal space whose value at a tree T is

(σ/X)T := hocolim
(T →֒T ♯)∈C(T )

ZT ♯ ,
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and ZT ♯ is defined as the homotopy pullback

ZT ♯ XT ♯

map(λ(T ♯), U) map(λ(T ♯), Xη)
σ

where the right-hand map is induced by the inclusion of the leaves in T ♯.

For each object T →֒ T ♯ in C(T ), we obtain a projection map XT ♯ → XT , and
these assemble into a map π : σ/X → X of dendroidal spaces. Note also that if T
is a tree without leaves, then the map (σ/X)T → XT is a weak equivalence.

Remark 4.8. When X is a normal dendroidal set (i.e. a Reedy cofibrant dendroidal
discrete space) and U is a set, then the hocolim defining σ/X is identified with the
colimit (due to the freeness of the symmetric group actions) in which case the value
of σ/X at a tree T is again a set and has the following description. Its elements
are equivalence classes of triples

(T →֒ T ♯, a, ξ)

where T →֒ T ♯ is an object of C(T ), a ∈ XT ♯ and ξ : λ(T ♯) → U is a labelling of
the leaves of T ♯ by elements of U , compatible with the dendrex a in the sense that

σ ◦ ξ(ℓ) = ℓ∗(a) ∈ Xη

where ℓ∗ : X♯
T → Xη is the restriction along ℓ : η → T ♯. The equivalence relation

on such triples (i, a, ξ) is defined by identifying

(i : T →֒ T ♯, a, ξ) ∼ (j : T →֒ T ′, b, φ)

if and only if there is an isomorphism τ : T ♯ → T ′ under T such that τ∗b = a and
τ∗φ = ξ, where τ∗φ is the composition ξ ◦ λ(τ) : λ(T ♯)→ U .

The same discussion applies if X is a dendroidal space and U is a space, provided
the symmetric groups act freely and the homotopy pullbacks defining Z are strict
pullbacks (e.g. this is the case if Xη is discrete). We will apply this case in Lemma
6.2.

Proposition 4.9. The map π : σ/X → X is a covariant fibration.

Proof. The goal is to show that the square

(4.4)

(σ/X)T map(λ(T ), (σ/X)η)

XT map(λ(T ), Xη)

is homotopy cartesian. Let x ∈ XT . Since homotopy colimits of simplicial sets are
stable under homotopy base change, the homotopy fibre of the left-hand map is
identified with

(4.5) hocolim
(T →֒T ♯)∈C(T )

hofibrex(ZT ♯ → XT )

where the map on the display is the composite of the projection ZT ♯ → XT ♯ with
the restriction XT ♯ → XT .
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Now, any object T →֒ T ♯ in C(T ) fits into a square of inclusions

∐
ℓ∈λ(T ) Ω[η]

∐
ℓ∈λ(T ) Ω[Cnℓ

]

Ω[T ] Ω[T ♯]

where nℓ is the set of leaves of the corolla attached to the ℓth leaf of T . By the
assumption that X is a Segal dendroidal space, the induced square

XT ♯ XT

∏
ℓ∈λ(T )XCnℓ

∏
ℓ∈λ(T )Xη

is homotopy cartesian. We can use this simple observation to simplify the expression
(4.5), at the cost of losing functoriality in T . Given ℓ ∈ λ(T ), let xℓ ∈ Xη be the
image of x by the map XT → Xη which selects the ℓth leaf. We have observed
before that the groupoid C(T ) is the product of λ(T )-many copies of Σ. Therefore,
the space (4.5) is weakly equivalent to

hocolim
(n1,...,nℓ)∈Σ×···×Σ

hofibre(x1,...,xℓ)(ZCn1
× · · · × ZCnℓ

root
−−→ Xη × · · · ×Xη)

and this is identified with the homotopy fibre of the right-hand map in square (4.4).
Thus, the square (4.4) is homotopy cartesian. �

As before, let σ : U → Xη be a map of simplicial sets. We say that σ (or, by
abuse, U) is initial if the map π : σ/X → X is a (levelwise) weak equivalence.
(To assert this, since π is a covariant fibration, it suffices to show that π is a weak
equivalence on colours.)

Theorem 4.10. Suppose π : X → B is map between Segal dendroidal spaces and
σ : U → Xη a map which is initial in X. Then the map

Ω[η]⊗ U → X

adjoint to σ, is a weak equivalence in the covariant model structure over B.

This theorem will be heavily used, mostly in the form of a corollary that we
describe below, after the following construction.

Construction 4.11. Any map σ : U → Bη has a canonical lift sσ : U → (σ/B)η
along π : (σ/B)η → Bη defined by the composite

U → U ×Bη
BC1

→ U ×hBη
BC1

⊂ (σ/B)η

where the first map assigns to u ∈ U the degenerate element of BC1
given by σ(u).

The last inclusion is the inclusion of the summand n = 1 of (σ/B)η which is

hocolim
n∈Σ

BCn
×h(Bη)n

Un .

We claim that the map sσ/(σ/B) → σ/B is a weak equivalence on η; in other
words, sσ is initial. Indeed, that map is the homotopy colimit, over n ∈ Σ, of the
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map between the homotopy pullbacks of the rows in the diagram

(σ/B)Cn
(σ/B)nη Un

BCn
Bnη Un

The left-hand square is homotopy cartesian by Proposition 4.9. Therefore the map
between homotopy pullbacks is a weak equivalence.

Corollary 4.12. Let B be a Segal dendroidal space. Then for a map σ : U → Bη
of spaces, the map Ω[η] ⊗ U → σ/B (corresponding to sσ) is a covariant weak
equivalence over B.

Proof. The map sσ is initial by the construction above, so we may apply Theorem
4.10 with X = σ/B. �

Before we go into the proof of the theorem, we isolate an easy result which will
be used there.

Lemma 4.13. Suppose v : Y → B is a covariant fibration and β : U → Yη a map
of spaces. Then the induced map β/Y → vβ/B is a weak equivalence.

Proof. Since v is a covariant fibration, the map of hocolim-diagrams defining β/Y
and vβ/B is a levelwise weak equivalence. �

Proof of Theorem 4.10. We need to show that for every covariant fibration v : Y →
B the induced map

(4.6) RmapB(X,Y )→ RmapB(Ω[η]⊗ U, Y )

is a weak equivalence, where RmapB(−,−) denotes the derived mapping space in
the projective model category of dendroidal spaces over B. We may assume that v
is a levelwise fibration between levelwise fibrant dendroidal spaces.

