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Abstract: A new algorithm for the determination of the initial flavour of B0
s mesons is presented.

The algorithm is based on two neural networks and exploits the b hadron production mechanism
at a hadron collider. The first network is trained to select charged kaons produced in association
with the B0

s meson. The second network combines the kaon charges to assign the B0
s flavour

and estimates the probability of a wrong assignment. The algorithm is calibrated using data
corresponding to an integrated luminosity of 3 fb−1 collected by the LHCb experiment in proton-
proton collisions at 7 and 8 TeV centre-of-mass energies. The calibration is performed in two ways:
by resolving the B0

s–B0
s flavour oscillations in B0

s→ D−s π
+ decays, and by analysing flavour-specific

B∗
s2(5840)0→ B+K− decays. The tagging power measured in B0

s → D−s π
+ decays is found to be

(1.80 ± 0.19 (stat) ± 0.18 (syst))%, which is an improvement of about 50% compared to a similar
algorithm previously used in the LHCb experiment.
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1 Introduction

Precision measurements of flavour oscillations of B0
(s) mesons and of CP asymmetries in their

decays allow the validity of the standard model of particle physics to be probed at energy scales
not directly accessible by current colliders [1]. Measurements of associated observables, e.g. the
CP-violating phase φs in B0

s→ J/ψK+K− and B0
s→ J/ψ π+π− decays [2, 3], are among the major

goals of the LHCb experiment and its upgrade [4, 5].1 These analyses require so-called flavour-
tagging algorithms to identify the flavour at production of the reconstructed B meson. Improving
the effectiveness of those algorithms is of crucial importance, as it increases the statistical power of
the dataset collected by an experiment.

Several types of flavour-tagging algorithms have been developed in experiments at hadron
colliders. Opposite-side (OS) algorithms exploit the fact that b quarks are predominantly produced
in bb pairs in hadron collisions, and thus the flavour at production of the reconstructed B meson
is opposite to that of the other b hadron in the event. Therefore, the products of the decay chain
of the other b hadron can be used for flavour tagging. The OS algorithms utilised in LHCb are
described in refs. [6, 7]. Same-side (SS) algorithms look for particles produced in association with

1The inclusion of charge-conjugate decays is implied throughout this paper unless otherwise stated.
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the reconstructed B meson in the hadronisation process [8–10]. In about 50% of cases, a B0
s meson

is accompanied by a charged kaon and a B0 meson by a charged pion. The charge of these particles
indicates the b quark content of the B meson. Information from OS and SS algorithms is usually
combined in flavour-tagged analyses.

This paper describes a new same-side kaon (SSK) flavour-tagging algorithm at the LHCb
experiment. The first use of an SSK algorithm in LHCb is reported in refs. [11, 12]. That version
uses a selection algorithm, optimised with data, to identify the kaons produced in the hadronisation
of the B0

s meson. One key part of the algorithm is that, for events in which several particles pass the
selection, the one with the largest transverse momentum is chosen as the tagging candidate and its
charge defines the tagging decision. The new algorithm presented here exploits two neural networks
to identify the flavour at production of a reconstructed B0

s meson. The first neural network is used
to assign to each track reconstructed in the pp collision a probability of being a particle related to
the B0

s hadronisation process. Tracks that have a probability larger than a suitably chosen threshold
are combined in the second neural network to determine the tagging decision.

The effectiveness of an algorithm to tag a sample of reconstructed B candidates is quantified
by the tagging efficiency, εtag, and the mistag fraction, ω. These variables are defined as

εtag =
R +W

R +W +U
, and ω =

W
R +W

, (1.1)

where R,W andU are the number of correctly tagged, incorrectly tagged, and untagged B candidates,
respectively. For each tagged B candidate i, the flavour-tagging algorithm estimates the probability,
ηi, of an incorrect tag decision. To correct for potential biases in ηi, a function ω(η) is used to
calibrate the mistag probability to provide an unbiased estimate of the mistag fraction for any value
of η. The tagging efficiency and mistag probabilities are used to calculate the effective tagging
efficiency, εeff , also known as the tagging power,

εeff = εtag
1

R +W

R+W∑
i=1

(1 − 2ω(ηi))2 , (1.2)

which represents the figure of merit in the optimisation of a flavour-tagging algorithm, since the
overall statistical power of the flavour-tagged sample is proportional to εeff . The previous SSK
algorithm used by the LHCb experiment has a tagging power of 0.9% and 1.2% in B0

s→ J/ψ φ and
B0
s→ D−s π

+ decays, respectively. For comparison, the performance of the combination of the OS
algorithms in these decays corresponds to a tagging power of about 2.3% and 2.6% [11, 12].

The calibration function ω(η) is obtained with control samples of flavour-specific decays, i.e.
decays in which the B flavour at decay is known from the charge of the final-state particles. In the
case of the new SSK algorithm described here, the decay B0

s → D−s π
+ and, for the first time, the

decay B∗
s2(5840)0→ B+K− are used. These decays are reconstructed in a dataset corresponding to

an integrated luminosity of 3 fb−1 collected by LHCb in pp collisions at 7 and 8 TeV centre-of-mass
energies.

