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EXACT COMPLETION OF PATH CATEGORIES AND

ALGEBRAIC SET THEORY

PART I: EXACT COMPLETION OF PATH CATEGORIES

BENNO VAN DEN BERG1 AND IEKE MOERDIJK2

Abstract. We introduce the notion of a “category with path objects”, as a
slight strengthening of Kenneth Brown’s classical notion of a “category of fibrant
objects”. We develop the basic properties of such a category and its associated
homotopy category. Subsequently, we show how the exact completion of this
homotopy category can be obtained as the homotopy category associated to a
larger category with path objects, obtained by freely adjoining certain homotopy
quotients. In a second part of this paper, we will present an application to
models of constructive set theory. Although our work is partly motivated by
recent developments in homotopy type theory, this paper is written purely in the

language of homotopy theory and category theory, and we do not presuppose

any familiarity with type theory on the side of the reader.

1. Introduction

The phrase “path category” in the title is short for “category with path objects”
and refers to a modification of Kenneth Brown’s notion of a category of fibrant ob-
jects [8], originally meant to axiomatise the homotopical properties of the category
of simplicial sheaves on a topological space. Like categories of fibrant objects, path
categories are categories equipped with classes of fibrations and weak equivalences,
and as such they are closely related to Quillen’s model categories which have an addi-
tional class of cofibrations [25, 26, 19]. Our modification of Brown’s definition mainly
consists in an additional axiom which in the language of Quillen model categories
would amount to the condition that every object is cofibrant. One justification for
this modification is that there still are plenty of examples. One source of examples
is provided by taking the fibrant objects in a model category in which all objects are
cofibrant, such as the category of simplicial sets, or the categories of simplicial sheaves
equipped with the injective model structure. More generally, many model categories
have the property that objects over a cofibrant object are automatically cofibrant.
For example, this holds for familiar model category structures for simplicial sets with
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the action of a fixed group, for dendroidal sets, and for many more. In such a model
category, the fibrations and weak equivalences between objects which are both fibrant
and cofibrant satisfy our modification of Brown’s axioms.

Another justification, and in fact our main motivation, for this modification of
Brown’s axioms is that these modified axioms are satisfied by the syntactic category
constructed out of a type theory [2, 15]. Thus, our work builds on the recently discov-
ered interpretation of Martin-Löf type theory in Quillen model categories [3]. This
interpretation has been extended by Voevodsky to an interpretation of the Calculus
of Constructions in the category of simplicial sets [22] (see also [7, 14, 16, 28, 29]).

In addition, our work is relevant for constructive set theory. Aczel has provided an
interpretation of the language of set theory in a type theory with a suitable universe
[1], and the question arises whether it is possible to construct models of set theory
out of certain path categories. We will turn to this question in Part II of this paper.

The precise contents of this paper are as follows. In Section 2 we introduce the
notion of a path category and verify that many familiar constructions from homotopy
theory can be performed in such path categories and retain their expected properties.
It is necessary for what follows to perform this verification, but there is very little
originality in it. An exception is perhaps formed by our construction of suitable
path objects carrying a connection structure as in Theorem 2.28 and our statement
concerning the existence of diagonal fillers which are half strict, half up-to-homotopy,
as in Theorem 2.38 below. We single out these two properties here also because they
play an important rôle in later parts of the paper.

In Section 3 we will introduce a notion of “homotopy exact completion” for such
path categories, a new category obtained by freely adjoining certain homotopy quo-
tients. For “trivial” path categories in which every map is a fibration and only
isomorphisms are weak equivalences this notion of homotopy exact completion coin-
cides with the ordinary notion of exact completion, well known from category theory
(see [9, 10, 13]). In case the path category is obtained from the syntax of type theory
this coincides with what is known as the setoids construction (see [4]). Indeed, the
type-theorist can think of our work as a categorical analysis of this construction in-
formed by the homotopy-theoretic interpretation of type theory. The main result in
Section 3 shows that the exact completion of the homotopy category of a path cate-
gory C is itself a homotopy category of another path category which we call Ex(C),
see Proposition 3.18 and Theorem 3.14 below.

In Section 4 we show that if C has homotopy sums which are, in a suitable sense,
stable and disjoint, then the homotopy exact completion is a pretopos (see Theorem
4.10). We will also show that the homotopy exact completion has a natural numbers
object if C has what we will call a homotopy natural numbers object.

Finally, in Section 5 we will show that the homotopy exact completion improves the
properties of the original category in that it will satisfy certain extensionality princi-
ples even when the original category does not. This is analogous to what happens for
ordinary exact completions: the ordinary exact completion C′ of a category C will be
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locally cartesian closed (that is, will have internal homs in every slice) whenever C has
this property in a weak form, where weak is meant to indicate that one weakens the
usual universal property of the internal hom by dropping the uniqueness requirement,
only keeping existence (see [12]). In the same vein we show in Section 5 that if a path
category has weak homotopy Π-types (i.e. weak fibrewise up-to-homotopy internal
homs) then its exact completion has exponentials in every slice. In type-theoretic
terms this means that the homotopy exact completion will always satisfy a form of
function extensionality; something similar holds for the path category Ex(C).

At this point it is probably good to add a few words about our approach and how
it relates to some of the work that is currently being done at the interface of type
theory and homotopy theory. First of all, we take a resolutely categorical approach;
in particular, no knowledge of the syntax of type theory is required to understand
this paper. As a result, we expect our paper to be readable by homotopy theorists.

Moreover, despite being inspired by homotopy type theory, the additions to Martin-
Löf type theory suggested by its homotopy-theoretic interpretation play no rôle in
this paper. In particular, we will not use univalence, higher-inductive types or even
function extensionality. Indeed, all the definitions and theorems have been formulated
in such a way that they will apply to the syntactic category of (pure, intensional)
Martin-Löf type theory. In fact, we expect our definitions remain applicable to the
syntactic category of type theory even when all its computation rules are formulated
as propositional equalities. One of the authors of this paper has verified this in de-
tail for the identity types (see [6]), but we firmly believe that it applies to all type
constructors. This idea has guided us in setting up many of the definitions of this
paper. This includes, for example, the definition of a (weak) homotopy Π-type as in
Definition 5.2 below.

In addition to the reasons already mentioned above, these considerations have de-
termined our choice to work in the setting of path categories. As said, our path
categories are related to categories of fibrant objects à la Brown, or fibration cat-
egories as they have been called by other authors. Structures similar to fibration
categories or their duals have been studied by Baues [5] and Waldhausen [31], for
homotopy-theoretic purposes. For a survey and many basic properties, we refer to
[27].

More recently, several authors have also considered such axiomatisations in order to
investigate the relation between homotopy theory and type theory. For instance, Joyal
(unpublished) and Shulman [29] have considered axiomatisations in terms of a weak
factorisation system for fibrations and acyclic cofibrations, a set-up which is somewhat
stronger than ours. In our setting we do not have such a weak factorisation system,
and the lifting properties that we derive in our path categories yield diagonals that
make lower triangles strictly commutative, while upper triangles need only commute
up to (fibrewise) homotopy. Our reasons for deviating from Joyal and Shulman are
that in the setting of the weak rules for the identity types such weak liftings seem
to be the best possible; in addition, the category Ex(C) only seems to be a path
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category in our sense, even when C is a type-theoretic fibration category in the sense
of Shulman.

In this paper we have not entered into any ∞-categorical aspects. For readers
interested in the use of fibration categories in ∞-category theory and its relation to
type theory, we refer to the work of Kapulkin and Szumi lo [21, 23, 30].

1.1. Acknowledgments. The writing of this paper took place in various stages, and
versions of the results that we describe here were presented at various occasions. We
are grateful to the organisers of the Homotopy Type Theory Workshop in Oxford in
2014, TACL 2015 in Salerno and the minisymposium on Homotopy Type Theory and
Univalent Foundations at the Jahrestagung der DMV 2015 in Hamburg for giving
us the opportunity to present earlier versions of parts of this paper. We owe a
special debt to the Newton Institute for Mathematical Sciences in Cambridge and
the Max Planck Institute in Bonn. The first author was a visiting fellow at the
Newton Institute in the programme “Mathematical, Foundational and Computational
Aspects of the Higher Infinite (HIF)” in Fall 2015, while both authors participated
in the “Program on Higher Structures in Geometry and Physics” at the Max Planck
Institute in 2016. At both institutes various parts of this paper were written and
presented. We would also like to thank Chris Kapulkin for useful bibliographic advice
and the referees for a careful reading of the manuscript. Finally, we are grateful to
Peter Lumsdaine and one of the referees for pointing out an error in an earlier version
of this paper.

2. Path categories

2.1. Axioms. Throughout this paper we work with path categories, a modification
of Brown’s notion of a category of fibrant objects [8]. We will start by recalling
Brown’s definition.

The basic structure is that of a category C together with two classes of maps in C
called the weak equivalences and the fibrations, respectively. Morphisms which belong
to both classes of maps will be called acyclic fibrations. A path object on an object B
is a factorisation of the diagonal ∆B : B → B × B as a weak equivalence r: B → PB
followed by a fibration (s, t): PB → B × B.

Definition 2.1. [8] The category C is called a category of fibrant objects if the fol-
lowing axioms are satisfied:

(1) Fibrations are closed under composition.
(2) The pullback of a fibration along any other map exists and is again a fibration.
(3) The pullback of an acyclic fibration along any other map is again an acyclic

fibration.
(4′) Weak equivalences satisfy 2-out-of-3: if gf = h and two of f, g, h are weak

equivalences then so is the third.
(5′) Isomorphisms are acyclic fibrations.
(6) For any object B there is a path object PB (not necessarily functorial in B).
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(7) C has a terminal object 1 and every map X → 1 to the terminal object is a
fibration.

We make two modifications to Brown’s definition, the first of which is relatively
minor. Instead of the more familiar 2-out-of-3 property we demand that the weak
equivalences satisfy 2-out-of-6:

(4) Weak equivalences satisfy 2-out-of-6: if f : A → B, g: B → C, h: C → D are
three composable maps and both gf and hg are weak equivalences, then so
are f, g, h and hgf .

It is not hard to see that this implies 2-out-of-3. We have decided to stick with the
stronger property, as it is something which is both useful and true in all the examples
we are interested in. (See also Remark 2.17 below.)

A more substantial change is that we will add an axiom saying that every acyclic
fibration has a section (this is sometimes expressed by saying that “every object is
cofibrant”). To be precise, we will modify (5′) to:

(5) Isomorphisms are acyclic fibrations and every acyclic fibration has a section.

As discussed in the introduction, one reason we have made this change is that it is
satisfied in the syntactic category associated to type theory [2] and in many situations
occurring in homotopy theory. In fact, axiom (5) will be used throughout this paper
and in this section we will investigate, somewhat systematically, the consequences of
this axiom.

To summarise:

Definition 2.2. The category C will be called a category with path objects, or a path
category for short, if the following axioms are satisfied:

(1) Fibrations are closed under composition.
(2) The pullback of a fibration along any other map exists and is again a fibration.
(3) The pullback of an acyclic fibration along any other map is again an acyclic

fibration.
(4) Weak equivalences satisfy 2-out-of-6: if f : A → B, g: B → C, h: C → D are

three composable maps and both gf and hg are weak equivalences, then so
are f, g, h and hgf .

(5) Isomorphisms are acyclic fibrations and every acyclic fibration has a section.
(6) For any object B there is a path object PB (not necessarily functorial in B).
(7) C has a terminal object 1 and every map X → 1 to the terminal object is a

fibration.

We have chosen the name path category because its homotopy category is com-
pletely determined by the path objects (as every object is “cofibrant”).

Examples are:
5



(1) The syntactic category associated to type theory [2]. In fact, to prove that the
syntactic category is an example, it suffices to assume that the computation
rule for the identity type holds only in a propositional form (see [6]).

(2) Let M be a Quillen model category. If every object is cofibrant in M, then
the full subcategory of fibrant objects in M is a path category in our sense.
More generally, if any object over a cofibrant object is also cofibrant, then
the full subcategory of fibrant-cofibrant objects in M is a path category.

(3) In addition, there is the following trivial example: if C is a category with fi-
nite limits, it can be considered as a path category in which every morphism
is a fibration and only the isomorphisms are weak equivalences. By consid-
ering this trivial situation, it can be seen that our theory of the homotopy
exact completion in the next section generalises the classical theory of exact
completions of categories with finite limits.

