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Abstract. The most direct signature of electron localisation is the tendency of an

electron in a many-body system to exclude other same-spin electrons from its vicinity.

By applying this concept directly to the exact many-body wavefunction, we find that

localisation can vary considerably between different ground-state systems, and can also

be strongly disrupted, as a function of time, when a system is driven by an applied

electric field. We use this measure to assess the well-known electron localisation

function (ELF), both in its approximate single-particle form (often applied within

density-functional theory) and its full many-particle form. The full ELF always gives an

excellent description of localisation, but the approximate ELF fails in time-dependent

situations, even when the exact Kohn-Sham orbitals are employed.
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1. Introduction

Density functional theory (DFT) [1] replaces the many-body (MB) wavefunction with

the electron density as its fundamental variable, making electronic structure problems

computationally tractable. However, this transformation provides new challenges, as in

the non-interacting world of Kohn-Sham (KS) electrons, the many-body behaviour of

electrons is concealed within the exchange-correlation (xc) potential [2].

Electron localisation, describing the tendency of an electron to exclude other same-

spin electrons from its vicinity (i.e. position entanglement of like-spin electrons), is one

such property [3, 4]. Although a commonly used concept, it is not always well defined.

We choose to start from the idea that localised electrons tend to avoid one another,

whereas delocalised electrons will share the same region of space. Localisation is partly

driven by Pauli exclusion, which acts to localise like-spin electrons in separate regions.

The Coulomb interaction further enhances the tendency to localise [5]. The electrons’

attempts to avoid each other increase the kinetic energy, which, however, is minimized

by spreading electrons over as large a volume as possible. It is the balance between

these factors that makes electron localisation challenging to quantify.

An understanding of electron localisation is useful chemically, placing the

ubiquitous concepts of chemical bonds and localised electron pairs on a formal footing

[6]. Although measures of localisation provide an understanding of bonds and electron

pairs made up of electrons of opposite spin, these details are revealed by looking at the

localisation of like-spin electrons, which provides the regions in which localised opposite-

spin electron pairs can be found. Localisation also describes a fundamental aspect

of electron correlation that approximate DFT functionals should take into account

[7, 8, 9, 10, 11, 11].

We stress that localisation is a true many-body property of electrons, dependent on

the positions of all electrons, and not accessible through the spatial character of any

one KS orbital. Although many early efforts focused on the extent of molecular or KS

orbitals, it was soon realized that these orbitals are not unique and that quite different

choices could be selected [4].

In this paper, we explore the variation in localisation for a range of ground-state and

time-dependent systems. To assess the merits of different descriptions of localisation, we

introduce a comprehensive measure, calculated from the exact many-body wavefunction.

Using this, we evaluate the reliability of the usual formulation of the electron localisation

function (ELF), often used to characterize electron localisation in DFT calculations [4].

We find that this ELF correctly describes localisation across a range of ground-state

systems, but fails in time-dependent situations where strong delocalisation occurs due

to electron collisions. These errors are not present, however, if the ELF is formulated

from the true pair density.
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2. Measures of localisation

To calculate our measure, we note that in localised systems each electron will avoid the

others by tending to stay in its own region of space. We first partition the system into

distinct regions, each containing charge corresponding to one electron, and examine the

actual distribution of theN electrons among these regions. To simplify our definition, we

consider a wavefunction with only one type of spin. The probability that each of the N

electrons is in a different region is calculated using a mask function M . M(r1, . . . , rN) is

defined as 1 where r1, . . . , rN all lie in distinct regions, and 0 otherwise, and interrogates

the probability of such a situation via the N -electron wavefunction Ψ. The probability

is then given by

p =

∫

M(r1, . . . , rN) |Ψ(r1, . . . , rN)|
2 d3r1 . . . d

3rN . (1)

The inclusion of spin replaces the wavefunction with the appropriate N -body same-spin

density matrix.

