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Abstract. Excess nutrients in surface waters, such as phos-

phorus (P) from agriculture, result in poor water quality,

with adverse effects on ecological health and costs for reme-

diation. However, understanding and prediction of P trans-

fers in catchments have been limited by inadequate data and

over-parameterised models with high uncertainty. We show

that, with high temporal resolution data, we are able to iden-

tify simple dynamic models that capture the P load dynam-

ics in three contrasting agricultural catchments in the UK.

For a flashy catchment, a linear, second-order (two path-

ways) model for discharge gave high simulation efficiencies

for short-term storm sequences and was useful in highlight-

ing uncertainties in out-of-bank flows. A model with non-

linear rainfall input was appropriate for predicting seasonal

or annual cumulative P loads where antecedent conditions

affected the catchment response. For second-order models,

the time constant for the fast pathway varied between 2 and

15 h for all three catchments and for both discharge and P,

confirming that high temporal resolution data are necessary

to capture the dynamic responses in small catchments (10–

50 km2). The models led to a better understanding of the

dominant nutrient transfer modes, which will be helpful in

determining phosphorus transfers following changes in pre-

cipitation patterns in the future.

1 Introduction

The quality of both surface waters and groundwater is under

increasing pressure from numerous sources, including inten-

sive agricultural practices, water abstraction, climate change,

and changes in food production and housing provisions to

cope with population growth (Carpenter and Bennett, 2011).

Sediment and nutrient concentrations and loads are of con-

cern to water utility companies and to environmental regula-

tors who are striving to meet stringent water quality stan-

dards. However, accurate estimation of loads requires ac-

curate, high temporal resolution measurements of both dis-

charge and nutrient concentrations (Johnes, 2007) and should

include quantification of observational uncertainties (McMil-
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lan et al., 2012). Sediment and nitrogen are frequently and

relatively easily measured in situ. In contrast, phosphorus

(P) concentrations for water quality assessments are typically

measured by manual or automatic sampling followed by lab-

oratory analysis, often at monthly resolution, which do not

capture the dynamic nature of P concentrations, and result in

biased estimates of P load (Cassidy and Jordan, 2011). Phos-

phorus concentration in rivers and streams is controlled by

many factors, including rainfall, runoff, point sources, dif-

fuse inputs, and in-stream P retention and processing. Some

of these factors, particularly for small catchments, change

at timescales of minutes to hours, and thus the dynamics

of P concentration and load need to be studied at similar

timescales. In this study, hourly time series of rainfall, runoff

and P concentrations are used to help understand hydrologi-

cal transport pathways of P for three contrasting agricultural

catchments across the UK.

There is a wide range of complexity in hydrological and

water quality models, applicable on a range of scales and

for different purposes. In most models there is a balance be-

tween practical simplifications and model complexity, which

depends on catchment size and knowledge (or lack thereof)

of the hydrological processes, data availability and comput-

ing power. Some of the less complex models for diffuse pol-

lution include export coefficient models (Johnes, 1996) and

the phosphorus indicators tool (PIT) (Heathwaite et al., 2003;

Liu et al., 2005). The most complex water quality models

are idealised, process-based representations of our best un-

derstanding of reality, with a highly complex, fixed struc-

ture and many parameters, for which there is often little or

no site-specific data (Dean et al., 2009). These models often

include a component for sediment-bound P, where the sed-

iment transfer is based on a form of the universal soil loss

equation (USLE), which is a semi-empirical model known to

perform poorly (Evans and Boardman, 2016). Results gen-

erated by such process-based models are often highly un-

certain, due to the uncertainty in both the model parame-

ters and the model structure (Parker et al., 2013; Jackson-

Blake et al., 2015). A review of pollutant loss studies us-

ing one process-based model, the soil water assessment tool

(SWAT), revealed that most applications used a monthly time

step for calibration, with few applications using a daily time

step and none using a sub-daily time step. Model fit for to-

tal P (TP) concentration, measured by the Nash–Sutcliffe ef-

ficiency, often exceeded 0.5 but could be as low as −0.08

for daily calibration. Depending on the calibration criteria,

there may be many different parameter sets that fit the cali-

bration data equally well, but because of a lack of data on in-

ternal variables, the models do not necessarily fit for the right

reasons. Moriasi et al. (2007) advised using several different

criteria for assessment of model fit, including a graphical as-

sessment as well as quantitative metrics. However, complex

process-based models still often fail to meet the acceptance

criteria (Jackson-Blake et al., 2015), even when these are re-

laxed to account for additional uncertainties in the measured

input data (Harmel et al., 2006) such as those due to sampling

method, sample storage or fractionation (Jarvie et al., 2002).

Less complex process-based models, with fewer parameters,

have also been developed for phosphorus transfer and have

been applied with reasonable success to specific catchments

(e.g. Dupas et al., 2016; Hahn et al., 2013). Both these stud-

ies related to small catchments (< 10 km2); it was recognised

that the models would only be applicable to locations where

the assumptions of the model were satisfied, which is consis-

tent with the concept of “uniqueness of place” (Beven, 2000).

Hydrological models are subject to uncertainties in struc-

ture, parameters and measurement data (both input and out-

put observations) (Krueger et al., 2010), and understanding

the errors in measurement data is a prerequisite to better un-

derstanding of the other uncertainties in modelling (McMil-

lan et al., 2012). Young et al. (1996) recommended construct-

ing models that capture the dominant modes of a system,

with as few tuneable parameters as possible. Transfer func-

tion models, whose structure and parameters are determined

by the information in the data, are considered to be among the

most parsimonious for rainfall–flow relationships (McGuire

and McDonnell, 2006; Young, 2003). Data-based mechanis-

tic (DBM) modelling, which uses time-series data and fits a

range of transfer functions, allows the structure of the model

to be determined by the information in the monitoring data.

There will still be structural errors in a DBM model, as it

tries to represent a continuum of flow pathways with just the

dominant modes, but this simplification will be determined

by the information in the data rather than being pre-selected.

This assists in getting the right answers for the right reasons

(Kirchner, 2006). In contrast, there is a danger in process-

based models that one might fit quite different model struc-

tures or parameter sets to the available data, i.e. the equifi-

nality problem (Beven, 2006; Beven and Freer, 2001). An

optimal DBM model and associated parameters are identi-

fied using statistical measures, but a model is only accepted

if it has a plausible physical explanation (Young, 1998, 2003;

Young and Beven, 1994; Young et al., 2004). With the in-

creasing availability of high temporal resolution datasets for

additional variables alongside stream discharge (Bieroza and

Heathwaite, 2015; Bowes et al., 2015; Halliday et al., 2015;

Outram et al., 2014), this technique has been used effectively

for relating rainfall to hydrogen ion concentration in rivers

(Jones and Chappell, 2014), and rainfall to dissolved organic

carbon (Jones et al., 2014).

The aim of this study was to investigate, for the first time,

whether simple dynamic models of P load could be identi-

fied to help understand the hydrological P processes within

three contrasting agricultural catchments in the UK that rep-

resent a range of climate, topography, soil and farming types.

Specifically, the objectives were as follows:

Hydrol. Earth Syst. Sci., 21, 6425–6444, 2017 www.hydrol-earth-syst-sci.net/21/6425/2017/
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Figure 1. Location and topography of study catchments. Newby Beck, Eden, Cumbria: location (a) and topography (d); Blackwater, Wensum,

Norfolk: location (b) and topography (e); Wylye, Avon, Hampshire: location (c) and topography (f). ©OS Terrain 50 DTM (ASC geospatial

data), scale 1 : 50 000. Tiles ny51, ny52, ny61, ny62: updated July 2013; tiles st73, st83, tg02, tg12: updated 2 August 2016. Downloaded on

3 January 2017 from Ordnance Survey (GB), using EDINA Digimap Ordnance Survey Service: http://digimap.edina.ac.uk.

– to identify rainfall–runoff models for each catchment,

from hourly time series data collected over 3 years;

– to develop models of P load exported from each catch-

ment, using hourly time-series data of P concentrations

measured with in situ bank-side analysers;

– to improve understanding of the dominant modes of

catchment response through comparison of rainfall–

runoff and rainfall–TP load models for each catchment.

