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Abstract

The growth and dynamics of epithelial tissues govern many morphogenetic processes in embry-

onic development. A recent quantitative transition in data acquisition, facilitated by advances

in genetic and live-imaging techniques, is paving the way for new insights to these processes.

Computational models can help us understand and interpret observations, and then make pre-

dictions for future experiments that can distinguish between hypothesised mechanisms. Increas-

ingly, cell-based modelling approaches such as vertex models are being used to help understand

the mechanics underlying epithelial morphogenesis. These models typically seek to reproduce

qualitative phenomena, such as cell sorting or tissue buckling. However, it remains unclear to

what extent quantitative data can be used to constrain these models so that they can then be

used to make quantitative, experimentally testable predictions. To address this issue, we perform

an in silico study to investigate whether vertex model parameters can be inferred from imaging

data, and explore methods to quantify the uncertainty of such estimates. Our approach requires

the use of summary statistics to estimate parameters. Here, we focus on summary statistics
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of cellular packing and of laser ablation experiments, as are commonly reported from imaging

studies. We find that including data from repeated experiments is necessary to generate reliable

parameter estimates that can facilitate quantitative model predictions.

1 Introduction

The growth and dynamics of epithelial tissues are central to numerous processes in embryonic

development. Experimental studies are generating an increasing volume of quantitative and

semi-quantitative data on these processes [1], providing the potential for significant increases in

our understanding of epithelial morphogenesis. Computational models can be used to interpret

such data, develop theories for the underlying biophysical mechanisms, and make predictions

for future experiments to distinguish between competing theories. Increasingly, ‘cell-based’

modelling approaches are used that exploit the availability of data across subcellular, cellular

and tissue scales [2]. Usually, these models are calibrated and tested according to their ability to

reproduce qualitative phenomena and, as such, their predictive capability is limited. It remains

largely unclear to what extent cell-based models can be used in a quantitative manner.

One important challenge that arises when applying cell-based models quantitatively is param-

eter inference from experimental data. Since cell-based models predict high-dimensional data,

for example the shape or position of each modelled cell, it is necessary to select low-dimensional

summary statistics to infer model parameters. However, the optimal choice of summary statistic

or experimental design to infer parameters is non-intuitive. A common approach to parameter

inference for computational models is to identify parameters of best fit. However, this approach

is problematic since it does not quantify the uncertainty associated with such estimates. Here,

we conduct parameter inference, compare summary statistics, and estimate uncertainty for a

vertex model of the Drosophila wing imaginal disc, a classical model system for the study of

tissue growth [3–6]. Vertex models are a widely used class of cell-based model in which epithe-

lial cell sheets are approximated by tessellations of polygons representing the apical surfaces of

cells, and vertices (where three or more cells meet) move in response to forces due to growth,

interfacial tension and the hydrostatic pressure within each cell [5, 7, 8].

Many cell-based models include mechanical parameters that influence dynamic and steady-

state behaviour. The optimal choice for such parameters for a given biological system is often

not intuitive, since these parameters reflect mechanical properties of single cells or their pairwise

interactions. To measure the mechanical properties of a single cell it may be necessary to

remove it from the surrounding tissue, however this generally has a significant impact on its

mechanical properties. Hence, parameterising cell-based models using tissue-scale data is an

area of growing interest [9]. In the case of vertex models, efforts have been made to estimate

mechanical parameters from tissue-scale measurements. Farhadifar et al. [5] achieve this by

manual fitting of their model using a combination of summary statistics: the relative occurrence

of cells with different numbers of sides; the average area of cells with different numbers of sides;

the maximum displacement of vertices following laser ablation of individual cell edges; and the

area and perimeter changes for cells whose edges were ablated. Other authors have used similar
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statistics to parameterise vertex models of the Drosophila wing imaginal disc [6, 10,11] and the

Xenopus laevis animal cap [12]. These authors arrive at different parameter estimates, which is

not surprising given that the analysed tissues, summary statistics, and model implementations

differ.

A variety of approaches have been taken to fit summary statistics obtained from vertex

models to experimental data. These include ad hoc [10,11] and least-squares [6,12] approaches.

Merzouki et al. [13] infer parameters by inducing tissue deformation; they compare stress-

strain curves obtained from simulations with those obtained from experiments on monolayers

of Madine-Darby Canine Kidney cells [14]. In these experiments, a free monolayer is suspended

between rods and the stress curve is recorded as the distance between the rods was increased.

A similar approach is taken by Xu et al. [15,16], who highlight that the stress-strain curves ob-

tained in this way are affected by the amount and orientation of cell divisions. Similarly, Wyatt

et al. [17] show that cell divisions in this tissue are oriented so as to dissipate stress. Studies

of cell mechanical properties in epithelia also include force-inference methods [18–20], where a

heterogeneous generalisation of the vertex model is fitted to microscopy data to estimate the

apical tension and pressure forces on each cell in the tissue. Such approaches are particularly

suitable to estimate mechanical heterogeneity in a tissue without the need to physically manipu-

late the sample, though they typically assume the tissue to be in mechanical equilibrium, which

is generally not the case during embryogenesis.

In summary, although some progress has been made in estimating the parameters of vertex

models, none of the studies described above quantify the uncertainty of in vivo parameter

estimates, nor do they address parameter identifiability. Hence, it remains unclear to what

extent previously used summary statistics are sensible choices for parameter inference. Tissue

manipulation approaches are not applicable in vivo since they require the removal of a tissue from

its substrate [13–15], while force-inference methods do not directly estimate model parameters.

There is thus a need to establish to what extent each parameter can be estimated, and the

associated uncertainty quantified, in such models. For the first time we apply Bayesian inference

to estimate vertex model parameters in a simulation of tissue growth. Bayesian inference enables

uncertainty quantification by calculating the probability of the model parameters given observed

data. Specifically, we apply Approximate Bayesian computation (ABC) [21, 22], a method that

is commonly used when the likelihood of the model is not analytically tractable. To evaluate

the inference method and compare summary statistics we apply the inference method to virtual

data generated from the model, which allows us to compare inferred parameter values to the

ground truth.

The remainder of this paper is structured as follows. In Section 2 we describe our in silico

study and the inference method in detail. In Section 3 we infer model parameters using a range

of summary statistics. We find that the uncertainty in parameter estimates generated using

summary statistics of cell packing, or from tissue responses to laser ablations, depends heavily

on the amount of data used to calculate summary statistics, and we investigate how much data

is required for reliable parameter estimation. We identify the mean area of cells of each polygon
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class, in combination with the mean cell elongation, as a suitable summary statistic for vertex

model parameter inference, and analyse how the quality of parameter estimates varies over

parameter space. In Section 4 we discuss the implications of our findings.

2 Methods

2.1 Vertex model

For our in silico study, we consider a simplified vertex model of wing imaginal disc growth in

the dipteran fly Drosophila melanogaster. The wing imaginal disc has been intensely studied as

an experimental system for research on tissue growth and proliferation. During larval stages,

this epithelial tissue undergoes a period of intense proliferation, increasing from around 40 to

over 50,000 cells, before later giving rise to the adult wing [5,23]. We now outline the technical

details of our model; note that, motivated by the need to run a large number of simulations for

parameter inference, we include several simplifying assumptions.