Equation 1 fully defines our measure once a set of one-electron regions is provided

via M . In the present paper we study one-dimensional finite systems, where the one-

electron regions inM are straightforwardly identified from the cumulative integral of the

electron density: starting from one edge, the system is simply divided into N regions,

each containing the charge of one electron. More generally, the set of regions which

most faithfully represents how the electrons are localised in the system would be that

which maximises Eq. 1 ‖.

To form our regional electron localisation measure (RELM), we scale p with

reference to the probability p0 = N !/NN of finding exactly one electron in each region

for an ideal delocalised and uncorrelated state:

RELM =
p− p0
1− p0

. (2)

This makes our measure 0 when a system is ideally delocalised, and 1 when fully

localised. As the probability of simultaneously finding only one electron in each region

increases, so does our measure of localisation. As with the ELF, our measure is

calculated for each spin index independently.

Of course, in most cases the MB wavefunction, on which the RELM relies, is too

expensive to calculate. The traditional method of approximating the localisation in

a system is the ELF of Becke and Edgecombe [3]. The following reference provides

a comprehensive review of the ELF [4]. Originally developed for Hartree-Fock (HF)

calculations, the method can also be applied to Kohn-Sham orbitals. The ELF is based

on the quantity Dσ, defined by the Taylor series

ρσσCond (r, s) =
Dσ (r)s

2

d
+O(s3), (3)

‖ In three dimensions, this remains a complex task, but, pragmatically, the choice of regions can be

advised by physical considerations: the locations of minima in the charge density, for instance, provide

suggestions for the edges of these regions [12].
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where ρσσCond is a conditional probability, the probability given that an electron has been

found at position r that a second electron will be found at distance s from this position.

d is the spatial dimensionality of the system and σ is a spin index. Dσ characterises the

probability of finding a second (same-spin) electron very close to the reference electron

and is a measure of localisation in its own right.

Later work by Dobson [5] provides an equivalent definition of Dσ (r) to that given

in Eq. 3, allowing this quantity to be calculated directly from the same-spin pair density,

using the equation

Dσ (r) =

[

∇2
r
′nσ

2 (r, r
′)
]

r
′=r

2nσ(r)
, (4)

where nσ
2 (r, r

′) is the pair density. Using this expression, it is possible to calculate the

ELF directly from the wavefunction; we term this the “exact ELF”.

As Dσ has a strong dependence on the local density, it is not easily interpreted

directly. To produce the ELF, Becke and Edgecombe scaled Dσ as

ELF (r) =
1

1 +
(

Dσ(r)
Dσ,H(r)

)2 . (5)

This expression compares the local value of Dσ with that of the Hartree-Fock

homogeneous electron gas of the same local density, Dσ,H (a convenient reference system

against which to compare the actual value of Dσ). Hence, ELF ranges from zero to one,

where 1 represents total localisation and 0.5 represents the degree of localisation in a

HEG of the same density.

In most systems, the pair density is not available, so the exact definition of Eq. 4

can not be used. Becke and Edgecombe found an approximate expression to calculate

Dσ in terms of single-particle orbitals φ:

Dσ≈

Nσ
∑

i

|∇φσ
i |

2 −
1

4

|∇nσ|
2

nσ

, (6)

where nσ is the electronic density. We use Hartree atomic units (a.u.) here and

henceforth. This equation is exact in a HF treatment, and is also commonly applied to

KS orbitals [13]. We term this the “approximate ELF”.

As shown, Becke and Edgecombe’s approach relies on two main assumptions: that

Dσ (r) is an effective local description of localisation, and that the approximation to it

given by Eq. 6 is satisfactory. If either of these assumptions fail, the ELF will give a

misleading picture of electronic behaviour. ELF calculations have been widely used, but

less is known about their accuracy. Previous work on molecules has suggested that ELF

can perform poorly for DFT calculations where correlation is strong [14], by comparison

with the accurate configuration interaction (CI) method. It remains unclear if this is

caused by approximate ELF’s reliance on a single Slater determinant, or is instead

due to approximate exchange-correlation potentials leading to an incorrect degree of

localisation.
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ELF is a local measure of localisation and in order to look at the localisation

of systems as a whole we define the average ELF, weighted according to the density,

〈ELF〉 = 1
N

∫

ELF (r)n (r) d3r , which can take values between zero and one.