2.2. Basic properties. We start off by making some basic observations about path
categories, all of which are due to Brown in the context of categories of fibrant objects
([8]; see also [27]). First of all, note that the underlying category C has finite products
and all projection maps are fibrations. From this it follows that if (f, g): P → X ×X
is a fibration, then so are f and g.

Proposition 2.3. In a path category any map f : Y → X factors as f = pfwf

where pf is a fibration and wf is a section of an acyclic fibration (and hence a weak
equivalence).

Proof. This is proved on page 421 of [8]. Since the factorisation will be important in
what follows, we include the details here. First observe that if PX is a path object
for X with weak equivalence r: X → PX and fibration (s, t): PX → X × X, then it
follows from 2-out-of-3 for weak equivalences and sr = tr = 1 that both s, t: PX → X
are acyclic fibrations. So for any map f : Y → X the following pullback

Pf
p2

//

p1

��

PX

s

��

Y
f

// X,

exists with p1 being an acyclic fibration. We set wf : = (1, rf): Y → Pf and pf : =
tp2: Pf → X. Then pfwf = f and wf is a section of p1. Moreover, the following
square

Pf
p2

//

(p1,pf )

��

PX

(s,t)

��

Y × X
f×1

// X × X.

is a pullback, so (p1, pf ) is fibration, which implies that pf is a fibration as well. �

Corollary 2.4. Any weak equivalence f : Y → X factors as f = pfwf where pf is an
acyclic fibration and wf is a section of an acyclic fibration.
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Definition 2.5. If C is a path category and A is any object in C we can define a new
path category C(A), as follows: its underlying category is the full subcategory of C/A
whose objects are the fibrations with codomain A. This means that its objects are
fibrations X → A, while a morphism from q: Y → A to p: X → A is a map f : Y → X
in C such that pf = q; such a map f is a fibration or a weak equivalence in C(A)
precisely when it is a fibration or a weak equivalence in C.

Clearly, C(1) ∼= C. Observe that for any f : B → A there is a pullback functor
f∗: C(A) → C(B), since pullbacks of fibrations always exist and are again fibrations.

Proposition 2.6. For any morphism f : B → A the functor f∗: C(A) → C(B) pre-
serves both fibrations and weak equivalences.

Proof. This is proved on page 428 of [8] and the proof method is often called Brown’s
Lemma. The idea is that Axiom 3 for path categories tells us that f∗ preserves acyclic
fibrations. But then it follows from the previous corollary and 2-out-of-3 for weak
equivalences that f∗ preserves weak equivalences as well. �

This proposition can be used to derive:

Proposition 2.7. The pullback of a weak equivalence w: A′ → A along a fibration
p: B → A is again a weak equivalence.

Proof. See pages 428 and 429 of [8]. �

2.3. Homotopy. In any path category we can define an equivalence relation on the
hom-sets: the homotopy relation.

Definition 2.8. Two parallel arrows f, g: Y → X are homotopic, if there is a path
object PX for X with fibration (s, t): PX → X × X and a map h: Y → PX (the
homotopy) such that f = sh and g = th. In this case, we write f ≃ g, or h: f ≃ g if
we wish to stress the homotopy h.

At present it is not clear that this definition is independent of the choice of path
object PX, or that it defines an equivalence relation. In order to prove this, we use
the following lemma, which is a consequence of (and indeed equivalent to) the axiom
that every acyclic fibration has a section.

Lemma 2.9. Suppose we are given a commutative square

D
g

//

w

��

C

p

��

B
f

// A

in which w is a weak equivalence and p is a fibration. Then there is a map l: B → C
such that pl = f (for convenience, we will call such a map a lower filler).
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Proof. Let k: D → B ×A C be the map to the pullback with p1k = w and p2k = g,
and factor k as k = qi where i is a weak equivalence and q is a fibration. Then
p1q is an acyclic fibration and hence has a section a. So if we put l: = p2qa, then
pl = pp2qa = fp1qa = f , as desired. �

Just in passing we should note that a statement much stronger than Lemma 2.9
is true, but that in order to state and prove it we need to develop a bit more theory
(see Theorem 2.38 below).

Corollary 2.10. If PX is a path object for X and PY is a path object for Y and
f : X → Y is any morphism, then there is a map Pf : PX → PY such that

PX

(s,t)

��

Pf
// PY

(s,t)

��

X × X
f×f

// Y × Y

commutes. In particular, if PX and P ′X are two path objects for X then there is
a map f : PX → P ′X which commutes with the source and target maps of PX and
P ′X.

Proof. Any lower filler in the diagram

X
rf

//

r

��

PY

(s,t)

��

PX
(fs,ft)

// Y × Y

gives us the desired arrow. �

The second statement in the previous corollary implies that if two parallel maps
f, g: X → Y are homotopic relative to one path object PY on Y , then they are
homotopic with respect to any path object on Y ; so in the definition of the homotopy
relation nothing depends on the choice of the path object.

In order to show that the homotopy relation is an equivalence relation, and indeed
a congruence, we introduce the following definition, which will also prove useful later.

Definition 2.11. A fibration p = (p1, p2): R → X × X is a homotopy equivalence
relation, if the following three conditions are satisfied:

(1) There is a map ρ: X → R such that pρ = ∆X .
(2) There is a map σ: R → R such that p1σ = p2 and p2σ = p1.
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(3) For the pullback

R ×X R
q2

//

q1

��

R

p1

��

R p2

// X

there is a map τ : R ×X R → R such that p1q1 = p1τ and p2q2 = p2τ .

Proposition 2.12. If PX is a path object with fibration p = (s, t): PX → X × X
and weak equivalence r: X → PX, then p is a homotopy equivalence relation.

Proof. (1) We put ρ = r.
(2) The map σ is obtained as a lower filler in:

X

r

��

r // PX

(s,t)

��

PX
(t,s)

// X × X.

(3) Let α be the unique map filling

X

α
%%

r

((

r

""

PX ×X PX
q2

//

q1

��

PX

s

��

PX
t

// X.

The maps s and t are acyclic fibrations, and therefore their pullbacks q1 and q2

are acyclic fibrations as well; in particular, they are weak equivalences. Since
r is also a weak equivalence, the map α is a weak equivalence by 2-out-of-3.
Therefore a suitable τ can be obtained as the lower filler of

X
r //

α

��

PX

(s,t)

��

PX ×X PX
(sq1,tq2)

// X × X.

This completes the proof. �

In a way PX is the least homotopy equivalence relation on X.

Lemma 2.13. If p = (p1, p2): R → X ×X is a homotopy equivalence relation on X,
then there is a map h: PX → R such that p1h = s and p2h = t. More generally,
any map f : Y → X gives rise to a morphism h: PY → R such that p1h = fs and
p2h = ft.
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Proof. The square

Y
ρf

//

r

��

R

p

��

PY
(fs,ft)

// X × X

has a lower filler, yielding the desired map h. �

Theorem 2.14. The homotopy relation ≃ defines a congruence relation on C.

Proof. We have already seen that if P is a path object on X and there is a suitable
homotopy connecting f and g relative to P , then there is such a homotopy relative
to any path object Q for X. Therefore the statement that ≃ defines an equivalence
relation on each hom-set follows from Proposition 2.12.

For showing that ≃ defines a congruence relation (i.e., that f ≃ g and k ≃ l imply
kf ≃ lg), it suffices to prove that f ≃ g implies fk ≃ gk and lf ≃ lg; the former,
however, is immediate, while the latter follows from Corollary 2.10. �

The previous theorem means that we can quotient C by identifying homotopic
maps and obtain a new category. The result is the homotopy category of C and will
be denoted by Ho(C).

Definition 2.15. A map f : X → Y is a homotopy equivalence if it becomes an
isomorphism in Ho(C) or, in other words, if there is a map g: Y → X (a homotopy
inverse) such that the composites fg and gf are homotopic to the identities on Y
and X, respectively. If such a homotopy equivalence f : X → Y exists, we say that X
and Y are homotopy equivalent.

Theorem 2.16. Weak equivalences and homotopy equivalences coincide.

Proof. First note that any section of a weak equivalence f : Y → X is a homotopy
inverse. The reason is that if g: X → Y is a section with fg = 1, then g is a weak
equivalence as well. Therefore we can find a homotopy h: gf ≃ 1 as a lower filler of

X

g

��

rg
// PY

(s,t)

��

Y
(gf,1)

// Y × Y.

Since every acyclic fibration has a section, it now follows that acyclic fibrations are
homotopy equivalences. But then Corollary 2.4 implies that every weak equivalence
is a homotopy equivalence.

For the converse direction we also need to make a preliminary observation: if
f, g: A → B are homotopic and f is a weak equivalence, then so is g. To see this
suppose that f is a weak equivalence and there is a map h: A → PB such that sh = f
and th = g. Since s and t are weak equivalences, it follows from the first equality
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that h is a weak equivalence and hence from the second equality that g is a weak
equivalence.

Now suppose f : A → B is a homotopy equivalence with homotopy inverse g: B →
A. Then in

A
f

// B
g

// A
f

// B

both gf and fg are homotopic to the identity. Therefore both gf and fg are weak
equivalences by the previous observation; but then we can use 2-out-of-6 to deduce
that f is a weak equivalence. �

Remark 2.17. Other authors who work in categorical frameworks similar to ours
often call categories of fibrant objects “saturated” if they have the property that
every homotopy equivalence is a weak equivalence. In our set-up this is derivable, so
our path categories are always saturated in their sense. Note that in order to prove
this we have made our first genuine use of the 2-out-of-6 axiom as opposed to the
weaker 2-out-of-3 axiom: this is no coincidence, as relative to the 2-out-of-3 axiom
the statement that every homotopy equivalence is a weak equivalence is equivalent to
the 2-out-of-6 property (this observation is due to Cisinski; see [27, p. 82–84]). Using
the theory that we will develop in the next subsection it will also not be hard to show
that if a path category only satisfies 2-out-of-3 one can obtain a “saturated” path
category from it by taking the same underlying category and the same fibrations,
while enlarging the class of weak equivalences to include all homotopy equivalences.
This means that restricting to saturated path categories is no real loss of generality;
moreover, all the examples we are interested in are already saturated, including the
syntactic category associated to type theory. For these reasons we have decided to
restrict our attention to path categories that are saturated.

Corollary 2.18. Weak equivalences are closed under retracts.

Corollary 2.19. The quotient functor γ: C → Ho(C) is the universal solution to
inverting the weak equivalences.

Proof. We have just seen that this functor inverts the weak equivalences; conversely,
any functor δ: C → D which sends weak equivalences to isomorphisms must identify
homotopic maps, for if PX is a path object with r: X → PX and (s, t): PX → X×X,
then δ(s) = δ(r)−1 = δ(t). �

2.4. Homotopy pullbacks. Path categories need not have pullbacks; what they do
have are homotopy pullbacks, a classical notion that we will now recall.

Given two arrows f : A → I and g: B → I one can take the pullback

A ×h
I B

(p1,p2)

��

// PI

(s,t)

��

A × B
f×g

// I × I.
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This object A ×h
I B fits in a square

A ×h
I B

p2
//

p1

��

B

g

��

A
f

// I,

which commutes up to homotopy.

Definition 2.20. Suppose

C
q2

//

q1

��

B

g

��

A
f

// I

is a square which commutes up to homotopy. If there is a homotopy equivalence
h: C → A ×h

I B such that qi = pih for i ∈ {1, 2}, then the square above is called a
homotopy pullback square and C is a homotopy pullback of f and g.

Remark 2.21. Clearly, a homotopy pullback is unique up to homotopy, but there are
different ways of constructing it. For example, the homotopy pullback can be obtained
by taking the fibrant replacement of either f or g (or both) and then taking the actual
pullback. Using this one easily checks that the following well-known properties hold:

Lemma 2.22. (i) If

D //

g

��

B

f

��

C // A

is a homotopy pullback and f is a homotopy equivalence, then so is g.
(ii) If

F

��

// D //

��

B

��

E // C // A

commutes and the square on the right is a homotopy pullback, then the square
on the left is a homotopy pullback if and only if the outer rectangle is a
homotopy pullback.

2.5. Connections and transport. One key fact about fibrations in path categories
is that they have a path lifting property and allow for what the type-theorists call
transport. The aim of this subsection is to show these facts, starting with the latter.

To formulate the notion of transport we need some additional terminology.

Definition 2.23. Suppose f, g: Y → X are parallel arrows and X comes with a
fibration p: X → I. If pf = pg, then we can compare f : Y → X and g: Y → X with
respect to the path object (s, t): PI(X) → X ×I X of X in C(I). Indeed, one calls
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f and g fibrewise homotopic if there is a map h: Y → PI(X) such that sh = f and
th = g; in that case one writes f ≃I g, or h: f ≃I g, if we wish to stress the homotopy.
(If pf = pg is a fibration, then this is just the homotopy relation in C(I); but, and
this will be important later, this definition makes sense even when pf = pg is not a
fibration.)