We represent the wing disc epithelium as a dynamic tessellation of polygons that approximate

cell apical surfaces, with a vertex at each point where three cells meet. The position of each

vertex, i, evolves in time according to the overdamped force equation

µ̃
dx̃i

dt̃
= −∇̃iẼ. (1)

Here and throughout, we use tildes to denote dimensional quantities. In equation (1), µ̃ denotes

the friction strength, x̃i(t̃) is the position of vertex i at time t̃, Ẽ denotes the total energy

associated with the tissue, and ∇̃i denotes the gradient operator with respect to x̃i. The

number of vertices in the system may change over time due to cell division and removal (see

below). For a homogeneous (unpatterned) epithelial tissue, the total energy Ẽ is given by [5]

Ẽ =
∑

α

K̃

2
(Ãα − Ã0,α)

2 +
∑

α

Γ̃

2
P̃ 2
α +

∑

〈i,j〉,int

Λ̃l̃i,j +
∑

〈i,j〉,ext

Λ̃B l̃i,j . (2)

where the first two sums run over every cell α in the tissue, the third sum runs over every cell

edge (pair of neighbouring vertices) 〈i, j〉 internal to the tissue and the third term runs over all

cell edges at the boundary of the tissue, at time t̃. In equation (2), the variables Ãα and P̃α

denote the area and perimeter of cell α, respectively, and the parameter Ã0,α denotes a ‘target’

or preferred area for that cell. The four sums respectively represent the bulk elasticity of each

cell, the presence of a contractile acto-myosin cable along the perimeter of each cell, and the

combined effect of binding energy and contractile molecules at the interface between two cells

or between cells and the tissue boundary. The parameters K̃, Γ̃, Λ̃ and Λ̃B govern the strengths

of each of these energy contributions.

Before solving the model numerically, we non-dimensionalise it to reduce the number of

free parameters [5]. Rescaling space by a characteristic cell length scale, L̃, and time by a
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characteristic timescale, T̃ = µ̃/K̃L̃2, we obtain

dxi

dt
= −∇iE, (3)

where

E =
∑

α

1

2
(Aα −A0,α)

2 +
∑

α

Γ

2
P 2
α +

∑

〈i,j〉,int

Λli,j +
∑

〈i,j〉,ext

ΛBli,j , (4)

and

A0,α =
Ã0,α

L̃2
, Λ =

Λ̃

K̃L̃3
, ΛB =

Λ̃B

K̃L̃3
, Γ =

Γ̃

K̃L̃2
. (5)

We solve equations (3) and (4) numerically using the forward Euler scheme

xi(t+∆t) = xi(t)−∆t∇iE, (6)

where ∆t = 0.01 is chosen to be sufficiently small to guarantee convergence [24].

Initially, the tissue is represented by four hexagonal cells of unit area (Figure 1A). The

initial target area of these cells As
0 is the same as their area, As

0 = 1.0. The boundary of the

tissue is allowed to move freely throughout the simulation. During our simulations we allow cell

neighbour exchange through T1 transitions (Figure 1B) and cell removal through T2 transtions

(Figure 1C). T1 transitions are executed whenever the length of a given edge decreases below

the threshold lT1 = 0.01. The length of the new edge, lnew = ρlT1 (ρ = 1.5), is chosen to be

slightly longer than this threshold to avoid an immediate reversion of the transition.

During a T2 transition, a small triangular cell or void is removed from the tissue and replaced

by a new vertex. In our implementation any triangular cell is removed if its area drops below

the threshold AT2 = 0.001. The energy function (4), in conjunction with T2 transitions, can be

understood as a model for cell removal: cells are extruded from the sheet by a T2 transition if the

energy function (4) leads to a sufficiently small cell. Note that in equation (4) the bulk elasticity

or area contribution of a cell α is finite even when the area Aα is zero, allowing individual

cells to become arbitrarily small if this is energetically favourable. As cells decrease in area they

typically also reduce their number of sides. Hence, it is sufficient to remove only small triangular

cells instead of cells with four or more sides [5, 6, 23].

We further model the merging of overlapping tissue boundaries (Figure 1D). Whenever two

boundary cells overlap, a new edge of length lnew is created that is shared by the overlapping

cells. In cases where the cells overlap by multiple vertices, or if the same cells overlap again after

a previous merging of edges, the implementation ensures that two adjacent polygons never share

more than one edge by removing obsolete vertices. The merging of boundary edges is discussed

in further detail in [7].

From the initial condition shown in Figure 1A, we simulate nd = 7 rounds of cell division in

the tissue. Following previous work [10,24], we assume that each cell proceeds through two cell

5



A

F

G H

1

2

3

4 1

2

3

4

T1

1
2

3

4 1
2

3

T2

B

Cell division

C

D

E

1 2

Boundary 

merging

21

Figure 1: Simulation setup and boundary conditions (A) The initial condition comprises
four hexagonal cells. (B-E) Vertex configurations can change through T1 swaps (B), T2 swaps
(C), boundary merging (D) and cell division (E). (F) The tissue grows for nd = 7 rounds of
divisions until it comprises approximately 500 cells. (G) If the line tension parameter, Λ, is
negative in the bulk of the tissue as well as on the tissue boundary, the tissue may assume
unphysical configurations. (H) We prevent such artefacts by setting the line tension along the
tissue boundary to zero when Λ is negative, leading to well-defined tissue geometries. Panels
(A,F-H) are rescaled to fit the view; a scale bar is added for comparison.
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cycle phases: interphase and growing. Letting tcycle denote the average total cell cycle duration,

we assume that the time spent in interphase is drawn independently from an exponential distri-

bution with mean 2tcycle/3. We introduce stochasticity in this phase to prevent unrealistically

synchronous daughter cell divisions. After this age, the cell experiences a growing phase of fixed

duration tcycle/3. During this time the cell’s target area, A0,α, grows linearly to twice its original

value. Upon completion of the growth phase, the cell divides.

During cell division, a new edge is created that separates the newly created daughter cells

(Figure 1E). The new edge is drawn along the short axis of the polygon representing the parent

cell [7, 25]. Daughter cells are initialised with target area A0,α = As
0, which corresponds to half

the target area of the mother cell upon division.

Note that the precise number of cells at the end of each simulation differs due to variations

in the number of cell removals through T2 transitions. Each cell of the last generation remains

in interphase until the simulation stops. We select the total simulation time to be tend = 700,

which is sufficiently long for the tissue to settle into a static configuration after the last rounds

of division. This is illustrated in Supplementary Figure S1.

We implement the model within Chaste, an open source C++ library that provides a sys-

tematic framework for the simulation of vertex models [7, 24, 26]. Our code is available in the

supplementary material as a zip archive. Each time step starts by updating the cell target areas.

Cell divisions, removals, neighbour exchanges, and boundary merging are then performed before

updating the vertex positions and incrementing the simulation time by ∆t. The algorithm halts

when the time reaches tend = 700.

The parameter ΛB is used to calculate the line tension of cell interfaces with the tissue

boundary, i.e. the third term in equation (4). If the line tension parameter Λ is negative, we set

the line tension of edges along the boundary to zero, ΛB = 0. Otherwise, we set ΛB = Λ. This

boundary condition helps prevent boundary artefacts that lead to unphysical tissue shapes: in

Figure 1G, the simulation parameters are Λ = −0.85 and Γ = 0.1, and the line tension for cell

edges along the tissue boundary is the same as throughout the tissue, i.e. ΛB = Λ = −0.85. In

simulations with this parameter set, cells disconnect from each other or self-intersect, leading

to failure of the simulation algorithm. In contrast, for simulations using Λ = −0.85, Γ = 0.1,

ΛB = 0, the tissue grows normally and leads to a physically meaningful tissue configuration

(Figure 1H). If Λ is negative, the energy contribution of individual edges decreases as the edge

length increases. Since the motion of boundary vertices is unopposed by neighbouring cells, cells

at the boundary may thus grow to arbitrarily large sizes or self-intersect if the associated gain

in energy from the edges is sufficiently large. Such boundary effects are prevented if ΛB = 0.

An adjustment of the boundary tension is not necessary if Λ is positive, since in this case it is

energetically favourable for edges to shorten.

The non-dimensionalised parameter values used in our simulations are listed in Table 1.

These parameter values are chosen so that the final tissue is sufficiently large to obtain tissue-

level summary statistics while minimising the amount of time that is required to run a single

simulation. Ensuring that individual simulations are quick to run is a prerequisite for conducting
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Table 1: Description of non-dimensionalised parameter values.