If successful, this would be the first time that DBM mod-

elling has been applied to high-resolution phosphorus data in

catchment science.

2 Methodology

2.1 Study sites

Three rural catchments with different temperate climate, to-

pography and farm types were monitored at high temporal

resolution as part of the UK Demonstration Test Catchments

(DTC) programme (Lloyd et al., 2016a, b; Outram et al.,

2014; McGonigle et al., 2014). These were Newby Beck

at Newby, Eden catchment, Cumbria (54.59◦ N, 2.62◦ W;

12.5 km2); Blackwater at Park Farm, Wensum catchment,

Norfolk (52.78◦ N, 1.15◦ E; 19.7 km2); Wylye at Brixton

Deverill, Avon catchment, Hampshire (51.16◦ N, 2.19◦ W;

50.2 km2) (Fig. 1). Further details of these catchments are

available in Table S1 in the Supplement.

www.hydrol-earth-syst-sci.net/21/6425/2017/ Hydrol. Earth Syst. Sci., 21, 6425–6444, 2017
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2.2 Data collection

Rainfall was measured at 15 min resolution at three sites in

each of the Newby Beck and Blackwater catchments (Out-

ram et al., 2014; Perks et al., 2015) and summed to give

hourly totals. The hourly totals from the different rain gauges

were combined by areal weighting to give an hourly time se-

ries for the catchment. For the Wylye catchment, only daily

rainfall was available for sites within the catchment, so raw

tipping bucket data were obtained for several sites outside

the catchment and analysed to produce an hourly time series

which was considered most representative of the rainfall in

the catchment. Further details of the rainfall analysis for the

Wylye catchment are given in Sect. S1 in the Supplement.

River water level was measured at 15 min resolution in

the three catchments, with rating curves developed for dis-

charge estimation (Outram et al., 2014; Perks et al., 2015;

Lloyd et al., 2016b). TP concentration was determined in

situ at 30 min intervals with a Hach Lange combined Sig-

matax sampling module and Phosphax analyser using acid

digestion and colorimetry (Jordan et al., 2007, 2013; Perks

et al., 2015). Total P loads for each hour were determined by

multiplying discharge (averaged to 30 min resolution) by TP

concentration for each 30 min and summing to give hourly

totals:

TP load(t) = k
∑

j

QjCj , (1)

where TP load(t) is the load (kg) exported during the hourly

timestep which ends at time t , Qj is the discharge obser-

vations (m3 s−1) within the hourly timestep, Cj is the corre-

sponding TP concentration observations (mg L−1) within the

hourly timestep, and k is a constant (= 3.6) for conversion of

units to give load in kilograms. Visual inspection of the data

indicated that aggregation of the data from 15 or 30 min reso-

lution to hourly did not result in a significant loss of informa-

tion. This would not be the case for very small catchments or

those where the dynamics being investigated were very fast.

Calculation of the load according to Eq. (1) assumes that the

TP is well mixed in the water and that the Hach Lange sam-

pler is taking a representative sample. It also assumes that the

rating curve is appropriate over the full range of stage record-

ings made, and that the relationship between stage and dis-

charge is stationary. Total phosphorus load, rather than con-

centration, was modelled because water utility companies are

concerned about the total load which may have to be removed

and because both water flow and load are fluxes, so compar-

isons between the two are easier to interpret directly than for

concentration, which is a state rather than a flux (Jones et al.,

2014).

2.3 Transfer function model identification

Transfer function models relating the input (here, a time se-

ries of rainfall, R) to the output (here, a time series of either

discharge, Q, or phosphorus load, TP load) were identified

using continuous-time models (Young and Garnier, 2006)

where possible, or in cases where data were missing or iden-

tification was difficult, with discrete time models (Young,

2003), the estimation of which handles missing data more

robustly. Continuous-time models are more numerically ro-

bust and have a direct interpretation as systems of differ-

ential equations (Young, 2011). Models were identified us-

ing the RIVCBJ identification algorithm (refined instrumen-

tal variable continuous-time Box–Jenkins identification, for

continuous-time models), or RIVBJ identification (refined in-

strumental variable Box–Jenkins identification, for discrete-

time models) that are part of the CAPTAIN toolbox (Taylor

et al., 2007) for MATLAB®.

The identification algorithm always includes a noise

model; by default this assumes normally distributed, uncorre-

lated errors, but an auto-regressive moving average (ARMA)

structure can be specified. The Gaussian noise model still re-

sults in asymptotically unbiased parameter estimates, but not

necessarily the most statistically efficient (close to minimum

variance) (Taylor et al., 2007). In this study, models up to

third order were considered initially, but higher order mod-

els showed no advantage, so only models up to second or-

der were considered in subsequent evaluations. Full models

(input–output (I-O) plus ARMA structured residual noise)

were assessed initially and overall they did not produce bet-

ter results in all cases; therefore, in order to keep a consistent

approach for all catchments, structured noise models were

not specified in later model identification. In addition, trans-

fer function models with a structured noise component gen-

erally do not improve longer-term predictions of processes

which are I-O dominated. The residuals structure was not

strong enough for a structured noise model to improve the

model fit consistently. If there was a strong structure in the

residuals, it would suggest that something was being missed

in the DBM system representation. The time delay constants

were estimated from the data at the same time as the model

structures.

Continuous-time and discrete-time model structures are

described below (from Ockenden et al., 2017). The parameter

estimates in both continuous-time models and discrete-time

models are formulaically related (Table S3).

A second-order discrete linear transfer function, denoted

by [2, 2, δ], takes the following form:

y(t) =
b1 + b2z

−1

1 + a1z−1 + a2z−2
u(t − δ) + ξt , (2)

where y(t) is model output at time t , u(t) is model input, and

z−1 is the backwards step operator, i.e. z−1y(t) = y(t − 1);

b1, b2, a1, a2 are parameters determined during model iden-

tification, δ is the number of time steps of pure time delay

and ξt represents the uncertainty arising from a combination

of measurement noise, other unmeasured inputs and mod-

elling error. For a physical interpretation, second-order mod-

els were only accepted it they could be decomposed by par-

Hydrol. Earth Syst. Sci., 21, 6425–6444, 2017 www.hydrol-earth-syst-sci.net/21/6425/2017/
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tial fraction expansion into two first-order transfer functions

with structure [1, 1, δ] representing fast and slow pathways,

with characteristic time constants and steady-state gains, i.e.

y(t) =
bf

1 − afz−1
u(t − δ) +

bs

1 − asz−1
u(t − δ) + ξt , (3)

where bf and bs are gains on the fast and slow pathways, re-

spectively, and af and as are parameters characterising the

time constants of the fast and slow pathways, respectively;

af and as are roots of the denominator polynomial in the

second-order transfer functions above (Eq. 2). This can be

interpreted as two parallel linear storages.

In continuous time, a transfer function model with time

delay τ has the following form:

Y (s) =
B(s)

A(s)
e−sτU(s) + E(s), (4)

where Y (s), U(s) and E(s) represent the Laplace transforms

of the output, input and noise, respectively. A(s) and B(s)

represent the denominator and numerator polynomials in the

derivative operator s = d
dt

that define the relationship be-

tween the input and the output, and τ represents the time

delay. second-order models were only accepted if they could

be decomposed by partial fraction expansion into two paral-

lel, first-order transfer functions, i.e.

