
This is a repository copy of The challenges of modelling phosphorus in a headwater 
catchment: Applying a ‘limits of acceptability’ uncertainty framework to a water quality 
model.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/127178/

Version: Accepted Version

Article:

Hollaway, Michael, Beven, Keith, Benskin, C et al. (14 more authors) (Accepted: 2018) The
challenges of modelling phosphorus in a headwater catchment: Applying a ‘limits of 
acceptability’ uncertainty framework to a water quality model. Journal of Hydrology. pp. 1-
63. (In Press) 

https://doi.org/10.1016/j.jhydrol.2018.01.063

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Accepted Manuscript

Research papers

The challenges of modelling phosphorus in a headwater catchment: Applying a
‘limits of acceptability’ uncertainty framework to a water quality model

M.J. Hollaway, K.J. Beven, C.McW.H. Benskin, A.L. Collins, R. Evans, P.D.
Falloon, K.J. Forber, K.M. Hiscock, R. Kahana, C.J.A. Macleod, M.C.
Ockenden, M.L. Villamizar, C. Wearing, P.J.A. Withers, J.G. Zhou, N.J. Barber,
P.M. Haygarth

PII: S0022-1694(18)30072-6
DOI: https://doi.org/10.1016/j.jhydrol.2018.01.063
Reference: HYDROL 22545

To appear in: Journal of Hydrology

Received Date: 26 May 2017
Revised Date: 21 December 2017
Accepted Date: 30 January 2018

Please cite this article as: Hollaway, M.J., Beven, K.J., Benskin, C.McW.H., Collins, A.L., Evans, R., Falloon, P.D.,
Forber, K.J., Hiscock, K.M., Kahana, R., Macleod, C.J.A., Ockenden, M.C., Villamizar, M.L., Wearing, C., Withers,
P.J.A., Zhou, J.G., Barber, N.J., Haygarth, P.M., The challenges of modelling phosphorus in a headwater catchment:
Applying a ‘limits of acceptability’ uncertainty framework to a water quality model, Journal of Hydrology (2018),
doi: https://doi.org/10.1016/j.jhydrol.2018.01.063

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



  

 

1 

 

The challenges of modelling phosphorus in a headwater catchment: Applying a ‘limits 

of acceptability’ uncertainty framework to a water quality model  

Hollaway, M.J.
1
, Beven, K.J.

1
,Benskin, C.McW.H.

1
, Collins, A.L.

2
, Evans, R.

3
, Falloon, 

P.D.
4
, Forber, K.J.

1
, Hiscock, K.M.

5
, Kahana, R.

4
, Macleod, C.J.A.

6
, Ockenden, M.C.

1
, 

Villamizar, M.L.
7
, Wearing, C.

1
, Withers, P.J.A.

8
, Zhou, J.G.

9
, Barber, N.J.

10
 Haygarth, P.M.

1
 

 

1 
Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, 

England, UK  

2 
Rothamsted Research North Wyke, Okehampton, Devon EX20 2SB, England, UK 

3 
Global Sustainability Institute, Anglia Ruskin University, Cambridge CB1 1PT, England, 

UK 

4 
Met Office Hadley Centre, Exeter, Devon EX1 3PB, England, UK  

5 
School of Environmental Sciences, Norwich Research Park, University of East Anglia, 

Norwich NR4 7TJ, England, UK  

6 
James Hutton Institute, Aberdeen AB15 8QH, Scotland, UK  

7
 School of Engineering, Liverpool University, L69 3GQ, England, UK 

8 
School of Environment, Natural Resources and Geography, Bangor University, Bangor, 

Gwynedd LL57 2UW, Wales, UK 

9
 School of Computing, Mathematics and Digital Technology, Manchester Metropolitan 

University, Manchester M1 5GD, England, UK 

10
 Geography Department, Durham University, Durham, DH1 3LE, England, UK 

 

Corresponding author: Michael Hollaway (m.hollaway@lancaster.ac.uk) 

 

 

mailto:m.hollaway@lancaster.ac.uk


  

 

2 

 

Abstract 

There is a need to model and predict the transfer of phosphorus (P) from land to water, but 

this is challenging because of the large number of complex physical and biogeochemical 

processes involved. This study presents, for the first time, a ‘limits of acceptability’ approach 

of the Generalized Likelihood Uncertainty Estimation (GLUE) framework to the Soil and 

