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Abstract 11 
 12 

We investigated the ability of non-metabolizing Bacillus subtilis, Shewanella oneidensis 13 

MR-1, and Geobacter sulfurreducens bacterial species to adsorb mercury in the absence and 14 

presence of Suwanee River fulvic acid (FA). Bulk adsorption and X-ray absorption spectroscopy 15 

(XAS) experiments were conducted at three pH conditions, and the results indicate that the 16 

presence of FA decreases the extent of Hg adsorption to biomass under all of the pH conditions 17 

studied. Hg XAS results show that the presence of FA does not alter the binding environment of 18 

Hg adsorbed onto the biomass, regardless of pH or FA concentration, indicating that ternary 19 

bacteria-Hg-FA complexes do not form to an appreciable extent under the experimental conditions, 20 

and that Hg binding on the bacteria is dominated by sulfhydryl binding. We use the experimental 21 

results to calculate apparent binding constants for Hg onto both the bacteria and the FA. The 22 

calculations yield similar binding constants for Hg onto each of the bacterial species studied. The 23 

calculations also indicate similar binding constants for Hg-bacteria and Hg-FA complexes, and the 24 

values of these binding constants suggest a high degree of covalent bonding in each type of 25 

complex, likely due to the presence of significant concentrations of sulfhydryl functional groups 26 

on each. S XAS confirms the presence of sulfhydryl sites on both the FA and bacterial cells, and 27 

demonstrates the presence of a wide range of S moieties on the FA in contrast to the bacterial 28 

biomass, whose S sites are dominated by thiols. Our results suggest that although FA can compete 29 
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with bacterial binding sites for aqueous Hg, because of the relatively similar binding constants for 30 

the types of sorbents, the competition is not dominated by either bacteria or FA unless the 31 

concentration of one type of site greatly exceeds that of the other. 32 

 33 

Introduction  34 

Heavy metals, such as Hg, adsorb to proton-active functional groups on bacterial cell 35 

envelopes (e.g., Beveridge and Murray, 1976; Fortin and Beveridge, 1997; Daughney et al., 2002; 36 

Fein, 2006; Kenney and Fein, 2011), affecting the speciation and distribution of these metals in 37 

geologic systems. Recent studies (e.g., Guiné et al., 2006; Mishra et al. 2007; 2009; 2010; 2011; 38 

Pokrovsky et al., 2012; Song et al., 2012; Colombo et al., 2013) have shown that at least some 39 

bacterial cell envelopes contain proton-active sulfhydryl functional groups. Because Hg binds 40 

readily and strongly to sulfur compounds (Compeau and Bartha, 1987; Winfrey and Rudd, 1990; 41 

Benoit et al., 1999), bacterial adsorption of Hg may dramatically affect the distribution, transport 42 

and fate of Hg in geologic systems. 43 

Natural organic matter (NOM) is present in nearly every near-surface geologic system, and 44 

complexation reactions between metals and NOM can dramatically change the behavior of the 45 

metals in the environment (McDowell, 2003; Ravichandran, 2004). NOM molecules contain a 46 

range of functional group types, including carboxyl, phenol, amino, and sulfhydryl groups, that 47 

have the potential to create highly stable complexes with metal ions across the pH range (Ephraim, 48 

1992; Ravichandran et al., 1999; Drexel et al., 2002; Haitzer et al., 2002; Croué et al., 2003; 49 

Ravichandran, 2004). Hg binds strongly to the sulfhydryl groups present within the NOM structure 50 

(Dong et al., 2011; Muresan et al., 2011). The relative thermodynamic stabilities of Hg-NOM and 51 

Hg-bacteria complexes are not well known. Depending on these relative stabilities, the formation 52 
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of metal-NOM complexes may decrease adsorption of Hg to bacteria cell envelopes due to a 53 

competitive ligand effect, or under certain conditions may increase adsorption of Hg to bacteria 54 

due to ternary complexation with NOM. For example, investigating Pb, Cu, and Ni separately, 55 

Borrok et al. (2007) found that ternary metal-FA-bacteria complexes form, and that the importance 56 

of the complexes is strongly affected by pH. Conversely, Wightman and Fein (2001) found that 57 

the presence of NOM decreases the amount of Cd adsorbed to bacteria under mid- and high-pH 58 

conditions, and that the presence of Cd does not affect the adsorption of NOM to bacteria, 59 

suggesting that ternary complexes do not occur. No studies have been conducted to date to 60 

determine the effects of NOM on Hg binding to bacteria. However, because Hg forms strong 61 

complexes both with cell envelopes (Daughney et al., 2002; Mishra et al., 2011; Dunham-62 

Cheatham et al.) and NOM (Loux et al., 1998; Ravichandran, 2004; Skyllberg et al., 2006), it is 63 

likely that significant changes to Hg adsorption behavior occur in the presence of NOM.  64 

In this study, we use bulk adsorption and Hg X-ray absorption spectroscopy (XAS) 65 

experiments, conducted as a function of pH and FA concentration, using intact non-metabolizing 66 

bacterial cells to study Hg binding onto three different bacterial species and to compare the ability 67 

of bacteria to adsorb mercury in the presence and absence of a fulvic acid (FA). We use the 68 

experimental results to calculate apparent stability constants for Hg-bacteria and Hg-FA 69 

complexes, allowing for quantitative modeling of the competitive binding that can occur between 70 

bacteria and FA in more complex settings. This study examined both Gram-positive and Gram-71 

negative bacterial species in order to determine if cell envelope structure affects the binding 72 

reactions, and one species was a Hg methylator, which we examined in order to determine if the 73 

extent or nature of Hg binding onto that species differed from that exhibited by the non-74 

methylators.  75 
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  76 

Methods 77 

Experimental methods 78 

Bacterial growth and washing procedure 79 

Bacillus subtilis (a Gram-positive aerobic soil species) and Shewanella oneidensis MR-1 80 