TPload =
bf

s + af
e−sτR +

bs

s + as
e−sτR + E. (5)

This can be interpreted as two parallel stores, which are de-

pleted at different rates, determined by the time constants

(direct reciprocals of af and as) of the fast and slow com-

ponents of the response, respectively. The terms bf and bs

are parameters that determine the gain of the fast and slow

components, respectively. The terms “fast” and “slow” are

used here as qualitative terms, since they are not necessarily

related to specific process mechanisms; for a second-order

model (two stores), one store simply depletes at a slower rate

than the other. Time constants are catchment specific; for ex-

ample, for a first-order rainfall–runoff model which identifies

just the dominant mode (one pathway), the time constant can

vary from less than an hour (e.g. for a small, flashy catch-

ment in Malaysian Borneo, Chappell et al., 2006) to more

than 3 months (e.g. for a chalk stream in Berkshire, UK, Ock-

enden and Chappell, 2011).

This method of model identification requires high tem-

poral resolution data that capture the dynamic response to

the driving input; therefore, it cannot work if input data (in

this case, rainfall) are missing, and does not perform well

if too much output data (in this case, discharge or TP load)

are missing or not showing a response. For the Newby Beck

catchment, linear models were identified for short storm se-

quences up to 1 month, and were considered applicable to

periods of similar conditions. These short-term models had

a simple linear structure and very few parameters (five for a

second-order model). As this paper is evaluating a methodol-

ogy, successful modelling on different timescales can be used

as validation of the approach. Models were not identified for

short periods for Blackwater and Wylye, as the presence of a

much slower pathway (with a time constant of the same order

as the length of the identification period) did not allow model

parameter estimates to be sufficiently constrained over such

short periods.

For longer time series, when seasonal change and an-

tecedent wetness are expected to have an impact on the re-

sponse, linear models were improved by inclusion of the

rainfall–runoff non-linearity (Beven, 2012) based on the stor-

age state of the catchment, for which the discharge is used as

a proxy, i.e.

Re(t) = R(t)(Q(t − 1))β , (6)

where Re(t) is the effective rainfall at time t , R is the ob-

served rainfall, Q is the observed discharge, and β is a con-

stant exponent that is optimized from the observed data at the

same time as model identification. Using a simple non-linear

function (with a single and optimised parameter) of recent

discharge measurement as catchment wetness surrogate has

been tested on catchments of different size and nature (e.g.

Beven, 2012; Chappell et al., 1999; McIntyre and Marshall,

2010; Young, 2003; Young and Beven, 1994). A recent high

flow will be highly correlated with high “overall” catchment

wetness, and using the flow at time t−1, as in Eq. (6), still al-

lows estimation of Re and Q at time t . The resulting effective

inputs are rescaled in fitting the b parameters of the trans-

fer function within the DBM calibration process. A transfer

function model is not subject to a direct mass balance con-

straint, for example in flood forecasting applications where

rainfall may be modelled against stage rather than discharge

(e.g. Leedal et al., 2013). A simple antecedent precipitation

index (API) was also tried initially, although this introduces

additional parameterisation; it worked with reasonable suc-

cess for Newby Beck but not for the other catchments, and

therefore, as a consistent method was sought for all catch-

ments, the API approach was not pursued in this case. For

annual TP loads, the models (still with hourly timestep) were

identified based on the data for hydrological years 2011–

2012 and 2012–2013 for Newby Beck, but, because of miss-

ing output data, just for hydrological year 2012–2013 for the

Blackwater and Wylye catchments. Models were validated

on the data for all, or part, of the hydrological year 2013–

2014.

Model fit was assessed according to model bias, to evalu-

ate systematic over- or under-prediction of the model, and to

R2
t (also known as the Nash–Sutcliffe efficiency):

R2
t = 1 −

σ̂ 2

σ 2
y

, (7)

www.hydrol-earth-syst-sci.net/21/6425/2017/ Hydrol. Earth Syst. Sci., 21, 6425–6444, 2017
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where

σ̂ 2 =
1

N

N
∑

i=1

[

yi − ŷ
]2

; σ 2
y =

1

N

N
∑

i=1

[

yi − y
]2

; (8)

y =
1

N

N
∑

i=1

yi .

Here, ŷ is the model simulation, σ̂ 2 is the mean squared error

of the model residuals (only equal to the variance if the mean

of the residuals is zero), and σ 2
y is the variance of the obser-

vations, yi . A balance of model fit and over-parameterisation

was sought using the Young information criterion (YIC) and

visual inspection of the model fit to the monitoring data.

Model assessment criteria are defined in Sect. S2.

2.4 Uncertainty estimation

2.4.1 Structural uncertainty

The DBM technique involves the simplified representation

of complex systems, based on the information in the data

(Young, 1998, 2001; Young et al., 2004). In practice, this

means identifying models over a range of orders, and choos-

ing the most appropriate model order. Generally the simplest

(lowest order) model which balances model fit without over-

parameterisation is chosen. The chosen models often have a

very simple structure, which will certainly not be a true rep-

resentation of all the processes, but may model the data ade-

quately. This structural error is accepted as part of the DBM

technique in order to reveal the dominant modes of response.

2.4.2 Parameter uncertainty

The instrumental variable algorithms (RIVCBJ and RIVBJ)

allow unbiased estimation of the model parameters and their

covariance matrices. Monte Carlo sampling within the pa-

rameter space determined by the covariance matrices allows

for uncertainty in derived quantities, such as time constants,

to be calculated. In general with DBM modelling, very lit-

tle of the total uncertainty is due to the parameters, partly

because there are so few of them and because the linear-

dynamic part of the process that the model describes is well-

defined. Note that in the case of transfer function models of

the hydrograph, the models do not directly reflect the trans-

port of water in the system since the hydrograph represents

the integrated effects of celerities in the system rather than

flow velocities (McDonnell and Beven, 2014).

2.4.3 Data uncertainty

A review of measurement data uncertainty is presented by

McMillan et al. (2012), including uncertainties in rainfall ob-

servations. For all three catchments in this study, input data

(rainfall) was based on three rain gauges in or near each

catchment. This only gives a catchment rainfall estimate,

which is affected by the non-homogeneity of the rainfall field

and the rainfall regime, and therefore some of the mismatch

between model fit and observations (for any modelling tech-

nique) may be attributed to uncertainties in the rainfall input.

A rigorous treatment of the uncertainties in high-

frequency nutrient data and its subsequent impact on loads

is given by Lloyd et al. (2016b). For Newby Beck, where

stage–discharge gaugings were available, the discharge un-

certainty was estimated using the method of McMillan and

Westerberg (2015), fitting multiple plausible rating curves

and weighting with a likelihood function. This method ac-

counts for a mix of systematic and random measurement er-

rors. The uncertainty of the phosphorus concentration mea-

surements was estimated by comparing the time series from

the bank-side analyser with the laboratory spot samples taken

for ground-truthing (Lloyd et al., 2016b), fitting multiple re-

gression curves and weightings according to McMillan and

Westerberg (2015). The time series of discharge and TP

concentration, with their uncertainty distributions, were then

combined by resampling to give the measurement data un-

certainties on the TP loads. For the Wylye, discharge mea-

surement uncertainties were estimated using a standard de-

viation of 10 %, the maximum value calculated by Lloyd et

al. (2016b) for the gauging site at Brixton Deverill using the

method of Coxon et al. (2015). Wylye discharges were com-

bined with a standard deviation of 0.11 mg L−1 for the uncer-

tainty of the TP concentration from the bank-side analysers

(Lloyd et al., 2016b) to give uncertainty bounds on the TP

load. For the Blackwater, discharge uncertainties were esti-

mated by the DTC team and supplied with the DTC data,

with uncertainty bounds of approximately ±20 % for low

flows rising to ±30 % for high flows. This was combined

with a standard deviation of 0.01 mg L−1 for the uncertainty

of the TP concentration from the bank-side analysers (Out-

ram et al., 2016). Measurement data uncertainty bounds are

shown on plots as a blue shaded band.