Recall from Proposition 2.3 that any map f : Y → X can be factored as a weak
equivalence wf : Y → Pf followed by a fibration pf : Pf → X, where Pf = Y ×X PX
is the pullback

Pf
p2

//

p1

��

PX

s

��

Y
f

// X,

while wf = (1Y , rf) and pf = tp2. If f is a fibration, then we can regard both Y
and Pf as objects in C(X) via f and pf , respectively, and wf as a morphism between
them in C(X).

Definition 2.24. Let f : Y → X be a fibration. A transport structure on f is a
morphism Γ: Pf → Y such that fΓ = pf and Γwf ≃X 1Y .

The idea behind transport is this: given an element y ∈ Y and a path α: x → x′ in
X with f(y) = x, one can transport y along α to obtain an element y′ with f(y′) = x′;
in addition, we demand that in case α is the identity path on x, then the element y′

should be connected to y by a path which lies entirely in the fibre over x. In order to
show that every fibration carries a transport structure, we need to strengthen Lemma
2.9 to:

Lemma 2.25. Suppose we are given a commutative square

D
g

//

w

��

C

p

��

B
f

// A

in which w is a weak equivalence and p is a fibration. Then there is a map l: B → C,
unique up to homotopy, such that pl = f and lw ≃ g.

Proof. We repeat the earlier proof: let k: D → B ×A C be the map to the pullback
with p1k = w and p2k = g, and factor k as k = qi where i is a weak equivalence and
q is a fibration. Then p1q is an acyclic fibration, so has a section a. So if we put
l: = p2qa, then pl = pp2qa = fp1qa = f . But (the proof of) Theorem 2.16 implies
that ap1q ≃ 1, so that

lw = p2qaw = p2qap1k = p2qap1qi ≃ p2qi = p2k = g.

To see that l is unique up to homotopy, note that, more generally, the fact that weak
equivalences are homotopy equivalences implies that if lw ≃ l′w and w is a weak
equivalence, then l ≃ l′. �
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Theorem 2.26. Every fibration f : Y → X carries a transport structure. Moreover,
transport structures are unique up to fibrewise homotopy over X.

Proof. If f : Y → X is a fibration then the commuting square

Y
1 //

wf

��

Y

f

��

Pf pf

// X

does not only live in C, but also in C(X). Applying the previous lemma to this square
in C(X) gives one the desired transport structure. �

Definition 2.27. Let f : Y → X be a fibration. A connection on f consists of a path
object PY for Y , a fibration Pf : PY → PX commuting with the r, s and t-maps on
PX and PY , together with a morphism ∇: Pf → PY such that Pf ◦ ∇ = p2 and
s∇ = p1.

The idea behind a connection is this: given an element y ∈ Y and a path α: x → x′

in X with f(y) = x, the connection finds a path β: y → y′ with f(β) = α.

Theorem 2.28. Let f : Y → X be a fibration in a path category C and assume that
PX is a path object on X and Γ: Y ×X PX → Y is a transport structure on f . Then
we can construct a path object PY on Y and a fibration Pf : PY → PX with the
following properties:

(i) Pf commutes with the r, s and t-maps on PX and PY .
(ii) There exists a connection structure ∇: Pf → PY with t∇ = Γ.

In particular, every fibration f : Y → X carries a connection structure.

Proof. The proof will make essential use of the path object PX(Y ) of Y in C(X).
We will write ρ: Y → PX(Y ) and (σ, τ): PX(Y ) → Y ×X Y for the factorisation of
Y → Y ×X Y as a weak equivalence followed by a fibration.

The idea is to construct PY as PΓ in C(X), that is, as the following pullback:

PY

q1

��

q2
// PX(Y )

σ

��

Pf
Γ

// Y.

Since Γ: Pf → Y is a transport structure, there is a homotopy h: Γwf ≃ 1 in C(X).
This allows us to factor the diagonal Y → Y × Y as (wf , h): Y → PY followed by
(p1q1, τq2): PY → Y × Y , so to prove that this defines a path object on Y we need
to show that the first map is a weak equivalence and the second a fibration. For the
former, note that q1(wf , h) = wf , where wf is a weak equivalence and q1 is an acyclic
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fibration, as it is the pullback of σ. For the latter, note that PY = PΓ in C(X) can
also be constructed as the pullback

PY
q2

//

(q1,τq2)

��

PX(Y )

(σ,τ)

��

Pf ×X Y
Γ×XY

// Y ×X Y,

as in the proof of Proposition 2.3, so that (q1, τq2) is a fibration. Moreover,

p1 × 1: Pf ×X Y → Y × Y

is a fibration as well, as it arises in the following pullback:

Pf ×X Y

p1×1

��

p2π1
// PX

(s,t)

��

Y × Y
f×f

// X × X.

So (p1 × 1)(q1, τq2) = (p1q1, τq2) is a fibration, as desired. In addition, we have a
map Pf : = p2q1: PY → PX, which is also fibration. We now check points (i) and
(ii).

(i) We have to show that Pf commutes with the maps r, s, t on PY and PX.

(1) The r-map on PY is (wf , h), and we have

Pf ◦ rY = p2q1(wf , h) = p2wf = rX ◦ f.

(2) The s-map on PY is p1q1, and we have

sX ◦ Pf = sp2q1 = fp1q1 = f ◦ sY .

(3) The t-map on PY is τq2, and we have

tX ◦ Pf = tp2q1 = pfq1 = fΓq1 = fσq2 = fτq2 = f ◦ tY ,

where we have used that fσ = fτ is the map exhibiting PX(Y ) as an object
of C(X).

(ii): To construct the connection, we simply put ∇: = (1, ρΓ). Then

sY ∇ = p1q1(1, ρΓ) = p1

and

Pf ◦ ∇ = p2q1(1, ρΓ) = p2,

showing that ∇ is indeed a connection. In addition, one has

tY ∇ = τq2(1, ρΓ) = τρΓ = Γ,

as desired. �
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Remark 2.29. We have just shown that if PX is any path object for X and f : Y →
X is any fibration, one can find a suitable path object PY for Y and a connection
map ∇: Pf → PY for that particular path object. From this it does not follow that
if P ′Y is another path object for Y then one can find a connection ∇′: Pf → P ′Y
as well: in that sense the notion of connection is not invariant. In view of Corollary
2.10 we will have a map ∇′: Pf → P ′Y with s∇′ = p1 and ft∇′ = tp2. We will
occasionally meet such weak connections as well, where the main point about such
weak connections is:

Corollary 2.30. Let f : Y → X be a fibration and PY be an arbitrary path object for
Y . Then there is a map ∇: Pf → PY such that s∇ = p1 and ft∇ = tp2.

We conclude this subsection by noting the following consequence of Theorem 2.28,
which we will repeatedly use in what follows.

Proposition 2.31. If a triangle

Y

p

��

Z g
//

f
>>

~
~

~
~

~
~

~

X

with a fibration p on the right commutes up to a homotopy h: pf ≃ g, then we can
also find a map f ′: Z → Y , homotopic to f , such that for f ′ the triangle commutes
strictly, that is, pf ′ = g.

Proof. Let h: pf ≃ g be a homotopy and choose a path object PY for Y , a fibration
Pp: PY → PX and a connection structure ∇: Pp → PY as in Theorem 2.28. Put
h′ = ∇(f, h) and f ′: = th′. One may now calculate that

pf ′ = pt∇(f, h) = t ◦ Pp ◦ ∇ ◦ (f, h) = tp2(f, h) = th = g,

so the triangle commutes strictly for f ′. Moreover,

sh′ = s∇(f, h) = p1(f, h) = f,

so h′ is a homotopy between f and f ′. �

2.6. Lifting properties. At various points (Lemma 2.9 and Lemma 2.25) we have
seen statements to the effect that weak equivalences have a weak lifting property with
respect to the fibrations. Lemma 2.9 said that if

A
m //

w

��

C

p

��

B n
// D

is a commutative square with a weak equivalence w on the left and a fibration p on
the right, there is a map l: B → C such that pl = n. In Lemma 2.25 we saw that l
could be chosen such that lw ≃ m. The aim of this subsection is to show that this can
be strengthened even further: we can find a map l such that pl = n and lw ≃D m,
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where ≃D is meant to indicate that lw and m are fibrewise homotopic over D via
p: C → D. This seems to be the strongest lifting property which could reasonably be
expected in our setting.

The proof that this stronger lifting property holds proceeds in several steps. It will
be convenient to temporarily call the weak equivalences w with the desired property
good. So a weak equivalence w will be called good if in any square as the one above
with a fibration p on the right, there is a map l: B → C such that pl = n and
lw ≃D m.

Lemma 2.32. (i) Good weak equivalences are closed under composition.
(ii) In order to show that a weak equivalence is good we only need to consider the

case where the map n along the bottom of the square is the identity. In other
words, a weak equivalence w: A → B is good whenever for any commuting
triangle

C

p

��

A w
//

k

??
~

~
~

~
~

~
~

B

in which p is a fibration, the map p has a section j such that jw ≃B k.

Proof. (i): Suppose w1 and w2 are good weak equivalences and there is a commuting
square

Z
m //

w1

��

C

p

��

Y

w2

��

X n
// D

with a fibration p on the right. From the fact that w1 is good we get a map t1: Y → C
such that pt1 = nw2 and tw1 ≃D m; then, from the fact that w2 is good we get a
map t: X → C such that pt = n and tw2 ≃D t1. Then tw2w1 ≃D t1w1 ≃D m, so t is
as desired.

(ii): Suppose that

A
m //

w

��

C

p

��

B n
// D

17



is a commuting square with a fibration p on the right. Pulling back p along n we
obtain a diagram of the form

E

p′

��

n′

// C

p

��

A w
//

(w,m)
??

~
~

~
~

~
~

~

B n
// D

in which E = B ×D C and p′ is a fibration. Note that Proposition 2.6 implies that
we can obtain a path object for E in C(B) by pulling back the path object for C in
C(D) along n: B → D, as in

E //

��

C

��

PB(E) //

��

PD(C)

��

E ×B E //

��

C ×D C

��

B // D,

with all squares being pullbacks.

Now suppose that w is a weak equivalence with the property formulated in the
lemma. This means that p′ has a section j such that jw ≃B (w, m), as witnessed
by some homotopy A → PB(E). Composing this homotopy with the map PB(E) →
PD(C) above we obtain a homotopy witnessing that n′jw ≃D n′(w, m) = m. So
putting l: = n′j, we have pl = pn′j = np′j = n and lw = n′jw ≃D m, as desired. �

Our strategy for showing that any weak equivalence is good is to use the factorisa-
tion of any weak equivalence as a weak equivalence of the form wf : Y → Pf followed
by an acyclic fibration pf : Pf → Y . So once we have shown that any weak equivalence
of the form wf : Y → Pf is good and any acyclic fibration is good, we are done in
view of part (i) of the previous lemma. We do the latter thing first.

Proposition 2.33. A fibration f : B → A is acyclic precisely when it has a section
g: A → B with gf ≃A 1B.

Proof. If a fibration f : B → A has a section g: A → B with gf ≃A 1B , then g is a
homotopy inverse. So f is a weak equivalence by Theorem 2.16.

Conversely, if f : B → A is an acyclic fibration, then it has a section g: A → B. From
2-out-of-3 for weak equivalences and fg = 1A it follows that g is a weak equivalence.
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Therefore

A

g

��

rg
// PA(B)

(s,t)

��

B
(gf,1)

// B ×A B

is a commuting square with a weak equivalence on the left and a fibration on the right.
A lower filler for this diagram is a fibrewise homotopy showing that gf ≃A 1B . �

Corollary 2.34. Acyclic fibrations are good.

Proof. We will use part (ii) of Lemma 2.32. So suppose we are given a commuting
triangle of the form

C

p

��

A w
//

k

??
~

~
~

~
~

~
~

B

in which p is a fibration and w is an acyclic fibration. The previous proposition tells
us that there is a map a: B → A such that wa = 1B and aw ≃B 1A. But then j: = ka
is a section of p with jw = kaw ≃B k. �

To show that weak equivalences of the form wf : Y → Pf are good, it will be useful
to introduce a bit of terminology.