2 Detector and simulation

The LHCb detector [13, 14] is a single-arm forward spectrometer covering the pseudorapidity
range between 2 and 5, designed for the study of particles containing b or c quarks. The detector
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includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding
the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet
with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift
tubes placed downstream of the magnet. The polarity of the dipole magnet is reversed periodically
throughout data-taking to reduce the effect of asymmetries in the detection of charged particles.
The tracking system provides a measurement of momentum, p, of charged particles with a relative
uncertainty that varies from 0.5% at low momentum to 1.0% at 200GeV/c. The minimum distance
of a track to a primary pp interaction vertex (PV), the impact parameter, is measured with a
resolution of (15 + 29/pT) µm, where pT is the component of the momentum transverse to the
beam, inGeV/c. Different types of charged hadrons are distinguished using information from two
ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter
system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and
a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers. The online event selection is performed by a trigger [15], which
consists of a hardware stage and a software stage. At the hardware trigger stage, for decay candidates
of interest in this paper, events are required to have a hadron with high transverse energy in the
calorimeters, or muons with high pT. For hadrons, the transverse energy threshold is 3.5GeV. The
software trigger requires a two-, three- or four-track secondary vertexwith a significant displacement
from the primary vertices. At least one charged particle must have a transverse momentum pT >

1.7 GeV/c and be inconsistent with originating from a PV. A multivariate algorithm [16] is used for
the identification of secondary vertices consistent with the decay of a b hadron.

In the simulation, pp collisions are generated using Pythia [17, 18] with a specific LHCb
configuration [19]. Decays of hadronic particles are described by EvtGen [20], in which final-
state radiation is generated using Photos [21]. The interaction of the generated particles with
the detector, and its response, are implemented using the Geant4 toolkit [22, 23] as described
in ref. [24].

3 The neural-network-based SSK algorithm

In this section, charged kaons related to the fragmentation process of the reconstructed B0
s candidate

are called signal, and other particles in the event are called background. This background includes,
for example, the decay products of the OS b hadron, and particles originating from soft QCD
processes in pp interactions. In the neural-network-based SSK algorithm, a neural network (NN1)
classifies as signal or background all tracks passing an initial preselection. A second neural network
(NN2) combines the tracks selected by NN1 to tag the reconstructed B candidate as either B0

s or
B0
s, and estimates the mistag probability associated with the tagging decision. Both NN1 and NN2

are based on the algorithms of ref. [25].
The preselection imposes a number of requirements on the tracks to be considered as tagging

candidates, and is common to other flavour-tagging algorithms used in LHCb [6]. The tracks must
have been measured in at least one of the tracking stations both before and after the magnet. Their
momentum is required to be larger than 2GeV/c, and their transverse momentum to be smaller
than 10GeV/c. A requirement that the angle between the tracks and the beam line must be at least
12mrad is applied, to reject particles which either originate from interactions with the beam pipe
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material or which suffer from multiple scattering in this region. The tracks associated with the
reconstructed decay products of the B0

s candidate are excluded. Tracks in a cone of 5mrad around
the B0

s flight direction are rejected to remove any remaining B0
s decay products. Tracks outside a

cone of 1.5 rad are also rejected, to suppress particles which are not correlated with the B0
s flavour.

Finally, tracks must be inconsistent with originating at a different PV from the one associated with
the reconstructed B0

s candidate, which is taken to be that closest to the B0
s flight path.

The network NN1 is trained using signal and background kaons from approximately 80,000
simulated events containing a reconstructed B0

s → D−s (→ K+K−π−)π+ decay. An independent
sample of similar size is used to test the network’s performance. Information from the simulation
is used to ensure that only genuine, correctly reconstructed B0

s → D−s π
+ decays are used. The

following ten variables are used as input to NN1: the momentum and transverse momentum of
the track; the χ2 per degree of freedom of the track fit; the track impact parameter significance,
defined as the ratio between the track impact parameter with respect to the PV associated with the
B0
s candidate, and its uncertainty; the difference of the transverse momenta of the track and the

B0
s candidate; the difference of the azimuthal angles and of the pseudorapidities between the track

and the B0
s candidate; the number of reconstructed primary vertices; the number of tracks passing

the preselection; and the transverse momentum of the B0
s candidate. The track impact parameter

significance is used to quantify the probability that a track originates from the same primary vertex
as the reconstructed B0

s candidate. In an event with a large number of tracks and primary vertices,
the probability that a given track is a signal fragmentation track is lower; hence the use of these
variables in NN1. The B0

s transverse momentum is correlated with the difference in pseudorapidity
of the fragmentation tracks and the B0

s candidate.
The network NN1 features one hidden layer with nine nodes. The activation function and the

estimator type are chosen following the recommendations of ref. [26], to guarantee the probabilistic
interpretation of the response function. The distribution of the NN1 output, o1, for signal and
background candidates is illustrated in figure 1. After requiring o1 > 0.65, about 60% of the
reconstructed B0

s → D−s π
+ decays have at least one tagging candidate in background-subtracted

data. This number corresponds to the tagging efficiency. The network configuration and the o1
requirement are chosen to give the largest tagging power. For each tagged B0

s candidate there are
on average 1.6 tagging tracks, to be combined in NN2.