3 Results and discussion

3.1 Observed hydrological response and total

phosphorus load in the three catchments

Time-series data from each catchment (Fig. 2) indicated large

contrasts in the hydrological response of each study catch-

ment, with Newby Beck (Eden) showing a very flashy re-

sponse to rainfall (Fig. 2a). Although a fast response at

certain times was also evident in the Blackwater (Wen-

sum) catchment (Fig. 2c) and the Wylye (Avon) catchment

(Fig. 2e), there was also a more pronounced seasonal re-

sponse, particularly in the Wylye where a large groundwa-

ter component could be observed in the winter periods. This

indicates the importance of both high-frequency data and a

long-term record, to capture both fast and slower dynamics

adequately. The errors resulting from sampling well below
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Figure 2. Time series of hourly rainfall, runoff and total phosphorus (TP) concentration at the three Demonstration Test Catchments: rainfall

and runoff (a) and TP concentration (b) at Newby Beck, Eden; rainfall and runoff (c) and TP concentration (d) at Park Farm, Blackwater,

Wensum; rainfall and runoff (e) and TP concentration (f) at Brixton Deverill, Wylye, Avon.

the catchment dynamics have been well documented else-

where (e.g. Johnes, 2007; Jones et al., 2012; Lloyd et al.,

2016b; Moatar et al., 2013). TP concentrations in all three

study catchments revealed peaks that corresponded with

runoff, with maximum values of 1.0, 0.9 and 1.5 mg L−1 in

the Newby Beck, Blackwater and Wylye catchments, respec-

tively. Newby Beck showed a very low background concen-

tration of TP at low flow (minimum < 0.01 mg L−1), com-

pared to 0.05–0.1 mg L−1 in the Blackwater, and around

0.12 mg L−1 in the Wylye. The relationships between stream-

flow and TP concentration are shown in Figs. S1–S3 in the

Supplement, and the relationships between streamflow and

TP load are shown in Figs. S4–S6. The presence of a mea-

surable, background, non-rainfall-dependent concentration

suggests an additional source of phosphorus to the recently

applied agricultural sources. Such non-rainfall-dependent

sources include legacy stores of agricultural P in the soil,

both large and smaller point source discharges, such as

sewage treatment works and domestic septic tanks (Zhang et

al., 2014), and groundwater, specifically contributions from

mineral sources in the Upper Greensand geology of the

Hampshire Avon (Allen et al., 2014).

A summary of the observed total rainfall, runoff, mean

concentration and TP load is given in Table 1 for the pe-

riod 1 October 2012–30 September 2013 (the hydrological

year with the most complete dataset). The lowest mean an-

nual TP concentrations were observed in the Newby Beck

catchment, but combined with the highest runoff this resulted

in a high total annual TP load. Conversely, although mean

annual TP concentration in the Blackwater was also higher

than in Newby Beck, when combined with the lowest runoff,

this resulted in the lowest total annual TP load. The rainfall–

runoff ratio for Newby Beck (0.65) was much higher than

for the Blackwater (0.31) or the Wylye (0.32), indicating a

larger capacity for storage in the latter two catchments. De-

spite similarity in the rainfall–runoff ratio, total runoff in the

Wylye was higher than the Blackwater because of the higher

total rainfall.

Detailed analysis of the high-frequency data is not in-

cluded here as it has already been published by several au-

thors (e.g. Ockenden et al., 2016; Outram et al., 2014, includ-

ing hysteresis analysis; Perks et al., 2015). Investigation of

the relationships between TP concentration and streamflow

indicated that, for all three catchments, the TP concentra-

tion was out of phase with the streamflow; distinct hysteresis

loops (Figs. S1–S3), also observed by Outram et al. (2014),

showed different TP concentrations on the rising stage of a

storm hydrograph compared to the same stage on the falling
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Table 1. Observed rainfall, discharge, total phosphorus (TP) concentration and load for the period 1 October 2012–30 September 2013, for

the three catchments.

Catchment Total Total Rainfall / Discharge Mean annual Mean annual Total annual TP load

rainfall runoff runoff data missing discharge TP conc. TP load data missing

(mm) (mm) ratio (%) (m3 s−1) (mg L−1) (kg) (%)

Newby Beck 1186 776 0.65 0.0 0.31 0.080 1577 19.7

Eden, Cumbria

Blackwater, 634 195 0.31 13.8 0.14 0.092 277 30.6

Wensum, Norfolk

Wylye, Avon, 850 273 0.32 0.3 0.44 0.149 1705 27.4

Hampshire

Table 2. Rainfall–runoff and rainfall-total phosphorus load (TP) models identified for Newby Beck during the period 7 November–4 De-

cember 2015, with estimations of discharge and TP load during Storm Desmond (5–6 December 2015). CT linear = continuous-time

transfer function with linear rainfall input; R2
t = model efficiency measure (Eq. 7); TCfast/slow = time constant for the fast/slow pathway;

%fast/slow = percentage of output taking the fast/slow pathway; Model bias = 100 × 6
(

ymodel
i

− yobs
i

)

/6
(

yobs
i

)

.

Model Model R2
t TCfast (h) TCslow (h) %fast %slow Model 6 obs during 6 model during Diff.

structure bias Desmond Desmond

Rainfall–runoff CT linear 0.91 3.6 ± 0.4 33 ± 8 55 ± 5 45 ± 5 0.7 % 86.6 mm 106.5 mm 23 %

[2, 2, 1]

Rainfall–TP load CT linear 0.74 2.7 ± 0.3 100 13 % 196.5 kg 273.6 kg 39 %

[1, 1, 1]

hydrograph. This indicates that antecedent conditions and the

storage state of the catchment are important in determining

the response. In order to capture the effects of storage, dy-

namic models are required.

3.2 Identification of linear transfer function models for

short storm sequences

For short storm sequences up to about a month, when an-

tecedent flows for events were rather similar, linear models

were identified for the Newby Beck catchment. These were

useful for infilling missing discharge or TP load data, or for

highlighting and estimating uncertainties in discharge and

TP load when extrapolation of the stage–discharge relation-

ship was inappropriate. The model is only reliable for the

conditions covered during the calibration period, but it may

still be useful when there are known problems with a stage–

discharge relationship (such as during extreme events). In-

deed, the stage to discharge relationship is the weakest point

of all the catchment models relying on stage measurements.

Whilst it was still possible to identify linear models for short

periods for the Blackwater and Wylye catchments, the pa-

rameter uncertainty for these models was large; the parame-

ters cannot be well constrained when the (slow) time constant

was of similar order to the period of identification. For this

reason, linear models for short periods for the Blackwater

and the Wylye were not considered useful.

Table 2 shows results from rainfall–runoff and rainfall–

TP load models identified for Newby Beck for a series of

contiguous storms in November 2015, immediately preced-

ing Storm Desmond (5–6 December 2015), which caused

catastrophic flooding in Cumbria and Lancashire, UK. Dur-

ing Storm Desmond, Honister Pass in Cumbria received the

highest 24 h rainfall on record (341 mm) and Thirlmere re-

ceived the highest 48 h rainfall on record (405 mm). The

storm was remarkable for the duration of sustained rainfall.

At Newby Beck, 156 mm of rainfall was recorded in 36 h.