Definition 2.35. A morphism f : A → B is a strong deformation retract if there are
a map g: B → A, a path object PB for B and a homotopy h: B → PB such that

gf = 1A, sh = fg, th = 1, and hf = rf.

The reason is the following:

Lemma 2.36. Strong deformation retracts are good weak equivalences.

Proof. Let f : A → B be a strong deformation retract and g and h be as in the
definition. Strong deformation retracts are clearly homotopy equivalences, so they
are weak equivalences as well. To show that they are also good, suppose that

C

q

��

A
f

//

k

??
~

~
~

~
~

~
~

B
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is a commutative triangle in which q is a fibration; we need to find a map j such that
qj = 1B and jf ≃B k. To this purpose, consider the following diagram:

A
k //

f

��

C
1 //

wq

��

C

q

��

B
(kg,h)

// Pq pq

//

Γq

>>

B.

The left-hand square commutes, as

(kg, h)f = (kgf, hf) = (k, rf) = (k, rqk) = (1, rq)k = wqk.

Moreover, the arrows along the bottom compose to the identity on B, because
pq(kg, h) = tp2(kg, h) = th = 1. This means that we can use the transport structure
on q with qΓq = pq and Γqwq ≃B 1 to define j as Γq(kg, h). �

So it remains to show:

Proposition 2.37. For any morphism f : Y → X the weak equivalence wf : Y → Pf

is a strong deformation retract.

Proof. The main difficulty is to find a suitable path object for Pf . What we will do
is take the following pullback:

PX ×X PY ×X PX //

(σ,τ)

��

PY

(s,t)

��

Pf × Pf
p1×p1

// Y × Y,

where σ and τ intuitively take a triple (α: f(y) → x, γ: y → y′, α′: f(y′) → x′) and
produce (y, α) and (y′, α′), respectively. By construction (σ, τ) is a fibration. The
reflexivity term ρ: Pf → PX ×X PY ×X PX is given by (p2, rp1, p2); in other words,
by sending (y, α: f(y) → x) to (α, r(y), α). We have σρ = τρ = 1, so to show that ρ
is a weak equivalence, it suffices to show this for σ; this map, however, is the pullback
of the map on the left in

PY ×X PX //

��

PX

s

��

PY
t

//

s

��

Y
f

// X

Y

along p1: Pf → Y and hence an acyclic fibration. So we have described a suitable
candidate for PPf .

We know that p1wf = 1, so to prove that wf is a strong deformation retract we
need to find a homotopy h: Pf → PPf such that σh = wfp1, τh = 1 and hwf = ρwf .
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We set

h: = (rfp1, rp1, p2).

Then we can compute:

σh = σ(rfp1, rp1, p2) = (srp1, rfp1) = (1, rf)p1 = wfp1

and

τh = τ(rfp1, rp1, p2) = (trp1, p2) = (p1, p2) = 1.

In addition, the equations

hwf = (rfp1, rp1, p2)(1, rf) = (rf, r, rf)

and

ρwf = (p2, rp1, p2)(1, rf) = (rf, r, rf)

hold, showing that hwf = ρwf . �

We conclude that every weak equivalence is good, which we formulate more ex-
plicitly as follows.

Theorem 2.38. If

A
m //

f

��

C

p

��

B n
// D

is a commutative square with a weak equivalence f on the left and a fibration p on
the right, then there is a filler l: B → C such that n = pl and lf ≃D m. Moreover,
such a filler is unique up to fibrewise homotopy over D.

Proof. Any weak equivalence f : A → B can be factored as wf : A → Pf followed by
an acyclic fibration pf : Pf → B. The former is good by Lemma 2.36 and Proposition
2.37, while the latter is good by Corollary 2.34; so f is good by part (i) of Lemma
2.32.

It remains to show uniqueness of l: but if both l and l′ are as desired, then
lf ≃D l′f , so there is a fibrewise homotopy h: A → PD(C) such that

A
h //

f

��

PD(C)

(s,t)

��

B
(l,l′)

// C ×D C

commutes. A lower filler for this square is a fibrewise homotopy showing that l ≃D

l′. �

We are now able to prove that the factorisations of maps as weak equivalences
followed by fibrations are unique up to homotopy equivalence.
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Corollary 2.39. If a map k: Y → X can be written as k = pa = qb where a: Y → A
and b: Y → B are weak equivalences and p: A → X and q: B → X are fibrations, then
A and B are homotopy equivalent; moreover, the homotopy equivalence f : A → B
and homotopy inverse g: B → A can be chosen such that qf = p, pg = q, fa ≃X b,
gb ≃X a, gf ≃X 1 and fg ≃X 1.

This means in particular that any two path objects on an object X are homotopy
equivalent, where the homotopy equivalence and inverse can be chosen to behave
nicely with respect to the r, s, t-maps, as in the statement of Corollary 2.39.

3. Homotopy exact completion

3.1. Exactness. This section will be devoted to developing a notion of exact com-
pletion for path categories, generalising the exact completion of a category with finite
limits, as in [9, 10]. In fact, this homotopy exact completion, as we will call it, will
coincide with the ordinary exact completion if we regard a category with finite limits
as a path category in which every morphism is a fibration and only the isomorphisms
are weak equivalences. Another feature of our account is that the category of setoids,
studied in the type-theoretic literature (see, for example, [18, 4]), is the homotopy
exact completion of the syntactic category of type theory.

Initially, we will study this homotopy exact completion directly; in later stages we
will use that it can also be obtained as the homotopy category of an intermediate
path category (see Theorem 3.14 below).

Definition 3.1. Given a path category C one may construct a new category as
follows. Its objects are the homotopy equivalence relations, as defined in Definition
2.11. A morphism from (X, ρ: R → X × X) to (Y, σ: S → Y × Y ) is an equivalence
class of morphisms f : X → Y for which there is a map ϕ: R → S making the square

R

ρ

��

ϕ
// S

σ

��

X × X
f×f

// Y × Y

commute; two such morphisms f : X → Y and g: X → Y are identified in case there
is a map H: X → S such that the triangle

S

σ

��

X
(f,g)

//

H

;;

Y × Y

commutes. This new category will be called the homotopy exact completion of C and
will be denoted by Hex(C).

Remark 3.2. In what follows we will often denote objects of Hex(C) as pairs (X, R),
leaving the fibration ρ: R → X × X implicit. If it is made explicit, then ρ1 and
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ρ2 denote the first and second projection R → X, respectively. Also, we will not
distinguish notationally between a morphism f : X → Y in C which represents a
morphism (X, R) → (Y, S) in Hex(C) and the morphism thus represented; we do not
expect that these conventions will lead to confusion.

Remark 3.3. In this definition we have asked for the existence of fillers making the
diagrams commute strictly; however, in view of Proposition 2.31, it suffices if there
are dotted arrows making the diagrams commute up to homotopy.

Our first task is to show that Hex(C) is an exact category: that is, it is a regular
category with well-behaved quotients of equivalence relations. For the convenience of
the reader, we recall these notions here. (For more information we refer to part A of
[20], where exact categories are called effective regular.)

Definition 3.4. Let E be a category. A map f : B → A in E is a cover if the only
subobject of A through which it factors is the maximal one given by the identity on
A. A category C is regular if it has all finite limits, every morphism in C factors as a
cover followed by a mono and covers are stable under pullback.

In a regular category a map is a cover iff it is a regular epi (meaning that it arises as
a coequalizer) iff it is the coequalizer of its kernel pair (see [20, Proposition A1.3.4]).

Definition 3.5. A subobject R ⊆ X ×X is an equivalence relation if for any object
P in E the image of the induced map

Hom(P,R) → Hom(P,X) × Hom(P,X)

is an equivalence relation on Hom(P,X). In a regular category a quotient of an
equivalence relation is a cover X → Q such that

R //

��

X

��

X // Q

is a pullback. (Hence R
//
// X is the kernel pair of X → Q and the latter is the

coequalizer of the former.) A regular category E is exact if every equivalence relation
in E has a quotient.

For showing that Hex(C) is an exact category, it will be convenient to introduce
some notation. If f : X → Y is any map and σ: S → Y ×Y is a homotopy equivalence
relation, then the pullback

P //

��

S

σ

��

X × X
f×f

// Y × Y

is a homotopy equivalence relation on X, which will be denoted by f∗σ: f∗S → X×X.
Moreover, if R → X × X and S → X × X are two homotopy equivalence relations,
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then R ∩ S is the homotopy equivalence relation obtained by taking the following
pullback:

R ∩ S //

��

S

��

R // X × X.

Lemma 3.6. The category Hex(C) has finite limits.

Proof. Since (1, P1) ∼= (1, 1) is the terminal object, it suffices to construct pullbacks.
If f : (Y, S) → (X, R) and g: (Z, T ) → (X, R) are two maps in Hex(C), their pullback
(W, Q) can be constructed by letting W be the pullback

W

��

// R

��

Y × Z
f×g

// X × X

and by letting Q be the homotopy equivalence relation on W obtained by pulling back
the homotopy equivalence relation π∗

1S∩π∗

2T on Y ×Z along the map W → Y ×Z. �

Lemma 3.7. A morphism f : (X, ρ: R → X × X) → (Y, σ: S → Y × Y ) is monic if
and only if there is a morphism h: f∗S → R such that ρh = f∗σ. Therefore every
mono is isomorphic to one of the form f : (X, f∗S) → (Y, S).

Proof. Use the description of pullbacks from the previous lemma and the fact that
m: A → B is monic if and only if in the pullback

A ×B A
p2

//

p1

��

A

m

��

A m
// B

we have p1 = p2. �

Lemma 3.8. The category Hex(C) is regular and the covers are those maps

f : (X, ρ: R → X × X) → (Y, σ: S → Y × Y )

for which there are maps g: Y → X and h: Y → S in C such that σh = (1, fg).

Proof. Let us temporarily call maps f as in the statement of the proposition nice
epis. Then the proposition follows as soon as we show:

(1) Every map factors as a nice epi followed by a mono.
(2) Nice epis are stable under isomorphism.
(3) Nice epis are covers.
(4) Nice epis are stable under pullback.
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This is all fairly easy: for example, if f : (X, R) → (Y, S) is any map, then it can be
factored as

(X, R)
1 // (X, f∗S)

f
// (Y, S),

where the first map is a nice epi and the second a mono. We leave it to the reader to
check the other properties. �

We record the following corollary for future reference:

Lemma 3.9. If f : (X,R) → (Y, S) is a cover in Hex(C), then (X, f∗S) ∼= (Y, S).
Indeed, each cover in Hex(C) is isomorphic to one of the form 1: (X, R) → (X, S).

Proof. If f : (X, R) → (Y, S) is a cover, then (Y, S) is isomorphic to the image of f ,
which, according to Lemma 3.8, is precisely (X, f∗S). �

Lemma 3.10. For every map f : (X, R) → (Y, S) there exists a factorisation (X, R) →
(X ′, R′) → (Y, S) where the first is an isomorphism in Hex(C) and the second is rep-
resented by a fibration X ′ → Y in C. In particular, every subobject of (Y, S) has a
representative via a map f : (X, f∗S) → (Y, S) where f : X → Y is a fibration.

Proof. The map f can be factored as a homotopy equivalence wf : X → X ′ followed
by a fibration pf : X ′ → Y ; this means that there is a map i: X ′ → X such that
wf i ≃ 1 and iwf ≃ 1. One obtains R′ by pulling back R along i. We leave the
verification of the details to the reader. �

Theorem 3.11. The category Hex(C) is exact.

Proof. In view of the previous lemma it suffices to construct quotients of equivalence
relations f : (Y, f∗(R × R)) → (X × X, R × R) where f : Y → X × X is a fibration
and (X, ρ: R → X × X) is an object in Hex(C). But in this case one can take
(X, τ : R ×X Y ×X R → X × X), where if we consider R ×X Y ×X R heuristically as
the set of triples (r, y, r′) with ρ2(r) = f1(y) and f2(y) = ρ1(r′), then τ sends such a
triple to (ρ1(r), ρ2(r′)). The map 1: (X, ρ) → (X, τ) is a cover and one easily verifies
that its kernel pair is isomorphic to (Y, f∗(R × R)). �

Remark 3.12. The set-theoretic notation that we have used in the description of
τ in the previous theorem can be justified in various ways, for example, by using
generalised elements. In that case the description can be understood to say that
R ×X Y ×X R is an object such that maps into it from an object I correspond
bijectively to triples of maps r: I → R, y: I → Y, r′: I → R with ρ2r = f1y and
f2y = ρ1r

′. In addition, the existence of τ derives from the fact that the operation
taking such triples (r, y, r′) to (ρ1r, ρ2r

′) is a natural operation of the form

Hom(I, R ×X Y ×X R) → Hom(I, X × X).