Water Assessment Tool (SWAT), in an application to a water quality problem in the Newby 

Beck Catchment (12.5km
2
), Cumbria, United Kingdom (UK).  Using high frequency outlet 

data (discharge and P), individual evaluation criteria (limits of acceptability) were assigned to 

observed discharge and P loads for all evaluation time steps, identifying where the model was 

performing well/poorly and to infer which processes required improvement in the model 

structure. Initial limits of acceptability were required to be relaxed by a substantial amount 

(by factors of between 5.3 and 6.72 on a normalized scale depending on the evaluation 

criteria used) in order to gain a set of behavioral simulations (1001 and 1016, respectively out 

of 5,000,000). Of the 39 model parameters tested, the representation of subsurface processes 

and associated parameters, were consistently shown as critical to the model not meeting the 

evaluation criteria, irrespective of the chosen evaluation metric. It is therefore concluded that 

SWAT is not an appropriate model to guide P management in this catchment. This approach 

highlights the importance of high frequency monitoring data for setting robust model 

evaluation criteria. It also raises the question as to whether it is possible to have sufficient 

input data available to drive such models so that we can have confidence in their predictions 

and their ability to inform catchment management strategies to tackle the problem of diffuse 

pollution from agriculture. 

 

Keywords: SWAT, GLUE, phosphorus, uncertainty analysis, River Eden, high frequency 

data. 
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1 Introduction 

In response to water quality targets set under the Water Framework Directive (WFD) (EC 

2000/60/EC European Union 2000), it is imperative that we understand the sources, 

mobilization and delivery of diffuse pollution from agricultural land in headwater catchments 

to the river network (Haygarth et al., 2005; Perks et al., 2015). In order to devise management 

strategies that reduce the transfer of macronutrients (e.g. phosphorus (P) and nitrogen (N)) to 

river networks (McGonigle et al., 2014), models are essential tools in predicting how 

catchments may respond to key pressures in the present and into an uncertain future. Under 

climate change, winters are expected to become wetter and warmer, whilst summers are 

predicted to be hotter and drier in the United Kingdom (UK; Jones et al., 2010). Coupled with 

extended periods of drought, and an increase in extreme precipitation events for much of the 

UK (Kendon et al., 2014), these changes are likely to result in increased P transfers to 

waterways (Haygarth et al., 2005; Macleod et al., 2012; Ockenden et al., 2017).    

Process based models are often used to assess the response of river systems to changes in 

land use and future climate drivers (Bosch et al., 2014; Crossman et al., 2013; Crossman et 

al., 2014; El-Khoury et al., 2015; Jin et al., 2015; Whitehead et al., 2013). These models are 

typically considered over-parameterized, with large numbers of interacting parameters 

governing the key physical and biogeochemical processes represented in the model structure 

(Beven, 2006; Dean et al., 2009; Krueger et al., 2007).  While the parameters of such models 

may have some physical significance, ‘effective’ values of those parameters are required to 

account for variability in the catchment, key processes and the model limitations (Beven, 

1996; Beven, 2002; Beven, 2006), with these frequently estimated through a combination of 

manual and automated calibration procedures.  

     Beven (2006) also highlighted that there is often limited information in the model 

calibration data to effectively identify calibrated values for model parameters. For example, 
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infrequent water quality data collection, which does not fully pick up catchment dynamics 

can lead to uncertainty in P load calculations (Johnes, 2007) which then impacts on the ability 

of the models to simulate catchment water quality accurately (Radcliffe et al., 2009). This 

uncertainty, coupled with other sources of uncertainty, results in equifinality, where multiple 

and very different parameter sets produce an equally acceptable fit to observations (Beven, 

2006). A so-called ‘optimum’ parameter set will not then be robust to a change in the period 

of calibration data. In some cases, parts of a data set may not be informative in calibrating 

and evaluating a model (Beven and Smith, 2015). Furthermore, the concept of equifinality 

has been exhibited in the observed biogeochemistry of a catchment whereby signals in the 

observations can be explained by a large number of interacting processes (Haygarth et al., 

2012). 