3. Calculations

3.1. Approach

All the results presented in this paper were calculated using the iDEA code [15].

The Schrödinger equation is solved exactly for 1D systems of spinless electrons to

find the exchange-antisymmetric MB wavefunction, both for ground-state and for time

propagation after an electric field is applied. This provides the charge density for all

our model systems. As is appropriate in 1D, we use a softened Coulomb interaction

[15]. Spinless electrons maximise the richness of exchange and correlation for a given

computational effort, as each KS electron occupies a distinct KS orbital. From the MB

density, the exact KS orbitals that reproduce the density are calculated [15].

When using DFT to evaluate properties, it is often unclear which errors are intrinsic

to the method being applied and which are caused by failures of the xc potential in the

underlying DFT calculation. The failure of common xc potentials to adequately localise

electrons is well known [16, 11, 17]. Access to the exact KS orbitals enables us to assess

these approximations directly and understand which methodologies would fail even if

the universal functional was known.

When forming the ELF it is important that the reference system be chosen to

have the correct characteristics, as noted in [18]. Specifically, the Dσ,H function for

the Hartree-Fock homogeneous gas of spinless electrons in one dimension is 1
6
π2n3.

In an earlier paper a similar ELF for one-dimensional systems, constructed in an

analogous manner, was applied to coupled electron-nuclear wavefunctions [19]. The

“localisation regions” used to define our RELM localisation measure are (as noted above)

straightforward, though it is, of course, essential to update them as a function of time

in a time-dependent system.

3.2. Ground-state localisation

First we look at a family of three-electron double-well potentials and calculate the

localisation of their ground states. These external potentials are defined as

V (x) = αx10 − βx4. (7)

A constant value of α = 5× 10−11 a.u. was used, while the value of β was varied: when

β = 0 there is no barrier in the potential, and as it is increased the height of the barrier

grows. Three examples of the potentials and densities for different values of β are shown

in Fig. 1. This family of wells is interesting as the double-well potential only provides

two natural sites for the three electrons to occupy.

Fig. 1(a) shows some of the ground-state potentials that make up this family and

the effects of the potential barrier on the electrons. At first, the middle electron stays in



Electron localisation in static and time-dependent one-dimensional model systems 6

0.0

0.2

0.4

0.6

(a) i
V (x)

n (x)

0.0

0.2

0.4

V
(x
),
n
(x
)
(a
.u
.)

ii

− 15 − 10 − 5 0 5 10 15

x (a.u.)

0.0

0.2

0.4 iii

0.0 0.5 1.0 1.5

Barrier height parameter β (10− 4)

0.4

0.6

0.8

1.0

L
o
c
a
liz
a
ti
o
n

ELFApprox.

RELM

ELFExact

(b)

i ii iii

Figure 1. 3-electron double wells — (a) Plots of the external potentials (dashed

blue) of three selected wells as the barrier height is increased. The ground-state charge

densities (solid green) of these potentials are shown. The localisation regions used in the

RELM calculations are also shown (dotted black); each contains exactly one electron’s

worth of charge. (b) The localisation of the family of potentials, calculated using the

three methods introduced – RELM, exact average ELF and approximate average ELF.

All three measures agree how the barrier influences localisation. Triangles indicate the

values of β for which the potentials are plotted in (a).

the barrier region owing to the Coulomb repulsion, as its height increases in (i) to (ii).

As the presence of the barrier disperses the central electron across the system, it also

drives the outer electrons toward the boundaries of the system, acting to increase the

localisation of the system rather than decrease it (see Fig. 1(b)). As the strength of the

barrier is increased further, it becomes energetically favourable for the central electron

to move into the two side wells, as in (iii), reducing localisation.