Although the monitoring equipment was recording during

Storm Desmond, the peak flows during the storm were out

of bank for around 31 h (compared to less than 3.5 h during

more typical storms), with anecdotal evidence that the gaug-

ing point was significantly bypassed, so these out of bank

flows were highly uncertain. This measurement uncertainty

is shown by the shaded bands in Fig. 3 (discharge model)

and Fig. 4 (TP load model), which span the observed (calcu-

lated from stage) discharge and TP load. This is more vis-

ible in the zoomed-in periods for discharge (Fig. 3b) and

TP load (Fig. 4b). Concentrations were assumed to be rea-

sonably accurate, but discharge was likely underestimated,

therefore TP loads were consequently underestimated too.

Storm Desmond was not included in the model identifica-

tion period. Using the models from the November period to

simulate flows (Fig. 3) and TP load during Storm Desmond

(Fig. 4) suggests that both discharge and TP load were un-

derestimated. Time series and histograms of the residuals are
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Figure 3. Observed and modelled discharge per unit area (a) and

zoomed section of the same (b) in Newby Beck, Eden, during

November 2015, with the same model used to estimate discharge

during Storm Desmond on 5–6 December 2015. The blue band indi-

cates the 95 % uncertainty bounds on the measurement data and the

grey band indicates the 95 % confidence limits on the parameter un-

certainty. Total model predictive uncertainty (including the residual

uncertainty) is larger than parametric uncertainty and would enclose

the observations most of the time.

given in Fig. S7 for discharge and Fig. S8 for TP load. The

zoomed-in period for the TP load model (Fig. 4b) suggests

that whilst the transfer function model got the timing of the

load peak and the decay approximately right, the model gen-

erally started to respond before the observed load responded.

Although there are uncertainties associated with whether it

is valid to extend the models identified above to an extreme

event such as Storm Desmond, we believe that this highlights

the possible underestimation in discharge and TP load during

Storm Desmond and that the models in Table 2 might provide

more realistic estimations of the true values.

3.3 Identification of transfer function models on

annual time-series data

Longer-term models, based on 2 years of hourly data, were

identified for each catchment. Model fits (R2
t ) for rainfall–

runoff models for the identification period (Table 3) were

0.71 for Newby Beck and 0.87 for Wylye, but only 0.37 for

Figure 4. Observed and modelled total phosphorus (TP) load (a)

and zoomed section of the same (b) in Newby Beck, Eden, dur-

ing November 2015, with the same model used to estimate TP load

during Storm Desmond 5–6 December 2015. The blue band indi-

cates the 95 % uncertainty bounds on the measurement data. The

grey band indicates the 95 % confidence limits on the parameter un-

certainty. Total model predictive uncertainty (including the residual

uncertainty) is larger than parametric uncertainty and would enclose

the observations most of the time.

the Blackwater. Model bias was less than ±10 % for all three

catchments. The runoff models were all linear transfer func-

tion models relating effective rainfall to discharge, where the

exponent in the non-linear relationship between rainfall and

effective rainfall (Eq. 6) was optimised at the same time as

model parameter identification. The non-linearity, which re-

flects the effect of the antecedent soil moisture conditions

in the catchments, was accounted for with the soil mois-

ture surrogate expressed as a power function of discharge

(Beven, 2012) with exponent β in Eq. (6), where a value

of zero produces a linear response to rainfall and a higher

value leads to an increasingly non-linear response. The β val-

ues identified for Newby Beck, Blackwater and Wylye were

0.37, 0.65 and 0.59, respectively, indicating the most non-

linear response was in the Wensum (Blackwater) catchment,

which also gave the lowest model efficiency values. The best

identified model for rainfall–runoff in each catchment was a

second-order model. In general, models higher than second
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Table 3. Structure, response characteristics and model fit statistics of rainfall–runoff and rainfall–TP load models for each catchment. Models were calibrated on all or part of hydrological

years 2012 and 2013 and validated on all or part of hydrological year 2014. β = exponent in the power law used for rainfall–runoff non-linearity (Eq. 6); R2
t = model efficiency measure

(Eq. 7); Qobs = observed discharge; Qsim = simulated discharge, using only the rainfall input; model bias = 100 × 6
(

ymodel
i

− yobs
i

)

/6
(

yobs
i

)

; TCfast/slow = time constant for the

fast/slow pathway; %fast/slow = percentage of output taking the fast/slow pathway.

Location Time Model Model β R2
t for calib R2

t for calib Model bias TCfast TCslow %fast %slow Time R2
t for valid Model bias, %

period structure (using Qobs) (using Qsim) (calib) % (h) (h) period (using Qsim) (valid)

(calib) (valid)

Newby 1 Oct 11

to

30 Sep 13

R-Re-Q CT [2, 2, 1] 0.37 0.86 0.71 −9.7 2.9 ± 0.1 147 ± 5 43 ± 0.5 57 ± 0.5 1 Oct 13

to

30 Sep 14

0.78 −14.3

Newby 1 Oct 11

to

30 Sep 13

R-Re – TP load∗ CT [1, 1, 1] 0.69 2.3 1.6 ± 0.04 100 1 Oct 13

to

30 Sep 14

0.62 5.1

Blackwater 1 Dec 11

to

31 Aug 13

R-Re-Q DT [2, 2, 6] 0.65 0.82 0.37 −1.5 14.8 ± 0.5 441 ± 13 25 ± 0.6 75 ± 0.6 1 Oct 13

to

30 Sep 14

0.32 −9.4

Blackwater 26 Oct 12

to

28 Jul 13

R – TP load CT [2, 2, 4] 0.67 5.4 12.5 ± 0.6 376 ± 44 54 ± 2 46 ± 2 1 Oct 13

to

31 Mar 14

0.31 38.2

Wylye 1 Oct 12

to

30 Sep 13

R-Re-Q DT [2, 2, 6] 0.59 0.94 0.87 3.0 4.1 ± 0.2 395 ± 6 8 ± 0.2 92 ± 0.2 1 Dec 13

to

20 May 14

0.79 11.0

Wylye 1 Oct 12

to

30 Sep 13

R-Re – TP load∗ CT [2, 2, 6] 0.67 5.5 6.1 ± 0.3 570 ± 54 42 ± 1 58 ± 1 1 Dec 13

to

31 Mar 14

0.50 −19.7

∗ The effective rainfall–TP load model is a two-stage model; it is assumed that the discharge is unknown, so that the effective rainfall must be calculated one step at a time, as Qsim is generated with the previously identified parameters of the rainfall–discharge model. Hence R2
t

using Qobs is a one-step ahead prediction, whereas R2
t using Qsim is a true simulation, only using the rainfall input.
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order gave little improvement in model fit but a large dete-

rioration in YIC, signifying over-parameterisation not war-

ranted by the information in the monitoring data, whereas

first-order models often gave a reasonable fit to the model

peaks (and hence reasonable R2
t ), but poor fit to recession

periods.

The dynamic response characteristics of time constant and

percentage on each flow pathway (for definitions see Ta-

ble S4), determined after partial fraction decomposition, can

be compared between the study catchments for both discrete

and continuous-time models. The time constants are associ-

ated with the dominant pathways and indicate how quickly

each impulse response (of water or TP mass) is depleted

to 37 % (or fraction 1/e) of the peak exported. This is the

standard definition of a time constant in a first-order linear

time-invariant dynamic process, e.g. A(t) = A0 exp(−t/Tc),

where Tc is the time constant. In reality there will be a contin-

uum of runoff pathways with different time constants (Kirch-

ner et al., 2000), but the information in the data indicates that

this continuum can be simplified by representation as just

two dominant pathways.