The derived mapping space RmapB(X,Y ) is identified with the homotopy pull-
back of the diagram

∗
π
−→ Rmap(X,B)

v◦
←− Rmap(X,Y )

and, similarly, RmapB(Ω[η]⊗ U, Y ) is identified with the (homotopy) pullback of

∗
πσ
−−→ map(U,Bη)

v◦
←− map(U, Yη) .

Now pick a basepoint β ∈ map(U, Yη) such that vβ = πσ in map(U,Bη). We use
based-maps notation and write Rmap((X,σ), (Y, β)) for the homotopy fibre of the
composition

Rmap(X,Y )→ Rmap(Xη, Yη)
σ∗

−→ Rmap(U, Yη)

over β, and similarly for Rmap((X,σ), (B, πσ)). By commuting homotopy limits,
the homotopy fibre of (4.6) over β agrees with the homotopy fibre of

(4.7) Rmap((X,σ), (Y, β))
v◦
−→ Rmap((X,σ), (B, πσ))
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over π. We recast the map (4.7) as the left-hand vertical arrow in the commutative
square below:

(4.8)

Rmap((X,σ), (Y, β)) Rmap((σ/X, sσ), (β/Y, sβ))

Rmap((X,σ), (B, vβ)) Rmap((σ/X, sσ), (vβ/B, svβ))

(⋆)

v◦ v◦

Recall that sσ refers to the canonical lift U → (σ/X)η of σ along (σ/X)η → Xη

(and similary for sβ and svβ).
By Lemma 4.13, we know that the right-hand map is a weak equivalence. In the

remainder of the proof, we will show that the horizontal maps are weak equivalences.
Informally, the statement about the horizontal maps is a dendroidal version of the

1-categorical triviality that a functor from a category C to a category D sending
a fixed object c ∈ C to a fixed object d ∈ D is the same as a functor between
undercategories c/C → d/D sending idc to idd, provided c is an initial object of
C. We now give more details, concentrating on the top horizontal map (⋆) since
the argument for the lower one is identical. The composite map

Rmap((X,σ), (Y, β))
(⋆)
−−→ Rmap((σ/X, sσ), (β/Y, sβ))

πY−−→ Rmap((σ/X, sσ), (Y, β))

agrees with precomposition with πX : σ/X → X, and therefore it is a weak equiv-
alence since σ is initial. This means that (⋆) has a homotopy left inverse.

To simplify notation below, let us temporarily write sσ/X as short-hand for
sσ/(σ/X), the under-dendroidal space of σ/X under sσ : U → (σ/X)η. The
composite map

Rmap((σ/X, sσ), (β/Y, sβ)) Rmap((σ/X, sσ), (Y, β))

Rmap((sσ/X, ssσ), (β/Y, sβ))

agrees with precomposition with π : sσ/X → σ/X and so is a weak equivalence
(since sσ is initial in σ/X). Because σ is initial in X, the right-hand map is
identified with (⋆) and we conclude that (⋆) also has a homotopy right inverse. �

5. Invariance under Dwyer-Kan equivalences

Let f : P → Q be a map of Segal dendroidal spaces. Given a dendroidal space
X over Q, we obtain a dendroidal space f∗X over P by base change, i.e. taking
the pullback of X along f . This restriction map has a left adjoint f! which is given
by composition, i.e.

f!(Y → P ) = Y → P → Q

for a dendroidal space Y over P . In this section we prove

Theorem 5.1. Let f : P → Q be a Dwyer-Kan equivalence between Segal den-
droidal spaces. Then the adjoint pair

f! : dSpaces/P ⇆ dSpaces/Q : f∗

is a simplicial Quillen equivalence for the covariant (projective or Reedy) model
structures.
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Remark 5.2. We emphasise that we do not assume P and Q to be complete Segal
dendroidal spaces. In fact, under this stronger assumption, f is a weak equivalence
between fibrant objects and by Brown’s lemma we may assume that it is a trivial
fibration, in which case the theorem is obvious.

We will deduce Theorem 5.1 from the following two propositions.

Proposition 5.3. Let f : P → Q be a fully faithful map between Segal dendroidal
spaces and let σ : U → Pη be a map of spaces. Then the square

σ/P fσ/Q

P Q

is homotopy cartesian.

Proof. We may assume that the map f is a projective fibration between projec-
tively fibrant objects. Indeed, the hypothesis, the conclusion and the construction
involved are all invariant under levelwise weak equivalences. The vertical maps
are covariant fibrations, and those are invariant under pullback, so the claim is
that the induced map σ/P → f∗(fσ/Q) of covariant fibrations over P is a weak
equivalence. Since weak equivalences between covariant fibrations are determined
on colours (Lemma 4.3), it suffices to show that for every x ∈ Pη, the induced map
on fibres over x is a weak equivalence of spaces. This follows immediately from the
assumption that f is fully faithful. �

Proposition 5.4. Let f : P → Q be an essentially surjective map between Segal
dendroidal spaces. A map u : X → Y between covariant fibrations over Q is a
covariant weak equivalence if and only if the pullback Rf∗X → Rf∗Y over P is a
covariant weak equivalence.

Proof. We may assume that X → Q and Y → Q are projective fibrations. We
again make use of the fact (Lemma 4.3) that a map between covariant fibrations is a
covariant weak equivalence if and only if it is a weak equivalence on colours. Clearly,
if u is a weak equivalence on colours then the same holds for f∗u. Conversely,
consider the diagram

(f∗X)η Xη Yη

Pη Qη Qη
id

in which the left-hand square is (homotopy) cartesian by definition, and the outer
rectangle is (homotopy) cartesian by the assumption that f∗u is a weak equivalence.
Therefore, for any p ∈ Pη, the induced map between the vertical homotopy fibres
of the right-hand square over f(p) is a weak equivalence.

Now let q ∈ Qη. Since f is essentially surjective, there exists some p such
that f(p) is homotopy equivalent to q. By Proposition 4.4, the homotopy fibres of
Xη → Qη over q and f(p) are weakly equivalent, and the same is true for Yη → Qη.
Therefore, the induced map between the vertical homotopy fibres of the right-hand
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square over q is also a weak equivalence. In other words, the map f is a weak
equivalence on colours. �

Proof of Theorem 5.1. The adjunction is a Quillen pair since the left adjoint pre-
serves cofibrations and f∗ preserves covariant fibrations. To show that it is a Quillen
equivalence, we proceed in two steps. The essential surjectivity of f implies that
Rf∗ is homotopy conservative by Proposition 5.4. In the remainder of the proof we
show that the derived unit map is a weak equivalence. By the triangular identities
for an adjunction and the homotopy conservativity of Rf∗, it then follows that the
derived counit is also a weak equivalence, thus proving the result.