Parameter Description Value Reference

∆t Time step 0.01 [24]
Amin T2 transition area threshold 0.001 [24]
lT1 T1 transition length threshold 0.01 [24]
ρ T1 transition edge multiplier 1.5 [24]
As

0 Initial interphase target area 1 –
tcycle Mean cell cycle duration 20 –
tend Simulation duration 700 –
nd Number of rounds of cell division 7 –
N Number of samples investigated 105 –
M Number of samples accepted 2× 103 –

ABC, since a large number of samples are required from the prior distribution. We discuss

simulation times further later in this section.

Kursawe et al. [24] found that a key descriptor of cell packing, the average area of cells of

each cell neighbour (or polygon) number, was unaffected by changes in the cell cycle duration

over multiple orders of magnitude. This suggests that characteristics of cell packing in the final

tissue configuration are not affected by an acceleration of tissue growth and that static tissue

configurations in the vertex model are largely governed by the energy equation (4) and are less

strongly affected by the dynamic processes leading up to the final configuration.

To estimate to what extent our implementation of the model may influence tissue properties,

we compare outcomes between our simulation procedure and the one described by [5] for three

points in parameter space in Figure 2. We find that cell packings generated using the model

described here closely resemble those simulated previously by [5]. Further, the average area per

polygon class (a sample summary statistic of cell packing) is similar to those previously reported

for all three considered parameter combinations. In Figure 2D, the mean area per polygon class

deviates between our simulations and those reported by Farhadifar et al. [5] for seven- and eight-

sided cells. This difference may originate from differences in boundary conditions between our

simulations and those by [5], or from differences in the description of cell growth and division.

Overall, however, we conclude that the final vertex configuration in our model represents typical

cell packing geometries of the vertex model for different points in (Γ,Λ) parameter space.

2.2 Parameter inference

In Bayesian statistics, one considers the joint probability distribution p(Θ,D) of a parameter

vector Θ and observed data vector D in order to calculate the posterior distribution p(Θ|D),

the probability distribution of the parameters given the data. The calculation of the posterior

is achieved by applying Bayes’ rule

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
. (7)
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Figure 2: Cell packings depend on the vertex model parameters Λ and Γ. (A,C,E)
Subsections of the tissue at the end of the simulation for different parameter values. Cell
shapes differ between the parameter values. (C,F,I) Cell shapes are quantified by the mean
area of cells of each polygon class, and compared between our simulation outcomes and those
by [5]. Parameter combinations are: (Λ,Γ) = (0.12, 0.04) (A,B); (Λ,Γ) = (0.0, 0.1) (C,D); and
(Λ,Γ) = (−0.85, 0.1) (E,F).

Here, p(D|Θ) is the probability of D given Θ, and is usually referred to as the likelihood, and

p(D), the probability of observing the data, is the marginal likelihood. The likelihood of the

parameter p(Θ) is referred to as the prior.

Approximate Bayesian computation (ABC) [21,22] is increasingly used to estimate parame-

ters of complex models for which the likelihood is not analytically or computationally tractable.

The most simple form of ABC, rejection-based ABC [21], approximates the posterior through

random sampling of parameters from the prior and evaluating the model for each sample. Sum-

mary statistics are used in order to compare the model with data. This is necessary since the

modelled data is high-dimensional: in case of vertex models it comprises the position of each

modelled vertex and the cell adjacencies. Samples for which a chosen summary statistic is suf-

ficiently close to the observed data are considered samples of the posterior, otherwise they are

rejected. Various well-established adaptations exist, including Markov Chain Monte Carlo ap-

proaches [27] and sequential Monte Carlo techniques [28]. Here, we apply rejection-based ABC

with regression adjustment, which leads to better estimates of the posterior than rejection sam-
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Figure 3: Definition of the prior. The parameter space of our vertex model can be divided
into three regions [5, 29]. Region A marks configurations of zero shear stress, where infinitely
many vertex configurations are possible at the energy minimum of equation (4). In region B,
vertex configurations can be stable, corresponding to well-defined energy minima. In region C,
the energy is minimal when all cells have zero area and zero perimeter. Throughout this work,
the prior is chosen to be a uniform distribution over region B.

pling alone [21]. In addition, unlike more sophisticated methods, rejection-based ABC allows us

to use a fixed set of sample simulations to evaluate the suitability of a broad range of summary

statistics of the data at different points in parameter space.

2.2.1 Calculating a suitable prior distribution

The parameter space of the vertex model with energy (4) has been explored previously [5,29] and

can be subdivided into three regions, labelled A, B, and C in Figure 3. In region A, characterized

by zero shear-stress, stable minima of (4) do not exist since infinitely many configurations are

possible at the energy minimum. For parameter values in this region, our simulations tend

to halt prematurely due to self-intersecting or overlapping cells, in agreement with previous

results [5, 12, 29]. In region B, well-defined energy minima exist, and cell packings vary as the

parameters are changed within this region (Figure 2). In region C, cell areas vanish at the energy

minimum, with simulated tissues progressively shrinking and cells being removed through T2

transitions. Thus, since regions A and C yield unphysical model behaviours, we define our prior

to be a uniform distribution on region B, restricted to the domain Λ ≥ −1.5, 0 ≤ Γ ≤ 0.2. By

choosing Γ ≤ 0.2 we follow previous work in ensuring that a sufficiently large region of parameter

space can be explored in a reasonable amount of time [5, 12,29].

The borders of region B can be estimated by calculating the energy minima of equation (4)

for tissues containing single, regular n-gons [29]. Different polygon classes give rise to different

boundaries for the transition between stable configurations in region B and shear-free configura-

tions in region A. Among all polygon classes, this boundary occupies the ‘left-most’ position for

triangular cells, which allow the lowest values of Λ. For triangular cells, the boundary between
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regions A and B is given by the line [29]

Λ = −4

√

3
√
3Γ. (8)

The boundary between regions B and C assumes positions at increasing values of Λ as the

polygon number increases. As n → ∞, this position converges to [29]

λ =







√

8
π

(

1−2πΓ
3

)3/2
, 2πΓ < 1,

0, 2πΓ ≥ 1.
(9)

Using equations (8)–(9) we thus define the prior to exclude regions in parameter space where

all simulations are unphysical1. However, unphysical solutions may also occur in region B of

Figure 3 for parameters that are close to the boundaries (8) and (9).

2.2.2 Sample generation

Within region B we generated N = 105 uniformly distributed parameter samples and used

these to run the in silico wing disc simulations using a supercomputer. Using the parameter

values listed in Table 1, a single simulation requires approximately five minutes to run on a

single machine with an Intel(R) Core(TM) i5-5200U CPU with a 2.20GHz processor and 8GB

memory. Out of the 105 parameter samples generated from the prior, 10,762 simulations did

not run to completion due to unphysical events, for example the generation of self-intersecting

or overlapping cells.

We further generated 105 uniformly distributed parameter samples from the prior, and for

each of these ran ten in silico wing disc simulations using a supercomputer. Of these repetition

samples, 21,583 samples were incomplete due to unphysical events in one of the repetition

simulations. Generating all samples required approximately 830,000 hours of calculation time.

2.2.3 Implementation of ABC regression

In Section 3 we investigate the utility of a broad range of summary statistics in inferring vertex

model parameters using in silico data generated using the procedure described in Section 2.1.

Specifically, we evaluate the model at a reference parameter vector Θobs = (Λobs,Γobs). The

samples used for parameter inference using ABC have parameter vectors Θk = (Λk,Γk), k =

1, . . . , N . A given vector of summary statistics computed with Θobs takes the vector form

sobs = (s1, . . . , sS)
T with a total of S components, and the summary statistic at sample Θk

assume the values sk = (sk1, . . . , skS)
T . Throughout we use summary statistics where the

individual vector entries s1, . . . , sS have been rescaled by their respective standard deviations

across all samples. This is a common procedure in ABC, since it reduces the impact of vector

components with high variance on the parameter estimate [21,22].