(a Gram-negative facultative anaerobic species) cells were cultured and prepared following the 81 

procedures outlined in Borrok et al. (2007). Briefly, cells were maintained on agar plates consisting 82 

of trypticase soy agar with 0.5% yeast extract added. Cells for all experiments were grown by first 83 

inoculating a test-tube containing 3 mL of trypticase soy broth with 0.5% yeast extract, and 84 

incubating it for 24 h at 32 °C. The 3 ml bacterial suspension was then transferred to 1 L of 85 

trypticase soy broth with 0.5% yeast extract for another 24 h on an incubator shaker table at 32 °C. 86 

Cells were pelleted by centrifugation at 8100 g for 5 min, and rinsed 5 times with 0.1 M NaClO4.  87 

 Geobacter sulfurreducens (a Gram-negative species capable of Hg methylation) cells were 88 

cultured and prepared using a different procedure than detailed above. Cells were maintained in 89 

50 mL of anaerobic freshwater basal media (ATCC 51573) at 32 oC (Lovely and Phillips, 1988). 90 

Cells for all experiments were grown by first inoculating an anaerobic serum bottle containing 50 91 

mL of freshwater basal media, and incubating it for 5 days at 32 oC. Cells were pelleted by 92 

centrifugation at 8100 g for 5 minutes, and rinsed 5 times with 0.1 M NaClO4 stripped of dissolved 93 

oxygen by bubbling a 85%/5%/10% N2/H2/CO2 gas mixture through it for 30 minutes. After 94 

washing, each of the three types of bacteria was then pelleted by centrifugation at 8100 g for 60 95 

minutes to remove excess water in order to determine the wet mass so that suspensions of known 96 

bacterial concentration could be created. All bacterial concentrations in this study are given in 97 
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terms of gm wet biomass per liter. Bacterial cells were harvested during stationary phase, and all 98 

experiments were performed under non-metabolizing, electron donor-free conditions. 99 

 100 

Adsorption experiments 101 

To prepare experiments, aqueous Hg, NOM, and suspended bacteria stock solutions were 102 

mixed in different proportions to achieve the desired final concentrations for each experiment. The 103 

experiments were conducted in sets with constant pH (at pH 4.0 ± 0.1, 6.0 ± 0.1, or 8.0 ± 0.3) and 104 

constant bacterial concentration (0.2 g bacteria L-1 in all cases) at three different FA concentrations 105 

(0, 25, or 50 mg L-1), with Hg log molalities ranging from -6.30 to -5.00 (0.1 to 2.0 mg L-1). 106 

FA stock solutions were prepared in Teflon bottles by dissolving dried, powdered 107 

International Humic Substances Society Suwannee River FA Standard I in a 0.1 M NaClO4 buffer 108 

solution to achieve the desired final FA concentration for each experiment. A known mass of wet 109 

biomass was then suspended in the FA stock solution, and the pH of the FA-bacteria parent 110 

solution was immediately adjusted to the experimental pH using 0.2 M HNO3 and/or NaOH. To 111 

prepare experimental solutions, aliquots of the FA-bacteria parent solution were added 112 

gravimetrically to Teflon reaction vessels, followed by a small aliquot of commercially-supplied 113 

1,000 mg L-1 Hg aqueous standard to achieve the desired final Hg concentration. The pH of each 114 

suspension was again adjusted immediately to the experimental pH. The vessels were placed on 115 

an end-over-end rotator to agitate the suspensions for the duration of the experiment (2 h for B. 116 

subtilis and G. sulfurreducens and 3 h for S. oneidensis MR-1, as determined by initial kinetics 117 

experiments (results not shown)). The pH of the suspensions was monitored and adjusted every 15 118 

minutes throughout the duration of the experiment, except during the last 30 minutes, when the 119 

suspensions were undisturbed. At the completion of each experiment, the pH of the suspensions 120 
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was measured and the experimental suspensions were centrifuged at 8100 g for 5 minutes. The 121 

aqueous phase was collected for Hg analysis by inductively-coupled plasma optical emission 122 

spectroscopy (ICP-OES), and the solid phase of some of the runs was collected for XAS analyses. 123 

Duplicate experiments were performed for each experimental condition.  124 

 125 

ICP-OES measurements 126 

ICP-OES standards were prepared gravimetrically by diluting a commercially-supplied 127 

1,000 mg L-1 Hg aqueous standard with pH-adjusted 0, 25, or 50 mg L-1 FA stock solution made 128 

in 0.1 M NaClO4 so that the pH, ionic strength, and FA concentration of the standards closely 129 

matched that of the samples. We found significant interference when standards and samples were 130 

not closely matched in this way. The log molality of the Hg standards ranged from -6.60 to -5.00. 131 

The standards and samples were all stored in Teflon containers and analyzed with a Perkin Elmer 132 

2000DV ICP-OES at wavelength 253.652 nm within 1 day of collection. The set of standards was 133 

analyzed before and after all of the samples were analyzed, as well as after every 15 samples, to 134 

check for machine drift. Analytical uncertainty, as determined by repeat analyses of the standards, 135 

was ± 2.8% for the 0 mg L-1 FA samples, ± 7.7% for the 25 mg L-1 FA samples, and ± 9.5% for 136 

the 50 mg L-1 FA samples. Neither standards nor samples were acidified prior to analysis. FA 137 

concentration strongly affected system performance and signal strength, likely due to spectral 138 

interferences caused by the FA molecule. For each pH and FA concentration condition studied, we 139 

conducted biomass-free control experiments to determine the extent of Hg loss due to adsorption 140 

onto the experimental apparatus as well as any interferences caused by the presence of FA during 141 

the ICP-OES analysis. 142 

 143 
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XAS measurements 144 

Hg LIII -edge X-ray absorption near edge structure (XANES) and extended X-ray 145 

absorption fine-structure spectroscopy (EXAFS) measurements were performed at the MRCAT 146 

sector 10-ID beamline (Segre et al., 2000), Advanced Photon Source, at Argonne National 147 

Laboratory. The continuous-scanning mode of the undulator was used with a step size of 0.5 eV 148 

and an integration time of 0.1 sec per point to decrease the radiation exposure during a single scan. 149 