We now verify the conditions of Lemma 2.1. The right derived functor of f∗

with respect to the projective model structure commutes with homotopy colimits,
since in spaces homotopy colimits are stable under homotopy base change. This
establishes condition (i) of the lemma. For the same reason, together with the fact
that geometric realisation commutes with finite products, if W• → Q is a simplicial
object in the category of dendroidal spaces (over Q) and each Wn is a covariant
fibration over Q, then |W•| → Q is a covariant fibration. Therefore, by Lemma 2.1,
it suffices to show that the derived unit map Z → Rf∗Lf!Z is a weak equivalence
for a cofibrant object Z of the form

∐

i∈I

Ω[T i]⊗∆ni → P

for some set I. Consider the diagram (over P )

Z Rf∗f!Z

Ω[η]⊗ C Rf∗f!(Ω[η]⊗ C)

where C :=
∐
i∈I λ(T

i) ≃
∐
i∈I λ(T

i) × ∆ni . The vertical maps are by definition
weak equivalences in the covariant model structure over P . Now let σ : C → Pη
denote the map adjoint to Ω[η]⊗C → P . By the Yoneda lemma (in the formulation
of Corollary 4.12), the lower horizontal arrow is weakly equivalent to

σ/P → f∗(fσ/Q)

(over P ). We showed in Proposition 5.3 that this map is a levelwise weak equiva-
lence. Therefore, the derived unit map is a weak equivalence. �

6. Dendroidal spaces and algebras over an operad

Let P be a Σ-free coloured operad in simplicial sets. The category of algebras
in simplicial sets carries a model structure transferred from the Kan-Quillen model
structure on simplicial sets [2]. The aim of this section is to prove the following
theorem, which relates this model category to the covariant model structure on
dendroidal spaces.

Theorem 6.1. Let P be a Σ-free operad in simplicial sets and let NP be its den-
droidal nerve. There is a natural Quillen equivalence

FP : (dSpaces/NP )P,cov ⇆ Alg(P ) : GP
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between the covariant localisation of the projective model structure on dSpaces/NP
and the model category of P -algebras.

We begin by describing the functors GP and FP in the statement of the theorem.
Because the operad P is fixed throughout, we shall simply write G and F for GP
and FP .

Recall that the nerve of a simplicial operad P with set of colours C is the
dendroidal space defined by

(NP )T = map(Ω(T ), P )

where Ω(T ) is the (free) coloured operad defined by the tree T . Elements of (NP )T
can be thought of as labellings of the edges of T by colours of P and of the vertices
by operations. In particular, any element ξ ∈ (NP )T restricts to a function λ(ξ) :
λ(T )→ C on the leaves of T .

Given a P -algebra A = {(A(c)}c∈C , the dendroidal space G(A) is the nerve of
a certain coloured operad W (internal to simplicial sets, i.e. with a space rather
than a set of colours). Colours of W are pairs (c, x) with c ∈ C and x ∈ A(c). For
a collection of colours c1, . . . , cn, d, let m denote the algebra multiplication map

P (c1, . . . , cn; d)×A(c1)× . . . A(cn)→ A(d) .

An operation inW from (c1, x1), . . . , (cn, xn) to (d, y) exists if there exists an opera-
tion z ∈ P (c1, . . . , cn; d) such that y = m(z, x1, . . . , xn) in A(d). From its definition,
it is clear that W comes equipped with a forgetful map to P .

The nerve of W is by definition G(A). Thus,

G(A)η =
∐

c∈C

A(c)

and, for an arbitrary tree T , the space G(A)T can be identified with the pullback

(NP )T ×map(λ(T ),(NP )η) map(λ(T ),G(A)η)

where λ(T ) is the set of leaves of T . This description makes it obvious that the
map G(A) → NP is a covariant fibration and that the functor G sends fibrations
of P -algebras to levelwise fibrations. It is also clear that G preserves and detects
weak equivalences between arbitrary objects.

The functor G admits a left adjoint F , which is defined on objects of the form
Ω[T ]⊗K → NP , for a space K and a tree T , by

F(Ω[T ]⊗K
ξ
−→ NP ) = FreeP (λ(T )×K

λ(ξ)
−−−→ C) ,

the free P -algebra generated the simplicial set λ(T )×K over C, briefly denoted by
FreeP (λ(ξ)). This definition is clearly functorial with respect to the simplicial set
K. To see that this assignment is also functorial with respect to the tree T , first
note by using the operations of the operad P given by the map ξ, we can assign an
element of FreeP (λ(ξ)) to each edge of T . Now, a morphism f : S → T over NP
sends each leaf ℓ of S to an edge f(ℓ) in T , and hence induces a map

λ(S)×K → FreeP (λ(ξ))

respecting the colours. Hence, f defines a P -algebra map from F(Ω[S]⊗K → NP )
to F(Ω[T ]⊗K → NP ).
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Lemma 6.2. Let U be a space and σ : U → C a map. Then the unit morphism

Ω[η]⊗ U −→ GF(Ω[η]⊗ U
σ
−→ NP )

is a covariant weak equivalence.

Proof. This is a consequence of Corollary 4.12 because GF(Ω[η]⊗U
σ
−→ NP ) coin-

cides with σ/NP if the operad P is Σ-free (c.f. remark 4.8). �

We shall often leave the maps to NP implicit, so for example we write Ω[η]⊗U
for σ : Ω[η]⊗ U −→ NP . An immediate consequence of the lemma is the following.

Corollary 6.3. Given a tree T and a map Ω[T ]⊗ U → NP , the unit

Ω[T ]⊗ U → GF (Ω[T ]⊗ U)

is a covariant weak equivalence over NP .

Proof. This follows by considering the square

∐λ(T )Ω[η]⊗ U GF(∐λ(T )Ω[η]⊗ U)

Ω[T ]⊗ U GF(Ω[T ]⊗ U)

where the left-hand map is a covariant weak equivalence by definition, and the
right-hand map is an isomorphism. Since ∐λ(T )Ω[η] ⊗ U = Ω[η] ⊗ (U × λ(T )) the
map on top is a weak equivalence by Lemma 6.2 and hence so is the map on the
bottom of the square. �

Remark 6.4. A map Ω[T ]→ GF(Ω[T ]) (over NP ) need not be a Reedy cofibration
(and it is never a projective cofibration). Indeed, the functor F(−) does not preserve
monomorphisms as one easily sees by applying it to η → η where η denotes the tree
with a single edge and a single vertex.