The marginal distributions of the time constants and pro-

portion of flow or TP load (Table 3) were determined from

1000 to 10 000 Monte Carlo realisations using the covari-

ance of the parameter estimates. The parameter uncertain-

ties estimated within the DBM methodology were small,

even for the response characteristics of the TP load mod-

els, which had higher uncertainty than rainfall–runoff mod-

els; TP load models had coefficients of variation of less than

3 % for fast time constants, less than 6 % for slow time con-

stants and less than 2 % for proportions on pathways. For the

rainfall–runoff models, the time constant for the fast path-

way was 2.9 ± 0.1 h for Newby Beck, with 43 ± 0.5 % of the

water taking this pathway; in the Wylye, the time constant

for the fast pathway was 4.1 ± 0.2 h, but with only 8 ± 0.2 %

of the water taking this route. This is consistent with the

much higher baseflow index in the Hampshire Avon (0.93)

than the Eden (0.39) (Table S1), which is clearly visible in

the data (Fig. 1). For the Blackwater, 25 ± 0.6 % of the flow

took the fast pathway, which is also consistent with the base-

flow index in the Wensum (0.8) being between the Eden and

Hampshire Avon. The fast time constant for the Blackwater

catchment was much slower, at 14.8 ± 0.25 h; this may be re-

lated to the average slope of the catchment, which is much

lower for the Blackwater catchment (less than 2 %) com-

pared to 6–8 % for the Wylye and Newby Beck catchments.

The slow time constant for Newby Beck was 147 ± 5 h,

with 57 ± 0.5 % of flow taking this pathway; this compared

with 441 ± 13 h (75 ± 0.6 % of flow) for the Blackwater and

395 ± 6 h (92 ± 0.2 % of flow ) for the Wylye.

Figure 5. First-order model between effective rainfall and total

phosphorus (TP) load at Newby Beck for the identification period

1 October 2011–30 September 2013. Continuous-time model with

structure [1, 1, 1] (see Table 3); R2
t = 0.69. The light blue band in-

dicates the 95 % uncertainty bounds on the measurement data. The

grey band indicates the 95 % confidence limits on the parameter un-

certainty (on this scale, only visible during periods where TP data

are missing). See Fig. 6 for zoomed-in sections. Total model pre-

dictive uncertainty (including the residual uncertainty) is larger than

parametric uncertainty and would enclose the observations most of

the time.

3.4 Interpretation of TP load dynamics alongside

runoff dynamics

For the rainfall–TP load models, at Newby Beck the best

identified model was a first-order model relating the effec-

tive rainfall (from the runoff model, i.e. calculated one step

at a time using the simulated discharge, Qsim) to the TP

load (Table 3, Fig. 5). Although it was possible to identify

a second-order model, this made virtually no difference to

model fit, R2
t , whilst making YIC more negative (signifying

over-parameterisation), and decomposition of the model re-

vealed time constants for the two pathways that were both

less than 8 h (cf. 147 h for the slow pathway for the rainfall–

runoff model in Table 3). This indicates that in Newby Beck,

all the TP load is transported through a quick flow pathway.

This is consistent with most of the load being associated with

P mobilised from diffuse agricultural sources, which is trans-

ferred by surface runoff or shallow sub-surface flow. This

includes particulate P transported in surface runoff or drain

flow (Heathwaite et al., 2006), subsurface movement of fine

particles and colloids (Heathwaite et al., 2005), and displace-

ment of fast subsurface soluble P sources. Young (2010) rec-

ommended a minimum data sampling rate of one-sixth of the

time constant in order to avoid possible temporal aliasing ef-

fects. Littlewood and Croke (2013) illustrated the parameter

inaccuracy and loss of data when observations were under-

sampled for discrete time transfer functions, with inaccuracy
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Figure 6. First-order model between effective rainfall and total

phosphorus (TP) load at Newby Beck, expanded from Fig. 5, for

storm events in May 2012 (a) and November 2012 (b) . Continuous-

time model with structure [1, 1, 1] (see Table 3); R2
t = 0.69. The

light blue band indicates the 95 % uncertainty bounds on the mea-

surement data. The grey band indicates the 95 % confidence limits

on the parameter uncertainty (on this scale, only visible during peri-

ods where TP data are missing). Total model predictive uncertainty

(including the residual uncertainty) is larger than parametric uncer-

tainty and would enclose the observations most of the time.

decreasing and parameter estimates approaching stable val-

ues as the sampling interval decreased from 24 h (daily sam-

pling) down to hourly sampling. The time constant for the

first-order TP load model for Newby Beck was 1.6 ± 0.04 h.

In this study, daily data would not capture the true dynamics

of discharge and TP load, and that, ideally, for flashy catch-

ments such as Newby Beck, a sampling interval shorter than

hourly would be even more robust. However, for the other

catchments in this study, the hourly data frequency was suffi-

cient. The time constant for the TP load model (1.6 ± 0.04 h)

was even faster than the fast time constant for the second-

order (two pathway) rainfall–runoff model (2.9 ± 0.1 h), in-

dicating that the TP mass impulse response was depleted at

a faster rate than the water response, i.e. that the store was

diluted as the storms progressed or that the sources must be

readily connected and closer to the stream, since TP depends

on transport velocities and we would normally expect veloc-

ities to be less than celerities under wet and surface runoff

conditions. Those source areas would also be the most read-

ily exhausted, so the effects would reinforce each other.

Figure 7. Second-order model between effective rainfall and total

phosphorus (TP) load at Wylye for the identification period 1 Octo-

ber 2012–30 September 2013. Continuous-time model with struc-

ture [2, 2, 6] (see Table 3); R2
t = 0.67. The light blue band indicates

the 95 % uncertainty bounds on the measurement data. The grey

band indicates the 95 % confidence limits on the parameter uncer-

tainty (on this scale, only visible during periods where TP data are

missing). Total model predictive uncertainty (including the residual

uncertainty) is larger than parametric uncertainty and would enclose

the observations most of the time. For zoomed-in periods, see Fig. 8.

Expanded sections of Fig. 5 are shown for storms in May

2012 (Fig. 6a) and November 2012 (Fig 6b). Time series of

residuals and residuals against observed values are given for

the discharge model in Fig. S9 and for the TP load model in

Fig. S10. Although Fig. 5 illustrates several storms where the

model underestimated the peak TP load, the model matched

the shape and peak of the May 2012 storm quite well. How-

ever, once again the model started to respond to the rain-

fall before the observations showed a response. Figure 6b

shows an example of a storm in which the TP load was un-

derestimated by the model. The model parameter uncertainty

was considerably smaller than the measurement data uncer-

tainty. The model did not always lie within the bands indi-

cated by the measurement data uncertainty, whereas the total

model prediction uncertainty (including the residual uncer-

tainty) would span most of the observations, indicating that

the simple structure of the model does not capture all the dy-

namics, and that there are other sources of uncertainty (such

as rainfall input) which are not quantified.

For the Wylye, the best identified TP load model was a

second-order model relating effective rainfall to TP load,

with 42 ± 1 % on a fast pathway (TC = 6.1 ± 0.3 h) and

58 ± 1 % on a slower pathway (570 ± 54 h) (Table 3, Fig. 7).

Compared to the runoff model, this showed a much greater

percentage of the TP load on faster pathways such as surface

runoff, shallow sub-surface flow or sub-surface drains. Nev-

ertheless, there was still a significant proportion travelling
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Figure 8. Second-order model between effective rainfall and to-

tal phosphorus (TP) load at Wylye for storm events in November

2012 (a) and February 2013 (b). Continuous-time model with struc-

ture [2, 2, 6] (see Table 3); R2
t = 0.67. The light blue band indicates

the 95 % uncertainty bounds on the measurement data. The grey

band indicates the 95 % confidence limits on the parameter uncer-

tainty (on this scale, only visible during periods where TP data are

missing). Total model predictive uncertainty (including the residual

uncertainty) is larger than parametric uncertainty and would enclose

the observations most of the time.

on a slower pathway, which highlights the need for pollu-

tion mitigation efforts to include measures that take into ac-

count sub-surface and groundwater flows and, also, to recog-

nise that surface runoff from farmland is not the only source

of nutrients and sediment (Allen et al., 2014; Evans, 2012).