In Fig. 1(b), the three measures agree on how the localisation of this family of

potentials varies. The similarity between RELM and the exact average ELF is striking

as the two methods are based on different mathematical interpretations of localisation:

RELM is scaled probabilistically and ELF is scaled with respect to the HEG as reference.

Approximating Dσ does lead to a systematic lowering of the calculated 〈ELF〉, but still

yields the correct trend across the range of localisations calculated.

We next investigate the information contained in Dσ in more detail. Fig. 2 shows

an example plot for a two electron system (specified in the caption), demonstrating the

approximation made in Eq. 3 in practice. The conditional probability ρσσCond is plotted
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for a chosen value of r. As demanded by the Pauli exclusion principle, the probability

of finding a second electron at the same position (s = 0) is zero. The function then

shows a peak at the most likely separation the second electron is found at (we would

normally expect as many peaks as there are remaining electrons in the system).

0 2 4 6 8 10 12 14

Electron separation s (a.u.)

0.00

0.02

0.04

0.06

0.08

0.10

0.12
ρ
σ
σ
(x

1
,s
)

Exact

ELF level

0.0 0.5 1.0 1.5
0.000

0.001

Figure 2. A plot of the conditional probability ρσσ
Cond

(x1, s) against electron

separation s where x1 is fixed at the density maximum (2.64 a.u.) for the two-electron

ground state of the potential of Fig. 1(a)(i). The conditional probability (blue solid) is

plotted with the ELF level approximation to it (green dashed). Insert: magnification of

short s behaviour. Dσ does not contain any long range information and only correctly

characterises short distances, in this example only ∼ 0.6 a.u. Our strong ELF results

suggest that this neglected long-range behaviour is not important for localisation.

Also shown on the plot is the approximated version of this conditional probability

that is used in ELF calculations. As shown in Eq. 3, the ELF approximates this

conditional probability as Dσ (r) s
2/d and this is shown in the plot where Dσ has been

calculated using Eq. 4. As shown in the inset in Fig. 2, this approximation is only

effective over very short electron separations. RELM calculations use information over

all s, so the agreement between our ELF and RELM calculations suggests that this

longer-range s behaviour is not an important ingredient for a localisation measure to

contain.

3.3. Time-dependent localisation

Next we look at a time-dependent system. As first derived by Dobson [20], in the time-

dependent regime the approximate ELF is modified by the addition of an extra term to

Eq. 6, producing the time-dependent ELF (TDELF) [21]. This equation becomes

Dσ≈
Nσ
∑

i

|∇φσ
i |

2 −
1

4

|∇nσ|
2

nσ

−
jσ

2

nσ

, (8)

where jσ is the current density.

For time-dependence, we return to the potential well having β = 0, shown in

Fig. 1(a)(i), and this time place two electrons in it. As before, we find the ground-state
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wavefunction of the well. Then at time t = 0 we apply a strong uniform d.c. electric field

(potential −0.1x), driving the electrons strongly towards the right-hand well, causing

them to “collide”. We also look at the non-interacting system with Pauli exclusion but

no Coulomb interaction. We note that Coulomb interaction enhances localisation, and

if the interaction strength is artificially enhanced the system is driven towards total

localisation (RELM=1).
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Figure 3. Localisation measures as a function of time for two electrons in the

perturbed x10 well of Fig. 1(a)(i). (a) The interacting system. RELM (solid blue) and

exact average ELF (dashed green) continue to show good agreement. The expectation

value of the electron separation (long dashed red) is also shown on the second axis

and shows similar features. (b) The same plot for the non-interacting system. The

behaviour of the system is similar, showing that Pauli exclusion is the main driver of

localisation. RELM and ELF differ more significantly

Fig. 3 (a) shows how the localisation of the interacting electrons changes during

the 80 a.u. of the simulation. Broadly, these results show strong changes in localisation

over time. This is in contrast to the notion that localisation is a persistent characteristic

of a system.