Additionally, measurements were made at different spots on the samples to further decrease the 150 

exposure time. Hg XAS measurements were collected as described in Mishra et al. (2011). 151 

Crystalline powder standards (cinnabar [red HgS] and mercuric acetate) were measured 152 

and used to calibrate the theoretical calculations against experimental data. Data from the standards 153 

were analyzed to obtain the S02 parameter, where S02 is the value of the passive electron reduction 154 

factor used to account for many-body effects in EXAFS. By fixing the values of S and O atoms to 155 

2 in cinnabar and mercuric acetate, we obtained S02 values of 1.02 ± 0.05 and 0.98 ± 0.03, 156 

respectively. Hence, we chose to set the value of S02 = 1.0 for all samples. Fitting of the powder 157 

standards to their known crystallographic structures (cinnabar and mercuric acetate) reproduced 158 

the spectral features in the entire fitting range (1.0–4.2 Å), and fitting parameters were in 159 

agreement with previously reported values. Only the paths necessary to model the solid standards 160 

were used for fitting the solution standards and the unknown Hg samples. 161 

Two Hg species, Hg-cysteine and Hg-acetate, were utilized as solution-phase standards for 162 

Hg XAS analyses. First, an aqueous Hg2+ standard was prepared from high-purity 5 mM Hg2+ in 163 

5% HNO3 and was then adjusted to pH 2.0 ± 0.1for measurement by adding appropriate amounts 164 

of 5 M NaOH. A Hg-cysteine standard was prepared by adding cysteine to the aqueous Hg2+ 165 

standard to achieve a Hg:ligand ratio of 1:100. The pH of the Hg-cysteine standard was adjusted 166 
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to 5.0 ± 0.1 by adding appropriate amounts of 1 M or 5 M NaOH. A Hg-acetate standard was 167 

prepared by adding mercuric acetate salt to milliQ water and adjusting the pH to 5.0 ± 0.1 by 168 

adding appropriate amounts of 1 M or 5 M NaOH. 169 

Sulfur K-edge XANES spectra for biomass and FA samples were acquired at sector 9-BM 170 

of the Advanced Photon Source at Argonne National Laboratory using Lytle detector in 171 

fluorescence detection mode. At 9-BM, signal from higher order harmonics was removed by 172 

detuning the monochromator to 70% of maximum beam flux at 2472.0 eV. Energy calibration was 173 

performed by setting the first peak in the spectrum of sodium thiosulfate salt (Na2S2O3) to 2469.2 174 

eV. XANES spectra were measured between 2450 and 2500 eV. Step sizes in the near-edge region 175 

(2467-2482 eV) were 0.08 eV, and 0.2 eV in pre- and post- edge regions, respectively. Samples 176 

were smeared on carbon tape and the data were collected under a He atmosphere. 177 

For this study, sulfur species are divided into three main categories and referred to as 178 

reduced S (below 2472 eV), sulfoxide S (near 2473.5 eV), and oxidized S (above 2476.5 eV). 179 

Accordingly, three commercially-supplied (Sigma Aldrich) S standards, cysteine, dimethyl 180 

sulfoxide (DMSO), and sodium dodecyl sulfate (NaDS), were used to fingerprint S speciation. S 181 

standards were mixed with a dry powder of polyacrylic acid (PAA) to achieve a mixture containing 182 

~1% total S by mass. To perform S XANES measurements, a thin layer of a PAA-S standard 183 

mixture was smeared on a carbon tape. All standards were prepared within 12 hours of analysis. 184 

To prepare Hg XAS samples, FA was reacted with Hg by diluting a commercially-supplied 185 

1000 mg L-1 Hg standard with a pH-adjusted 50 mg L-1 FA stock solution prepared in 0.1 M 186 

NaClO4. The log molalities of Hg investigated were -4.30 and -3.60 at both pH 4.00 ± 0.10 and 187 

8.00 ± 0.10 for each Hg concentration. S. oneidensis MR-1 biomass was also reacted with Hg in 188 

the presence and absence of FA to ascertain possible effects of FA on the Hg binding environment 189 
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on the bacterial cell envelopes. Biomass was collected from the experiments with -5.30 log M Hg, 190 

pH values 4.00 ± 0.10 or 8.00 ± 0.10, and 50 mg L-1 FA. Samples were loaded into slotted Plexiglas 191 

holders that were subsequently covered with Kapton tape with a Kapton film sandwiched in 192 

between the tape and plexiglass to avoid direct contact of the sample with the tape adhesive. 193 

Samples were refrigerated until data collection. All measurements were conducted within 48 hours 194 

of sample preparation. 195 

The data were analyzed by using the methods described in the UWXAFS package (Stern 196 

et al., 1995). Energy calibration between different scans was maintained by measuring Hg/Sn 197 

amalgam on the reference chamber concurrently with the fluorescence measurements of the 198 

biomass-bound Hg samples (Harris et al., 2003). The inflection point of the Hg LIII -edge (12.284 199 

KeV) was used for calibration. Data processing and fitting were done with the ATHENA and 200 

ARTEMIS programs (Ravel and Newville, 2005). The data range used for Fourier transformation 201 

of the k-space data was 2.0–9.5 Å-1. The Hanning window function was used with dk = 1.0 Å-1. 202 

Fitting of each spectrum was performed in r-space, at 1.2-3.2 Å, with multiple k-weighting (k1, k2, 203 

k3) unless otherwise stated. Lower ȤȞ2 (reduced chi square) was used as the criterion for inclusion 204 

of an additional shell in the shell-by-shell EXAFS fitting procedure.  205 

 206 

Thermodynamic modeling  207 

Surface-complexation models were constructed to model Hg binding with bacterial cell 208 

envelope functional groups and with those on the FA molecules, and to quantify the competition 209 

between the two. Observed adsorption reactions between aqueous Hg species and deprotonated 210 

bacterial cell envelope sites and/or FA binding sites were modeled according to the following 211 

generic reaction: 212 
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Hg speciesx+ + R-Ai
- ⇔ (R-Ai)(Hg species)(x-1)+  (1) 213 

where ‘Hg speciesx+’ represents the specific aqueous Hg species considered, ‘R-Ai
-’ represents the 214 

deprotonated cell or FA binding site, ‘(R-Ai)(Hg species)’ represents the Hg-bacterial cell envelope 215 

or Hg-FA complex, and the ‘x’ represents the charge of the aqueous Hg species. Stability constants 216 

for each of the Hg-bacterial cell envelope and Hg-FA complexes are expressed as the 217 

corresponding mass action equation for Reaction (1):  218 

][)(
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+−

−

−
=

i
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x
i
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ARspeciesHga

speciesHgAR
K    (2) 219 

where Kads is the thermodynamic equilibrium constant for Reaction (1), the square brackets 220 

represent concentrations in mol L-1, and a represents the activity of the species in parentheses. 221 