The training of NN2 is carried out with a simulated sample of approximately 80,000 recon-
structed B0

s→ D−s π
+ decays, statistically independent of that used to train NN1. All of the events

contain at least one track passing the NN1 selection requirement. Half of the events contain a
meson whose true initial flavour is B0

s , and the other half contain B0
s mesons. About 90% of the

simulated events are used to train NN2, and the remaining 10% are used to test its performance.
The likelihood of the track of being a kaon [14] and the value of o1 are used as input variables
to NN2. These variables are multiplied by the charge of the tagging track, to exploit the charge
correlation of fragmentation kaons with the flavour of the B0

s meson. The reconstructed B0
s mo-

mentum, its transverse momentum, the number of reconstructed primary vertices and the number
of reconstructed tracks in the event that pass the B0

s candidate’s selection are also used as input to
NN2. Different configurations of NN2 with up to nmax input tagging tracks and several network
structures are tested. In all cases, one hidden layer with n − 1 nodes is chosen, where n is the
number of input variables. If more than nmax tracks pass the requirement on o1, the nmax tracks
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Figure 1. (Left) Distribution of the NN1 output, o1, of signal (blue) and background (red) tracks. (Right)
Distribution of the NN2 output, o2, of initially produced B0

s (blue) and B0
s (red) mesons. Both distributions are

obtained with simulated events. The markers represent the distributions obtained from the training samples;
the solid histograms are the distributions obtained from the test samples. The good agreement between the
distributions of the test and training samples shows that there is no overtraining of the classifiers.

with the greatest o1 are used. If fewer than nmax pass, the unused input values are set to zero. The
networks with nmax = 2, 3 and 4 perform very similarly and show a significantly better separation
than the configurations with nmax = 1 or 5. The NN2 configuration with nmax = 3 is chosen. The
main additional tagging power of this algorithm compared to the previous SSK algorithm comes
from the possibility to treat events with multiple tracks of similar tagging quality, which allows a
looser selection (i.e. a larger tagging efficiency) compared to the algorithm using a single tagging
track. The distribution of the NN2 output, o2, of initially produced B0

s and B0
s mesons is shown in

figure 1.
In the training configuration used [26], the NN2 output can be directly interpreted as the

probability that a B candidate with a given value of o2 was initially produced as a B0
s meson,

P(B0
s |o2) = o2 =

NB0
s
(o2)

NB0
s
(o2) + NB0

s
(o2)

, (3.1)

where the second equality holds in the limit of infinite statistics, and NB0
s
(o2) and NB0

s
(o2) refer

to the number of initial B0
s and B0

s mesons in the training sample with a given o2 value. The
distribution of the NN2 output of initial B0

s mesons has a peak at o2 values slightly larger than
0.5, while that of initial B0

s mesons has a peak at o2 values slightly smaller than 0.5 (figure 1). In
case of no CP asymmetries, and no asymmetries related to the different interaction probabilities
of charged kaons with the detector, the NN2 distribution of initial B0

s mesons is expected to be
identical, within uncertainties, to the NN2 distribution of initial B0

s mesons mirrored at o2 = 0.5.
This is a prerequisite for interpreting the NN2 output as a mistag probability. Therefore, to ensure
such an interpretation, a new variable is defined, which has a mirrored distribution for initial B0

s

and B0
s mesons of the same kinematics,

o′2 =
o2 + (1 − ō2)

2
, (3.2)

where ō2 stands for the NN2 output with the charged-conjugated input variables, i.e. for a specific
candidate, ō2 is evaluated by flipping the charge signs of the input variables of NN2. The tagging
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decision is defined such that the B candidate is assumed to be produced as a B0
s if o′2 > 0.5 and as

a B0
s if o′2 < 0.5. Likewise, the mistag probability is defined as η = 1 − o′2 for candidates tagged as

B0
s , and as η = o′2 for candidates tagged as B0

s.

4 Calibration using B0
s → D−s π

+ decays

The mistag probability estimated by the SSK algorithm is calibrated using two different decays,
B0
s→ D−s π

+ and B∗
s2(5840)0→ B+K−. The calibration with B0

s→ D−s π
+ decays requires the B0

s–B0
s

flavour oscillations to be resolved via a fit to the B0
s decay time distribution, since the amplitude of

the oscillation is related to themistag fraction. In contrast, there are no flavour oscillations before the
strong decay of the B∗

s2(5840)0 and the charged mesons produced in its decays directly identify the
B∗
s2(5840)0 production flavour. Therefore, the calibrationwith B∗

s2(5840)0 is performed by counting
the number of correctly and incorrectly tagged signal candidates. Thus, the two calibrations feature
different analysis techniques, which are affected by different sources of systematic uncertainties,
and serve as cross-checks of each other. The calibration with B0

s → D−s π
+ decays is described in

this section and that using B∗
s2(5840)0→ B+K− decays in section 5. The results are combined in

section 8 after equalising the transverse momentum spectra of the reconstructed B0
s and B∗

s2(5840)0

candidates, since the calibration parameters depend on the kinematics of the reconstructed B decay.
These calibrations also serve as a test of the new algorithm in data, to evaluate the performance of
the tagger and to compare it to that of the previous SSK algorithm used in LHCb.