On both plots the expectation value of the electron separation 〈ŝ〉 is shown. The

large localisation drops occur around the two electrons becoming closer together. (These

rapid drops in localisation also appear in other systems that we have investigated and

seem to be a common feature of electron collisions.) For our systems, 〈ŝ〉 seems to be a

fair indicator of localisation in its own right.
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Figure 4. The curves in Fig. 3 for a shorter time interval, with the addition of

approximate-ELF calculations based on the exact KS potential. For the interacting

system in (a), the average approximate TDELF (dotted-dashed purple) and the

GS approximate ELF (dotted orange) both delocalise the electrons too soon. If

RELM is calculated from a KS Slater determinant (dotted black) its value is slightly

underestimated. The TDELF, though an improvement on the original approximation,

has a large spurious drop in localisation around t = 5 a.u. As shown in (b), this

approximation performs better without interaction as the problematic drop is weaker.

Without interaction, calculating RELM from a KS Slater determinant is exact and the

two RELM curves coincide.

Fig. 3(b) shows the calculation repeated with no Coulomb interaction. The

behaviour is broadly similar, but interaction seems to exaggerate some features and

suppresses others. This comparison strengthens the argument that Pauli exclusion is

the main driver of localisation.

Again, for both plots RELM and exact ELF show the same trends, although both

measures show some unique features. The close agreement between the two measures

still holds in a time-dependent context. We also note the agreement between exact ELF

and RELM is reduced when the Coulomb interaction is turned off.

Fig. 4 shows approximate ELF calculations for the same systems: both the original

formulation and the time-dependent extension. (These are shown for a shorter time

interval due to the numerical challenge in calculating exact KS orbitals for later

timesteps.) For the interacting system, the original (time-independent) ELF formulation
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performs very poorly and for most of the calculation shows the system as erroneously

delocalised. The extra current term in the TDELF makes a significant improvement. At

around 5 a.u., however, it too shows an unphysical drop in localisation which analysis

shows to occur in the left-hand well, predominantly associated with a large increase of

the first term of Eq. 8 in the left half of the system which is not compensated for by the

other terms. Instead, the real system delocalises both electrons at 12 a.u., later in the

simulation. Clearly, the TDELF’s ignorance of correlation (beyond Pauli exclusion) in

the wavefunction is limiting its description of localisation.

The approximate TDELF performs better when there is no electron-electron

interaction [Fig. 4(b)]. It still shows a slow drop when the localisation is staying

constant, but this erroneous drop is significantly weaker.

Additionally, we calculate RELM from a Slater determinant of the KS orbitals, the

wavefunction of the fictitious non-interacting KS electrons. The strong correspondence

again demonstrates that Pauli exclusion is the main driver of localisation. This

approximation is exact when there is no electron interaction, but is slightly weaker

when the electrons are interacting. This approximation is more successful than

the approximate ELF calculations, which assume that the KS orbitals obey the HF

equations.

One failure of the present approximation, concealed in the definition of ELF, is that

it is not positive definite, leading to non-physical negative values of Dσ. If these values

are set to zero, a small improvement in accuracy is achieved. Negative values should

serve as a warning that the method is not performing reliably ¶.

4. Conclusions

We have studied electron localisation, which provides insight into important aspects of

many-electron correlation, using a variety of measures across a range of ground-state

and time-dependent systems. Our results show the strength of the ELF approach,

despite its focus on short range exclusion. We further find that the usual approximate

ELF provides good results for a range of ground-state systems, notwithstanding its

simplicity and neglect of correlation, allowing the extraction of physical meaning from

a simple measure based on one-electron wavefunctions. In contrast, time-dependent

systems can often become surprisingly delocalised as electrons collide with one another,

and in this case the simple approximate ELF is no longer adequate. When many-electron

excited states are being strongly explored, improved approximate localisation measures

are required.
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