We used FITEQL 2.0 (Westall, 1982) for the equilibrium thermodynamic modeling of the 222 

adsorption data, using the aqueous speciation equilibria and equilibrium constants given in Table 223 

S1, and using the Davies equation within FITEQL to calculate activity coefficients. Because all of 224 

our experiments were conducted at the same ionic strength, we applied a non-electrostatic model 225 

to account for the Hg adsorption data. Bacterial site concentrations and acidity constants used in 226 

the calculations for B. subtilis, for S. oneidensis MR-1, and for G. sulfurreducens are from Fein et 227 

al. (2005), Mishra et al. (2010), and Dunham-Cheatham et al., respectively. The objective of the 228 

modeling exercise was not to construct precise site-specific mechanistic binding models, but rather 229 

to provide a quantitative means of estimating the competitive binding of bacteria and FA under a 230 

range of relative concentration conditions. Toward this end, because specific binding constants for 231 

Hg with each site type on the FA molecule are not known, we modeled Hg binding with the FA as 232 

a single complexation reaction between Hg2+ and the deprotonated form of a generic FA site. We 233 

assumed that this generic binding site exhibits an acidity constant equal to the average of the acidity 234 

constants of all of the FA sites, with a site concentration equal to the total concentration of all FA 235 
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sites, using the average values from Borrok and Fein (2004) as a model of the FA site speciation. 236 

The calculated acidity constant and site concentration for this generic site are listed in Table S1. 237 

 238 

Results  239 
Adsorption experiments 240 

Consistent with previous studies of Hg adsorption onto bacteria (Daughney et al., 2002; 241 

Dunham-Cheatham et al.), we observed extensive adsorption of Hg onto the bacterial species 242 

studied in the absence of FA, with the extent of adsorption relatively independent of pH between 243 

pH 4 and 8 (Figure 1, top plots). For example, approximately 77% of the Hg in a 2 mg L-1 Hg 244 

solution adsorbs at pH 4 onto 0.2 g L-1 S. oneidensis MR-1, while approximately 75% adsorbs at 245 

pH 8. The presence of FA decreases the amount of Hg adsorbing to cell envelopes of each of the 246 

bacterial species and at each of the pH conditions studied (Figure 1, middle and bottom plots). 247 

With 50 mg L-1 FA, the extent of adsorption at pH 4 decreases to 65%, and at pH 8 to 50%. Our 248 

experimental results also indicate that the three bacterial species studied here exhibit similar 249 

extents of Hg adsorption under each experimental condition, consistent with the observations from 250 

a number of previous studies (e.g. Cox et al., 1999; Yee and Fein, 2001; Borrok et al., 2005, 251 

Johnson et al., 2007). Our data suggest that as the concentration of FA increases, so does the 252 

amount of Hg remaining in solution. These results indicate that FA competes with the bacterial 253 

cells for the adsorption of Hg, and that the adsorption of Hg to FA results in a competitive ligand 254 

effect. As a result, less Hg is available for adsorption to proton-active functional groups on the 255 

bacterial cell envelope, and less Hg is removed from solution. These results are not surprising, as 256 

FA molecules contain sulfhydryl groups within their structure and sulfhydryl groups bind strongly 257 

with Hg (Xia et al., 1999; Hesterberg et al., 2001; Drexel et al., 2002; Haitzer et al., 2002; 2003), 258 

leading to effective competition with bacterial cell envelopes which also contain proton-active 259 
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sulfhydryl functional groups (Guiné et al., 2006; Mishra et al., 2007; 2009; 2010; 2011; Pokrovsky 260 

et al., 2012; Song et al., 2012; Colombo et al., 2013). In our experimental systems, FA binding 261 

sites outnumber those present on the bacteria. For example, 50 mg L-1 FA corresponds to 262 

approximately 2.8 x 10-4 moles of sites L-1 (Borrok and Fein, 2004), while 0.2 g L-1 B. subtilis 263 

biomass contains 4.7 x 10-5 total moles of sites L-1. At pH 8, 50 mg L-1 FA does diminish the extent 264 

of Hg adsorption, but only from approximately 75% (with no FA present) to 50%. It appears that 265 

given equal site concentrations, bacterial binding of Hg would dominate the competition with FA. 266 

 267 

Hg XANES and EXAFS 268 

 To probe the effect of FA on Hg binding mechanisms with bacterial biomass, we 269 

examined Hg-biomass binding at pH 4 and 8 in the presence and absence of a stoichiometric 270 

excess of FA (1 mg L-1 Hg and 50 mg L-1 FA) using Hg LIII  edge XANES and EXAFS. For the 271 

XAS studies, S. oneidensis MR-1 was chosen to represent the bacterial species used in this study. 272 

Figure 2 shows a comparison between Hg XANES for Hg bound : 1) to FA and to S. oneidensis 273 

MR-1 biomass at pH 4, 2) to S. oneidensis MR-1 biomass in the presence and absence of FA at 274 

pH 4, 3) to S. oneidensis MR-1 biomass in the presence and absence of FA at pH 8, and 4) to 275 

cysteine, and to acetate. Hg XANES data indicate that Hg is complexed with thiol groups in the 276 