A sample of B0
s → D−s π

+ candidates is selected according to the requirements presented in
ref. [27]. The D−s candidates are reconstructed in the final states K+K−π− and π−π+π−. The D−s π

+

mass spectrum contains a narrow peak, corresponding to B0
s→ D−s π

+ signal candidates, and other
broader structures due to misreconstructed b-hadron decays, all on top of a smooth background
distribution due to random combinations of tracks passing the selection requirements. The signal
and background components are determined by a fit to the mass distribution of candidates in
the range 5100–5600MeV/c2 (figure 2). The signal component is described as the sum of two
Gaussian functions with a common mean, plus a power-law tail on each side, which is fixed from
simulations. The combinatorial background is modelled by an exponential function. The broad
structures are due to B and Λ0

b
decays in which a final-state particle is either not reconstructed or

is misidentified as a different hadron, and the mass distributions of these backgrounds are derived
from simulations. The B0

s signal yield obtained from the fit is approximately 95,000. Candidates
in the mass range 5320–5600MeV/c2 are selected for the calibration of the SSK algorithm. A fit to
the B0

s mass distribution is performed to extract sWeights [28]; in this fit the relative fractions of the
background components are fixed by integrating the components obtained in the previous fit across
the small mass window. The sWeights are used to subtract the background in the fit to the unbinned
distribution of the reconstructed B0

s decay time, t. This procedure for subtracting the background is
validated with pseudoexperiments and provides unbiased estimates of the calibration parameters.

The sample is split into three categories — untagged, mixed and unmixed candidates — and a
simultaneous fit to the t distributions of the three subsamples is performed. Untagged candidates
are those for which the SSK algorithm cannot make a tagging decision, i.e. that contain no tagging
tracks passing the o1 selection. A B0

s candidate is defined as mixed if the flavour found by the SSK
algorithm differs from the flavour at decay, determined by the charges of the final-state particles; it

– 6 –
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Figure 2. Mass distribution of B0
s → D−s π

+ candidates with fit projections overlaid. Data points (black
markers) correspond to the B0

s candidates selected in the 3 fb−1 data sample. The total fit function and its
components are overlaid with solid and dashed lines (see legend).

is defined as unmixed if the flavours are the same. The probability density function (PDF) used to
fit the t distribution is

P(t) ∝ a(t)
[
Γ(t ′) ⊗ R(t − t ′)

]
, (4.1)

where t ′ is the true decay time of the B0
s meson, Γ(t ′) is the B0

s decay rate, R(t − t ′) the decay time
resolution function, and a(t) is the decay time acceptance.

The decay rate of untagged candidates is given by

Γ(t ′) ∝ (1 − εtag) e−t
′/τs cosh

(
∆Γs

2
t ′
)
, (4.2)

and that of tagged candidates by

Γ(t ′) ∝ εtag e−t
′/τs

(
cosh

(
∆Γs

2
t ′
)
+ qmix (1 − 2ω) cos(∆mst ′)

)
, (4.3)

where qmix is −1 or +1 for candidates which are mixed or unmixed respectively, andω is the mistag
fraction. The average B0

s lifetime, τs, the width difference of the B0
s mass eigenstates, ∆Γs, and

their mass difference, ∆ms, are fixed to known values [2, 12, 29].
Each measurement of t is assumed to have a Gaussian uncertainty, σt , which is estimated by

a kinematic fit of the B0
s decay chain. This uncertainty is corrected with a scale factor of 1.37, as

measured with data from a sample of fake B0
s candidates, which consist of combinations of a D−s

candidate and a π+ candidate, both originating from a primary interaction [12]. Their decay time
distribution is a δ-function at zero convolved with the decay time resolution function, R(t − t ′). The
latter is described as the sum of three Gaussian functions. The functional form of a(t) is modelled
with simulated data and its parameters are determined in the fit to data.

– 7 –
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Figure 3. (Left) Background-subtracted η distribution of B0
s→ D−s π

+ candidates in data; the vertical dotted
lines show the binning used in the second method of the calibration. (Right) Measured average mistag
fractionω in bins of mistag probability η (black points), with the result of a linear fit superimposed (solid red
line) and compared to the calibration obtained from the unbinned fit (dashed black line). The linear fit has
χ2/ndf = 1.3. The shaded areas correspond to the 68% and 95% confidence level regions of the unbinned
fit.