     Understanding how well these process-based models represent the key processes in the 

source, mobilization and delivery continuum, will improve their ability as learning tools in 

helping to unravel the complex interactions occurring in a catchment. This is particularly the 

case where the processes are often difficult or impossible to measure at the catchment scale 

(e.g. phosphorus concentrations in different nutrient pools in the soil). As a result, in recent 

years the impact of such uncertainties has received increased attention in water quality 

modelling (Dean et al., 2009; Harmel et al., 2014; Karamouz et al., 2015; Page et al., 2007; 

Vrugt and Sadegh, 2013; Woznicki and Nejadhashemi, 2014; Yen et al., 2015).    

     The Generalized Likelihood Uncertainty Estimation (GLUE) methodology (Beven and 

Binley, 1992) is an uncertainty estimation technique widely applied in the field of 

environmental modelling, including water quality models (Dean et al., 2009; Krueger et al., 

2010; Krueger et al., 2009; Krueger et al., 2012; Page et al., 2003; Page et al., 2007; Page et 

al., 2004; Rankinen et al., 2006). GLUE evaluates model realizations for acceptability in the 

face of uncertainty in the model structure, parameters and input data. It accepts the 
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equifinality concept in using a set of acceptable or behavioral models to estimate the 

uncertainty in model predictions. It also provides a framework to evaluate a model as fit for 

purpose in representing the dynamics of a catchment using a set of evaluation criteria.  

     In this study, GLUE is used with a ‘limits of acceptability’ approach to evaluate a model 

parameter set, which should take into account the inherent error in the calibration data, such 

as errors in discharge data arising from rating curve uncertainties (Blazkova and Beven, 

2009; Krueger et al., 2010; McMillan et al., 2012; McMillan and Westerberg, 2015; 

Pappenberger et al., 2006; Westerberg et al., 2011) and errors in water quality data (Krueger 

et al., 2012; Page et al., 2003; Page et al., 2004; Rankinen et al., 2006). The advantage of this 

approach is that it allows varying limits to be set for individual observations as well as 

combining evaluations based on different types of observations in a consistent way (Beven, 

2006). Furthermore, it has been demonstrated that high frequency coupled hydrochemical 

data, allows short term changes in catchment dynamics to be better captured (Benettin et al., 

2015; Halliday et al., 2015) and a greater understanding of the complex and non-linear 

interactions in the catchment system to be obtained. This is particularly the case in flashy 

catchments where storm events can lead to rapid changes in stream concentrations of P, and 

thus allows more robust and empirically defined model evaluation criteria to be set. However, 

the reality of not having such high quality data available can often make it difficult to define 

appropriate limits (Dean et al., 2009). 

     The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998; Gassman et al., 2007) 

is one such process-based model that has been the focus of uncertainty and calibration 

procedures in recent years (Arnold et al., 2012; Karamouz et al., 2015; Schuol and 

Abbaspour, 2006; Shen et al., 2012a). Designed to simulate the impacts of management and 

mitigation on biogeochemistry and water quality in ungauged river basins, development of 

SWAT began in the early 1990s (Gassman et al., 2007). The model has been continually 
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improved over the years and has incorporated key components based on those in other 

established models. These include the hydrology component from the Chemicals, Runoff, and 

Erosion from Agricultural Management Systems (CREAMS) model (Knisel, 1980), the 

pesticide component from the Groundwater Loadings Effects on Agricultural Management 

Systems (GLEAMS) model (Leonard et al., 1987) and the crop growth component from the 

Environmental Impact Policy Climate model (Izaurralde et al., 2006), which was previously 

known as the Erosion Productivity Impact Calculator (EPIC) model (Williams, 1990). 

Finally, river routing and instream kinetic routines were incorporated based around the 

Routing Options to Outlet (ROTO; Arnold et al., 1995) and QUAL2E (Brown and Barnwell 

Jr., 1987) models respectively.    

     The GLUE framework has been applied to SWAT before (Karamouz et al., 2015; Shen et 

al., 2012a) with the Nash-Sutcliffe efficiency (NSE) typically used as the likelihood measure. 