But then it follows from the Yoneda Lemma that this operation must be given by
postcomposition by some unique map R×X Y ×X R → X ×X. From now on we will
increasingly rely on such heuristic set-theoretic descriptions; we trust that the reader
can replace these descriptions by diagrammatic ones, if desired.
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3.2. The homotopy exact completion as a homotopy category. It turns out
that one may also view the homotopy exact completion as a homotopy category.
Indeed, it is often useful to regard the homotopy exact completion Hex(C) as the
result of a two step procedure, where one first constructs out of a path category C
a new path category Ex(C), from which Hex(C) can then be obtained by taking the
homotopy category.

The objects of Ex(C) are the same as those of Hex(C), that is, they are again
homotopy equivalence relations, as defined in Definition 2.11. However, a morphism
from (X, ρ: R → X ×X) to (Y, σ: S → Y × Y ) in Ex(C) is a morphism f : X → Y for
which there exists a map ϕ: R → S making the square

R

ρ

��

ϕ
// S

σ

��

X × X
f×f

// Y × Y

commute (we call such a map ϕ a tracking). For any two such arrows f, g: X → Y
we will write f ∼ g if there is a map H: X → S such that (f, g) = σH: X → Y × Y .
This relation defines a congruence on Ex(C) and we will choose our fibrations and
weak equivalences in such a way that this will become the homotopy relation on this
path category, so that the homotopy category of Ex(C) will be equivalent to Hex(C).

A morphism f as above is said to be a fibration in Ex(C) if:

(1) f is a fibration in C, and
(2) if X ×Y S is the pullback

X ×Y S
p2

//

p1

��

S

σ1

��

X
f

// Y,

there is a map ∇: X ×Y S → R in C (“a weak connection structure”) such
that ρ1∇ = p1 and fρ2∇ = σ2p2.

And f will be a weak equivalence in Ex(C) if there is a map g: (Y, S) → (X,R) such
that fg ∼ 1Y and gf ∼ 1X .

Lemma 3.13. A fibration f : (X, ρ: R → X × X) → (Y, σ: S → Y × Y ) in Ex(C) is
acyclic if and only if there is a map a: Y → X in C such that fa = 1Y and af ∼ 1X .
Indeed, such a map a: Y → X in C will automatically be a map in Ex(C).

Proof. If f is acyclic, there is a map g: (Y, S) → (X,R) such that fg ∼ 1Y and
gf ∼ 1X . The former gives one a map H: Y → S such that σH = (fg, 1). We put
a: = ρ2∇(g,H). Then

fa = fρ2∇(g,H) = σ2p2(g,H) = σ2H = 1Y

and ∇(g, H) witnesses that g ∼ a, so af ∼ gf ∼ 1X .
26



Conversely, if a: Y → X is such that fa = 1Y and af ∼ 1X , then a can be regarded
as a map (Y, S) → (X, R). To show this, we use set-theoretic notation, as discussed
in Remark 3.12. If s ∈ S connects y0 and y1, that is, if σ1(s) = y0 and σ2(s) = y1,
then t0: = ∇(a(y0), s) connects a(y0) with some point x such that f(x) = y1. But
then from the witness of 1X ∼ af we find a t1 connecting x and a(f(x)) = a(y1). So
in order to obtain a tracking for a we should send s to the composition of t0 and t1,
using the transitivity of R. �

Theorem 3.14. The category Ex(C) is a path category whose homotopy category is
equivalent to Hex(C).

Proof. We check the axioms.

(1) Fibrations are closed under composition. If f : (X, ρ: R → X×X) → (Y, σ: S →
Y × Y ) and g: (Y, σ: S → Y × Y ) → (Z, τ : T → Z × Z) are fibrations with weak
connections ∇f : X×Y S → R and ∇g: Y ×Z T → S, respectively, then gf is a fibration
with weak connection ∇gf : X ×Z T → R defined by ∇gf (x, t): = ∇f (x,∇g(f(x), t)).

(2) The pullback of a fibration along any map exists and is again a fibration. If
f : (X, ρ: R → X × X) → (Y, σ: S → Y × Y ) is a fibration with weak connection
∇f and g: (Z, τ : T → Z × Z) → (Y, σ: S → Y × Y ) is tracked by ϕ, then we can
construct its pullback by taking X ×Y Z together with the homotopy equivalence
relation π∗

1R ∩ π∗

2T . The projection X ×Y Z → Z has a weak connection structure:
given a pair (x0, z0) with f(x0) = g(z0) and an element t ∈ T from z0 to z1, the
element s: = ϕ(t) ∈ S connects f(x0) = g(z0) and g(z1). So by the weak connection
on f one obtains an element r ∈ R connecting x0 to some x1 with f(x1) = g(z1). So
(r, t) connects (x0, z0) to some point (x1, z1) in X ×Y Z above z1.

(3) The pullback of an acyclic fibrations along any map is again an acyclic fibration.
If in the situation as in (2) the map f has a section a with af ∼ 1, then the projection
π2: X×Y Z → Z has a section b defined by b(z) = (a(g(z)), z). It is clear that bπ2 ∼ 1.

(4) Weak equivalences satisfy 2-out-of-6. This follows from the fact that ∼ is a
congruence.

(5) Isomorphisms are acyclic fibrations and every acyclic fibration has a section.
Immediate from the previous lemma.

(6) The existence of path objects. If (X, ρ: R → X ×X) is a homotopy equivalence
relation with e: X → R witnessing reflexivity (so ρe = ∆X), then we can factor the
diagonal on X as:

(X, R)
e // (R, ρ∗1R)

ρ
// (X × X, π∗

1R ∩ π∗

2R),

where ρ1: R → X is an acyclic fibration left inverse to the first map. We leave the
verifications to the reader.

(7) The category has a terminal object and every map to the terminal object is a
fibration. The terminal object is (1, P1) ∼= (1, 1). The verification that the unique
map X → 1 is always a fibration (X, R) → (1, P1) in Ex(C) is trivial.
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Note that it follows from the description of the path objects in (6) that the relation
∼ is precisely the homotopy relation in Ex(C): for if f, g: (Y, σ: S → Y × Y ) →
(X, ρ: R → X × X) are two parallel maps and H: Y → R witnesses that f ∼ g, then
H is also a map (Y, S) → (R, ρ∗1R) which is tracked by any tracking of f . Therefore
Ex(C) is a path category whose homotopy category is equivalent to Hex(C). �

3.3. The embedding. In the theory of exact completions of categories with finite
limits the embedding of the original category into the exact completion plays an
important rôle. For homotopy exact completions there is a similar functor

i: C → Hex(C)

defined by sending X to (X, PX). In this subsection we will try to determine which
properties from the theory of ordinary exact completions continue to hold and which
ones seem to break down.

First of all, we should note that the functor i is full, but not faithful: indeed, its
image is equivalent to the homotopy category Ho(C).

In the ordinary theory of exact completion the functor i preserves finite limits.
This is not true here.

Example 3.15. The category of topological spaces has the structure of a path cate-
gory if one takes the homotopy equivalences as its weak equivalences and the Hurewicz
fibrations as the fibrations. The universal cover of the circle p: R → S1 is a Hurewicz
fibration which fits into a (homotopy) pullback as follows:

Z //

��

R

p

��

1 // S1.

The image of this square under i is no longer a pullback, however, because R is
contractible, while the discrete space Z is not.

Instead one has:

Proposition 3.16. (1) The functor i preserves finite products.
(2) If

C ×A B

q

��

g
// B

p

��

C
f

// A

is a pullback square in C in which q and p are fibrations, then the induced
arrow i(C ×A B) → iC ×iA iB in Hex(C) is a cover. So the functor i: C →
Hex(C) sends homotopy pullback squares to quasi-pullback squares.

Proof. (1) From the fact that P (X × Y ) ≃ PX × PY and the description of finite
limits in Hex(C) in Lemma 3.6 it follows that i preserves products.
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(2) By Theorem 3.14 the pullback iC ×iA iB in Hex(C) is isomorphic to

(C ×A B, q∗PC ∩ g∗PB),

and hence the identity map from (C ×A B, P (C ×A B)) to this object is a cover by
Lemma 3.8. �

In the ordinary theory of exact completions the objects in the image of i are, up
to isomorphism, the projectives (an object P in an exact category is projective if any
cover e: X → P has a section). That does not seem to be the case here, but we do
have the following result:

Proposition 3.17. The objects in the image of the functor i: C → Hex(C) are projec-
tive and each object in Hex(C) is covered by some object in the image of this functor.

Proof. It follows immediately from Lemma 2.13 and the characterisation of covers
in Lemma 3.9 that objects of the form i(X) are projective, while maps of the form
1: (X, PX) → (X,R) are covers. �

Proposition 3.18. The category Hex(C) is the exact completion of Ho(C) as a weakly
lex category, as defined in [13].

Proof. This follows from Theorem 3.11 and Proposition 3.17 above and Theorem 16
in [13]. �

The previous proposition means that the homotopy exact completion can be de-
scribed in terms of pseudo-equivalence relations. This is occasionally useful, so we
will spell this out here.

Definition 3.19. Let f = (f1, f2): R → X ×X be an arbitrary map (not necessarily
a fibration) in a path category C. Then f will be called a pseudo-equivalence relation,
if there are maps ρ: X → R, σ: R → R and τ : P → R witnessing reflexivity, symmetry
and transitivity of this relation, where P is the homotopy pullback of f1 and f2.

An alternative definition of Hex(C) can now be given as follows: take as objects
pairs (X,R), where R is a pseudo-equivalence relation on X. A morphism

(X, ρ: R → X × X) → (Y, σ: S → Y × Y )

is an equivalence class of morphisms f : X → Y for which there is an arrow ϕ: R → S
making the square

R

ρ

��

ϕ
// S

σ

��

X × X
f×f

// Y × Y

commute up to homotopy; here two such arrows f, g: X → Y are equivalent if there
is a map h: X → S such that (f, g) ≃ σh.

Proposition 3.20. The category just described is equivalent to Hex(C).

29



Proof. This follows from Proposition 3.18, but it is also quite straightforward to prove
this directly. Indeed, any homotopy equivalence relation is also a pseudo-equivalence
relation, so Hex(C) embeds into the category just described. Therefore it remains
to check that any pseudo-equivalence relation ρ: R → X × X is isomorphic to a
homotopy equivalence relation in this category. But it can be shown quite easily
using the lifting properties that if ρ is factored as a homotopy equivalence R → R̂
followed by a fibration ρ̂: R̂ → X ×X, then ρ̂: R̂ → X ×X is a homotopy equivalence
relation. �

Another aspect of the theory of exact completions is that the subobject lattices of
objects of the form iX can be described concretely as a poset reflection.

Proposition 3.21. Let X be an object in a path category C. The subobject lattice of
iX in Hex(C) is order isomorphic to the poset reflection of C(X).

Proof. Lemma 3.10 tells us that every subobject of iX in Hex(C) has a representative
given by a map f : (Y,R) → (X, PX) where f is a fibration and R = f∗PX. If
h: (Z, S) → (Y,R) is a map over iX between two such representatives g: (Z, S) →
(X, PX) and f : (Y,R) → (X,PX), then fh ≃ g. But then there is also a map
h′: Z → Y homotopic to h such that fh′ = g. Since h and h′ are homotopic, h′ also
has a tracking as a map (Z, S) → (Y,R) in Hex(C) and as such h and h′ represent
the same map. In fact, any map h′ such that fh′ = g will have tracking as a map
(Z, S) → (Y,R) because we are assuming that S = g∗PX and R = f∗PX. It
follows that the subobject lattice of iX in Hex(C) is the poset reflection of C(X), as
claimed. �

Another aspect of the classical theory of exact completions is that exact comple-
tion and slicing commute. That fails for path categories; in fact, we only have the
following.

Proposition 3.22. Let C be a path category and X be an object in C. Then Hex(C)/i(X)
is a reflective subcategory of Hex(C(X)).