Two methods are used to calibrate the mistag probability. In the first one, η is an input variable
of the fit, and ω in eq. (4.3) is replaced by the calibration function ω(η), which is assumed to be a
first-order polynomial,

ω(η) = p0 + p1(η − 〈η〉), (4.4)

where 〈η〉 is the average of the η distribution of signal candidates (figure 3), fixed to the value
0.4377, while p0 and p1 are the calibration parameters to be determined by the fit. They are found
to be

p0 − 〈η〉 = 0.0052 ± 0.0044 (stat),
p1 = 0.977 ± 0.070 (stat),

consistent with the expectations of a well-calibrated algorithm, p0 − 〈η〉 = 0 and p1 = 1. The fitted
values above are considered as the nominal results of the calibration. After calibration of the mistag
probability, the tagging efficiency and tagging power measured in B0

s→ D−s π
+ decays are found to

be εtag = (60.38 ± 0.16 (stat))% and εeff = (1.80 ± 0.19 (stat))%.
In the second method, the average mistag fraction ω is determined by fitting the B0

s decay
time distribution split into nine bins of mistag probability. Nine pairs (〈η j〉, ω j ) are obtained,
where ω j is the mistag fraction fitted in the bin j, which has an average mistag probability 〈η j〉.
The (〈η j〉, ω j ) pairs are fitted with the calibration function of eq. (4.4) to measure the calibration
parameters p0 and p1. The calibration parameters obtained, p0 − 〈η〉 = 0.0050 ± 0.0045 (stat) and
p1 = 0.983 ± 0.072 (stat), are in good agreement with those reported above. This method also
demonstrates the validity of the linear parametrisation (eq. (4.4)), as shown in figure 3.

A summary of the systematic uncertainties on the calibration parameters is given in table 1.
The dominant systematic uncertainty is due to the uncertainty of the scale factor associated with σt .
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Table 1. Systematic uncertainties of the parameters p0 and p1 obtained in the calibration with B0
s→ D−s π

+

decays.
Source σp0 σp1

Decay time resolution 0.0033 0.060
Calibration method 0.0002 0.006
Signal mass model 0.0001 0.002
Background mass model 0.0015 0.025
B0
s → D−s K+ yield 0.0001 0.008

Sum in quadrature 0.0036 0.066

The scale factor is varied by ±10%, the value of its relative uncertainty, and the largest change of the
calibration parameters due to these variations is taken as the systematic uncertainty. Variations of the
functions which describe the signal and the background components in the mass fit, and variations
of the fraction of the main peaking background under the signal peak due to B0

s → D−s K+ decays,
result only in minor changes of the calibration parameters. The systematic uncertainties associated
with these variations are assessed by generating pseudoexperiments with a range of different models
and fitting them with the nominal model. Systematic uncertainties related to the parametrisation
of the acceptance function, and to the parameters ∆Γs, τs and ∆ms, are evaluated with the same
method; no significant effect on the calibration parameters is observed. The difference between the
two calibration methods reported in the previous section is assigned as a systematic uncertainty.
Additionally, the calibration parameters are estimated in independent samples split according to
different running periods and magnet polarities. No significant differences are observed.

5 Calibration using B∗
s2

(5840)0 → B+K− decays

In B∗
s2(5840)0→ B+K− decays, the B+ candidates are reconstructed in four exclusive final states,

B+ → J/ψ (→ µ+µ−)K+, B+ → D0(→ K+π−)π+, B+ → D0(→ K+π−)π+π−π+ and B+ → D0(→
K+π−π+π−)π+. The B+ candidate selection follows the same strategy as in ref. [30], retaining
only those candidates with a B+ mass in the range 5230–5320MeV/c2. The B+ candidate is then
combined with a K− candidate to form a common vertex. Combinatorial background is reduced
by requiring the B+ and K− candidates to have a minimum pT of 2000MeV/c and 250MeV/c
respectively, and to be compatible with coming from the PV. The kaon candidate must have good
particle identification and a minimum momentum of 5000MeV/c. A good-quality vertex fit of the
B+K− combination is required. In order to improve the mass resolution, the invariant mass of the
system, mB+K− , is computed constraining the masses of the J/ψ (or D0) and B+ candidates to their
world average values [29] and constraining the vector momenta of B+ and K− candidates to point to
the associated primary vertex. Finally, the B+K− system is required to have a minimum transverse
momentum of 2500MeV/c.

The mass difference, Q ≡ mB+K− −MB+ −MK− , where MB+ and MK− are the nominal masses
of the B+ and K− mesons, is shown in figure 4 for the selected B+K− candidates, summed over
all the B+ decay modes. The spectrum is consistent with that seen in ref. [30] and contains
three narrow peaks at Q-values of approximately 11, 22 and 67MeV/c2, which are interpreted
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Figure 4. Distribution of the mass difference, Q, of selected B+K− candidates, summing over four B+ decay
modes (black points), and the function fitted to these data (solid blue line). From left to right, the three peaks
are identified as being Bs1(5830)0 → B∗+K−, B∗

s2(5840)0 → B∗+K−, and B∗
s2(5840)0→ B+K−. Same

charge combinations B±K± in data are superimposed (solid histogram) and contain no structure.

as Bs1(5830)0 → B∗+(→ B+γ)K−, B∗
s2(5840)0 → B∗+(→ B+γ)K− and B∗

s2(5840)0→ B+K−, re-
spectively. The first two peaks are shifted down by MB∗+ − MB+ = 45.0 ± 0.4 MeV/c2 from to their
nominal Q-values due to the unreconstructed photons in the B∗+ decays.