Hg-biomass samples. Spectral features supporting this conclusion are the small pre-edge peak 277 

and the slight dip at 12300 eV in the Hg-biomass XANES data similar to that present in the Hg-278 

cysteine data. This finding is consistent with a previous study which showed Hg binding with 279 

sulfhydryl groups on B. subtilis cell envelopes under similar experimental conditions (Mishra et 280 

al., 2011). The Hg-FA XANES data exhibits a small pre-edge peak similar to that present in the 281 

Hg-cysteine data, which confirms that Hg is bound predominantly with the high-affinity thiol 282 
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groups in FA under the experimental conditions. The absence of the dip in the Hg-FA XANES at 283 

12300 eV, however, indicates differences in the coordination environment of Hg between FA 284 

and bacterial biomass. To understand these subtle differences in XANES, a linear combination 285 

fitting of the first derivative of Hg-FA XANES data was performed which resulted in about 90% 286 

contribution from Hg-cysteine binding and about 10% contribution from Hg-carboxyl binding 287 

(figure S2a). The first derivative of Hg-cysteine standard reproduced the Hg-biomass data 288 

confirming that the entire budget of Hg complexation with biomass was accounted by 289 

complexation of Hg with thiols. XANES spectra of Hg reacted with S. oneidensis MR-1 biomass 290 

in the presence and absence of FA at pH 4 and 8 are reproducible, confirming that the binding 291 

mechanism of Hg with S. oneidensis MR-1 biomass does not change appreciably in the presence 292 

of FA.  293 

Hg EXAFS results are consistent with the Hg XANES results described above. Differences 294 

between the coordination environment of Hg-FA and Hg-biomass is more pronounced in the k2Ȥ(k) 295 

EXAFS data (Figure S1). Low signal to noise ratio in the aqueous Hg-FA data does not allow for 296 

a meaningful Fourier Transform (FT) of the Hg-FA EXAFS data. EXAFS k2Ȥ(k) and FT data 297 

between FA-bearing and FA-free Hg-biomass samples are similar (Figure S1), validating the Hg 298 

XANES results. Figure S2b shows a comparison between the FT Hg EXAFS data for Hg bound 299 

to S. oneidensis MR-1 biomass in the presence and absence of FA at both pH 4 and 8 and their 300 

corresponding EXAFS fits. EXAFS fitting parameters are shown in Table S2. It is worth pointing 301 

out that although Hg-cystein standard showed a bond distance of 2.32 Å, Hg-biomass samples at 302 

pH 4 and 8 had a bond distance of 2.35 Å. This should not be considered a discrepancy because 303 

Hg-S distances can vary from 2.32 to 2.36 Å for Hg(SR)2 complexes (Manceau,and Nagy 2008). 304 

Similarly, Hg-S distances can range from 2.40 to 2.51 Å for Hg(SR)3 complexes, and 2.50–2.61 Å for 305 

Hg(SR)4 complexes.  306 
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 307 
 308 

Taken together, Hg XANES and EXAFS results indicate that Hg binds predominantly to 309 

the high-affinity thiol groups on bacterial cell envelopes in the presence and absence of FA and 310 

Hg binding mechanisms with bacterial biomass do not change in the presence of FA, excluding 311 

the possibility of the formation of a ternary complex. Additionally, Hg XAS results show that pH 312 

does not affect the adsorption mechanism of Hg onto biomass in the presence of FA, which is 313 

consistent with the similar extent of Hg adsorption as a function of pH described above. However, 314 

it is important to note that Hg binding mechanisms with bacterial biomass may be affected by FA 315 

at high Hg loadings, where Hg is primarily bound to biomass via lower-affinity carboxyl functional 316 

groups. Hg XAS results suggest that S functional groups on S. oneidnensis MR-1 cell envelopes 317 

outcompete S functional groups in FA for Hg binding. In other words, on average Hg binding to 318 

FA appears weaker than Hg binding to bacterial biomass. S XANES was conducted to identify the 319 

differences in complexation behavior of Hg with S functional groups on FA and bacterial biomass.  320 

S K-edge XANES is highly sensitive to changes in the electronic environment of the sulfur 321 

absorber (Xia et al., 1998). Although S K-edge XANES spectra were collected on a large number 322 

of standards, in this study we have divided S species into three main categories: reduced S (below 323 

2472 eV), sulfoxide S (near 2473.5 eV), and oxidized S (above 2476.5 eV). The S XANES spectra 324 

for cysteine, dimethyl sulfoxide (DMSO), and sodium dodecyl sulfate (NaDS) are shown in Figure 325 

3a. Species with very different S oxidation states, such as cysteine, sulfoxide, and ester sulfate, are 326 

easily resolved in the XANES spectrum. However, resolving one species from another within these 327 

three energy ranges is challenging. Reduced S species, including thiols, sulfides, polysulfides, and 328 

thiophenes, all give white-line features occurring between 2469 and 2472 eV. More extensive 329 

model libraries that include XANES spectra of organic and inorganic S compounds are available 330 
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in the literature (Myneni, 2002; Vairavamurthy, 1998). 331 

Speciation of S in S. oneidensis MR-1 biomass was easily identified because the peak 332 

energy position of S XANES measurement on the biomass overlapped with the cysteine peak 333 

position (Figure 3b). Figure 3b shows the dramatic differences between S XANES on S. oneidensis 334 

MR-1 cells and Suwanee River FA. S XANES comparing FA with S. oneidensis MR-1 shows that 335 

nearly the entire S budget of the biomass is present as thiol groups, which are known to form strong 336 

bonds with Hg. However, FA has a range of reduced S (including reactive thiol) groups and a large 337 

fraction of oxidized S species, consistent with previous observations (Morra et al., 1997). Morra 338 

et al., 1997 suggest that a significant fraction of sulfur in SR Fulvic acid is found in oxidized (+5 339 

oxidation state) form, followed by smaller fractions in reduced forms (-0.3 ±1.0 and 1.7 oxidations 340 

states) respectively. Similarly, Einsiedl et al., 2007 used S XANES to estimate that soil FAs 341 

contain around 51% oxidized (S+4,S+5,S+6) and 49% reduced (S−1,S0,S+2) sulfur species. The 342 

reduced S species was dominated by thiols, thiophene and disulfide. Such a dramatic difference 343 

between the S budget of FA and bacterial biomass could result in diverse reactivities and stabilities 344 

of Hg-S complexes between the two. A detailed study of the reactivity and stability of Hg with FA 345 

and bacterial biomass is beyond the scope of this study.  346 

 347 

Discussion 348 

The experimental results presented here suggest that bacterial cell envelope functional 349 

groups and FA functional groups exhibit different binding affinities for Hg under the experimental 350 

conditions. Hg binding onto the bacterial cell envelopes is extensive, and although Hg binds 351 

strongly with FA, especially with the sulfhydryl groups present within FA (Xia et al., 1999; 352 