Proof. Let us first take a closer look at Hex(C)/i(X). Objects in this category
are morphisms f : (Y, S) → (X, PX) in Hex(C), that is, homotopy classes of arrows
f : Y → X with a tracking S → PX. Using the factorisation of arrows as homotopy
equivalences followed by fibrations in Ex(C), we may assume that f is an Ex(C)-
fibration. This means that we may assume that the objects in this category are pairs
consisting of a fibration f : Y → X and a homotopy equivalence relation σ: S → Y ×Y
for which there is a weak connection structure ∇: Y ×X PX → S as well as a map
S → PX making

S //

σ

��

PX

(s,t)

��

Y × Y
f×f

// X × X

commute.
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Furthermore, the morphisms in Hex(C)/i(X) are equivalence classes of arrows

ϕ: (g: Z → X, R) → (f : Y → X, S)

such that f ◦ ϕ ≃ g and for which a tracking R → S exists, while ϕ and ϕ′ are
equivalent in case there is map H making

S

��

Z

H

;;

(ϕ,ϕ′)

// Y × Y

commute. Since we are assuming that f is a fibration, it follows from Proposition
2.31 that we may just as well assume that ϕ satisfies fϕ = g. If both ϕ and ϕ′ are
such representations, then they represent the same arrow in Hex(C)/i(X) if there is
a dotted filler as in

T //

��

S

��

Z
(ϕ,ϕ′)

//

;;

Y ×X Y // Y × Y,

where the square is a pullback.

This suggests the correct definition of the embedding ρ: Hex(C)/i(X) → Hex(C(X)).
Note that objects in Hex(C(X)) consist of pairs (f : Y → X, T → Y ×X Y ), where
f is a fibration and T → Y ×X Y is a homotopy equivalence relation in C(X). So
we can define a functor ρ: Hex(C)/i(X) → Hex(C(X)) by sending (f : Y → X, S) to f
together with the homotopy equivalence relation in C(X) obtained as the pullback

T //

��

S

��

Y ×X Y // Y × Y.

This functor ρ has a left adjoint λ: Hex(C(X)) → Hex(C)/i(X). The quickest way
to define it is to use the factorisation in C: starting from a pair (f : Y → X, T → Y ×X

Y ) we can factor the composition of T → Y ×X Y with the inclusion Y ×X Y → Y ×Y
as a homotopy equivalence followed by a fibration:

T
∼ //

��

S

��

Y ×X Y // Y × Y.

Using the lifting properties one can now show that S → Y × Y is a homotopy
equivalence relation and that λ defines a left adjoint to ρ.

To complete the proof we have to show that λρ ∼= 1. So suppose we are given a
fibration f : Y → X and a homotopy equivalence relation σ: S → Y × Y for which
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there are a weak connection ∇: Y ×X PX → S as well as a tracking S → PX.
Construct the following four pullbacks:

T //

��

S∗ //

��

S

��

Y ×X Y //

��

Y ×X PX ×X Y //

��

Y × Y

��

X r
// PX

(s,t)
// X × X.

Note that all four arrows in the lower right-hand square are fibrations; since S →
Y × Y is a fibration, the maps S∗ → Y × Y and S∗ → PX are fibrations as well.
From the latter it follows that T → S∗ is a weak equivalence since r: X → PX is.
Therefore applying ρ to (f, S) yields T → Y ×X Y and the result of applying λ to
that is S∗ → Y × Y . Therefore it remains to construct a suitable map S → S∗ over
Y × Y : but the existence of such a map follows from the universal property of S∗

and the existence of a tracking S → PX. �

Remark 3.23. The adjunction λ⊣ ρ in the proof above is not an equivalence: indeed,
again consider the category of topological spaces, and take for f : Y → X the universal
cover R → S1 of the circle and let ∆: Y → Y ×X Y be the diagonal. Then λ(f, ∆) ∼=
(R, PR) ∼= 1 and ρλ(f, ∆) ∼= 1, but (f, ∆) 6∼= 1. In the same way one can show that
λ does not preserve finite products (if it would our treatment of Π-types below could
have been simplified considerably). For λ(f, ∆) × λ(f, ∆) ∼= 1, while (f, ∆) × (f, ∆)
is Y ×X Y with the diagonal, so

λ((f, ∆) × (f, ∆)) = (Y ×X Y, P (Y ×X Y )),

which is isomorphic to Z with the discrete topology.

In the remainder of this section we will try to characterise the image of ρ in
Hex(C(X)). In order to do this, we introduce the following notion.

For the moment, fix a fibration f : Y → X and a homotopy equivalence relation
τ : T → Y ×X Y in C(X); so, in effect, we are fixing an object in Hex(C(X)).

Definition 3.24. A transport structure relative to T , or a T-transport, is a map
Γ: Y ×X PX → Y such that:

(1) fΓ = tp2, and
(2) there is a map L: Y → T such that τL = (1, Γ(1, rf)).

Proposition 3.25. T -transports exist and are unique up to T -equivalence; more
precisely, if Γ and Γ′ are two T -transports, there will be a map H: Y ×X PX → T
such that τH = (Γ, Γ′).

Proof. For T = PX(Y ) a T -transport structure is the same thing as an ordinary
transport structure. Because there will always be a map PX(Y ) → T over Y ×X Y ,
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every ordinary transport structure is also a transport structure relative to T . In
particular, transport structures relative to T exist since ordinary ones do.

To show essential uniqueness, let Γ and Γ′ be two T -transports. Then Γ(1, rf)
and Γ′(1, rf) will be T -equivalent, as they are both T -equivalent to the identity on
Y . This means that there is a map K making the square

Y

(1,rf)

��

K // T

τ

��

Y ×X PX
(Γ,Γ′)

// Y ×X Y

commute. But since τ is a fibration and (1, rf) is a weak equivalence, we get the
desired map H from the usual lifting properties. �

Proposition 3.26. T -transports preserve T -equivalence. More precisely, if Γ is a
T -transport, there will be a map H: T ×X PX → T such that

τ1H = Γ(τ1p1, p2) and τ2H = Γ(τ2p1, p2).

Proof. If Γ is a T -transport, then

Γ(1, rf)τ1 ≃T τ1 ≃T τ2 ≃T Γ(1, rf)τ2: T → Y.

Therefore there is a map K making the diagram

T
K //

(1,rfτ1)

��

T

τ

��

T ×X PX
τ×X1

// Y ×X Y ×X PX
(Γ(p1,p3),Γ(p2,p3))

// Y ×X Y

commute, and H is obtained as a lower filler of this diagram. �

Definition 3.27. Let (f, T ) be an element of Hex(C(X)), so f : Y → X is a fibration
and T → Y ×X Y is a homotopy equivalence relation in C(X). We call such an
object stable if the action of loops in X on the fibres of f by the (essentially unique)
T -transport Γ: Y ×X PX → Y is T -trivial: so if f(y) = x and α is a loop at x, then
Γα(y) ≃T y.

Theorem 3.28. Let C be a path category and X be an object in C. Then Hex(C)/i(X)
is equivalent to the full subcategory of Hex(C(X)) consisting of the stable objects.

Proof. In Proposition 3.22 we have shown that Hex(C)/i(X) is a reflective subcate-
gory of Hex(C(X)) and we gave explicit constructions of both the embedding ρ and
reflector λ in the proof of that proposition. Note that objects in the image of ρ are
always stable: for suppose T is the restriction to Y ×X Y of some homotopy equiva-
lence relation σ: S → Y ×Y over (X, PX). We may assume that f : (Y, S) → (X,PX)
is an Ex(C)-fibration, so that there is a weak connection structure ∇: Y ×X PX → S.
From this we obtain a T -transport Γ given by Γ = σ2∇. If f(y) = x and α is a loop
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at x, the weak connection ∇ tells us that Γα(y) ≃S y; but then also Γα(y) ≃T y, by
definition of T .

Conversely, let (f : Y → X, τ : T → Y ×X Y ) be an element of Hex(C(X)), and
let Γ: Y ×X PX → Y be the essentially unique T -transport. Compute the following
pullbacks:

T ∗

τ∗

��

// S

��

// T

τ

��

Y ×X Y //

��

Y ×X PX ×X Y

((QQQQQQQQQQQQ Γ×X1
//

��

Y ×X Y

X r
// PX

(s,t)
((QQQQQQQQQQQQQ Y × Y

f×f

��

X × X.

In terms of generalised elements,

T ∗ = { (y, t, y′) : τ(t) = (Γ(y, rfy), y′) }.

Since Γ is a T -transport it follows that Γ(y, rfy) ≃T y and therefore (Y, T ) and
(Y, T ∗) are isomorphic in Hex(C(X)). So in order to compute λ(Y, T ) we might just
as well compute λ(Y, T ∗), and because T ∗ → S, as a pullback of r: X → PX along a
fibration, is a weak equivalence, we see that λ(Y, T ∗) is (Y, S → Y × Y ). Therefore
ρλ(Y, T ) is the element in Hex(C(X)) consisting of f : Y → X together with the
following homotopy equivalence relation in C(X): y1 and y2 over the same x are
related if there is a loop α on x such that Γα(y1) ≃T y2. But if (Y, T ) is stable, this
is equivalent to y1 ≃T y2; so in this case ρλ(Y, T ) ∼= (Y, T ). �

This theorem gives us a useful way of thinking about the slice category Hex(C)/i(X):
especially when we have to deal with function spaces in Hex(C)/i(X), it is more con-
venient to think about the stable elements in Hex(C(X)).

4. Sums and the natural numbers object

This section will be devoted to a study of the homotopy initial objects and homo-
topy sums in a path category, as well as a homotopy-theoretic version of the natural
numbers object. We will define these as objects that become ordinary sums or the
usual natural numbers object in the homotopy category.

4.1. Definition. We will start our discussion with the homotopy versions of the
initial object and binary coproducts.

Definition 4.1. An object 0 is homotopy initial if for any object A there is a map
f : 0 → A and any two such maps are homotopic. A homotopy sum or homotopy
coproduct of two objects A and B is an object A+B together with two maps iA: A →

34



A + B and iB : B → A + B such that for any pair of maps f : A → X and g: B → X
there is a map h: A+B → X, unique up to homotopy, such that hiA ≃ f and hiB ≃ g.

This is not quite what the type theorist would expect: the type-theoretic axiom for
the initial object, for example, says that any fibration A → 0 has a section. However,
this condition turns out to be equivalent.

Proposition 4.2. In a path category an object 0 is homotopy initial if and only if
any fibration f : A → 0 has a section.

Proof. Suppose we are given a fibration f : A → 0. If 0 is homotopy initial, then there
is a map g: 0 → A with fg ≃ 1. So by Proposition 2.31 there is a map g′: 0 → A such
that fg′ = 1.

Conversely, suppose 0 is such that any fibration A → 0 has a section. For any
object B the second projection π2: B × 0 → 0 is a fibration, so there is a map
a: 0 → B × 0 such that π2a = 1; but then f = π1a is a map 0 → B. In addition, if
g: 0 → B is another map, then we can take the pullback

Q

��

// PB

(s,t)

��

0
(f,g)

// B × B

giving rise to a fibration Q → 0. This map has a section, and composing this section
with the map Q → PB gives rise to a homotopy between f and g. �

In the same way one has:

Proposition 4.3. An object A + B together with maps iA: A → A + B and iB : B →
A + B is the homotopy sum of A and B if and only if for any fibration p: C → A + B
and any pair of maps a: A → C and b: B → C such that pa = iA and pb = iB, there
is a map σ: A + B → C such that pσ = 1, σiA ≃ a and σiB ≃ b.

Proof. ⇒: Suppose we are given a fibration p: C → A + B together with maps
a: A → C and b: B → C such that pa = iA and pb = iB . We know that there is a map
h: A + B → C such that hiA ≃ a and hiB ≃ b. In addition, we must have ph ≃ 1, so
by Proposition 2.31 there is a map σ: A + B → C such that pσ = 1 and σ ≃ h; hence
σiA ≃ hiA ≃ a and σiB ≃ hiB ≃ b.

⇐: Let f : A → X and g: B → X be two maps. We want to show that there is a
map h: A + B → X, unique up to homotopy, such that hiA ≃ f and hiB ≃ g. Put
C = X × (A+B) and consider the projection π2: C → A+B together with the maps
(f, iA): A → C and (g, iB): B → C. By assumption, there is a map σ: A + B → C
such that π2σ = 1, σiA ≃ (f, iA), σiB ≃ (g, iB). So if we put h = π1σ: A + B → X,
then hiA ≃ f and hiB ≃ g, as desired. If h′: A +B → X satisfies the same equations,
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then we can take the following pullback:

Q
p2

//

p1

��

PX

(s,t)

��

A + B
(h,h′)

// X × X

giving rise to a fibration Q → A + B. In addition, since (h, h′)iA ≃ (f, f) = (s, t)rf ,
there is a map u: A → PX such that (s, t)u = (h, h′)iA and a map k: A → Q such
that p1k = iA; similarly, there is a map l: B → Q such that p1l = iB . So p1 has a
section and composing this section with p2 yields the desired homotopy between h
and h′. �

Proposition 4.4. Suppose C is a path category with homotopy sums.