The yields of the three peaks are obtained through a fit of the Q distribution in the range
shown. Both the Bs1(5830)0 → B∗+K− and the B∗

s2(5840)0 → B∗+K− signals are described by
Gaussian functions. The B∗

s2(5840)0→ B+K− signal is parametrised as a relativistic Breit-Wigner
function convolved with a Gaussian function to account for the detector resolution. This resolution
is fixed to the value determined in the simulation (' 1 MeV/c2). The background is modelled by
the function f (Q) = QαeβQ, where α and β are free parameters. The yields of the three peaks are
found to be approximately 2,900, 1,200 and 12,700, respectively. The mass and width parameters
are in agreement with those obtained in ref. [30]. Only the third peak, corresponding to the fully
reconstructed B∗

s2(5840)0 meson, is used in the calibration of the mistag probability.
Since the B∗

s2(5840)0 meson is flavour-tagged by the charges of the final-state particles of
its decay, the mistag fraction can be determined by comparing the tagging decision of the SSK
algorithm with the known B∗

s2(5840)0 flavour. From the fit of the Q distribution, sWeights are
obtained and used to statistically disentangle the signal from the combinatorial background. The
fit is performed separately on the Q distributions of correctly and incorrectly tagged candidates, to
allow for different background fractions in the two categories. In these fits the mass parameters
are fixed to the values obtained in the fit to all candidates. In figure 5 the η distribution of signal
candidates and the mistag fraction ω in bins of η are shown. Each bin of η has an average predicted
mistag 〈η〉. The (〈η〉, ω) pairs are fitted with the calibration function of eq. (4.4) to determine the
calibration parameters.
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Figure 5. (Left) Background-subtracted η distribution of B∗
s2(5840)0→ B+K− candidates in data; the

vertical dotted lines show the binning used in the calibration. (Right) Measured average mistag fraction ω in
bins of mistag probability η (black points), with the result of a linear fit superimposed (solid black line). The
fit has χ2/ndf = 0.8. The shaded areas correspond to the 68% and 95% confidence level regions of the fit.

The calibration parameters depend on the kinematics of the reconstructed B meson, and in
particular on its transverse momentum. In order to test whether the calibrations are consistent
between the two samples, the B∗

s2(5840)0 pT spectrum must be reweighted to match that of the B0
s

candidates seen in B0
s→ D−s π

+ decays. This is done for each of the four B+ decay modes separately.
Due to the requirement of a higher minimum pT of the B∗

s2(5840)0 candidates, 2.5GeV/c, compared
to 2.0GeV/c for the B0

s candidates, a 1% difference in the mean value of the pT spectra remains.
This is covered by the systematic uncertainties discussed in section 6, which account for differences
in the mean transverse momenta of B mesons of up to 30%. The calibration parameters obtained
from the full sample of weighted B∗

s2(5840)0 decays are

p0 − 〈η〉 = 0.012 ± 0.008 (stat),
p1 = 0.813 ± 0.123 (stat),

where 〈η〉 is fixed to the value 0.441. They are consistent within statistical uncertainties with the
calibration parameters obtained with B0

s→ D−s π
+ decays.

The systematic uncertainties of the calibration parameters are determined by repeating the
calibration under different conditions. In each case the fit to the Q distribution is repeated and the
sWeights are calculated. A summary of all of the systematic uncertainties is given in table 2. To
test for potential differences in the signal model for correctly and incorrectly tagged candidates, the
fit to the Q distribution is repeated for both subsets of B∗

s2(5840)0 candidates without fixing the
mass parameters to the values obtained in the fit to all candidates. The background fit model is
tested by fitting the Q distribution of correctly and incorrectly tagged candidates with the default
background model replaced by a second-order polynomial, and with the fit range limited to 40 <

Q < 100 MeV/c2. The mass resolution for B∗
s2(5840)0 is varied by ±10% to account for differences

in resolution between data and simulation. Potential biases due to the B∗
s2(5840)0 signal selection

are studied by varying the requirements on the pT or on the particle identification probability of
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Table 2. Systematic uncertainties of the parameters p0 and p1 obtained in the calibration with B∗
s2(5840)0→

B+K− decays.
Source σp0 σp1

Signal model 0.0063 0.012
Background model 0.0008 0.054
K from B∗

s2(5840)0 pT selection 0.0028 0.039
K from B∗

s2(5840)0 particle identification 0.0025 0.015

Sum in quadrature 0.0074 0.069

the kaon produced in the B∗
s2(5840)0 decay and repeating the full calibration procedure. To test

the background subtraction procedure, an alternative method of performing the calibration is used.
The sample of tagged candidates is divided into bins of η, and, in each bin, the Q distributions of
correctly and incorrectly tagged candidates are fitted separately. The measured signal yields of the
B∗
s2(5840)0 peak are used to calculate the mistag fraction ω which is plotted against the average η

of each bin. The calibration parameters obtained are in agreement within statistical uncertainties
with those determined from the default method.

The variation of the calibration parameters with data-taking conditions is checked by repeating
the calibration procedure after splitting the candidate sample according to the data-taking period and
magnet polarity. No significant variation is observed. The calibration is also repeated separately on
each of the four B+ decay modes, after weighting the transverse momentum spectra. The parameters
obtained agree within statistical uncertainties.