A prescribed threshold is used to define behavioral simulations, with focus tending to be on 

how the model performs in the medium to long term (typically monthly to yearly). These 

studies demonstrated that high uncertainty exists in the model predictions with a number of 

key parameters for flow and nutrient processes being unidentifiable due to limitations in the 

model input and calibration data (Shen et al., 2012a). However, due to limited computational 

power, these studies sampled only a small area of the parameter space (10,000 iterations for a 

20 parameter space) and hence could miss sampling potentially behavioral parameter sets. 

Further to this, previous uncertainty applications to SWAT focus largely on using summary 

statistics such as NSE to evaluate model performance (Shen et al., 2012a; Shen et al., 2012b; 

Shen et al., 2013) and do not focus on those time-steps critical to model failure. Finally, 

whilst there have been previous studies with SWAT that are concerned with the effects of 

input data uncertainty on model performance (Shen et al., 2012b; Shen et al., 2013), no 

previous study accounts for uncertainty in the data used to calibrate the model.  
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     This work provides for the first time, a ‘limits of acceptability’ approach of the GLUE 

framework to the SWAT model in an application to the Newby Beck sub-catchment of the 

River Eden Basin in Cumbria, UK. This study takes advantage of the high temporal 

resolution water quality monitoring data set from the Demonstration Test Catchments (DTC) 

project (McGonigle et al., 2014) to gain a better understanding of the uncertainty in the 

predictions of models such as SWAT by using the ‘limits of acceptability’ to identify exact 

time-steps critical to model failure. This will provide an insight as to whether it is suitable to 

use SWAT as a catchment management tool in the Newby Beck sub-catchment. We do this 

by evaluating whether it can adequately represent the key dynamics of P transport to the 

stream, whilst also explicitly accounting for errors in calibration data. This study has the 

following objectives. 

1) What are the critical time-steps causing the model to be classed as not acceptable? 

2) What can be learned from the uncertainty in the model predictions to better 

understand the complex interactions occurring at the catchment scale?  

3) Can we identify which processes require further investigation in the model structure 

and do we have sufficient input data to drive such complex models? 

     

2 Materials and Methods 

 

2.1 Catchment description and observations 

     Newby Beck (Figure 1) is a small headwater sub-catchment located in the River Eden 

basin in the North West of England, in the United Kingdom. The catchment is approximately 

12.5 km
2
 in size with an average elevation of 234 m above sea level (Owen et al., 2012; Perks 

et al., 2015). The underlying geology is dominated by Carboniferous limestone, which is 

overlain by low-permeability glacial deposits. There are well drained, fine and loamy soils 
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over limestone  (Waltham soil association (541q)) in the upper reaches, seasonally wet deep 

loamy soils in drift from Paleozoic sandstone and shale in the mid-reaches (Brickfield 3 soil 

association (713g) and seasonally waterlogged reddish fine and coarse loamy soils in glacial 

till (Clifton soil association (711n) in the lower reaches of the catchment (National Soil 

Resources Institute (NSRI) Cranfield University 2014). The dominant soil unit in the 

catchment is the 713g Brickfield association, which covers approximately 66% of the basin 

area. The primary land use in the catchment is improved grassland (approximately 76% by 

area) which is used for a mix of dairy and beef production. Other land uses are rough 

grassland (14%), arable (6%), woodland (2.5%) and built-over land (0.5%; Morton et al., 

2011). The climate of the region is cool temperate maritime with an annual average rainfall of 

around 1200 mm.  Due to the underlying geology, the 23% of the catchment area is greater 

than 5°, which results in rapid catchment response time leading to a time-to-peak of about 3 

hours (Perks et al., 2015). Based on the Hydrology of Soil Types (HOST) classifications, the 

catchment has a standard percent runoff of 35% (Perks et al., 2015), resulting in very flashy 

responses of the hydrograph to rainfall events and high occurrences of saturated overland 

flow (Ockenden et al., 2016). 

Figure 1: Summary of spatial data in the Newby Beck catchment. Panel a) shows the 

catchment topography, panel b) shows the locations of the monitoring station (discharge 

and total phosphorus (TP)), weather station and rain gauges, panel c) shows the main 

soil classes in the catchment and panel d) shows the broad land use classifications.  