Hesterberg et al., 2001; Drexel et al., 2002; Haitzer et al., 2002; 2003), the presence of even up to 353 
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50 ppm FA with only 0.2 g (wet mass) L-1 of bacteria does not cause the speciation of Hg to be 354 

dominated by the FA. The results suggest there is a possibility for competition between the 355 

bacterial and FA binding sites for the available Hg. 356 

In order to quantify the competitive binding, we use a semi-empirical surface complexation 357 

approach. First, we use the FA-free adsorption data at pH 4, 6, and 8 to solve for equilibrium 358 

constants for the following Hg2+ adsorption reactions, respectively: 359 

R-A1
- + Hg2+ ⇔ R-A1-Hg+      (3) 360 

R-A2
- + Hg2+ ⇔ R-A2-Hg+      (4) 361 

R-A3
- + Hg2+ ⇔ R-A3-Hg+      (5) 362 

where R-A1, R-A2, and R-A3 represent the bacterial functional groups with the three lowest pKa 363 

values, respectively. At pH 4, the R-A1 sites are the dominant deprotonated sites available for Hg2+ 364 

binding for each bacterial species; at pH 6, both R-A1 and R-A2 sites are deprotonated; and at pH 365 

8, R-A1, R-A2, and R-A3 sites likely contribute to the binding of Hg2+. Therefore, we used the pH 4 366 

data to constrain the stability constant value for Reaction (3) alone, then fixed that value and used 367 

the pH 6 data to solve for the stability constant value for Reaction (4) with a model that involved 368 

Reactions (3) and (4) simultaneously. We then used the values that we calculated for the stability 369 

constants for Reactions (3) and (4) and the pH 8 data to solve for the best-fitting value for Reaction 370 

(5) with a model that involved Reactions (3) - (5) simultaneously. This modeling approach assumes 371 

that Hg2+ binding at a given pH occurs dominantly onto sites with pKa values lower than the pH 372 

of the experiments; that is, dominantly onto deprotonated sites. However, the resulting stability 373 

constant values, which are tabulated in Table 1, yield excellent fits to the FA-free Hg adsorption 374 

data as a function of pH and Hg loading (e.g., Figure 4). The calculated stability constants for each 375 

reaction for each bacterial species studied here are similar to each other. The log stability constant 376 
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values for Reaction (3) range from 7.3 for B. subtilis to 7.8 for G. sulfurreducens; those for 377 

Reaction (4) range from 11.2 for S. oneidensis MR-1to 11.6 for both B. subtilis and G. 378 

sulfurreducens; and those for Reaction (5) range from 15.6 for S. oneidensis MR-1 to 16.5 for G. 379 

sulfurreducens. The fact that the stability constant values increase by four-to-five orders of 380 

magnitude from one site to the next likely is due to the simplified nature of the adsorption model. 381 

We assume that Hg2+ is the adsorbing aqueous Hg species under all pH conditions. However, 382 

Hg(OH)2 is the dominant aqueous Hg species under the experimental conditions, and the 383 

concentration of Hg2+ is small and becomes smaller with increasing pH over the pH range of our 384 

experiments. Therefore, because the extent of adsorption is relatively pH independent, the stability 385 

constants that describe adsorption of Hg2+ onto bacterial binding sites must become larger with 386 

each site considered.  387 

Site-specific Hg binding constants have not been determined for Suwanee River FA, so we 388 

could not compare the measured effects of the presence of FA with those we would predict from 389 

speciation calculations. However, we used the measured extents of Hg adsorption in the presence 390 

of FA to calculate empirical generic site Hg binding constants for the FA. That is, we modeled the 391 

Hg binding onto the FA with the following single site reaction: 392 

FA- + Hg2+ ⇔  FA-Hg+     (6) 393 

where FA- represents the generic deprotonated site on the FA molecule. We modeled this site as a 394 

hybrid of the 4 sites used by Borrok and Fein (2004) to account for FA protonation behavior, with 395 

the pKa value of the hybrid FA site equal to the average of the pKa values used by Borrok and 396 

Fein (2004) and the site concentration equal to the average of the total of the 4 sites for all 9 FAs 397 

modeled by Borrok and Fein (2004). Clearly, modeling Hg2+ adsorption onto this hybrid generic 398 

FA binding site is a simplification of the complex binding environment of Hg on the FA molecule, 399 
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but it allows us to quantify the competition between the FA and the bacterial cell envelope, and to 400 

calculate quantitative estimates of the effects of each binding environment in more complex 401 

settings. 402 

The calculated stability constants, tabulated in Table 1, yield an excellent fit to the observed 403 

effects of the presence of FA on Hg adsorption onto the bacteria studied here (e.g., Figure 4). The 404 

stability constants that we calculated for the three bacterial species are similar to each other and 405 

do not vary systematically between bacterial species. Additionally, the 25 mg L-1 FA data yield 406 

calculated Hg-FA stability constant values that are not significantly different from those calculated 407 

using the 50 mg L-1 FA data. The calculated stability constant values do change systematically 408 

with pH, with values increasing with increasing pH. This trend is likely a result of the 409 

oversimplification of our Hg-FA binding model; it is probable that the FA molecule contains 410 

multiple functional group types that deprotonate sequentially with increasing pH, not just the one 411 

site type that we assumed in our models. However, the calculated log stability constant values are 412 

not strongly dependent upon pH, with the largest spread being from 13.4 to 14.9 for the pH 4 to 8, 413 