Proof of Theorem 6.1. We have already observed that (F ,G) form a Quillen pair
and that G preserves and detects weak equivalences between arbitrary objects. In
particular, G is homotopy conservative and is already derived. So to accomplish
our task we will show that, for every projectively cofibrant dendroidal space X over
NP , the unit map

(6.1) X → GF(X)

is a covariant weak equivalence over NP . Lemma 2.1 applies as the assumptions
there are trivially satisfied. So it suffices to prove this for X of the form Ω[T ]⊗K,
which we have already established in Corollary 6.3. �

Corollary 6.5 (Heuts [13]). Let P be a Σ-free simplicial operad and let w∗(P ) be
its homotopy coherent nerve. There is a zig-zag of Quillen equivalences between
dSets/w∗(P ) equipped with the covariant model structure and the model category of
simplicial P -algebras.

Proof. For any complete Segal dendroidal space X, the Quillen equivalence between
dendroidal sets and dendroidal spaces of Remark 4.6 induces a Quillen equivalence
between dendroidal sets over X0 and dendroidal spaces over X for the operadic
model structure and the complete Segal structure, respectively. The same holds for
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the covariant model structures, since the covariant model structure on dendroidal
spaces is a localisation of the complete one (Proposition 4.4).

By the invariance theorem, if X is a Segal dendroidal space which is not necessar-
ily complete, the covariant model structure on dendroidal spaces over X is Quillen

equivalent to the covariant model structure on dendroidal sets over X̂0, where X̂
is a (Rezk) completion of X. The corollary now follows from Theorem 6.1 and the

observation that w∗(P ) is equivalent to N̂P 0 (see [11]). �

7. Γ-spaces and dendroidal spaces

We let F denote the category of finite sets and partial maps. (That is, pairs
(A, f) where A is a finite set and f is a function A′ → B with A′ ⊂ A.) This
category is isomorphic to the category of finite pointed sets and pointed maps, by
omission of the base point. We will refer to a covariant functor from F to simplicial
sets as a Γ-space (the category Γ is by definition the opposite of F.) The category
of all such will be denoted

Γ-spaces .

This category was introduced by Segal [21]. In addition, we rely on [7]. However,
these authors work with functors into pointed simplicial sets. We will comment on
the inessential difference in the next section.

The objects of F will typically be denoted by capital letters A,B,C, . . . and a
morphism from A to B will be written as A9 B to emphasize partiality. Sometimes
we will tacitly just work with a skeleton of F, whose objects are n = {1, . . . , n},
n ≥ 0. The action of a morphism α : A9 B on a Γ-space is denoted α∗ : X(A)→
X(B).

Let us write

λ : Ω→ Γ

for the functor which assigns to a tree T its set of leaves λ(T ). Its effect on a
morphism α : S → T is the partial function λ(α) : λ(T ) 9 λ(S) defined as follows:
for leaves d ∈ λ(S) and e ∈ λ(T ) one sets λ(α)(e) = d if the path in T from e down
to the root passes through α(d); and λ(α)(e) is undefined otherwise (this happens
if that path misses the image of α entirely). This is indeed a (partial) function since
for a pair of leaves a, b ∈ λ(S) a path in T from a leaf down to the root intersects
at most one of the edges α(a) and α(b). For the effect of this functor on generating
morphisms of Ω, note that λ sends isomorphisms, degeneracies and inner face maps
all to isomorphisms, top faces to total maps, but root faces to possibly partial maps.

The following well-known definitions are due to Segal.

Definition 7.1. A Γ-space X is special if

(i) The map X(∅)→ ∆0 is weak equivalence.
(ii) For any two finite sets A and B, the map X(A ∐ B) → X(A) × X(B)

induced by the inert surjections A8 A∐B 9 B is a weak equivalence.

Moreover, X is very special if it is special and the map

X(2)→ X(1)×X(1)

induced by the total map 2 → 1 and one of the two inert surjections 2 9 1, is a
weak equivalence.
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By the special (or very special) projective Γ-space model structure we mean the
left Bousfield localisation of the projective model structure on Γ-spaces wherein
the fibrant objects are the projectively fibrant Γ-spaces which are special (or very
special, respectively). There are also Quillen equivalent special and very special
Reedy Γ-space model structures which we will exploit in the proof of our Barratt-
Priddy-Quillen theorem.

Given a Γ-space X, we let λ∗(X) be the dendroidal space obtained by precom-
position with λ. Then λ∗ has a left adjoint λ! which is uniquely characterised by
the equation λ!(Ω[T ]⊗K) = F(λ(T ),−)⊗K, for any tree T and space K.

Theorem 7.2. The adjunction

λ! : dSpaces ⇆ Γ-spaces : λ∗

is a Quillen equivalence between the covariant projective model structure on dSpaces

(over a point) and the special projective Γ-space model structure.

Proof. The functors λ! and λ
∗ form an adjoint pair for the projective model struc-

tures. The pair is also Quillen for the localised model structures since λ∗ clearly still
preserves fibrant objects there. Moreover, the functor λ∗ is homotopy conservative,
and so it suffices to verify that the derived unit map

Z → Rλ∗Lλ!Z

is a covariant weak equivalence (over a point) for every projectively cofibrant den-
droidal space Z. We may apply Lemma 2.1 to a resolution described just above
this lemma to deduce that it is enough to prove that the derived unit map is a weak
equivalence for Z of the form Ω[T ]⊗∆n or a coproduct of such objects. The condi-
tions of the lemma are satisfied because λ∗ agrees with its derived functor (at the
level of projective model structures) and it commutes with all colimits; moreover,
since realization commutes with products, the geometric realisation of a simplicial
object which is degreewise a special Γ-space is a special Γ-space.

We now proceed in three steps: (i) Z = Ω[T ], (ii) Z = Ω[T ] ⊗ ∆n, and (iii)
arbitrary coproducts of such. In case (i), the unit map takes the form Ω[T ] →
Rλ∗F(λ(T ),−). Writing L for λ(T ), the target of this map is identified with

λ∗(BΣL)

by the Barratt-Priddy-Quillen theorem A.9. Moreover, by definition, the map from
Ω[η]⊗ L to Ω[T ] selecting the leaves is a covariant weak equivalence. So the claim
is that the map

Ω[η]⊗ L→ λ∗(BΣL)

is a covariant weak equivalence. This is a consequence of the Yoneda Lemma
(Theorem 4.10).

Case (ii) follows automatically from case (i) since Ω[T ]⊗∆n is weakly equivalent
to Ω[T ].