 

 

     The catchment outlet was a rated section of channel used to provide high frequency 

discharge data at 15-minute intervals. The discharge measurements were calculated from a 

time series of stage measurements (obtained with a SWS mini-Diver) using site-specific 
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rating curves. In addition, a high frequency bankside monitoring station was situated at the 

outlet, which recorded nitrate (NO3), total P (TP) and total reactive P (TRP) at 30 minute 

intervals (Outram et al., 2014). The TP and TRP measurements were conducted using a Hach 

Lange combined Sigmatax sampling module and Phosphax Sigma analyzer (Perks et al., 

2015). Rainfall was recorded at 15-minute intervals by three tipping bucket rain gauges. 

Other meteorological data was provided by an Automatic Weather Station (AWS), which was 

located towards the centre of the catchment (Figure 1). Daily rainfall data was also gained 

from a rain gauge located in the center of Newby Beck catchment from the Met Office 

Integrated Data Archive System (MIDAS) network (Met Office 2012). The location of the 

monitoring stations, rain gauges, and outlet monitoring station are shown in Figure 1. 

Information on fertilizer and manure applications were based around a typical dairy and beef 

grassland catchment system with guidance from the Defra fertilizer handbook (Rb209; Defra, 

2013) and available farm diary data for the catchment for the years 2011-2014. 

 

2.2 Implementation of the SWAT model to Newby Beck 

     The SWAT model (version 2012, revision 637) is a semi-distributed, process-based model 

(Arnold et al., 1998; Gassman et al., 2007) which simulates surface and sub-surface 

hydrology, along with various nutrient (including P) and sediment fluxes, at a basin scale. 

The model also incorporates various land management practices along with a crop growth 

model in order to simulate the impact of agriculture at the catchment scale. SWAT also 

includes urban area management practices and can incorporate pollution from point sources 

such as sewage treatment works. The model requires spatial information including land use, 

soil type and elevation, which are often input as GIS layers. Additional inputs required 

include any land management practices (e.g. fertilizer application rates and animal stocking 

densities) and weather data including rainfall, temperature, wind speed, humidity and solar 
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radiation. In order to reduce the computational complexity of SWAT, a semi-distributed 

approach is taken such that the model lumps unique land, soil and slope combinations into 

hydrological response units (HRUs) within each sub-basin of the main catchment. The 

hydrological and biogeochemical model processes are calculated for each HRU and then 

lumped to produce a response for each sub-basin.    

     To implement SWAT for the Newby Beck catchment, the NextMap 5m digital elevation 

model (DEM) dataset (Intermap Technologies 2009) was used to delineate the catchment 

boundary highlighted in Figure 1. Land use (25 m resolution) was from the Centre of Ecology 

and Hydrology (CEH) land cover map (LCM) 2007 (Morton et al., 2011), which indicates the 

most likely Broad Habitat land classification for each 25m grid square. Soil properties (1 km 

resolution) were determined from the NSRI database  (Cranfield University2014). In order to 

keep the simulation as computationally efficient as possible, the catchment was divided 

spatially into 3 sub-basins, each with a different mean elevation. Within each sub-basin, 

HRUs were defined based upon the unique combinations of the LCM land cover class (the 

dominant proportion of coverage in each grid square) and the dominant soil association 

(Brickfield (713g), resulting in 5 HRUs per sub-basin and 15 in total (Figure 1). Fertilizer 

application rates for each land class were lumped up to HRU level to provide an average 

nutrient application rate for each response unit.  Finally, the required precipitation and 

weather data were provided by the rain gauges and the AWS (Figure 1). 

     SWAT was set up to produce daily predictions of discharge and TP loads. A sub-daily 

variant of the model was available (Gassman et al., 2007), however, at present it does not 

produce sub-daily output for nutrients. Therefore in this study we have used the daily time-

step variant of the model which has been used in numerous previous studies (Shen et al., 

2012a; Shen et al., 2013; Taylor et al., 2016; Wang and Sun, 2016; Zhang et al., 2014). 

Model simulations are evaluated using daily observations of discharge and TP loads, which 
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are calculated from the high frequency data at the catchment outlet. The modified SCS curve 

number method was used for computing surface runoff volume.  While often used as a 

representation of infiltration excess runoff, Steenhuis et al. (1995) have shown that it can also 

be interpreted in terms of saturation excess contributing areas which is more appropriate for 

the study catchment.  The Penman Monteith (Monteith, 1965) method was used to calculate 

evapotranspiration and the Muskingham routing method (Brakensiek, 1967; Overton, 1966) 

to route water in the river network.  P is cycled through the soil through a combination of 

leaching, mineralization, decomposition and immobilization processes and surface runoff is 

largely assumed to be the primary transport route into the river network (Neitsch et al., 2011). 