1Note that these boundaries are derived using free boundary conditions in the vertex model.
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Parameter inference is then conducted by first accepting the M = 2, 000 closest samples

based on an Euclidean distance measure to the reference statistic, di = ||si − sobs||2. This

accepted proportion is sufficiently small for all accepted samples to be close to the observed

summary statistics, avoiding the need to explicitly select an appropriate acceptance distance.

The acceptance threshold, δ, can be identified as the maximal distance of all accepted samples

δ = max{d1, . . . , dM}. (10)

We next adjust the accepted parameter vectors Θi = (Λi,Γi) using local-linear regression, as

introduced by [21]. Specifically, we minimise the penalty function

f(α, B) =

M
∑

i=1

||Θi −α− (si − sobs)
TB||2Kδ (||si − sobs||) , (11)

providing the regression parameters α̂ and B̂ for a local-linear regression of the parameters

dependent on the summary statistics,

Θi = α̂+ (si − sobs)
T B̂ + ǫi. (12)

Here, Kδ denotes the Epanechnikov kernel function [30]

Kδ(x) = max

{

3

4δ

(

1−
(x

δ

)2
)

, 0

}

, (13)

where δ is defined in equation (10) and the ǫi are uncorrelated random variables with zero mean

and a common variance. Note that no further assumptions are made as to the distributions of

ǫi. The penalty function (11) is minimised by

(

α̂

B̂

)

= (XTWX)−1XTW Θ̂, (14)

where the matrix W is diagonal with non-zero entries Kδ(||si − sobs||), the matrix X has the

form

X =









1 s11 − s1 · · · s1S − sS
...

...
. . .

...

1 sM1 − s1 · · · sMS − sS









, (15)

and the matrix Θ̂ is given by (Θ1, . . . ,ΘM )T .

After computing B̂ from equation (14) we perform regression adjustment on all samples,

Θ
∗
i = Θi − (si − sobs)

T B̂. (16)

The process of regression adjustment aims to reduce the effects of the discrepancy between si
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and sobs. The vector α̂ estimates the mean of the posterior distribution:

α̂ =

∑M
i=1Θ

∗
iKδ(||si − s||)

∑M
i=1Kδ(||si − s||)

. (17)

To estimate the posterior distribution, we use kernel density estimation with the Epanechnikov

kernel. Specifically, each parameter vector Θ∗
i is assigned the weight wi = Kδ(||si − sobs||), and

the posterior density at parameter Θ̃ is calculated as

p(Θ̃) =

∑M
i=1Kρ(Λ

∗
i − Λ̃)Kσ(Γ

∗
i − Γ̃)wi

∑M
i=1wi

. (18)

Note that when using kernel-density estimation, the estimated density at a given parameter

point depends on the thresholds ρ and σ (whose values, we emphasise, may differ from that of

δ in equation (10)). Throughout this work, we use least-squares cross-validation to select ρ and

σ automatically [31].

2.2.4 Definition of summary statistics

Vertex positions in our model are measured in units of the characteristic length scale of the tissue,

which we set equal to the square root of the target area of cells in the tissue, L =
√

As
0. Since a

cell’s target area may differ from its actual area, the target area is not experimentally accessible.

Throughout this work we thus consider dimensionless summary statistics. Specifically, we divide

all area-based summary statistics by the average area of cells in the tissue [12], and all length-

based summary statistics by the square root of the average area of cells. A full list of all summary

statistics is provided in Table 2. All summary statistics of cell shapes are averaged over all cells

in the tissue that do not share an edge with the tissue boundary, since cell shapes along the tissue

boundary differ from those in the bulk of the tissue (cf. Figure 1F,H). We define cell elongation

as the square root of the ratio of the largest to the smallest eigenvalues of the moment of inertia

of the polygon representing the cell. This definition provides a robust measure of elongation for

arbitrary cell shapes [7].

Throughout this work we calculate correlations between two random variables A and B by

corr(A,B) =
〈(A− 〈A〉)(B − 〈B〉)〉

σAσB
, (19)

where σX denotes the standard deviation of a random variable X. In the case of ‘Area correla-

tion’ and ‘Polygon number correlation’, the random variables are the areas and polygon numbers

of adjacent cells, respectively. In these cases, the average in equation (19) is taken over all pairs

of adjacent cells.
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3 Results

In the following we address a key problem that arises when using cell-based models to interrogate

quantitative experimental data: the practical identifiability of model parameters, and the choice

of summary statistics for parameter inference and uncertainty estimation. We apply ABC for

the first time to estimate mechanical parameters of a vertex model of a proliferative epithelium.

We compare parameter estimates obtained using a range of summary statistics of our model and

estimate the associated uncertainties.

When investigating the efficacy of different summary statistics in inferring the parameters

of our model we use in silico data generated at the reference parameter set (Λobs,Γobs) =

(0.12, 0.04). These are commonly used parameter values for vertex model simulations of the

growing Drosophila wing imaginal disc [5, 23]. We begin by analysing the quality of the poste-

rior distributions of Λ and Γ generated using different summary statistics of cell packing and

tissue responses to perturbations. Specifically, we focus on first-order summary statistics that

characterize the shapes of individual cells, second-order summary statistics of cell packing that

quantify the relationships between shapes of adjacent cells, and summary statistics characterising

the tissue response to perturbations through laser ablation experiments.

3.1 Parameter estimates from single experiments have high uncertainty

In Figure 4 we investigate the efficacy of various summary statistics obtained from single exper-

iments in estimating vertex model parameters; posterior distributions obtained using first-order

summary statistics, second order summary statistics, and summary statistics from laser ablation

experiments are plotted. All of the investigated summary statistics are associated with high pa-

rameter uncertainty. In the following we provide background to each of these summary statistics

and discuss the parameter estimates.

First-order summary statistics of cell packing are often used to compare the output of vertex

models with experimental data. The most common examples of these are the distribution of

polygon (cell neighbour) numbers and the average area of cells for each polygon class. Here, we

employ both of these summary statistics for parameter inference, in addition to the average cell

perimeter, the average edge length (i.e. the average length of cell-cell interfaces), the average

cell elongation, and the standard deviation of cell areas within the tissue.

The approximate posterior distributions generated by ABC using these first-order summary

statistics are shown in Figure 4. The means of these posterior distributions provide an estimate

of the inferred parameters and are calculated using equation (17). We find that none of the

summary statistics considered lead to posterior distributions that accurately estimate parame-

ters of the in silico data. The most accurate parameter estimate is achieved using the summary

statistic ‘Area ratios’, with a parameter estimate of (Λ,Γ) = (−0.28, 0.076). The reference

parameter set used to generate the in silico data is (Λobs,Γobs) = (0.12, 0.04). For the ‘Area

ratios’ summary statistic, the posterior distribution is also the most narrow and concentrated,

i.e. it is the posterior distribution with the lowest degree of uncertainty. The marginal standard

14



Table 2: Description of summary statistics used in this study.