As for (iii), the case of finite coproducts is straightforward. Indeed, let Z be a
I-indexed coproduct of objects of the form Ω[Ti], i ∈ I. Then the derived unit map
is identified with

Ω[η]⊗ L→ λ∗(BΣL)

where L is the set
∐
i∈I λ(Ti). Again, this map is a weak equivalence by the Yoneda

lemma. For an infinite set I, one can express it as a filtered colimit of its finite
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subsets and, using that λ∗ commutes with colimits and that a filtered colimit of
special Γ-spaces is special, reduce the problem to the finite case. �

Corollary 7.3 (cf. [21, Proposition 3.5], [17] and [16, Theorem 1.9]). There is
a Quillen equivalence between the special Γ-space model structure and the model
category of E∞-spaces.

Proof. Let P be an E∞-operad, for example the Barratt-Eccles operad. Then
NP → ∗ is a trivial fibration. Hence, the (projective) covariant model structure on
dSpaces/NP is Quillen equivalent to that of dSpaces itself. The result now follows
by combining this observation with Theorems 7.2 and 6.1. �

Remark 7.4. For P the Barratt-Eccles operad, the free P -algebra on a point is
by definition the classifying space BΣ (with disjoint union as multiplication) and
Theorem 6.1 implies that the unit map Ω[η] → G(BΣ) is a covariant weak equiv-
alence. The corresponding statement for Γ-spaces is the Barratt-Priddy-Quillen
result (Theorem A.2) on which Theorem 7.2 depends.

Since λ! sends the localising maps for the stable model structure on dSpaces to
the localising maps for the very special model structure, we obtain the following
corollary.

Corollary 7.5. The adjunction (λ!, λ
∗) is a Quillen equivalence between the stable

(projective) model structure on dSpaces and the very special (projective) Γ-space
model structure.

By composing the Quillen equivalences of Theorem 7.2 and Corollary 7.5 with
the Quillen equivalences of Remark 4.6 we also obtain the following corollary.

Corollary 7.6. There is a zig-zag of Quillen equivalences between the covariant
model structure on dSets and the special model structure on Γ-spaces, which localises
to a further Quillen equivalence between the stable model structure on dSets and the
very special model structure on Γ-spaces.

8. Pointed and reduced R-spaces

The point of this section is to show that the we get equivalent homotopy theories
of special Γ-spaces, independently of whether we require the local objects X to
satisfy X(∅) contractible (as we do) or X(∅) a point.

More generally, let R be a generalised Reedy category with a terminal object
t, and assume d(t) = 0. Consider the category R-spaces of simplicial presheaves
on R. An R-space X is called pointed if it takes values in pointed simplicial sets.
This is equivalent to X being equipped with a map x0 : R(−, t)→ X, i.e. a vertex
x0 ∈ X(t). The R-space X is called reduced if X(t) is a point, and weakly reduced
if X(t) is weakly contractible.

We denote by
(R-spaces)wred

the left Bousfield localisation of the Reedy model structure whose fibrant objects
are weakly reduced, Reedy fibrant R-spaces. It is given by the localising cofibrations
of the form

R(−, t)⊗ ∂∆[n] →֒ R(−, t)⊗∆[n]

for any n ≥ 0. We denote by
R-spaces∗
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the category of pointed R-spaces. It is the slice category R(−, t)/R-spaces and it
inherits a model structure from the Reedy model structure on R-spaces, for which
the forgetful functor

(8.1) R-spaces∗ → R-spaces

preserves and detects fibrations, cofibrations and weak equivalences. The cofibrant
objects are the objects (X,x0) for which x0 : R(−, t)→ X is a cofibration, i.e. the
”well-pointed” cofibrant R-spaces.

Proposition 8.1. The forgetful functor in (8.1) induces a right Quillen equivalence

(R-spaces∗)wred → (R-spaces)wred

Proof. Any morphism f : X → Y in a model category E induces a Quillen pair

f! : X/E ⇆ Y/E : f∗

where f∗ is given by composition and f! by pushout. If f : X → Y is a weak
equivalence between cofibrant objects (or just a weak equivalence, in case E is
left proper), this Quillen pair is a Quillen equivalence as one easily checks. This
proposition is just a special case, where E is (R-spaces)wred and X = ∅ is the initial
object while Y = R(−, t). �

Now consider the functors (defined below)

ρ! : R-spaces∗ ⇆ (R-spaces)red : ρ
∗

between pointed R-spaces and reduced R-spaces. The functor ρ∗ is simply the
forgetful functor. Its left adjoint ρ! is defined for a pointed R-space (X,x0) and any
object r in R by the pushout of simplicial sets

(8.2)

X(t) X(r)

∆[0] ρ!(X)(r)

π∗

r

where πr is the unique map to the terminal object t.
Incidentally, if t is a zero-object, any r also admits a unique section τr : t→ r of

πr, and the functor ρ∗ also has a right adjoint ρ∗, defined analogously as a pullback
of τ∗r and x0.

Proposition 8.2. The Reedy model structure on pointed R-spaces induces a model
structure on reduced R-spaces for which the functors ρ∗ detects fibrations and weak
equivalences; in particular, it makes the adjoint pair ρ! and ρ

∗ into a Quillen pair.

Proof. This is an instance of the usual transfer along the adjoint pair ρ! and ρ
∗. The

transfer conditions are fulfilled because ρ∗ commutes with colimits, and ρ∗ρ! maps
the generating trivial cofibrations in R-spaces∗ to weak equivalences. Indeed, these
generating trivial cofibrations are of the form X ∐ U → X ∐ V where X = R(−, t)
and U → V is

(8.3) R(−, r)⊗ Λk[n] ∪ ∂R(−, r)⊗∆[n]→ R(−, r)⊗∆[n]

If d(r) > 0, then U(t)→ V (t) is an isomorphism so ρ∗ρ!U → ρ∗ρ!V is a pushout of
U → V . And if d(r) = 0 then r is isomorphic to t, in which case π∗

s : U(t)→ U(s)
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is an isomorphism for any s in R, whence ρ∗ρ!(X ∐ U) = X. The same applies to
V . In other words, for r = t the functor ρ∗ρ! maps (8.3) to an isomorphism. �

Let us say that R has a projective terminal object t if for every object r in R the
unique morphism r → t has a section. For example, this is the case if t is a zero
object as in the category Γ, or if every morphism in R

− has a section as in Lemma
2.4. This condition implies that for every presheaf X of (simplicial) sets on R, the
map π∗

r : X(t)→ X(r) is injective.

Proposition 8.3. If R has a projective terminal object, then the Quillen pair ρ!
and ρ∗ of Proposition 8.2 restricts to a Quillen equivalence

(R-spaces∗)wred ⇆ (R-spaces)red

between weakly reduced pointed R-spaces and reduced R-spaces.