These models cannot provide spatial information, but hav-

ing identified that a slow pathway is so important, measures

which prevent pollutants getting to the slow pathway in the

first place, such as reductions at source, will be helpful. This

may require further specific measurements, such as testing

P in soils or identifying septic tanks in the catchment. With

DBM models, this interpretation is made a posteriori, after

the data assimilation, and is based on inferences from the ob-

jectively identified dominant modes of the system response.

Figure 8 shows expanded sections of the Wylye TP load

model, including a large storm in which the load is under-

estimated (Fig. 8a) and two smaller storms where the model

overestimated the loads (Fig. 8b). For the Wylye catchment,

the measurement uncertainty was dominated by the uncer-

tainty of the data from the TP sensor, rather than the uncer-

tainty in the discharge (Lloyd et al., 2016b). However, some

Figure 9. Second-order model between rainfall and total phospho-

rus (TP) load at Blackwater for the identification period 26 Octo-

ber 2012–28 July 2013. Continuous-time model with structure [2, 2,

4] (see Table 3); R2
t = 0.67. The light blue band indicates the 95 %

uncertainty bounds on the measurement data. The grey band indi-

cates the 95 % confidence limits on the parameter uncertainty (on

this scale, only visible during periods where TP data are missing).

Total model predictive uncertainty (including the residual uncer-

tainty) is larger than parametric uncertainty and would enclose the

observations most of the time. For zoomed-in periods, see Fig. 10.

of the mismatch between model and observations here might

also be attributable to uncertainty in rainfall input: in Fig. 8a

there could be an underestimate in catchment rainfall not

captured by the rain gauges; conversely, in Fig. 8b the rain

gauges may have captured more than the catchment-average

rainfall. Time series of residuals and residuals against ob-

served values are given for the Wylye discharge model in

Fig. S11 and for the TP load model in Fig. S12.

The TP load model used for the Blackwater was a linear

model relating rainfall directly to TP load. The second-order

TP model gave fast and slow time constants of 12.5 ± 0.6 and

376 ± 44 h, respectively (Table 3, Fig. 9). The time constants

were similar in magnitude to, though both slightly shorter

than, the time constants for the runoff model, suggesting a

possible exhaustion effect where, as in Newby Beck, the TP

mass store was diluted as the response progressed. For the

Blackwater, as in the other study catchments, the proportion

of TP load transferred on the fast pathway (54 ± 2 %) was

considerably more than the proportion of water on the fast

pathway (25 ± 0.6 %). Although seasonal non-linearity was

still evident in the data from Blackwater, the rainfall–runoff

models that included the non-linearity did not validate the

data very well (Fig. S18), such that the two-stage TP mod-

els using the effective rainfall calculated one step at a time

using the simulated discharge, Qsim, gave a worse fit to the

data than a simple linear model. This may have been due to

missing data in the discharge and TP time series, particularly

over the storm peaks, or to inadequate representation of P
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Figure 10. Second-order model between rainfall and total phospho-

rus (TP) load at Blackwater for storms in December 2012 (a) and

May 2013 (b). Continuous-time model with structure [2, 2, 4] (see

Table 3); R2
t = 0.67. The light blue band indicates the 95 % uncer-

tainty bounds on the measurement data, The grey band indicates

the 95 % confidence limits on the parameter uncertainty (on this

scale, only visible during periods where TP data are missing). Total

model predictive uncertainty (including the residual uncertainty) is

larger than parametric uncertainty and would enclose the observa-

tions most of the time.

inputs. An expanded section of Fig. 9, showing a series of

storms in December 2012 (Fig. 10a) indicates the seasonal

non-linearity of the response, which cannot be captured with

a linear model, with a linear rainfall input. The first storm

was considerably underestimated, but later storms were over-

estimated. This can usually be accounted for by using a non-

linear effective rainfall input, which was unsuccessful in this

case. A storm in May 2013 (Fig. 10b), when the land might

have been drier than during the December storms, showed

considerable overestimation of TP load by the linear model

fitted to the December period. Time series of residuals and

residuals against observed values are given for the Blackwa-

ter discharge model in Fig. S13 and for the Blackwater TP

load model in Fig. S14.

The proportion of TP load exported on the fast pathway

was considerably greater for all catchments than the corre-

sponding proportion of water on the fast pathway, by a factor

of approximately 2 for Newby Beck and Blackwater and ap-

proximately 5 for the Wylye. This suggests that on the fast

water pathways, generally associated with shallower path-

ways such as shallow sub-surface flow, field drains and sur-

face runoff, there is more release of TP than on deeper water

pathways. This is consistent with soil profiles in agricultural

areas, which generally show P concentrated on the surface

and in the near-surface soil layers, with a decrease in P with

depth (Heathwaite and Dils, 2000).

Validation of the TP model for Blackwater and Wylye was

performed on a shorter period than for Newby Beck (half of

the hydrological year 2013–2014) because of missing data

(Table 3, Figs. S15–S18). The power law used to represent

the rainfall–runoff non-linearity did not validate the data very

well in the Blackwater catchment. Different representations

of the rainfall–runoff linearity were also investigated, such as

the Bedford Ouse Sub-Model (Chappell et al., 2006; Young,

2001; Young and Whitehead, 1977), in which the soil stor-

age is related to an antecedent precipitation index. Although

changes in the model non-linearity representation made mi-

nor differences to model fit, none of the model variants vali-

dated the data well for the Blackwater catchment. This sug-

gests that there may be a different mechanism at work in

the Blackwater catchment, in which a fast pathway only be-

comes active once the soil is fully saturated, or the ground-

water level rises to a certain level (Outram et al., 2016). This

could be due to the shallow slopes, which encourage infil-

tration rather than runoff. Alternatively, the response may be

more dominated by point sources which are not as rainfall-

driven, or sources such as sediment-laden runoff from imper-

vious surfaces (roads or yards), which are rainfall-driven but

do not behave in the same non-linear way as the runoff from

soil.

In addition, the conditions experienced during the 2 years

used for model identification may not be very similar to the

validation period. From the data in Fig. 1c, the winter of 2011

and spring of 2012 showed much lower discharge than the

same months in subsequent years. The groundwater recharge,

which is shown as an increase in the baseflow in winter,

was obvious for winter 2012–2013 and winter 2013–2014

for both the Blackwater (Fig. 2c) and the Wylye (Fig. 2e), but

was not evident for either catchment for the winter of 2011–

2012. Because of the slow time constants for these catch-

ments, the dataset for model identification ideally needs to

be longer than for the Newby Beck catchment, where the dy-

namics are much faster. This study suggests that the dataset

used here was not long enough for the Blackwater catchment

to capture an adequate range of conditions.

3.5 Advantages and limitations of the modelling

method

The benefits and limitations of the modelling method for TP

load are summarised in Table 4. For catchments that exhibit

rapidly changing dynamics, such as response to storm events,

models calibrated with daily data will have large uncertain-
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Table 4. Advantages and limitations of the DBM modelling method for rainfall–TP load.