Abbreviation Summary statistic Description

Polygon numbers (p4, . . . , p8) Cell neighbour number distribution
Area ratios (〈A〉4/〈A〉, . . . , 〈A〉8/〈A〉) Mean area for cells of each polygon

class
Cell perimeter 〈P 〉/

√

〈A〉 Average cell perimeter
Edge length 〈li,j〉/

√

〈A〉 Average edge length
Cell elongation 〈λ〉 Average cell elongation (see text for

details)
Area deviation σ(A)/〈A〉 Standard deviation of the cell areas
Area correlation corr(Ai, Aj) Correlation between areas of adja-

cent cells i and j
Polygon number corre-
lation

corr(Ni, Nj) Correlation between neighbour
numbers of adjacent cells i and j

Neighbour areas (〈Aneigh〉4/〈A〉, . . . , 〈Aneigh〉8/〈A〉) Mean neighbour area for cells of each
polygon class

Neighbour numbers (〈Nneigh〉4, . . . , 〈Nneigh〉8) Mean neighbour number for cells of
each polygon class

Laser recoil 〈drecoil〉/
√

〈A〉 Recoil distance of vertices adjacent
to an ablated edge

Area asymmetry 〈∆A〉/(drecoil
√

〈A〉) Relative change in area of the adja-
cent cells over the vertex recoil

Perimeter asymmetry (〈∆P 〉 − 2drecoil)/drecoil Relative change in perimeter of the
adjacent cells over the vertex recoil

Note that pn denotes the proportion of cells of polygon class n; Aneigh and Nneigh denote the
average area of a cell’s neighbours and the average polygon number of a cell’s neighbours,
respectively; and 〈·〉n and 〈·〉 denote averages over all cells of polygon class n, and all cells,
respectively, both excluding cells on the tissue boundary. For ‘Polygon numbers’, ‘Area ratios’,
‘Neighbour areas’ and ‘Neighbour numbers’ only cells of polygon classes four to eight are
considered, since cells with different neighbour numbers are rarely observed in simulations.
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Figure 4: Posterior distributions of (Λ,Γ) obtained from different summary statistics

of single experiments. Posterior distributions obtained using first-order summary statistics,
second-order summary statistics, and laser ablation experiments are shown in green. Parameter
values are listed in Table 1 and the summary statistics are defined in Table 2. Crosses mark
the reference parameter set used to generate the observed data. Circles mark the means of the
posterior distributions. Posterior distributions were calculated using summary statistics from
single experiments.
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deviations are 0.14 and 0.035 in Λ and Γ, respectively. All of the posterior distributions corre-

sponding to first-order summary statistics in Figure 4 are spread across parameter space instead

of concentrating in an area close to the true parameter set. Thus, the parameter estimates are

all associated with a high degree of uncertainty, and therefore without knowing the reference pa-

rameter set it would be difficult for us to evaluate the quality of parameter estimates, including

the cases of the commonly used polygon distribution and the cell area ratios. This could mean

that the parameters are not practically identifiable using these summary statistics [32], or that

insufficient data are used for the inference.

We next investigate the efficacy of second-order summary statistics in estimating vertex

model parameters (Figure 4, middle). We focus on four quantities: the ‘Area correlation’, i.e.

the correlation coefficient between areas of adjacent cells; the ‘Polygon number correlation’, i.e.

the correlation coefficient between neighbour numbers of adjacent cells; the ‘Neighbour areas’,

i.e. the mean area of neighbours for cells of each polygon class; and the ‘Neighbour numbers’,

i.e. the mean polygon number of neighbours for cells of each polygon class.

In general, the second-order statistics considered in Figure 4 suffer the same drawbacks as the

first-order summary statistics. In particular, they all yield posterior distributions covering wide

regions in parameter space and the posterior means lie far away from the reference parameter

set.

The shapes of the posterior distributions generated using a range of first- and second-order

statistics in Figure 4 have striking similarities. For many of the summary statistics, such as

‘Area correlation’ and ‘Cell elongation’, the posterior distributions are spread along a narrow,

elongated region in parameter space. This indicates that cell shapes and neighbour relationships

generated by the vertex model within such regions are similar and indistinguishable by these

summary statistics. The reason for this might be that Λ and Γ have distinct but related roles

in the vertex model. The parameter Λ regulates the strength of an energy contribution that

is linear in the edge length, and Γ regulates the strength of an energy contribution quadratic

in the perimeter. Thus, both parameters affect the overall contraction force along cell-cell

interfaces, which might explain why stable configurations in the vertex model appear similar in

regions of decreasing Λ and increasing Γ. This relationship can be illustrated by considering the

stability conditions for tissues containing single cells derived by Staple et al. [29], who considered

tissues containing single polygons of target area 1, area a, and perimeter p. Such polygons are

energetically stable if

2a(a− 1) + Γp2 + Λp/2 = 0. (20)

If a polygon with area a and perimeter p is stable for fixed values of Λ and Γ, then there

are infinitely many other parameter combinations for which equation (20) is fulfilled for the

same values of a and p. These parameter combinations all lie along the straight line in (Λ,Γ)

parameter space,

Γ = −2a(a− 1)/p2 − Λ/(2p). (21)
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The shapes of the posterior distributions from first- and second-order statistics in Figure 4

indicate this rule may generalise to energy minima of tissues containing multiple cells.

Using first- and second-order summary statistics of cell shapes in Figure 4 we had limited

success in inferring Λ and Γ reliably, revealing a possible interdependence of these parameters. It

is intuitive that such static image-based methods have limitations, since they use cell shapes as

a means to infer mechanical properties, and one may assume that invasive methods that record

the dynamics of tissue response to a manipulation may produce more reliable results for the

inference of mechanical parameters.

To test whether localised mechanical perturbation can be helpful in inferring parameters

we then simulated laser ablation experiments. These are widely used to investigate mechanical

properties of epithelial cells and comprise ablating the bond between two adjacent cells, usually

leading the shared vertices of that edge or bond to recoil. Summary statistics of this recoil process

can give insights into the mechanical state of the tissue or the adjacent cells [5, 33]. For each

sample simulation we select one cell-cell interface in at the centre of the final tissue configuration

and simulate a laser ablation of this interface. To simulate laser ablation, we remove the line

tension contribution in equation (4) from the ablated edge and the perimeter contribution from

both of its adjacent cells, and further set the threshold for vertex rearrangement l′T1 throughout

the tissue to zero. The latter prevents vertex rearrangements in the cells adjacent to the ablation,

which we consider physically unrealistic since we expect recoil after laser ablation to happen on

faster timescales than vertex rearrangements. It also helps us to keep track of the length of

the ablated edge, since it will not be involved in any vertex rearrangements. After each laser

ablation, we evolve the tissue for another 150 time units, which is sufficiently long to allow the

tissue to settle into a static equilibrium. Cells do not divide during this duration.

We analyse the utility of laser ablation summary statistics in inferring Λ and Γ in Figure 4.

Specifically, we investigate the extent to which parameters can be inferred using the recoil dis-

tance, area asymmetry, and perimeter asymmetry. Each of these summary statistics is obtained

from one laser ablation per parameter set. The latter two asymmetry measures were used by

Farhadifar et al. [5] to constrain their parameter choices in manual parameter fitting. The area

asymmetry measures how much the combined areas of the cells adjacent to the ablation change

in comparison to changes in the length of the ablated edge. The perimeter asymmetry similarly

considers changes in the combined cell perimeter of the two cells. Both of these measures quan-

tify whether the cell shape changes upon laser ablation are limited to an extension of the ablated

edge, or whether the cells respond as a whole by changing their total areas or perimeters. Similar

to our previous observations of summary statistics of cell packing, the posterior distributions

corresponding to summary statistics from laser ablations shown in Figure 4 have mean values

far away from the reference parameter set, and a high degree of uncertainty is associated with

these parameter estimates. For example, the posterior estimated using the ‘Area asymmetry’

summary statistic has a mean value of (Λ,Γ) = (−0.33, 0.11) and marginal standard deviations

of 0.33 and 0.06 in Λ and Γ, respectively.

Note that Farhadifar et al. [5] restricted their parameter analysis to positive values of Λ,
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since the vertex distances always increased after the ablation, rather than contracted, indicating

that the edges are under tension. Here, of the 88,479 parameter points for which we successfully

conducted laser ablation experiments, only 982 lead to a contraction of vertex distances after

cutting, illustrating that increasing vertex distances after ablation are common even when Λ is

negative. Hence, we cannot confirm that positive vertex recoils dictate positive values of Λ.

In conclusion, we observe high parameter uncertainty for parameter estimates generated

using each summary statistic in Figure 4. This suggests that the model parameters may be

practically unidentifiable due to related roles of these parameters in the model, or that the

amount of data used to calculate the summary statistics is insufficient to reliably infer model

parameters.

3.2 Repetition of experiments reduces parameter uncertainty

In Figure 4 we used summary statistics from single snapshots of tissues containing approximately

500 cells. To test whether better parameter estimates can be achieved if more data are used

we obtain posterior distributions by calculating summary statistics from multiple experiments.