Proof. Since ρ∗ maps fibrant objects to local objects, the Quillen pair of Proposition
8.2 factors through the localisation as

R-spaces∗ (R-spaces∗)wred

(R-spaces)red

ρ!
ρ!

where the arrows denote the left Quillen functors. To show that ρ! and its right
adjoint ρ∗ form a Quillen equivalence it suffices to prove that the derived unit
X → Rρ∗Lρ!X is a a weak equivalence for every X. Because ρ∗ detects weak
equivalences, the fact that the derived counit is also a weak equivalence then follows.
Also, the forgetful functor ρ∗ preserves weak equivalences between arbitrary objects,
so in fact it suffices to prove for a cofibrant and weakly reduced pointed R-space
(X,x0) that the unit X → ρ∗ρ!X is a weak equivalence. Consider the defining
pushouts (8.2) of ρ!X. Since X(t) → X(r) is a mono by the assumption that t
is small, and the map X(t) → ∆[0] is a weak equivalence (by the assumption on
X), we conclude that X → ρ∗ρ!(X) is a weak equivalence by the left properness of
simplicial sets. �

Remark 8.4. Using the slightly stronger assumption that R has a zero-object t
(again of Reedy degree d(t) = 0), the functor ρ∗ has a right adjoint ρ∗. In fact, in
this case ρ∗ is also left Quillen and induces a Quillen equivalence

ρ∗ : (R-spaces)red → (R-spaces∗)wred .

Indeed, it is sufficient to prove that ρ∗ρ! sends the generating (trivial) cofibrations
to (trivial) cofibrations and the localising maps R(−, t) ⊗ ∂∆[n] → R(−, t) ⊗∆[n]
to weak equivalences. This was essentially done already in the proof of Proposition
8.2.

Appendix A. A special Barratt-Priddy-Quillen theorem

In this appendix, we will give a proof of our version of the Barratt-Priddy-Quillen
theorem, stated as Theorem 1.2 in the introduction.
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The category Γ is a generalised Reedy category, thus providing the category of
Γ-spaces with a Reedy model structure, Quillen equivalent to the projective model
structure. We denote the left Quillen functor defining this equivalence by

Γ-spacesP → Γ-spacesR

with P for projective and R for Reedy, as before. However, we shall mostly work
with Γ-spaces as covariant functors

X : F→ sSets

from the category F of finite sets and partial maps. The Reedy structure on Γ is
defined by letting the degree of a finite set be its cardinality, while Γ− consists of
duals of totally defined injections A →֒ B, and Γ+ consists of the duals of possibly
partially defined surjections A9 B. The usual surjection-injection factorization of
a map between finite sets provides a factorization as a negative morphism followed
by a positive one in the dual category Γ. With these definitions, a map Y → X
between covariant functors F → sSets is a Reedy fibration if and only if for any
finite set A, the map

Y (A)→ X(A)×X(∂A) Y (∂A)

is a Kan fibration, where

X(∂A) = lim
A9B epi

X(B)

is the limit over all proper, possibly partially defined, surjections A9 B. Further-
more, a map X → Y is a Reedy cofibration if each X(A) → Y (A) is injective and
Aut(A) acts freely on the complement of

X(A) ∪
⋃

B →֒A

Y (B)→ Y (A)

where the union is over all proper monomorphisms (totally defined) from B to A. In
particular, an object Y is Reedy cofibrant if Aut(A) acts freely on the complement
of ⋃

B⊂A

Y (B) →֒ Y (A)

the union being over proper subsets B of A.

Another category that will be relevant for us is the category M of finite sets
and (totally defined) monomorphisms. This category is also a generalised Reedy
category. The degree of an object is again its cardinality, and every morphism
is positive (i.e. M

+ = M) while M
− consists of isomorphisms only. We write

M-spacesR for the category of simplicial presheaves on M with this Reedy model
structure. For easy reference, we state explicitly that a map Y → X of M-spaces
is a Reedy fibration if for any finite set A, the map

Y (A)→ X(A)×X(∂A) Y (∂A)

is a Kan fibration, where

X(∂A) = lim
B⊂A

X(B)

is the limit over proper subsets B of A. Furthermore, a map X → Y is a Reedy
cofibration if each X(A)→ Y (A) is a monomorphism of simplicial sets with Aut(A)
acting freely on Y (A)−X(A).
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There is an inclusion functor

inv : Mop → F

which sends an injection m : B →֒ A to the partial map given by taking the inverse
m−1 : A 9 B. Maps in the image of this functor are called inert. (These are the
partial maps for which the preimage of each singleton is a singleton.) Restriction
along inv defines a functor

inv∗ : Γ-spaces→M-spaces .

There is yet another functor

pow : Γ-spaces→M-spaces

which assigns to a Γ-space X the M-space A 7→ X(1)A (here we use X(1)A as
alternative notation for the iterated pullback over X(∅)).

The map ρA : X(A)→ X(1)A is actually a natural transformation ρ : inv∗(X)→
pow(X).

Lemma A.1. If X is a Reedy fibrant object in Γ-spaces then ρ : inv∗(X)→ pow(X)
is a Reedy fibration in M-spaces. It is a trivial fibration if X is special.

Proof. Take an object A in M. Write Z for inv∗(X). We have to check that

Z(A)→ Z(∂A)×Z(1)∂A Z(1)A

is a fibration, where Z(∂A) denotes the limit, over all proper subsets B of A, of
Z(B), and similarly for Z(1)∂A. But Z(1)∂A ∼= Z(1)A, and so we have to check
that

(A.1) Z(A)→ lim
B⊂A

Z(B)

is a fibration. If A = ∅, this is the fibration X(∅)→ ∗. In general, let V be the set
of all partial maps f : A9 C which are proper surjections but are not total. Then
the inert maps A 9 B for B ⊂ A are cofinal in V and, in the notation of section
2.4, the map (A.1) is X(A)→ X(∂VA). Lemma 2.2 completes the proof. �

We now turn to the statement and proof of our Barratt-Priddy-Quillen theorem.
The groupoid of finite sets and bijections will be denoted Σ. Moreover, for a finite
set A, we shall write Σ(A) for the groupoid of finite sets over A and fibrewise
bijections between them. Thus, objects of Σ(A) are (total) functions f : U → A
between finite sets, and morphisms from (f : U → A) to (g : V → A) are bijections
σ : U → V with gσ = f . Clearly, Σ(−) is a covariant functors from F to groupoids.
Indeed, for a partial map g : A9 B, the induced functor g∗ : Σ(A)→ Σ(B) sends
a function f : U → A to the function obtained by restricting the composition g ◦ f
to where it is defined.