The algorithms for each respective process are solved and P is moved between respective soil 

stores and into the river network to ensure that mass balance is conserved.  

     The model was run with a two year warm up period and was calibrated over the 2011-

2012 and 2012-2013 hydrological years and validated over the 2013-2014 hydrological year.      

2.3 The limits of acceptability GLUE uncertainty framework 

     The performance of the SWAT simulations was assessed using the GLUE methodology 

(Beven and Binley, 1992; Beven and Binley, 2014). GLUE was extended to use the limits of 

acceptability approach described by Beven (2006; 2009) and applied in previous applications 

to hydrological (Blazkova and Beven, 2009; Krueger et al., 2010; Liu et al., 2009) and water 

quality models (Krueger et al., 2012; Page et al., 2003; Page et al., 2004; Rankinen et al., 

2006).   

GLUE recognizes that for any given observational data set and performance criteria there 

may be multiple model parameter sets and structures that produce acceptable simulations. 

Each application is dependent on a number of decisions: 

1. Choose which model parameters to vary  



  

 

12 

 

2. Choose which model structures to consider (e.g. whether in stream processing of 

nutrients is switched on or off) 

3. Define prior distributions within which to sample each parameter 

4. Determine the limits of acceptability used to assess the performance of a model run 

5. Decide on a likelihood measure for creating the uncertainty prediction bounds given a 

set of behavioral models 

 

In the absence of any knowledge regarding the prior probability distributions of effective 

parameter values, random uniform sampling was utilized between defined prior ranges. 

However, if this information is known it can be incorporated into the sampling strategy. 

To assess if a given parameter set is behavioral, limits of acceptability are specified for each 

observation at each time-step during the calibration period, to take into account the inherent 

uncertainty in the calibration data. Model performance (Score(t)) is determined at each time-

step, t, by how well the simulated value satisfies these limits and are normalized as follows to 

compare limits over different measures, 

 

                                                                                    
 

 

(1) 

 

where Ŷt is the simulated value; yt is the best estimate of the observed value; ymin,t is the lower 

limit of acceptability; and ymax,t is the upper limit of acceptability for a given time-step. This 

results in scores that are zero at the best estimate of an observed value, -1 at the lower limit 

and +1 at the upper limit. For a model to be considered behavioral, all scores must fall within 

the limits at every time step (between -1 and +1). 
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The first step in defining the limits of acceptability is to consider the range of output 

observational uncertainty. For discharges, this will depend on both water level measurement 

uncertainty and rating curve uncertainties (e.g. McMillan and Westerberg (2015)). For water 

quality load variables, it will depend on uncertainties in discharge, sampling and 

measurement of determinand concentrations in addition to their aggregation to the temporal 

and spatial scales of interest (McMillan et al., 2012). Where such uncertainties are estimated 

using fuzzy or interval arithmetic, then limits of acceptability can be defined directly 

(Krueger et al., 2010; Krueger et al., 2009; Krueger et al., 2012; Pappenberger et al., 2006; 

Westerberg et al., 2011). However, where such uncertainties are estimated statistically, there 

are normally no sharp limits on the potential ranges (the assumed distributions will have 

infinite tails). In this case, it is necessary to truncate the uncertainty (normally at the 95% or 

99% level).  

   Where such limits of acceptability are based only on the output observational uncertainties, 

they provide a minimal range of acceptable behavior because no explicit account has been 

taken of the effect of input uncertainty. This is more difficult to do since the nonlinear 

dynamics of most models make it difficult to assess the impact of input error independently 

of the model. There is, however, the option of exploring input error propagation within the 

GLUE framework (Krueger et al., 2010; Krueger et al., 2009; Krueger et al., 2012; Page et 

al., 2003; Page et al., 2004). In this paper, an indirect approach was taken by relaxing the 

limits until a given number of behavioral simulations have been accepted. We discuss a 

number of ways of doing so. It can be done by imposing the condition that only a certain 

percentage of the scores must fall within the -1 to +1 scores (e.g. 95%/99%) or by finding the 

minimum extension required of the limits for simulations to be considered behavioral. This 

degree of relaxation can then be used to determine, at least subjectively, whether the model 

can be considered as fit-for-purpose. 
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Once a set of behavioural simulations have been identified a final likelihood weight needs to 

be calculated for each behavioural model. First, a weight W is calculated at each evaluation 

time-step t using Equation 2. 