25 mg L-1 FA data for B. subtilis. Thus, the values in Table 1 can be used to yield reasonable 414 

estimates of the competition between bacteria and FA in the pH and FA:bacteria concentration 415 

ratio conditions studied here. 416 

The calculated K values can be used to illustrate the direct competition between bacteria 417 

and FA for available aqueous Hg2+. For example, the competition reaction between bacterial site 418 

A2 and the FA binding site can be expressed as: 419 

R-A2-Hg+ + FA- ⇔ FA-Hg+ + R-A2
-    (7) 420 

where the log equilibrium constant for Reaction (7) can be calculated as the log K value for 421 

Reaction (6) minus the log K value for Reaction (4), or values of 2.4 for B. subtilis, 3.0 for S. 422 
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oneidensis MR-1, and 2.6 for G. sulfurreducens under pH 6 conditions with 50 mg L-1 FA, 0.2 g 423 

L-1 bacteria. These calculated equilibrium constant values for Reaction (7) can be used to quantify 424 

the distribution of Hg between bacterial and FA binding sites for conditions with different relative 425 

concentrations of each site type, and the large positive values suggest that on a mass normalized 426 

basis, bacterial binding of Hg is greater than that exhibited by FA. Although both bacteria and FA 427 

contain sulfhydryl binding sites that are especially effective at binding Hg, our results suggest that 428 

these sites may exhibit a higher density on bacteria than they do on FA. It is likely that the FA 429 

contains binding sites with a range of Hg binding constants. The binding constants determined by 430 

the simplified thermodynamic modeling described above represents an averaging of several site 431 

types, some of which have larger binding constants than do the binding sites on the cell envelopes, 432 

accompanied by a large number of site with binding constants that are smaller than those on the 433 

cell envelopes. The resulting averaged Hg binding constant that we calculate for the FA is similar 434 

to those that we calculate for the bacterial biomass. These general conclusions about the S binding 435 

mechanisms on the FA and on the bacteria are supported by our S XANES data, which demonstrate 436 

that the FA contains a wide range of S moieties while the bacterial biomass is dominated by a 437 

single thiol-type S moiety. 438 

 439 

Conclusions 440 

The results from this study show that the presence of FA decreases the extent of Hg 441 

adsorption onto three different bacterial species through competitive binding of the Hg. The 442 

presence of the FA does not change the binding environment of Hg on the bacteria, indicating a 443 

lack of ternary complexation between the Hg, the FA, and the bacteria. The binding of Hg to both 444 

the bacteria and the FA under the experimental conditions is dominated by sulfhydryl binding to 445 
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both ligands, and the similarities between the binding environments likely results in the 446 

competitive balance between them. We use the experimental results to calibrate a quantitative 447 

semi-empirical model of the binding of Hg to bacteria and FA, and the stability constants that we 448 

calculate can be used to estimate the distribution and speciation of Hg in bacteria- and FA-bearing 449 

geologic systems. Because accessibility of Hg to bacteria for metabolic processes such as 450 

methylation may be controlled by adsorption, the stability constants calculated in this study may 451 

also be useful in estimating the bioavailability of Hg in soil and groundwater systems that contain 452 

significant concentrations of FA.  453 
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Tables 463 

Table 1: Calculated log stability constant values for Reactions (3) - (6).  464 
 465 

[FA]  
(mg L-1) 

pH Bacteria Reaction 
(3)a 

Reaction 
(4)b 

Reaction 
(5)c 

Reaction  
(6)d 

      25 mg L-1 FA 50 mg L-1 FA 

0  
B. subtilis 7.3 ± 0.1 11.6 ± 0.2 16.4 ± 0.1 

 S. oneidensis MR-1 7.6 ± 0.2 11.2 ± 0.1 15.6 ± 0.1 
G. sulfurreducens 7.8 ± 0.2 11.6 ± 0.1 16.5 ± 0.1 

25, 50 

4 
B. subtilis 

 

13.4 ± 0.2 13.4 ± 0.1 
S. oneidensis MR-1 13.8 ± 0.2 13.6 ± 0.3 
G. sulfurreducens 13.8 ± 0.1 13.6 ± 0.1 

6 
B. subtilis 14.3 ± 0.1 14.0 ± 0.1 

S. oneidensis MR-1 14.4 ± 0.2 14.2 ± 0.3 
G. sulfurreducens 14.4 ± 0.2 14.2 ± 0.1 

8 
B. subtilis 14.9 ± 0.2 14.4 ± 0.2 

S. oneidensis MR-1 14.9 ± 0.2 15.0 ± 0.4 
G. sulfurreducens 14.6 ± 0.3 14.6 ± 0.2 

   Average value: 14.3 ± 0.2 14.1 ± 0.2 
a R-A1

- + Hg2+ ⇔ R-A1-Hg+ 466 
b R-A2

- + Hg2+ ⇔ R-A2-Hg+ 467 
c R-A3

- + Hg2+ ⇔ R-A3-Hg+ 468 
d FA- + Hg2+ ⇔  FA-Hg+. Both columns present the calculated log stability constant values for the adsorption of Hg to deprotonated FA, as expressed 469 
in Reaction (6). The left column presents the values calculated from the 25 mg L-1 FA data, and the right column presents the values calculated from 470 
the 50 mg L-1 FA data. 471 



22 
 

Figures 472 
 473 

 474 

Figure 1: Aqueous chemistry results for Hg isotherms in the absence and presence of FA at pH 4 475 

(A, B, C), pH 6 (D, E, F), and pH 8 (G, H, I). Plots A, D, and G present the results for the FA-476 

free controls, plots B, E, and H present the results for the 25 mg L-1 FA experiments, and plots C, 477 

F, and I present the results of the 50 mg L-1 FA experiments. B. subtilis is represented by the 478 

black-outlined, grey-filled squares, S. oneidensis MR-1 is represented by the solid black 479 
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diamonds, and G. sulfurreducens is represented by the hollow circles. The black line on each plot 480 

represents 100% Hg adsorption under each experimental condition.  481 
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  482 