Let BΣ be the functor F→ sSets which sends a finite set A to the nerve of Σ(A).
Thus, an n-simplex in BΣ(A) is a diagram of finite sets of the form

U0
σ1−→ U1

σ2−→ · · ·
σn−−→ Un

f
−→ A

where the σi
′s are isomorphisms over A. For brevity we denote such an n-simplex

by (σ; f) or (σ1, . . . , σn; f). Notation: we sometimes write fi for the composite
fσn . . . σi+2σi+1 for i < n and fn = f .
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Theorem A.2. The map u : F(1,−)→ BΣ corresponding to the object id : 1→ 1
in Σ(1) is a trivial Reedy cofibration between Reedy cofibrant objects in the localised
model category (Γ-spaces)RS .

Because the identity functor is a Quillen equivalence between the Reedy and
projective model structures, we obtain:

Corollary A.3. The map F(1,−)→ BΣ is a fibrant replacement of F(1,−) in the
localised projective model structure (Γ-spaces)PS .

Lemma A.4. The Γ-space BΣ is Reedy cofibrant.

Proof. We will write Y for BΣ. Given A ∈ F, we need to check that Aut(A) acts
freely on the complement of

⋃
B⊂A Y (B) (union over proper subsets B of A) in

Y (A). That complement is identified with the nerve of the category of surjections
U ։ A and isomorphisms between them and clearly Aut(A) acts freely on these
(it acts freely on the objects). �

Remark A.5. The Γ-space BΣ is fibrant in the localised projective model structure
(it is a special Γ-space). If we replace BΣ by a Reedy fibrant object, it also becomes
fibrant in the corresponding Reedy structure.

Recall that M is the category of finite sets and monomorphisms. Following Segal,
we now describe how to extend BΣ to a functor

BΣ(−) : M-spaces→ Γ-spaces ,

where M-spaces denotes the category of contravariant functors from M to simplicial
sets.

First, let F be a presheaf of sets on M. Define

ΣF : F→ Cat

(Cat denotes the category of categories) as follows. The objects of ΣF (A) are pairs
(f : U −→ A, x) where f is an object of Σ(A) and x ∈ F (U). A morphism from
(f : U −→ A, x) to (g : V −→ A, y) is a morphism σ in Σ(A) with the property that
σ∗y = x.

Note that the projection πA : ΣF (A) → Σ(A) is a fibred category with discrete
fibres. If ϕ : A9 B is a morphism in F, we define a functor

ϕ∗ : ΣF (A)→ ΣF (B)

by mapping the object (f : U → A, x) to (ϕf : f−1(domϕ) → B, y), where y
is the restriction of x to f−1(domϕ). This is indeed a functor, which makes the
projection πA natural in A,

ΣF (A) ΣF (B)

Σ(A) Σ(B)

ϕ∗

Moreover, the construction is obviously functorial in F .
More generally, if F is a presheaf of simplicial sets on M, the same construction

applied degreewise gives a functor ΣF on F with values in the category of categories
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internal to simplicial sets (simplicial categories). Composing this functor with the
classifying space construction then yields a functor

BΣF : F→ sSets ,

i.e. a Γ-space. For a finite set A, the n-simplices of BΣF (A) = diag N(ΣF (A)) are
given by triples (σ, f, x) where (σ; f) = (σ1, . . . , σn; f) is an n-simplex in BΣ(A),
i.e. of the form

U0

∼=
−→ U1

∼=
−→ · · ·

∼=
−→ Un

f
−→ A ,

and x ∈ F (U0)n. For a partial map ϕ : A 9 B, the map of simplicial sets
ϕ∗ : BΣF (A)→ BΣF (B) is the map which sends an n-simplex ((σ; f), x) = (σ, f, x)
to (BΣ(ϕ)(σ; f), y) = (τ, ϕf, y) which consists of a string

V0
τ1−→ V1

τ2−→ · · ·
τn−→ Vn

ϕf
−−→ A ,

where Vi = f−1
i (domϕ), τi is the restriction of σi to Vi, and y is the image of x in

F (V0)n given by restriction along the inclusion V0 ⊂ U0.

Lemma A.6. For any simplicial presheaf F on M, the Γ-space BΣF is Reedy
cofibrant.

Proof. As in Lemma A.4. �

Lemma A.7. The construction of BΣF is functorial with respect to the simplicial
presheaf F . Moreover, if F → G is a weak equivalence (i.e. each F (A) → G(A)
is), then the map BΣF → BΣG of Γ-spaces (over BΣ) is too.

Proof. The simplicial category ΣF (A) is fibred over Σ(A) with fibre F (A) and
F (A)→ G(A) induces a weak equivalence of simplicial categories ΣF (A)→ ΣG(A)
over Σ(A). From this, the statement is clear. �

Remark A.8. Suppose F has the property that for each pair of finite sets A and
B the map F (A ∐ B) → F (A) ×F (∅) F (B) induced by the inclusions into the
coproduct is a weak equivalence, and that F (∅) is contractible. Then BΣF is a
special Γ-space. (That is, up to Reedy or projective fibrant replacement, BΣF is a
fibrant object in the appropriate model structure described in section 2.)

Proof of Theorem A.2. We will show that for any Reedy fibrant special Γ-space X
the map

(A.2) hom(BΣ, X)
u∗

−→ hom(F(1,−), X) ,

is an isomorphism, where hom is taken in the homotopy category of (Γ-spaces)RS .
This implies that u is a weak equivalence since BΣ and F(1,−) are Reedy cofibrant.
Moreover, the map u is a monomorphism into a cofibrant object so it is also a Reedy
cofibration. Note that hom(F(1,−), X) is π0X(1).

Any map f : BΣ → X gives a vertex u∗(f) = f1(id1) in X(1). Vice versa,
using an idea from Segal [21], we will construct a map BΣ → X in the homotopy
category from any such vertex v.

Let ǫ : X → inv∗(X) be a Reedy cofibrant replacement of inv∗(X), so that we
have a sequence of trivial Reedy fibrations between M-spaces

X
ǫ
−→ inv∗(X)

ρ
−→ pow(X) .
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A vertex v of X(1)0 defines a map v : ∗ → pow(X), and we write Xv for the fibre of
ρǫ over v. Then Xv → ∗ is a trivial fibration and Xv is cofibrant (it is a subobject
of the cofibrant X). So there is a contracting homotopy

H : Xv ×Xv → (Xv)
∆[1] ,

a section of the endpoint fibration (Xv)
∆[1] → Xv × Xv. Moreover, there is a

canonical map of Γ-spaces

ξ : BΣXv
→ X ,

defined as follows. For an object A of F and an n-simplex (σ, f, x) of (BΣXv
)(A),

ξA(σ, f, x) = (f0)∗ǫ(x) ∈ X(A)n ,

where f0 = fσn . . . σ2σ1 : U0 → A. One can check that ξA (which depends on v) is
a well-defined simplicial map that is natural in A.