(i) If 0 is homotopy initial, then 0 + X ≃ X for any object X.
(ii) f + g: X + Y → A + B will be a homotopy equivalence if both f : X → A and

g: Y → B are.
(iii) P (A + B) ≃ PA + PB.

Proof. Parts (i) and (ii) are immediate consequences of the fact that homotopy equiv-
alences are precisely those maps which become isomorphisms in the homotopy cat-
egory, while homotopy initial objects become initial objects and homotopy sums
become ordinary sums in the homotopy category.

(iii): It follows from (ii) that the canonical map A + B → PA + PB is a weak
equivalence. So the lifting properties give us a map PA + PB → P (A + B) making
the top triangle in

A + B //

��

P (A + B)

��

PA + PB //

22

A × A + B × B // (A + B) × (A + B)

commute up to homotopy. Since the map along the top is a homotopy equivalence,
so is PA + PB → P (A + B). �

4.2. Homotopy extensive path categories. For later purposes we do not only
need homotopy sums to exist, but they should also have properties like disjointness
and stability, as ordinary categorical sums have in an extensive category (see [11]).
So we need a suitable notion of extensivity for path categories.

Definition 4.5. Suppose C is a path category.
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(1) A homotopy sum A + B in C is stable, if for any diagram of the form

C //

��

X

��

D

��

oo

A // A + B B,oo

the top row is a homotopy coproduct whenever both squares are homotopy
pullbacks.

(2) A homotopy sum A + B is disjoint if the square

0 //

��

B

��

A // A + B

is a homotopy pullback.
(3) If C has a homotopy inital object and homotopy sums which are both stable

and disjoint, then C will be called homotopy extensive.

Proposition 4.6. Let C be a path category with stable homotopy sums and a homo-
topy initial object.

(i) The distributive law X × (A + B) ≃ X × A + X × B holds.
(ii) The homotopy initial object 0 is strict: any map X → 0 is a homotopy

equivalence.
(iii) The functor C(A + B) → C(A)×C(B) is homotopy conservative (i.e., detects

homotopy equivalences).

Proof. Property (i) is a special case of stability, as applied to the following diagram:

X × A //

��

X × (A + B)

��

X × B

��

oo

A // A + B B.oo

To prove (ii), note that given any arrow f : X → 0 the diagram

X

f

��

1 // X

f

��

X

f

��

1oo

0
1

// 0 0
1

oo

consists of two (homotopy) pullbacks. So the top row is homotopy coproduct diagram
by stability and therefore any two parallel arrows with domain X are homotopic. This,
in combination with the existence of a map f : X → 0, implies that X is a homotopy
initial object and f is a homotopy equivalence.

To prove (iii), suppose f : Y → X is a map in C(A + B) and let fA: YA → XA and
fB : YB → XB be the pullbacks of f along A → A+B and B → A+B, respectively. If
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both fA and fB are homotopy equivalences, then so is fA + fB : YA + YB → XA + XB

by Proposition 4.4.(ii). But if the sums in C are stable, then YA + YB ≃ Y and
XA + XB ≃ X, so f is a homotopy equivalence, as desired. �

Proposition 4.7. Suppose C is a path category which has a homotopy initial object
and homotopy sums. Then C is homotopy extensive if and only if the following two
conditions are satisfied:

(i) If C → A and D → B are two maps, then

C //

��

C + D

��

D

��

oo

A // A + B B,oo

consists of two homotopy pullbacks.
(ii) The functor C(A + B) → C(A) × C(B) is homotopy conservative.

Proof. ⇒: In view of Proposition 4.6.(iii) it remains to show that (i) holds in all
homotopy extensive path categories. To this purpose consider a homotopy pullback
of the form

C ′ //

��

C + D

��

A // A + B.

We would like to show that C ′ ≃ C, and since we have already shown that the
functor C(C + D) → C(C) × C(D) is homotopy conservative, it suffices to prove that
the following two squares are homotopy pullbacks:

(1)

C

��

// C

��

C ′ // C + D

0

��

// D

��

C ′ // C + D

By pasting of homotopy pullbacks, the second square is a homotopy pullback if and
only if

0 //

��

D

��

A // A + B
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is. But the latter square can be decomposed as

0 //

��

D

��

0

��

// B

��

A // A + B.

Here the bottom square is a homotopy pullback by the disjointness of the homotopy
sums and the top square is a homotopy pullback by Proposition 4.6.(ii). We conclude
that the second square in (1) is a homotopy pullback.

In the same way one can show that

0

��

// C

��

D′ // C + D

is a homotopy pullback, where D′ is the homotopy pullback in

D′ //

��

C + D

��

B // A + B.

Now consider

C ′′

��

// C

��

0oo

��

C ′ //

��

C + D

��

D′oo

��

A // A + B Boo

in which all squares are homotopy pullbacks. By stability of sums we have that
C ≃ C ′′ + 0 ≃ C ′′. This shows that also the first square in (1) is a homotopy
pullback.

⇐: Suppose (i) and (ii) are satisfied. To show that the homotopy sums are stable,
suppose that

C //

��

X

��

D

��

oo

A // A + B B,oo

consists of two homotopy pullbacks. We have to show C + D ≃ X. Without loss of
generality we may assume that both X → A + B and C + D → A + B are fibrations.
Therefore it suffices to prove that C +D and X are homotopy equivalent after pulling
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back along A → A + B and B → A + B. But for both C + D and X the results are
homotopy equivalent to C and D, respectively, so C + D ≃ X.

To see that homotopy sums are disjoint, note that (i) implies that

0 //

��

0 + B

��

A // A + B

is a homotopy pullback. �

Proposition 4.8. Let C be a homotopy extensive path category. If the following
squares

X ′ //

��

X

��

A′ // A

Y ′ //

��

Y

��

B′ // B

are homotopy pullbacks in C, then so is

X ′ + Y ′ //

��

X + Y

��

A′ + B′ // A + B.

Proof. Let P be such that

P //

��

X + Y

��

A′ + B′ // A + B

is a homotopy pullback. To show that P is a homotopy sum of X ′ and Y ′ it suffices,
by stability, to show that both

(2)

X ′ //

��

P

��

A′ // A′ + B′

Y ′ //

��

P

��

B′ // A′ + B′
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are homotopy pullbacks. To see this for the first square, note that we have a com-
muting cube

P //

��

X + Y

��

X ′

::vvvvvvvvvv
//

��

X

;;
wwwwwwwww

��

A′ + B′ // A + B.

A′

;;vvvvvvvvv
// A

;;
wwwwwwwww

Since the front, the back and the right face are homotopy pullbacks, the same holds
for the left face. A similar cube shows that the second square in (2) is a homotopy
pullback as well. �

4.3. Homotopy exact completion. If C is a homotopy extensive path category,
then Hex(C) will not only be exact: it will be a pretopos, that is, a category which
both exact and extensive. This subsection will be devoted to a direct proof of this
fact. (Alternatively, we could have appealed to Proposition 3.18 above and [17].)

Proposition 4.9. Homotopy initial objects become initial objects in the homotopy
exact completion.

Proof. Let (X, R) be an arbitrary object in the homotopy exact completion with a
fibration ρ: R → X × X. If 0 is homotopy initial, there will be maps f : 0 → X and
g: 0 → R. Now (f, f) ≃ ρg, so by Proposition 2.31 there is also a map g′: 0 → R such
that (f, f) = ρg′. Hence the square

0
g′

//

r

��

R

ρ

��

P0
(fs,ft)

// X × X

commutes. Since it has a weak equivalence on the left and a fibration on the right,
there is a map P0 → R to track f , showing the existence of a morphism (0, P0) →
(X, R) in the homotopy exact completion. To prove uniqueness, note that if there
are two maps f, f ′: 0 → X then (f, f ′) ≃ ρg, which shows that f and f ′ are identical
as maps in the homotopy exact completion (see Remark 3.3). �

Theorem 4.10. If C is a homotopy extensive path category, then its homotopy exact
completion Hex(C) is a pretopos.

Proof. It will be convenient to use the description of Hex(C) in terms of pseudo-
equivalence relations, as in Proposition 3.20. So let R → X × X and S → Y × Y be
two pseudo-equivalence relations.

41



If R + S and X + Y are the homotopy sums, then from the maps X × X →
(X + Y ) × (X + Y ) and Y × Y → (X + Y ) × (X + Y ) and the universal property of
R + S we obtain a map

R + S → (X + Y ) × (X + Y ).

Using the properties of homotopy extensive categories that we have established, one
can show that this map is a pseudo-equivalence relation and indeed the sum of R →
X × X and S → Y × Y in the homotopy exact completion. The (easy) verification
that these sums are stable and disjoint is left to the reader. �

Remark 4.11. Theorem 4.10 could also have been derived from results in [17, 24],
but it turns out that it is not difficult to give a direct proof, so that is what we have
done here.

4.4. Homotopy natural numbers object. A homotopy natural numbers object we
define, like a homotopy sum, as a natural numbers object in the homotopy category.

Definition 4.12. An object N together with maps 0: 1 → N and σ: N → N is a
homotopy natural numbers object (hnno) if for any pair of maps y0: 1 → Y and
g: Y → Y there is a map h: N → Y , unique up to homotopy, such that h0 ≃ y0 and
hσ ≃ gh.

Proposition 4.13. An object N together with maps 0: 1 → N and σ: N → N is a
homotopy natural numbers object if and only if for any commuting diagram of the
form

X
f

//

p

��

X

p

��

1
0

//

x0

??
�

�
�

�
�

�
�

�

N σ
// N

where p is a fibration, there is a section a: N → X of p such that a0 ≃ x0 and aσ ≃ fa.

Proof. The argument is very similar to proofs of both Proposition 4.2 and Proposition
4.3, so we will not give many details here. Let us just point out how one proves that
if 0: 1 → N and σ: N → N are as in the statement of the proposition, then for any
pair of maps y0: 1 → Y and g: Y → Y and for any pair of maps h, h′: N → Y such
that h0 ≃ y0 and H: hσ ≃ gh and h′0 ≃ y0 and K: gh′ ≃ h′σ, one must have h ≃ h′.
For this one constructs the pullback

X

p

��

π // PY

(s,t)

��

N
(h,h′)

// Y × Y,

and considers the maps Hp, Pg ◦ π, Kp: X → PY , where Pg: PY → PY is a map
such that (s, t)Pg = (g × g)(s, t). Since

tHp = ghp = gsπ = s(Pg)π
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and
t(Pg)π = gtπ = gh′p = sKp,

we can use the composition operation on PY to construct a map L: X → PY with
sL = sHp = hσp and tL = tKp = h′σp. Together with the universal property of X
this gives one a map f : X → X with pf = σp and πf = L. Since h0 ≃ y0 ≃ h′0,
there is also a map x0: 1 → X with px0 = 0. From this follows that p has a section
and hence that h and h′ are homotopic. �

Proposition 4.14. If C is a path category with a homotopy natural numbers object,
then Hex(C) has a natural numbers object.

Proof. Suppose that N is an object in C which comes equipped with maps 0: 1 → N

and σ: N → N having the property as in the previous proposition. It is not hard to see
that iN = (N, PN) must have the same property in Ex(C), and therefore it becomes
a natural numbers object in its homotopy category Hex(C). �

5. Π-types

In this section, we study a suitable notion of function space in path categories and
the structure these function spaces induce on the homotopy exact completion. We are
guided by the relevant properties of the classical exact completion of categories with
finite limits, where the existence of a weak kind of internal hom-object in every slice
of the original category implies that every slice of the exact completion has actual
internal homs, i.e., is a locally cartesian closed category [12]. These weak internal
hom-objects enjoy the existence condition for the internal hom in the sense that any
map A × B → C gives a map A → Hom(B, C), but the latter is not required to be
unique. A similar situation arises in type theory, and the path categories constructed
as syntactic categories of dependent type theories only possess such weak internal
homs. It is important to realise that for these type-theoretic categories there is a
priori no uniqueness condition involved at all, not even in a up-to-homotopy sense.
(Uniqueness up to homotopy is related to an additional property of type theory called
function extensionality, see Remark 5.8 below.)

More generally, dependent type theories usually include a type constructor for Π-
types. For a path category C arising as the syntactic category of such a type theory,
the pullback functors C(B) → C(A) along fibrations B → A have a weak kind of right
adjoint (weakness here is meant in the same sense as for internal homs above).