Specifically, we averaged all summary statistics of cell shapes introduced in Table 2 and Figure 4

across ten tissues generated using our model and the reference parameter set. Summary statistics

from laser ablation experiments are averaged over 60 laser ablations, i.e. six laser ablations are

conducted on each simulated tissue. To ensure that the laser ablations do not impinge on each

other or on the tissue boundary, we pick one cell interface at the centre of the tissue in addition

to five cell interfaces that are evenly distributed along a circle sharing the tissue centre and with

a radius of a quarter of the tissue width.

The posterior distributions from all summary statistics displayed in Figure 5 have lower

uncertainty and provide better parameter estimates than those in Figure 4. Specifically, the

posterior distributions from the ‘Polygon number’ and ‘Area ratios’ summary statistics lead to

parameter estimates close to the reference parameters, with (Λ,Γ) = (0.06, 0.05) and (Λ,Γ) =

(0.03, 0.06), respectively. Note, that we use the reference parameter set Λobs,Γobs) = (0.12, 0.04)

to generate observed data unless stated otherwise. The ‘Polygon number’ and ‘Area ratios’ sum-

mary statistics are vector-valued summary statistics of cell shapes. In contrast, one-dimensional

first-order summary statistics of cell shapes do not lead to improved parameter estimates in

Figure 5 over those in Figure 4. The corresponding posterior distributions have similarities with

those obtained from single experiments. In particular, the posterior distributions generated us-

ing the one-dimensional summary statistics of cell shapes in Figure 4 appear again to sit along a

line in parameter space. We conclude that vector-valued summary statistics that average prop-

erties of cells of different polygon classes separately perform better in estimating parameters

than summary statistics averaged across all cells in the tissue.

Second-order statistics of cell shapes obtained from multiple experiments appear to result

in posterior distributions that are associated with high uncertainty for both one-dimensional

or multi-dimensional summary statistics, and the associated parameter estimates lie far away

in parameter space from the reference parameter set (Figure 5). This suggests that the data
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Figure 5: Posterior distributions of (Λ,Γ) obtained from different summary statis-

tics of repeated experiments. Posterior distributions obtained using first-order summary
statistics, second order summary statistics, and laser ablation experiments are shown in green.
Parameter values are listed in Table 1 and summary statistics defined in Table 2. Crosses mark
the reference parameter set used to generate the observed data. Circles mark the means of
the posterior distributions. Posterior distributions were calculated using summary statistics
averaged from ten experiments.
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gathered across ten experiments at each parameter point are not sufficient to obtain reliable

parameter estimates from second-order summary statistics of cell shapes. This reflects previous

findings that second-order statistics tend to be associated with higher noise than first-order

statistics [34].

Parameter estimates generated using summary statistics of multiple laser ablation experi-

ments have lower uncertainty than those generated using summary statistics of single ablation

experiments. However, the parameter estimates still lie far away from the reference parameter

set, for example (Λ,Γ) = (−0.28, 0.1) in case of the ‘Area asymmetry’ summary statistic. The

posterior distribution obtained from the ‘Laser recoil’ summary statistic is bimodel in the Λ

direction, which may be an artefact of the boundary condition or of the normalisation of the

recoil by the square root of the average tissue area. The posterior distributions from the ‘Area

asymmetry’ and ‘Perimeter asymmetry’ boundary conditions contains mass in the vicinity of

the reference parameter set, with maximum likelihood estimates at (Λ,Γ) = (0.09, 0.05) and

(Λ,Γ) = (0.03, 0.07), respectively. This means that for these summary statistics the maximum

likelihood provides a better parameter estimate than the mean of the distribution.

In summary, parameter estimates obtained by averaging summary statistics across multiple

experiments in Figure 5 have lower uncertainty than those obtained from single experiments

in Figure 5. However, a careful choice of summary statistic is important, since only few of

the summary statistics in Figure 5 lead to reliable parameter estimates. Specifically, the vector-

valued summary statistics ‘Area ratios’ and ‘Polygon numbers’ lead to parameter estimates close

to the reference parameter set.

3.3 Posterior distributions are robust to the total number of samples and

the number of accepted samples

When using ABC to infer posterior parameter distributions, it is important to check that the

method is applied correctly. It is necessary to check that the total number of samples, N , is

sufficiently large, and that the number of accepted regression samples, M , is sufficiently small in

order to generate accurate representations of the posterior. In Figure 6 we compare the posterior

distributions obtained with N = 100, 000 and M = 2, 000 (Figure 6A), to those obtained with

N = 50, 000 and M = 1, 000 (Figure 6B), and those obtained with N = 100, 000 and M = 1, 000

(Figure 6C) for the summary statistics ‘Polygon numbers’ and ‘Area ratios’ in the case that

multiple experiments have been conducted, as in Figure 5. In Figure 6B, both N and M

are reduced while fixing the acceptance ratio M/N at 0.02. As Figure 6 shows, the posterior

distributions obtained using the summary statistics ‘Polygon numbers’ and ‘Area ratios’ are not

strongly affected by changes of the inference parameters N and M and the characteristics of

these distributions, including their mean value, are preserved. For example, for the ‘Polygon

numbers’ summary statistics, the mean values of (Λ,Γ) are (−0.066, 0.054), (0.080, 0.051) and

(−0.060, 0.057) for cases A, B and C in Figure 6, respectively. We conclude that, for our choice of

N and M , the ABC method has converged and yields accurate approximations of the posterior

distributions.
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Figure 6: Posterior distributions are robust to inference parameters N and M .

(A) Posterior distributions obtained using the summary statistics ‘Polygon numbers’ and ‘Area
ratios’, the inference parameters N = 100, 000 and M = 2, 000 and ten experiments. (B)
Posterior distributions obtained by halving the total number of samples, N = 50, 000. We
also halve the acceptance threshold to M = 1, 000 in order to ensure that the acceptance ratio
M/N is unaffected. (C) The posterior distributions obtained by halving the acceptance ratio,
i.e. N = 100, 000 and M = 1, 000. Model and inference parameters are listed in Table 1 and
mathematical descriptions of the summary statistics are provided in the text and listed in Table
2. Crosses mark the reference parameter set used to generate the observed data. Circles mark
the means of the posterior distributions.
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3.4 Selected combinations of summary statistics can further improve param-

eter estimates

After inferring the mechanical parameters of the vertex model using single summary statistics of

cell packing and from laser ablation experiments, we investigate whether the parameter estima-

tion process may be improved by combining summary statistics. We combine summary statistics

by creating vector-valued summary statistics; if at least one of the summary statistics is already

vector-valued, the vector is simply extended with entries for the other statistic. As described in

Section 2.2, the individual entries of the combined, vector-valued summary statistics are rescaled

by their respective standard deviations.

The posterior distributions resulting from three combinations of summary statistics are plot-

ted in Figure 7. First, we combine the laser ablation summary statistics ‘Laser recoil’ and ‘Area

asymmetry’ to test whether this combination leads to a posterior that is concentrated around

the reference parameter values, since both the individual posterior distributions have high val-

ues in this region. However, the posterior distribution obtained using the combined summary

statistic is instead widespread and leads to a parameter estimate far away from the reference

parameter set, similar to the posteriors from either individual summary statistic. Next, we com-

bine the ‘Area ratios’ and ‘Cell elongation’ summary statistics to test whether the contributions

from the ‘Cell elongation’ summary statistic may help in ‘shifting’ the parameter estimate of

the ‘Area ratios’ statistic closer to the reference parameter value. This is indeed the case, with

(Λ,Γ) = (0.1, 0.05). Finally, we combine the ‘Area ratios’ summary statistic with the ‘Area

asymmetry’. This is motivated by Farhadifar et al. [5], who used summary statistics of cell

packing in combination with laser ablation experiments to estimate vertex model parameters.

This combination of summary statistics does not lead to a more accurate parameter estimate

(posterior mean) than the ‘Area ratios’ summary statistic, with (Λ,Γ) = (0.04, 0.06).