Advantages Limitations

No prior assumption of model structure required Requires complete, high temporal frequency datasets

Very few parameters required Requires long datasets to cover a full range of driving conditions

Low parameter uncertainty Models may not work well for future conditions if the range of

conditions has not been included in the identification period

Makes good use of high-frequency data The power law to represent the rainfall–runoff non-linearity

may not be the best representation for each catchment

Physical interpretation is made based only on the information

in the data

Stationary DBM model will not capture time-variable gains

ties associated with the parameters (and output) because the

input data do not capture the high-frequency dynamics of

processes such as P transfer. This study shows that simple

transfer function models using data with sub-daily resolu-

tion can simulate the dynamics of TP load, with model fits

at least as good as generally achieved with process-based

models (Gassman et al., 2007; Moriasi et al., 2007) and with

low parameter uncertainty. Full direct model comparisons are

not currently possible, as the published results for process-

based models used different catchments and data sets. It is

still advisable to validate a fitted model using at least a split

record test (Klemes, 1986). This highlights the importance

of long and complete datasets with good time resolution for

properly representing both flow and TP loads for such catch-

ments. The high data demand of DBM models is noted in

Table 4. Technology and monitoring methods are improv-

ing all the time so that high-frequency data are now more

readily available (e.g. Jordan et al., 2007, 2005; Outram et

al., 2014; Skeffington et al., 2015) This requirement for ad-

equate datasets is often an obstacle in the use of the DBM

modelling method, but as such datasets become more avail-

able, the method can be used to improve our understanding

of catchments. We should embrace efforts to improve data

coverage and ways to use it widely.

The models in Table 3 have been identified using a con-

sistent method, to test how well this modelling method copes

with the different characteristics of the three catchments. The

method has been successfully applied to all the catchments,

although less successfully for the Blackwater catchment. It

is likely that the models could be improved if catchment-

specific adjustments were made or used alongside other

models in a hypothetico-inductive manner (Young, 2013).

For instance, in the Blackwater catchment, the use of state-

dependent parameters (Young, 1984) might be more success-

ful to capture the rainfall–runoff non-linearity. This means

that, rather than using the form of the non-linearity specified

by Eq. (6), the parameters could be allowed to vary according

to some other observed state. In addition, model fit might be

improved by accounting for heteroscedasticity of residuals

(shown in residual analysis, Figs. S9–S14), through transfor-

mation of data and residuals (e.g. Yang et al., 2007). Mod-

els for all catchments could be improved by having a longer

dataset, to ensure, as far as possible, that environmental con-

ditions during a future simulation period have already been

experienced during the identification period.

The models showed a pattern of underestimation of high-

level TP load events and, to a lesser extent, overestimation

of lower level events (Figs. 10, 12 and 14). This was more

apparent for TP load than for the discharge model (Figs. 9,

11 and 13), although in many cases this was within the limits

of the uncertainty in the observed data. This suggests that,

for the TP load model, the non-linearity may be rainfall, dis-

charge or load-dependent to a greater extent than allowed for

in the non-linearity of Eq. (6). This could be explored using

state-dependent parameter estimation, on which the power

law of Eq. (6) for the flow non-linearity was originally based

(Young and Beven, 1994; Young, 1984). In addition, models

with at least two terms in the numerator polynomial could

provide more flexibility for a differencing effect, i.e. a con-

sistent flushing effect with higher load occurring during the

rising limb of the discharge peak. This mechanism is not rep-

resented in first-order models [1 1 del], as for Newby Beck,

as it requires two terms of the numerator polynomial.

The use of process-based models is often justified on the

basis that the inclusion of adequate process representations

will lead to more robust estimation of the response to chang-

ing environmental conditions. This is the basis for arguing

that process-based models are better suited for predicting

the impacts of future change. However, they also involve a

plethora of (often difficult to validate) assumptions in their

model structures and parameters. In practice, parameters set

during calibration are rarely changed to account for changes

in the modelled processes under future conditions, although

by calibrating models for conditions similar to the expected

future conditions, it may be possible to incorporate non-

stationary parameter values (Nijzink et al., 2016). This idea

could be integrated into DBM models by choosing identifica-

tion periods which are most likely to reflect the conditions of

the simulation period or through the use of state-dependent

parameters. Thus, whilst the data-based assumption of simi-
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lar conditions may be questioned when limited periods have

been used for identification, usually restricted by data avail-

ability, we argue that many of the factors contributing to

catchment response will not have changed (e.g. catchment

topography, soil type and geology) and that this assump-

tion will in many circumstances be no more restrictive than

the (different) assumptions made when using process-based

models. Clearly, where the factors contributing to catchment

response have obviously changed (such as if all septic tanks

were upgraded or if farm budgeting reduced the additions of

P), then simple transfer function models would not be able

to predict the changes over time, whereas, in theory, process-

based models might be able to account for such changes, al-

beit with much uncertainty (e.g. Dean et al., 2009; Yang et

al., 2008). However, for rainfall-dominated responses, or re-

sponses to changes in rainfall patterns, simple transfer func-

tion models can provide valuable understanding of the dom-

inant modes of a catchment, which, in turn, can be used to

target management interventions.

4 Summary and conclusions

High temporal resolution data (hourly) of discharge and TP

load have been used to identify simple transfer function mod-

els that capture the dynamics of rainfall–runoff and rainfall–

phosphorus load in three diverse agricultural catchments.

Linear models were identified for short storm sequences in

the flashy Newby Beck catchment, when antecedent flows for

events were similar. Models identified for November 2015

were used to simulate flows and TP loads in the devastating

Storm Desmond (5–6 December 2015), supporting our be-

lief that the discharge and TP load calculated from recorded

data during this storm were considerably underestimated. In

these circumstances, simple models could be useful to in-

fill missing data or to highlight or estimate uncertainties

in the recorded data. Linear models for short periods were

not appropriate for the less flashy Blackwater and Wylye

catchments when the slow time constant (for a second-order

model) was similar in length to the time period of identifica-

tion, making the parameter uncertainty large.

Longer-term models were identified for each of the three

catchments based on 2 years of data. Comparison of rainfall–

runoff and rainfall–TP load models for each catchment al-

lowed a better understanding of the dominant modes of trans-

port within each catchment, which was based on the time

series data alone, rather than other (unmeasured) catchment

parameters. In all three catchments, a higher proportion of

the TP load was exported via a fast pathway than the corre-

sponding proportion of water on the fast pathway. In agree-

ment with soil profiles in agricultural areas, this suggested

that there is more release of TP on fast (generally shallower)

water pathways such as shallow sub-surface flow, field drains

and surface runoff.

For successful simulations of future conditions, the mod-

els require long datasets to ensure that a full range of driv-

ing conditions has been included in the identification period.

However, this study shows that simple transfer function mod-

els can be successful in modelling TP loads and explaining

dominant transport modes. Transfer function models make

good use of high-frequency data, require very few parame-

ters with low uncertainty and allow physical interpretation

based solely on the information in the data.

Data availability. The data used in this study are openly available

from Lancaster University data archive (Ockenden, 2017).

The DTC data are available from each DTC consortium until the

archive is transferred to Defra (Department for Environment, Food

& Rural Affairs) as the holding body.

Information about the Supplement

Information about the following can be found in the Supple-

ment:

– Estimation of hourly rainfall time series for the Wylye

catchment (Sect. S1);

– Model assessment criteria (Sect. S2);

– Study catchment characteristics (Table S1);

– Notation (Table S2);

– Structure of models and relationship between param-

eters from discrete-time and continuous-time models

(Table S3);

– Definition of time constants, steady-state gains and frac-

tion on each pathway for discrete-time and continuous-

time models (Table S4);

– Model structures and parameters identified (Table S5);

– Hourly streamflow against total phosphorus concentra-

tion for the Newby Beck catchment (Fig. S1), the Black-

water catchment (Fig. S2) and the Wylye catchment

(Fig. S3);

– Hourly streamflow against total phosphorus load for the

Newby Beck catchment (Fig. S4), the Blackwater catch-

ment (Fig. S5) and the Wylye catchment (Fig. S6);

– Time series of residuals and histograms of residuals for

short term model, Newby Beck (Figs. S7–S8);

– Residual analysis, long-term models (Figs. S9–S14);

– Model validation (Figs. S15–S18).
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