We are now ready to prove that the map (A.2) is indeed a bijection. First, given
a vertex v ∈ X(1)0, choose a point ṽ in the fibre Xv(1)0 over v. Then we have a
diagram

BΣ
π
←− BΣXv

ξ
−→ X

with π(ṽ) = id1 and ξ(ṽ) = v, in which π is a weak equivalence because Xv is
contractible. This diagram represents a map ξπ−1 : BΣ → X in the homotopy
category with u∗(ξπ−1) = v.

In the other direction, suppose we are given a map

BΣ
ψ
−→ X .

(Any map in the homotopy category can be so represented because BΣ is cofibrant
and X is assumed fibrant.) Let v = ψ1(id1) in X(1)0 , i.e. v = u∗(ψ). We will
construct a homotopy K

BΣ X

BΣXv

ψ

π ξ

⇒

between ψπ and ξ, using the contracting homotopy H. To this end, first choose a
lift Ψ as in

X

W inv∗(BΣ) inv∗(X)
ψ

Ψ
ǫ

where W is the sub M-space of inv∗(BΣ) consisting of those n-simplices (σ, f) for
which f is an isomorphism. Such a lift exists because W is Reedy cofibrant.

Notice that the map ψA : BΣ(A) → X(A) maps an n-simplex (σ, f) of BΣ(A)
to the fibre over v whenever f (and hence all the fi) are isomorphisms, and hence
in this case ΨA maps (σ, f) into Xv.

Now, for a general n-simplex (σ, f, x) in BΣXv
(A), i.e. (σ, f) ∈ BΣ(A) and

x ∈ Xv(U0)n, define

KA(σ, f, x) = f∗ǫH(Ψ(σ, idUn
), (σn . . . σ1)∗(x)) .
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We leave to the reader the verification that KA(σ, f, x) is a path from ψA(σ, f) to
ξA(σ, f, x) and that KA is a well defined map. �

In the proof of Theorem 7.2, we use a statement more general than Theorem A.2.
This more general version, stated as Theorem A.9 below, can easily be derived from
that theorem as we will now show.

For a finite set L, let ΣL be the category of finite sets and bijections over L (i.e.
bijections of finite sets labelled by L). Let BΣ be the corresponding Γ-space. So
an n-simplex of BΣL(A) is

U0
σ1−→ U1 −→ . . .

σn−−→ Un
(α,f)
−−−→ A× L

where σi’s are bijections and α is the labelling. Let F(L,−) → BΣL be the map
corresponding to the vertex (id, id) : L→ L× L in BΣL(L).

Theorem A.9. The map F(L,−) → BΣL is a trivial cofibration in the special
Γ-space localisation of the Reedy model structure on Γ-spaces.

We will deduce this theorem from Theorem A.2, i.e. the case where L is the
one-point set. To this end, consider the functor ”product with L” and the induced
restriction functor L∗ : Γ-spaces→ Γ-spaces,

L∗(X)(A) = X(A× L)

and observe that BΣL = L∗(BΣ).

Proposition A.10. The functor L∗ is a left Quillen functor (for the Reedy, special
model structure as above).

Let us postpone the proof of this proposition, and first explain how the theorem
follows.

Proof of Theorem A.9 assuming Proposition A.10. There is a natural isomorphism

L∗
F(1,−) =

∨

L

F(1,−) .

Indeed, for an arbitrary finite set A, we have F(1, A) = A+, so

L∗
F(1,−)(A) = F(1, A× L) = (A× L)+ =

∨

L

A+ =
∨

L

F(1, A) .

Now consider the diagram

∨
L F(1,−) F(L,−)

BΣL

≃

where the left-hand map is identified with L∗
F(1−, ) → L∗BΣ and so is a trivial

cofibration by Proposition A.10 and Theorem A.2, while the horizontal map is a
trivial cofibration (in the localised setting) by construction. �

Proof of Proposition A.10. First note that L∗ has a both a left and right adjoint.
Furthermore, L∗ obviously preserves degreewise weak equivalences.
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Next, we check that L∗ preserves Reedy cofibrations. The generating Reedy
cofibrations are of the form

(A.3) ∂F(A,−)×∆n ∪ F(A,−)× ∂∆n → F(A,−)×∆n

where

∂F(A,−) =
⋃

A9B

F(B,−)

is the union over (possibly partially defined) surjections. To check that L∗ maps
(A.3) to a Reedy cofibration we can work in each fixed simplicial degree separately,
so this comes down to checking that for any object C in F the group Aut(C) acts
freely on the complement of

⋃

A9B

F(B,C × L) ∪
⋃

D →֒C

F(A,D × L) →֒ F(A,C × L)

where the unions range over proper partial surjections A 9 B and proper partial
injections D →֒ C.

An element f : A→ C × L is in this complement if and only if

(i) A
f
−→ C ×L

π1−→ C is surjective (for otherwise f would factor through some
proper injection D →֒ C)

(ii) f is an injection (for otherwise f would factor through a proper surjection
A9 B)

Clearly, condition (i) alone ensures that a non-trivial element of Aut(C) cannot fix
such an f . This proves that L∗ is left Quillen for the Reedy model structure.

We still have to prove that L∗ sends the localising maps to trivial cofibrations.
To simplify the exposition, we focus on the localising map

F(1,−) ∨ F(1,−)→ F(2,−) .

For an object A, the set L∗
F(2,−)(A) = F(2, A × L) has three kinds of elements:

the undefined map, the maps which are defined on just one of the two elements of
2, and the total maps. So we have a pushout

∨
L2 F(2, A) F(2, A× L)

∨
L2 F

−(2, A)
∨
L F(1, A) ∨

∨
L F(1, A)

where F
−(2, A) is the set of maps 2 → A that are not totally defined. The square

is natural in A. The map on the left is identified with
∨

L2

F(2,−)→
∨

L2

F(1,−) ∨ F(1,−)

evaluated at A, and is a trivial cofibration by definition. Therefore the map on the
right, which is easily identified as the map

L∗(F(1,−) ∨ F(1,−))→ L∗
F(2,−)

evaluated at A, is also a trivial cofibration. The general case, obtained by substi-
tuting 2 with an arbitrary finite set, is treated similarly. �
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