  

                                                                                                                                                                                                        
 

 

 

(2) 

 

where Score(t) is the normalized score at time-step t, and Llwr and Lupr are the lower and 

upper criteria to consider the set of models behavioural for the required number of time steps. 

N is a shaping factor, which is set at 1 in this case, following the approach of Liu et al. 

(2009). This is a similar approach to applying a triangular fuzzy weight at each evaluation 

time-step (Freer et al., 2004; Liu et al., 2009).  

     The weights at each time-step are then combined to produce an overall likelihood 

weighting for each behavioural model: 

  

                 
    

 

 

(3) 

where T is the total number of time steps and W(t) is a triangular fuzzy weighting at time-step 

t. As previously in GLUE, prediction quantiles can then be formulated at any given time-step 

(t) by calculating the likelihood weighted cumulative density function of a predicted variable 

over the set of behavioural models.  

                                 
    

 

(4) 
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where P is the prediction quantile for Ẑt (the simulated value of variable Z at time step t using 

model M(Θj)) being less than z; L is the likelihood weighting associated with model M(Θj); Θj 

is the jth parameter set; and N is the number of models accepted as behavioral.  

     In this study, the model was evaluated using daily discharge and TP loads with the 

constraint imposed that for both discharge and TP loads the simulated value must fall within 

the limits of acceptability at all time-steps throughout the calibration period (2011-2012 and 

2012-2013 hydrological years). This period totaled 731 time-steps and accounting for both 

upper and lower limits gave 1462 limits to satisfy for discharge. For TP loads, there were 

1210 limits to satisfy, due to missing data, giving a total of 2672 limits to be met for a model 

run to be considered behavioural. This allows likelihood measures to be calculated for 

discharge (LQ) and TP (LTP), respectively. For each behavioral model run, an overall 

likelihood (Lovr) can be constructed as follows 

  

             

 

 

(5) 

 

where C is a scaling factor such that the sum of likelihoods scales to unity in each case. 

Equation 4 can then be applied to determine the uncertainty bounds on the model predictions.  

      Here, thirty two parameters in the SWAT model considered important for hydrology and 

water quality processes (Arnold et al., 1998; Gassman et al., 2007; van Griensven et al., 

2006) were sampled uniformly between the ranges detailed in the model user manual (Table 

1). As some parameters varied with land use, a total of 39 were included in the Monte-Carlo 

simulations. In order to preserve the spatial heterogeneity of the soil and curve number 

parameters across HRUs, multipliers were applied during the Monte Carlo simulations (Table 

1). The ranges and parameters chosen in Table 1 were based around an initial sensitivity 
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analysis. For such a large parameter space, many model runs were required and SWAT was 

implemented on the Lancaster University HEC (High End Computing) facility. The results 

presented are based on 5,000,000 iterations of the SWAT model executable (version 2012, 

revision 637), run within an R wrapper (R Core Team, 2016) which sampled the parameters 

uniformly between the ranges specified in Table 1. 

Table 1: SWAT model parameters and ranges used within the Generalized Likelihood 

Uncertainty Estimation (GLUE) framework. The values of each parameter were 

sampled on a random uniform basis between the ranges. 
  