6 Portability to different decay channels

The tagging calibration parameters will in general depend on the kinematics of the reconstructed
B candidate and on the properties of the event. The largest dependences are found to be on the pT
of the B candidate and on the track multiplicity of the event. The calibration parameters measured
in B0

s → D−s π
+ and B∗

s2(5840)0→ B+K− decays can thus be used in decays which have similar
distributions in these variables. This is not necessarily the case for all B0

s decay modes, due
to different trigger and selection requirements. Three representative B0

s decay modes have been
studied: B0

s → J/ψ φ, B0
s → D+s D−s and B0

s → φφ. The sample of B0
s → D−s π

+ candidates is
weighted to match the B meson pT and event track multiplicity distributions of each of the three
other decay modes in turn, with the weighting done for each variable separately. For each of the
weighted samples, p0 and p1 are measured and compared to those of the unweighted sample. For
each calibration parameter, a systematic uncertainty due to decay mode dependence is assigned,
equal to half of the largest difference seen between the unweighted and weighted B0

s → D−s π
+

samples. The systematic uncertainties obtained are listed in table 3. The dominant effect is due to
the weighting to match the pT distribution.
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Table 3. Systematic uncertainties of the parameters p0 and p1 related to the portability of the calibration to
different decay modes.

Source σp0 σp1

Weighting in pT 0.0011 0.030
Weighting in track multiplicity 0.0006 0.006
Sum in quadrature 0.0012 0.031

7 Flavour-tagging asymmetry

The calibration parameters depend on the initial flavour of the B0
s meson, due to the different

interaction cross-sections of K+ and K− with matter. Therefore, additional calibration parameters,
∆p0 and ∆p1, are introduced to take this flavour dependence into account. The mistag fraction of
mesons produced with initial flavour B0

s (accompanied by a K+) and mesons produced with initial
flavour B0

s (accompanied by a K−) are given by

ω(η) = p0 +
∆p0

2
+

(
p1 +

∆p1
2

)
(η − 〈η〉) and (7.1)

ω(η) = p0 −
∆p0

2
+

(
p1 −

∆p1
2

)
(η − 〈η〉), (7.2)

respectively. The statistical power of the B0
s → D−s π

+ data sample is not sufficient to determine
these additional parameters, so they are studiedwith D−s → φ(→ K+K−)π− decays. The D−s mesons
produced in the primary interaction are also accompanied by charged kaons produced in the c quark
hadronisation. The SSK algorithm can tag the initial flavour of the D−s candidate, with a tagging
decision opposite to the case of B0

s mesons. The D−s meson is charged and does not oscillate, so its
initial flavour can be determined from the charge of the decay products. This can then be compared
to the SSK tagging decision, and a calibration can be performed with the same method used with
B∗
s2(5840)0→ B+K− decays. The ∆p0 and ∆p1 parameters can be determined by the difference in

the calibration parameters obtained with D−s and D+s decays.
A high-purity sample of D−s → φ(→ K+K−)π− candidates is selected in a sample correspond-

ing to 3 fb−1 of data taken at centre-of-mass energies of 7 and 8 TeV by applying the following
criteria. The momenta of the final-state particles must be larger than 2GeV/c and their transverse
momenta larger than 250MeV/c. The tracks must be significantly displaced from the primary
vertex. Their associated particle type information is required to be consistent with a kaon or a pion,
as appropriate. The K+K− invariant mass must be within 7MeV/c2 of the known φ mass. The
φ and the D−s reconstructed vertices must be of good quality. The momentum vector of the D−s
candidate must be consistent with the displacement vector between the primary vertex and the D−s
decay vertex. Only candidates with a reconstructed D−s mass in the range 1920–2040MeV/c2 are
considered. The resulting D−s mass distribution is fitted by a sum of two Gaussian functions with a
common mean to describe the signal component, and an exponential function for the combinatorial
background (figure 6). In total about 784,000 signal candidates are reconstructed with a background
fraction below 5%. From the mass fit, sWeights are calculated to subtract the background in the η
distributions of correctly and incorrectly tagged D−s candidates. Differences between the D−s and
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Figure 6. Mass distribution of D−s → φ(→ K+K−)π− candidates with fit projections overlaid. Data points
(black markers) correspond to the D−s candidates selected in the 3 fb−1 data sample. The total fit function
and its components are overlaid (see legend).

the B0
s kinematics are accounted for by weighting the D−s candidates to match the B0

s transverse
momentum distribution measured with B0

s → D−s π
+ decays. The average mistag probability in

eq. (7.3) is fixed to the value found for B0
s→ D−s π

+ decays, 0.4377. The parameters related to the
flavour-tagging asymmetries are found to be

∆p0 = −0.0163 ± 0.0022 (stat) ± 0.0030 (syst),
∆p1 = −0.031 ± 0.025 (stat) ± 0.045 (syst),
∆εtag = (0.17 ± 0.11 (stat) ± 0.68 (syst))%, (7.3)

where ∆εtag ≡ εtag(D−s ) − εtag(D+s ) = εtag(B0
s ) − εtag(B0

s).
A systematic uncertainty is computed by taking the maximum of the differences seen when

comparing these calibration parameters and those obtained by weighting the transverse momentum
distribution of the D−s candidates to match the following B0

s decay modes: B0
s→ J/ψ φ, B0

s → φφ

B0
s → D+s D−s . These uncertainties are 0.0030 and 0.040 for ∆p0 and ∆p1 respectively, and 0.66%

for ∆εtag. The same procedure is applied to assess the systematic uncertainty associated with
the different track multiplicity distribution between D+s and B0

s decays (0.0002 and 0.020 for ∆p0
and ∆p1 respectively, and 0.15% for ∆εtag). The systematic uncertainty in eq. (7.3) is the sum in
quadrature of these two sources of uncertainties.