Figure 2: Hg LIII  edge XANES spectra of Hg bound to (from top to bottom) S. oneidensis MR-1 483 

only at pH 4, FA only at pH 4, S. oneidensis MR-1 in the presence of 50 and 0 mg L-1 FA at pH 484 

4, S. oneidensis MR-1 in the presence of 50 and 0 mg L-1 FA at pH 8, cysteine only, and acetate 485 

only.  486 

 487 
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 488 

Figure 3: Sulfur K edge XANES spectra for a) cysteine, dimethyl sulfoxide (DMSO), and sodium 489 

dodecyl sulfate (NaDS), and b) S. oneidensis MR-1 biomass and Suwannee River FA. 490 
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 491 

Figure 4: Representative model fits for S. oneidensis MR-1 at pH 6 under 0 mg L-1 FA (grey 492 

squares and grey curve) and 50 mg L-1 FA (solid black diamonds and black curve) conditions. 493 

The dotted line represents 100% Hg adsorption under each experimental condition. 494 
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Supplemental Information 496 

Table S1: Hg reactions used in the speciation modeling. 497 

Reaction Log K 
H2O – H+ = OH-    -14.00 b 
H2CO3

0 – H+ = HCO3
-  -6.355 a 

H2CO3
0 – 2H+ = CO3

2- -16.67 a 
H2CO3

0 – H2O = CO2
0 2.770 b 

Na+ + H2CO3
0 – 2H+ = NaCO3

- -15.41 b 
Na+ + H2CO3

0 – H+ = NaHCO3
0  -6.60 b 

Na+ + H2O – H+ = NaOH0  -14.2 b 
Hg2+ + H2O - H+ = HgOH+ -3.40 a 
Hg2+ + 2H2O - 2H+ = Hg(OH)20 -5.98 a 
Hg2+ + 3H2O - 3H+ = Hg(OH)3- -21.1 a 
2Hg2+ + H2O - H+ = Hg2(OH)3+ -3.30 b 
3Hg2+ + 3H2O - 3H+ = Hg3(OH)33+ -6.40 b 
Hg2+ + H2CO3

0 – 2H+ = HgCO3
0 -3.91 a  

Hg2+ + H2CO3
0 – H+ = HgHCO3

+ 0.42 a 
Hg2+ + H2CO3

0 + H2O – 3H+ = Hg(OH)CO3
- -11.355 a 

B1
- + H+ = B1-H0  

Bacillus subtilis 3.30 c 

Shewanella oneidensis 3.30 d 
Geobacter sulfurreducens 3.36 e 

B2
- + H+ = B2-H0  

Bacillus subtilis 4.80 c 
Shewanella oneidensis 4.80 d 

Geobacter sulfurreducens 4.81 e 
B3

- + H+ = B3-H0  
Bacillus subtilis 6.80 c 

Shewanella oneidensis 6.70 d 
Geobacter sulfurreducens 6.49 e 

FA- + H+ = FA-H0 5.85 f 
a Powell et al., 2005. 498 
b Martell and Smith, 2001. 499 
c Fein et al., 2005 500 
d Mishra et al., 2010 501 
e Dunham-Cheatham et al. 502 
f Calculated as the average of all reported pKa values in Table 2 from Borrok and Fein (2004). 503 
Assumed total site concentration is the sum of the average site concentrations for the individual 504 
FA sites: 5.50 x 10-3 moles of sites per gram of humic substance. 505 
  506 
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Table S2: Best-fit values of Hg solution standards and Hg-biomass samples. 507 

Sample path N R(Å) ı2 (10-3 Å2)     
HgAc Hg-O 

Hg-C 
1.78 ± 0.32 

1.78a 
2.06 ± 0.01 
2.83 ± 0.01 

10.9 ± 0.9 
12.8 ± 4.0 

Hg-cysteine Hg-S 1.88 ± 0.21 2.32 ± 0.01 10.5 ± 1.2 
Hg-biomass (at pH 4) Hg-S 1.85 ± 0.19 2.35 ± 0.01 10.2 ± 1.5 
Hg-biomass (at pH 8) Hg-S 1.70 ± 0.15 2.35 ± 0.01 11.0 ± 1.3 

a Set to Coordination number of O for this sample. 508 

 509 

 510 

Sample path CN R(Å) ı2 (10-3 Å2) Eo ȤȞ2 R 

HgAc Hg-O 
Hg-C 

1.78 ± 0.32 
1.78a 

2.06 ± 0.01 
2.83 ± 0.01 

10.9 ± 0.9 
12.8 ± 4.0 

1.2 ± 0.9 48 0.63 

Hg-cysteine Hg-S 1.88 ± 0.21 2.32 ± 0.01 10.5 ± 1.2 2.8 ± 0.6 22   0.45 

Hg-biomass 
(at pH 4) 

Hg-S 1.85 ± 0.19 2.35 ± 0.01 10.2 ± 1.5 3.0 ± 0.5 30 0.55 

Hg-biomass 
(at pH 8) 

Hg-S 1.70 ± 0.15 2.35 ± 0.01    11.0 ± 1.3 

a Set to Coordination number of O for this sample. 511 

  512 
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 513 

Figure S1: k2Ȗ(k) EXAFS data for Hg LIII  edge EXAFS spectra of Hg bound to (top to bottom): 514 
S. oneidensis MR-1 only at pH 4, FA only at pH 4, S. oneidensis MR-1 in the presence of 50 and 515 
0 mg L-1 FA at pH 4, S. oneidensis MR-1 in the presence of 50 and 0 mg L-1 FA at pH 8, cysteine 516 
only, and acetate only. 517 

k2 . 
Ȥ(

k)
 (

Å
-2

) 

k (Å-1)



30 
 

 518 

Figure S2: Magnitude of Hg LIII  edge EXAFS Fourier Transform (FT) data for Hg binding to S. 519 

oneidensis MR-1 in the presence of 0 and 50 mg L-1 FA at pH 4 (top), and 0 and 50 mg L-1 FA at 520 

pH 8 (bottom). 521 
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