Among all the summary statistics we considered, the most accurate parameter estimates are

achieved when using the ‘Area ratios’ summary statistic in combination with the ‘cell elongation’

summary statistic; this combination performs slightly better than the ‘Area ratios summary

statistic alone. A key benefit of using these two summary statistics is that they do not require

laser ablation experiments to be conducted, i.e. they can be experimentally measured using

non-invasive imaging methods.

3.5 Characteristics of posterior distributions are preserved for different ref-

erence parameters

We next test to what extent the ‘Area ratios’ summary statistic (Figure 8A) and its com-

bination with the ‘Cell elongation’ summary statistic (Figure 8B) can be used to infer pa-

rameters of sample simulations with reference parameter sets elsewhere in parameter space,

namely (Λobs,Γobs) = (−0.5, 0.1) and (Λobs,Γobs) = (−0.2, 0.15). For the reference parameter

set (Λobs,Γobs) = (−0.5, 0.1), the parameter estimates (posterior mean) are further away from

the reference value than for the previously analysed parameter point, with (Λ,Γ) = (−0.71, 0.14)

in case of the combined summary statistic, and the posterior distributions are more widespread.
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Figure 7: Combinations of summary statistics can lead to improved parameter es-

timates. Posterior distributions obtained when combining summary statistics are shown in
green. The method for combining summary statistics is explained in the text. Model and infer-
ence parameters are listed in Table 1 and mathematical descriptions of the summary statistics
are provided in the text and listed in Table 2. Crosses mark the reference parameter set of the
data for which the posterior is estimated. Circles mark the means of the posterior distributions.
Summary statistics are collected as averages from ten experiments.

For the reference parameter set (Λobs,Γobs) = (−0.2, 0.15), the reference and the target param-

eter practically coincide with (Λ,Γ) = (−0.22, 0.16) and the parameter uncertainty is similar to

the parameter uncertainty at (Λobs,Γobs) = (0.12, 0.04), with marginal standard deviations of

0.24 and 0.04 in Λ and Γ, respectively.

We conclude that posterior distributions obtained from in silico data generated using differ-

ent reference parameter values share key properties. In particular, the accuracy and uncertainty

of the parameter estimates are comparable.

3.6 Parameter estimates depend on the observed data at the reference pa-

rameter

In Figures 5, 7 and 8, accurate parameter estimates were achieved by a careful choice of sum-

mary statistic and ensuring that sufficient amounts of data were used. However, since the data

generated by the model are inherently noisy, different parameter estimates may be obtained if

different samples are used. In order to investigate how strongly the parameter estimate depends

on the observed data we plot the parameter estimates obtained from ten different in silico data

sets generated using the reference parameter set (Λobs,Γobs) = (0.12, 0.04) in Figure 9, using the

‘Polygon numbers’ summary statistic, the ‘Area ratios’ summary statistic and the combination

of the ‘Area ratios’ summary statistic with ‘Cell elongation’. We note that each of the in silico

data sets itself contains data from ten independent simulations.

The estimated parameter varies for the different reference data sets. The variation is wider

for the ‘Polygon numbers’ summary statistic than for the ‘Area ratios’ summary statistic or the

24



−1.5 −1.0 −0.5 0.0 0.5
0.00

0.05

0.10

0.15

0.20
A = 0. 12, = 0. 04

−1.5 −1.0 −0.5 0.0 0.5
0.00

0.05

0.10

0.15

0.20
= - 0. 5, = 0. 1

−1.5 −1.0 −0.5 0.0 0.5
0.00

0.05

0.10

0.15

0.20
= - 0. 2, = 0. 15

−1.5 −1.0 −0.5 0.0 0.5
0.00

0.05

0.10

0.15

0.20
B = 0. 12, = 0. 04

−1.5 −1.0 −0.5 0.0 0.5
0.00

0.05

0.10

0.15

0.20
= - 0. 5, = 0. 1

−1.5 −1.0 −0.5 0.0 0.5
0.00

0.05

0.10

0.15

0.20
= - 0. 2, = 0. 15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p/pmax

Figure 8: Characteristics of posterior distributions are preserved for different refer-

ence parameters. Posterior distributions obtained using the ‘Area ratios’ summary statistic
(A) and the combination of the ‘Area ratios’ and ‘Cell elongation’ summary statistics (B) are
shown in green. The method for combining summary statistics are explained in the text. Model
and inference parameters are listed in Table 1 and mathematical descriptions of the summary
statistics are provided in the text and listed in Table 2. Crosses mark the reference parame-
ter of the data for which the posterior is estimated. Circles mark the means of the posterior
distributions.

combined summary statistic, suggesting the ‘Polygon numbers’ summary statistic varies more

between samples than the other summary statistics. All estimates (posterior means) using the

‘Area ratios’ summary statistic have larger values in Γ than the reference parameter set, which

is not the case for the ‘Polygon number summary statistic’ or the combined summary statistic.

Similar to the posterior distributions corresponding to these summary statistics, the estimated

parameters lie on a line in parameter space, reflecting the fact that the parameters Γ and Λ

regulate similar force contributions in the vertex model.

The data in Figure 9 confirm our observation that the combination of ‘Area ratios’ and ‘Cell

elongation’ performs better than other summary statistics. In particular, the inferred parameter

values vary less with the observed data than those inferred using the ‘Polygon number’ summary

statistic, and inferred parameters lie on both sides of the reference parameter set, which is in

contrast to parameter estimates from the ‘Area ratios’ summary statistic. For this combined
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Figure 9: Parameter estimates depend on the observed data at the reference pa-

rameter. Circles mark the parameter posterior means obtained using the ‘Polygon numbers’
summary statistic, ‘Area ratios’ summary statistic, and the combination of the ‘Area ratios’ and
‘Cell elongation’ summary statistic evaluated for ten different realisations of the model at the
reference parameter set (Λobs,Γobs) = (0.12, 0.04). The reference parameter set is marked by a
cross. Model and inference parameters are listed in Table 1 and mathematical descriptions of
the summary statistics are provided in the text and listed in Table 2.

summary statistic, the parameter estimates (posterior means) vary between (Λ,Γ) = (0.17, 0.03)

and (Λ,Γ) = (0.02, 0.07).

4 Discussion

In this study, we have investigated the utility of a range of summary statistics in identifying the

mechanical parameters of a vertex model of a proliferating epithelial tissue. For the first time,

we provide uncertainty estimates arising from the use of such summary statistics by using ABC.

We find that model parameters can be inferred from static images of cell shapes if summary

statistics are carefully chosen and if sufficient amounts of experimental data are acquired. In

particular, we identify that reliable parameter estimates can be achieved if a summary statistic

is used that combines the mean area for cells of each polygon class with the average elongation

of all cells in the tissue. Vertex model parameters can be inferred if this summary statistic is

averaged across ten tissues containing approximately 500 cells. If less data are used, for example

if summary statistics are only calculated from one sample tissue, then the uncertainty is large

and parameter estimates are not reliable.

We find that summary statistics from invasive methods, such as laser ablation experiments,

do not lead to better parameter estimates than summary statistics of cell shapes from static

images. Similarly, second-order cell-shape statistics that characterise relationships of adjacent

cells do not lead to better parameter estimates than first-order statistics, possibly reflecting

higher noise in the second-order statistics if the same amounts of data are used. We identified

that posterior distributions are robust to changes in the total number of samples and in the

acceptance ratio, and that characteristics of the posterior distribution are preserved if differ-

ent reference parameters are used. Further, we quantified the extent to which the parameter
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estimates depend on the observed data generated using the reference parameter set.

Summary statistics of cell shape have previously been used to constrain vertex model param-

eter space by Farhadifar et al. [5], who found that large regions of parameter space could give

rise to experimentally observed values for such summary statistics. It has since been a common

procedure to only use, for example, the distribution of cell neighbour numbers to select parame-

ter values. Other summary statistics of cell shape have since been proposed, for example the cell

elongation (or circularity) [12]. Here, we confirm previous findings by Farhadifar et al. [5] that

high uncertainty may be associated with classical summary statistics of cell packing if insuffi-

cient data are used for parameter estimation. If sufficient data are used then summary statistics

of cell packing may lead to reliable parameter estimates, in particular if vector-valued summary

statistics are used that average cell properties over cells of each polygon class separately.