In this section, we will define notions of weak homotopy exponential and weak
homotopy Π-type in the context of an arbitrary path category C. These notions are
chosen in such a way that for the special case where C is a category with finite limits
and every map in C is a fibration and every weak equivalence in C is an isomorphism,
having weak homotopy Π-types corresponds to the notion of weak local cartesian
closure from [12]. In addition, these notions are sufficiently weak to ensure that these
structures exist in the syntactic path category obtained from a type theory possessing
the corresponding type constructions, even if in the type theory the computation rules
would hold only in a propositional form. Finally, the notion of weak homotopy Π-type
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is sufficiently strong to ensure that the homotopy exact completion Hex(C) is locally
cartesian closed if C has weak homotopy Π-types.

5.1. Definition and properties. Throughout this section C will be a path category.

Definition 5.1. For objects X and Y in C a weak homotopy exponential is an object
XY together with a map ev: XY × Y → X such that for any map h: A × Y → X
there is a map H: A → XY such that

XY × Y
ev // X

A × Y

h

;;vvvvvvvvv

H×1

OO

commutes up to homotopy. If such a map H is unique up to homotopy, then XY is
a homotopy exponential.

Definition 5.2. The category C has weak homotopy Π-types if for any two fibrations
f : X → J and α: J → I there is a an object ΠαX = Παf in C(I), that is, a fibration
ΠαX → I, together with an evaluation map ev: α∗ΠαX → X over J , with the
following weak universal property: if there are maps g: Y → I and m: α∗Y → X with
m over J , then there exists a map n: Y → ΠαX over I such that m: α∗Y → X and
ev ◦ α∗n: α∗Y → X are fibrewise homotopic over J . If the map n is unique with
this property up to fibrewise homotopy over I, we call Παf and ev: α∗ΠαX → X a
homotopy Π-type.

Remark 5.3. (a) We will not need this observation, but we would like to point
out that in the definition above it is sufficient to consider only fibrations
g: Y → I.

(b) Because (C(I)) (i: I ′ → I) and C(I ′) are equivalent categories for any fibration
i: I ′ → I, it follows that if C is a path category with (weak) homotopy Π-types,
then so is C(I) for each object I in C.

In the proofs of the following two propositions we only give the constructions:
verifications are left to the reader.

Proposition 5.4. If C has (weak) homotopy Π-types then each C(I) has (weak)
homotopy exponentials.

Proof. Given Y,Z ∈ C(I) one defines ZY in C(I) as Πα(π2), where α: Y → I and
π2: Z ×I Y → Y . �

Proposition 5.5. Let C be a path category with (weak) homotopy Π-types. Given a
fibration p: Z → Y and a (weak) homotopy exponential (Y X , ev), there is a (weak)
homotopy exponential (ZX , ev) and a fibration pX : ZX → Y X such that
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(i) The diagram

ZX × X
ev //

pX
×X

��

Z

p

��

Y X × X ev
// Y

commutes.
(ii) For each T the diagram

Ho(C)(T, ZX)

��

// Ho(C)(T × X, Z)

��

Ho(C)(T, Y X) // Ho(C)(T × X, Y )

in Sets has the property that the map from Ho(C)(T, ZX) to the inscribed
pullback is an isomorphism in case ZX is a homotopy exponential, and an
epimorphism in case ZX is a weak homotopy exponential.

Proof. Given Y X with its evaluation ev: Y X × X → Y let q be the pullback

P //

q

��

Z

p

��

Y X × X ev
// Y,

and let ZX be Ππ1
(q), where π1: Y X × X → Y X . �

Corollary 5.6. Suppose p: Z → Y is a fibration and pX : ZX → Y X is the fibration
obtained from it as in the previous proposition. Then any section s: Y → Z induces
a section sX of pX such that

Y X × X
ev //

sX
×1X

��

Y

s

��

ZX × X ev
// Z

commutes up to homotopy.

Proof. Consider the diagram in (ii) in the previous proposition with T = Y X . Using
that the map to the inscribed pullback is an epimorphism, one finds a map σ: Y X →
ZX that upon postcomposition with pX is homotopic to the identity and such that

ev ◦ (σ × 1X) ≃ s ◦ ev.

Using that pX is a fibration, one may replace σ by a homotopic map sX such that
pXsX = 1 and ev ◦ (sX × 1X) ≃ s ◦ ev. �
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Proposition 5.7. Suppose C is a path category with weak homotopy Π-types, and let
XY be a weak homotopy exponential in C. We may choose XY × XY as a suitable
weak homotopy exponential (X × X)Y and choose (PX)Y as in Proposition 5.5, so
that (sY , tY ): (PX)Y → XY × XY is a fibration. Then the following are equivalent:

(1) XY is a homotopy exponential.
(2) There is a morphism e: (PX)Y → P (XY ) such that (s, t)e = (sY , tY ).

Also, if both XY and (PX)Y are homotopy exponentials, then the canonical map
P (XY ) → (PX)Y is a homotopy equivalence.

Proof. (1) ⇒ (2): The diagrams

(PX)Y × Y
ev //

sY
×Y

��

PX

s

��

XY × Y ev
// X

(PX)Y × Y
ev //

tY
×Y

��

PX

t

��

XY × Y ev
// X

commute, while s ≃ t and s◦ev ≃ t◦ev. So if XY is a homotopy exponential, the maps
sY and tY must be homotopic. Therefore there exists a map e: (PX)Y → P (XY )
such that se = sY and te = tY .

(2) ⇒ (1): Suppose that there is a map h: A × Y → X together with morphisms
H1, H2: A → XY such that ev(H1 × Y ) ≃ h ≃ ev(H2 × Y ). The latter means that
there is a map K: A × Y → PX such that

(s, t)K = (ev(H1 × Y ), ev(H2 × Y )).

Since

Ho(C)(A, (PX)Y )

��

// Ho(C)(A × Y, PX)

��

Ho(C)(A, XY × XY ) // Ho(C)(A × Y, X × X)

is a quasi-pullback, there is a map L: A → (PX)Y such that (sY , tY )L = (H1, H2) and
ev◦(L×Y ) ≃ K. So if there is a map e: (PX)Y → P (XY ) such that (s, t)e = (sY , tY ),
then for M : = eL we have (s, t)M = (H1, H2), showing that H1 and H2 are homotopic.

Finally, note that there is always a morphism P (XY ) → (PX)Y making the lower
triangle in

XY
rY

//

r

��

(PX)Y

(sY ,tY )

��

P (XY )
(s,t)

//

99

XY × XY

commute, whilst making the upper triangle commute up to homotopy. We claim
that if both XY and (PX)Y are homotopy exponentials, then this diagonal arrow is
a homotopy equivalence. For this it suffices to prove that the arrow along the top
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is a homotopy equivalence, because the arrow on the left is and the upper triangle
commutes up to homotopy. To see that rY is a homotopy equivalence, observe that
r: X → PX is a homotopy equivalence and therefore an isomorphism in the homotopy
category. So if XY and (PX)Y are exponentials in the homotopy category, then rY

is an isomorphism in the homotopy category, that is, a homotopy equivalence. �

Remark 5.8. What the preceding proposition shows is that ordinary homotopy
exponentials are those weak homotopy exponentials that satisfy what type-theorists
call function extensionality (indeed, in the syntactic category the morphism e would
be a proof term for the type-theoretic translation of the statement that two functions
f, g: Y → X are equal if f(y) and g(y) are equal for every y ∈ Y ). This principle is
not valid in the syntactic category associated to type theory, and for this reason the
homotopy exponentials in the syntactic category are only weak. The same applies to
the homotopy Π-types that we have defined: the syntactic category only has these in
the weak form.

5.2. Homotopy exponentials and homotopy exact completion. The main goal
of this section is to show that Hex(C) is locally cartesian closed, whenever C has
weak homotopy Π-types. We will only outline the constructions here, as a detailed
verification that they indeed have the required properties is both straightforward and
cumbersome.

Proposition 5.9. If C has weak homotopy Π-types, then Ex(C) has homotopy expo-
nentials and Hex(C) has ordinary exponentials.

Proof. Assume C has weak homotopy Π-types, and let (X, R) and (Y, S) be two
objects in Hex(C); our goal is to construct the exponential (X, R)(Y,S).

The idea is to take (W, Q) where W is the pullback:

W //

p

��

RS

��

XY
δ

// (X × X)Y ×Y // (X × X)S .

Here δ is a map making

XY × Y × Y
δ×1

//

ǫ

++VVVVVVVVVVVVVVVVVVVV
(X × X)Y ×Y × (Y × Y )

ev

��

X × X

commute up to homotopy with ǫ = (ev(p1, p2), ev(p1, p3)), while the map RS →
(X × X)S has the properties from Proposition 5.5; in particular it is a fibration and
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the pullback W does indeed exist. The object Q is obtained as the pullback

Q //

��

RY

��

W × W
p×p

// XY × XY ∼= (X × X)Y ,

where we have used that XY × XY acts as a suitable weak homotopy exponential
(X ×X)Y . In addition, the map on the right is built in accordance with Proposition
5.5; this means in particular that it is a homotopy equivalence relation and therefore
the same is true for Q → W × W . We leave it to the reader to verify that (W, Q) is
indeed an exponential in Hex(C) and a homotopy exponential in Ex(C). �

In fact, we can even prove that Hex(C) is locally cartesian closed whenever the path
category C has weak homotopy Π-types. Recall that a category with finite limits is
locally cartesian closed if every slice is cartesian closed. For this one sometimes only
needs to verify that slices over certain objects are cartesian closed. For instance, if E
is exact and I is an object in E fitting into a coequalizer diagram

Q
//

// P // I,

where Q → P×P is a pseudo-equivalence relation, then an exponential (X → I)(Y →I)

in E/I may be computed from two exponentials in E/Q and E/P by taking the
coequalizer of the two parallel arrows along the top in the diagram below:

(

(X ×I Q)(Y ×IQ)
)

Q

//

//

��

(

(X ×I P )(Y ×IP )
)

P

��

Q
//

// P.

(This is called the method of descent, for which exactness of E is crucial.)

Theorem 5.10. Let C be a path category. If C has weak homotopy Π-types, then
Hex(C) is locally cartesian closed.

Proof. We need to prove that each slice category Hex(C)/I has exponentials. For this
it suffices to consider the case where I = iZ: any object in Hex(C) is covered by such
an object (see Proposition 3.17), so the general case follows by descent.

We have proved in Theorem 3.28 that Hex(C)/iZ is equivalent to the full sub-
category of Hex(C(Z)) on the stable objects. It follows from Remark 5.3(b) and
Proposition 5.9 that Hex(C(Z)) has exponentials, so it suffices to prove that if we
take an exponential of two stable objects in this category, then the result is again
stable.

So let (f : X → Z, ρ: R → X ×Z X) and (g: Y → Z, σ: S → Y ×Z Y ) be two stable
objects in Hex(C(Z)). These will have two (essentially unique) transport structures
ΓX : X×ZPZ → X and ΓY : Y ×ZPZ → Y ; recall that stability means that Γ(x, α) ≃R

x and Γ(y, α) ≃S y whenever α is a loop in Z.
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So let (h: W → Z, q: Q → W ×Z W ) be the result of computing the exponential
(X, R)(Y,S) over (Z, PZ) as in the previous proposition. This object has a transport
structure as well, which is probably best described in words. What this action should
do is to associate to every w ∈ W living over z ∈ Z and path α from z to z′ a new
element w′ ∈ W over z′. Such a w′ is intuitively a function, so let y′ ∈ Y be an
element over z′. We can transport y′ back along the inverse of α to an element y over
z; to this y we can apply w and obtain an element x over z. Using transport again,
but now on x ∈ X and α we find an element x′ ∈ X over z′. The idea is to set w′

to be the function sending y′ to x′. Proposition 3.26 implies that w′ will be tracked
whenever w is.

If α is a loop, then y′ would be S-equivalent to y and x would be T -equivalent to
x′. This means that w and w′ would be Q-equivalent, showing that (W, Q) is stable,
as desired. �

Remark 5.11. One could also have derived Theorem 5.10 from Proposition 3.18
above and the results in [12]. We have included a direct proof of Theorem 5.10 here,
because it provides a description of the exponentials in slices of Hex(C) which only
makes sense in the specific context of exact completions of path categories and would
not work in the more general context of exact completions of categories with weak
finite limits.

In addition, these constructions can also be used to show that Ex(C) has homotopy
Π-types whenever C has weak homotopy Π-types. In view of Remark 5.8 this means
that Ex(C) satisfies a form of function extensionality even when C does not.
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