While the shift of the slope parameter ∆p1 is compatible with zero, there is a significant overall
shift, ∆p0, of about 1.6% towards higher mistag rates for B0

s particles. This can be explained by
the higher interaction rate in matter of K− particles compared to K+ particles. These values are
consistent with results obtained in simulated samples of B0

s→ D−s π
+ and B0

s→ J/ψ φ decays.
The B∗

s2(5840)0 decays can also be used to measure the values of ∆p0, ∆p1 and ∆εtag. The
B∗
s2(5840)0 candidates are split into two samples according to the final-state charges, B+K− and

B−K+, and the calibration described in section 5 is performed in the two samples. The differences
of the calibration parameters between B∗

s2(5840)0 and B
∗

s2(5840)0 are ∆p0 = −0.01 ± 0.02 (stat)
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and ∆p1 = −0.4 ± 0.2 (stat), and ∆εtag = (−1.4 ± 1.3 (stat))%. They are compatible with the shifts
measured in the prompt D−s meson sample.

8 Calibration summary

The final calibration parameters are computed as the weighted average of the results obtained in
B0
s→ D−s π

+ and B∗
s2(5840)0→ B+K− decays, fixing 〈η〉 = 0.4377 and considering the systematic

uncertainties reported in tables 1 and 2 to be uncorrelated. The uncertainties relating to the
portability of the calibrations to different B0

s decays as reported in table 3 are considered to be
fully correlated. For the flavour-tagging asymmetries, only the results measured in D−s decays are
considered. The final values are

〈η〉 = 0.4377,
p0 − 〈η〉 = 0.0070 ± 0.0039 (stat) ± 0.0035 (syst),

p1 = 0.925 ± 0.061 (stat) ± 0.059 (syst),
∆p0 = −0.0163 ± 0.0022 (stat) ± 0.0030 (syst),
∆p1 = −0.031 ± 0.025 (stat) ± 0.045 (syst),
∆εtag = (0.17 ± 0.11 (stat) ± 0.68 (syst))%.

9 Possible application to OS kaons

The two-step neural-network approach of the SSK tagging algorithm presented here is a promising
method for improving any tagging algorithm which needs to combine information from multiple
tagging tracks. A natural candidate for the application of this method is the OS kaon tagging
algorithm, which searches for kaons from b → c → s transitions of the OS b hadron. The current
implementation of the OS kaon algorithm selects tracks with large impact parameters with respect to
the primary vertex associated with the signal B meson [6]. This selection gives a tagging efficiency
of about 15%. A preliminary implementation of a neural-network-based algorithm shows that
loosening the impact parameter requirements for the track candidates and using the new approach
increases the tagging efficiency to about 70% and significantly improves the effective tagging
efficiency of B+ and B0 mesons. However, the inclusion of kaons with smaller impact parameters
results in up to 10% of the signal fragmentation tracks being assigned as OS kaon candidates.
As the correlation of signal fragmentation kaons with the signal B flavour is different for B+, B0

and B0
s mesons, this contamination of SS kaon tracks introduces a dependence of the calibration

parameters on the B meson species, and the gain in tagging performance observed in B+ and B0 is
not reproduced in B0

s mesons.

10 Conclusion

A new algorithm for the determination of the flavour of B0
s mesons at production has been presented.

The algorithm is based on two neural networks, the first trained to select charged kaons produced in
association with the B0

s meson, and the second to combine the kaon charges to assign the B0
s flavour,
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and to estimate the probability of an incorrect flavour assignment. The algorithm is calibrated
with data corresponding to an integrated luminosity of 3 fb−1 collected by the LHCb experiment in
proton-proton collisions at 7 and 8 TeV centre-of-mass energies. The calibration is performed in
two ways: by resolving the B0

s–B0
s flavour oscillations in B0

s→ D−s π
+ decays, and, for the first time,

by analysing flavour-specific B∗
s2(5840)0→ B+K− strong decays.

The tagging power of the new algorithm as measured in B0
s → D−s π

+ decays is (1.80 ±
0.19 (stat) ± 0.18 (syst))%, a significant improvement over the tagging power of 1.2% of the
previous implementation used at the LHCb experiment. This new algorithm represents important
progress for many analyses aiming to make high-precision measurements of B0

s–B0
s mixing and CP

asymmetries of B0
s decays. Its performance has been demonstrated in several recent measurements

by the LHCb collaboration [2, 3, 27, 31, 32].
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