We further analysed, for the first time, whether second-order statistics of cell shapes, such

as the correlation between areas of adjacent cells, can lead to improved parameter estimates.

However, these second-order statistics do not lead to more accurate parameter estimates than

summary statistics from first-order statistics of cell packing. Both types of summary statistics

may suffer a similar drawback, namely a spread of the posterior distribution along an approx-

imately linear line in parameter space, and similar posterior distributions were observed for

summary statistics from laser ablation experiments. Summary statistics from laser ablation ex-

periments lead to better parameter estimates if the maximum likelihood is used as parameter

estimate instead of the average of the distribution.

The strong correlation between the parameters Λ and Γ in the posterior distributions cor-

responding to some summary statistics, such as the mean length of cell-cell interfaces or the

standard deviation of cell areas, suggests that the model parameter space may be reduced to a

lower-dimensional parameter space or transformed to a space of independent parameters. Pre-

vious studies have proposed reformulating equation (4) in terms of Γ and p0 = −Λ/2Γ [29, 35].

Estimated posterior distributions of (Γ, p0) are plotted in supplementary Figure S2, showing

that parameter estimates of (Γ, p0) are associated with high uncertainty, similar to parameter

estimates of (Γ,Λ). This high parameter parameter uncertainty in (Γ, p0) is to be expected,

since this parameter transform does not reduce the parameter space. The transformed energy

equation still depends on both parameters, Γ and p0, and since Γ and p0 are by definition in-

terdependent, this transformation does not introduce uncorrelated parameters. Future work

is required to understand to what extent the energy equation (4) may be reparameterised to

expedite parameter estimation.

Parameter estimates from the vertex model using combinations of first order summary statis-

tics are close to the ‘true’ reference parameter set. We see a decrease in parameter uncertainty

when using ten experiments for parameter inference instead of one. Instead of simulating mul-

tiple tissues, it may also be possible to gain parameter estimates from cell packings of single,

larger tissues. Here, we chose to simulate multiple small tissues since this facilitates parallelisa-

tion by ensuring that individual simulation runs are short. In future efforts, it may be possible

to further reduce the parameter uncertainty by conducting more ‘experiments’ per parameter
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point. We did not investigate a further increase in the number of experiments per parameter

point beyond ten due to prohibitive computational costs. Since posterior distributions obtained

from summary statistics of laser ablation experiments have maxima close to the reference pa-

rameter values, future efforts may achieve better parameter estimates if summary statistics from

more laser ablation experiments are used. Here, we used 60 laser ablations to calculate summary

statistics and did not increase this number further due to prohibitive computational costs. For

comparison, Farhadifar et al. [5] conducted 24 laser ablation experiments ex vivo.

When simulating laser ablation experiments, we set the line tension of the ablated edge, as

well as the perimeter contractility of the adjacent cells, to zero. This procedure has originally

been proposed by Farhadifar et al. [5]. Canela-Xandri et al. [10] also set the line tension of the

ablated edge to zero, but remove the perimeter contractility contribution only from the ablated

edge and not the remaining edges of the adjacent cells. More research is required to determine

which method to implement laser ablations in silico is the most biologically realistic. This choice

of implementation may have an effect on the resulting parameter estimates.

Laser ablations are a common procedure to measure the mechanical properties of a tissue in

vivo. Other ways of tissue manipulation exist, for example through stretching or compressing the

tissue [13]. Future work may include applying ABC to this type of experiment and measure the

uncertainty of the associated parameter estimation. Experimentally, a possible avenue for future

work might be to develop corresponding methods of tissue manipulation that are applicable in

vivo, for example through locally perturbed tissue growth.

Here, we analysed the packing geometry and response to perturbations of tissues that emerge

after periods of uniform growth, such as in the Drosophila wing imaginal disc. However, pack-

ing geometries emerge from from a wide range of epithelia under different conditions. Future

work may investigate whether other ways of generating tissue packing lead to similar packing

geometries, and indeed if the same summary statistics, or even the same simulation procedure

presented here, may be used to measure vertex model parameters in different tissues.

In the present work, we use rejection-based ABC and identified the mean area per polygon

class in combination with the average cell elongation as a suitable summary statistic to constrain

vertex model parameters. Using this summary statistic it may be possible to apply adaptations

of ABC in order to implement more efficient methods that have lower sample rejection rates, for

example Markov Chain Monte Carlo [27], sequential Monte Carlo techniques [28], or machine

learning approaches [36]. Specifically, the simulation procedure used in this study is designed

to minimise the time that is required to generate the tissue. Using this simulation procedure,

the tissue does not evolve to its final configuration through slow, quasistatic growth. Instead,

tissue growth occurs within a dynamic regime of the model. We confirmed that summary

statistics of cell packing are similar to what has previously been reported. Using alternative

inference methods, it may be possible to use quasi-static timescales in the sample simulations.

When using a biologically realistic implementation of the growth phase of the tissue it may

be possible to improve the parameter estimates obtained here by using dynamic data of tissue

growth throughout the simulation, instead of focussing only at the final configuration [37].
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We rescaled components of vector-valued summary statistics by their respective standard

deviations. This is a common procedure when conducting parameter inference, since it minimises

the impact of summary statistics of high variability on the parameter estimate [21,22]. However,

the optimal choice for weights when combining summary statistics for parameter estimation is a

matter of active research [38–40]. Here, we considered a large number of summary statistics and

combinations and identified the mean area per polygon class in combination with the mean cell

elongation as a suitable summary statistic for parameter inference. It is unclear whether better

parameter estimates could be achieved in our work if different weights were used in vector-valued

summary statistics, or if different combinations were applied.

Future methods of investigating vertex model parameters may include measurements of the

mechanical relaxation time T̃ . Measurement of the mechanical relaxation time has previously

been proposed by [6] and [10]. This may, in turn, allow the precise implementation of cell cycle

times in the vertex model.

Here, we have investigated parameter inference for vertex models propagated using the energy

equation (4). Several other formulations have been proposed [3,41–43], including terms that take

cell heights into account. To conduct parameter inference on vertex models using these altered

energy equations, it would be necessary to conduct a preliminary analysis investigating the

possible model behaviours, and the parameter regions where the models are physical. Future

work may include using ABC for model selection on experimental data to investigate which of

these energy equations provides the most plausible description of biological phenomena. Such

work could, for example, include alterations to equation (4) that prevent mechanically-induced

cell removal.

In our model implementation, vertex movement is deterministic and stochasticity occurs only

through the random distribution of cell cycle durations. A more rigorous approach to include

stochasticity in the model would be to include a noise term in the equation of motion (1), thus

turning it into a Langevin equation [44]. Langevin equations are a common method to model

particle motion on a microscopic scale. Future work is required to understand to what extent

an additional noise term in the vertex movement equation may impact model behaviour or the

utility of individual summary statistics in inferring model parameters.

The present work illustrates the importance of quantifying uncertainty when measuring pa-

rameters of stochastic models in biology. When few data are used for parameter inference, in our

case if summary statistics are calculated from a single tissue containing 500 cells, it is difficult

to identify a specific parameter set corresponding to a given tissue configuration. It follows

that the exact choice of parameter values will not strongly influence the model behaviour and

many modelling results will be robust to changes in the model parameters. Future efforts for

parameter inference should include methods that go beyond measuring the non-dimensionalised

parameters, and also encompass dimensional parameters such as the cellular stiffness (K̃), the

target area of cells, the timescales of mechanical rearrangement, and parameters concerning cell

cycle progression. Initial efforts in this direction have already been conducted [13, 15]. It will

be important to extend such efforts to methods that quantify parameter uncertainty and are
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applicable in living tissues.
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