Parameter Description Min 

Value 

Max 

Value 

CN2* SCS runoff curve number -0.2 0.2 

USLE_P_FRSD USLE
a
 equation support practice factor (forest) 0.0 0.5 

USLE_P_AGRL USLE
a
 equation support practice factor (arable) 0.0 1.0 

USLE_P_PAST USLE
a
 equation support practice factor (pasture) 0.0 0.5 

USLE_P_RGRS USLE
a
 equation support practice factor (rough grazing) 0.0 1.0 

USLE_P_URML USLE
a
 equation support practice factor (urban) 0.0 1.0 

ALPHA_BF Baseflow alpha factor (1/days) 0.0 1.0 

GW_DELAY Groundwater delay (days) 26.0 500.0 

GWQMN Threshold in shallow aquifer for return flow (mm) 970.0 3300.0 

RCHRG_DP Deep aquifer percolation fraction 0.4 1.0 

LAT_ORGP Organic P in baseflow (mgl
-1

) 0.0 0.1 

GWSOLP Concentration of soluble P in groundwater flow(mgl
-1

) 0.0 0.1 

GW_REVAP Groundwater “revap” coefficient 0.02 0.2 

REVAPMN Threshold depth in shallow aquifer for “revap” to occur (mm) 150.0 500.0 

SLSOIL Slope length for lateral subsurface flow (m) 10.0 45.0 

CANMX_FRSD Maximum canopy storage for forest (mmH2O) 0.0 100.0 

CANMX_AGRL Maximum canopy storage for arable (mmH2O) 0.0 100.0 

CANMX_PAST Maximum canopy storage for pasture (mmH2O) 0.0 100.0 

CANMX_RGRS Maximum canopy storage for rough grazing (mmH2O) 0.0 100.0 

LAT_TTIME Lateral flow travel time (days) 0.0 1.8 

ERORGP Phosphorus enrichment ratio for loading with sediment 0.0 5.0 

CH_N2 Manning’s “n” value for the main channel 0.0 0.3 

CH_COV1 Channel erodibility factor 0.0 1.0 

CH_COV2 Channel cover factor 0.0 1.0 

SOL_K* Saturated hydraulic conductivity (mm/hr) 0.0 2.0 

USLE_K* USLE
a
 equation soil erodibility factor (ton m

2
 hr/m

3
-ton cm) -0.1 0.1 

SOL_ORGP Initial organic P concentration in soil layer (mgl
-1

) 0.1 100.0 

SOL_LABP Initial labile P concentration in soil layer (mgl
-1

) 0.1 100.0 

CH_N1 Manning’s “n” value for tributary channels 0.06 0.15 

SURLAG Surface runoff lag coefficient 2.0 24.0 

ESCO Soil evaporation compensation factor 0.4 0.9 

EPCO Plant uptake compensation factor 0.1 0.9 

SPEXP Parameter for amount of sediment reentrained in routing 1.0 1.5 

SPCON Parameter for amount of sediment reentrained in routing 0.001 0.01 
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*These parameters were varied relatively using a random multiplier between the ranges in 

order to preserve the spatial heterogeneity of the parameters.   
a
USLE= Universal Soil Loss Equation.  

 

2.4 Sources of uncertainty in the calibration data  

     In order to set initial limits of acceptability for discharge and TP loads, the uncertainty in 

the rating curve and in-situ TP concentration measurements were first examined. The 

methodology of deriving these limits is described briefly below with more detail available in 

Hollaway et al (In Prep). To produce a rating curve the Velocity Area Rating Extension 

(VARE) model was used (Ewen et al., 2010), which uses the water balance and an assumed 

maximum river velocity to constrain the extrapolation of the curve beyond the gauged range. 

An extended version of the voting point likelihood methodology (McMillan and Westerberg, 

2015) was used in a Monte Carlo Framework to calibrate the rating curve. In brief, the voting 

point method works by evaluating candidate rating curves (from the Monte Carlo sampling) 

against the observations (and in the VARE method constrained by the water balance). A 

candidate curve is considered behavioural if it falls within the uncertainty bounds of at least 

one of the observations and is weighted based upon A) the number of measurements it 

intersects and B) how close it lies to the true value (in this case we use a triangular 

weighting). Finally, 95% confidence limits are derived from all behavioural curves and their 

associated weightings to give the uncertainty limits on the discharge time series.  

The resultant uncertainty (based on 95% prediction quantiles) on discharge was on average 

96% with a range of 24-163%. This range is much larger compared to those determined 

during a recent study on 500 UK catchments (Coxon et al., 2015), which showed that the 

majority of catchments had 20-40% relative uncertainty intervals, though the maximum 

PSP P sorption coefficient 0.01 0.7 

CMN Rate factor for mineralization of organic N 0.001 0.003 

RSDCO Residue decomposition coefficient 0.02 0.1 

PPERCO P percolation coefficient (global) 10.0 17.5 

P_UPDIS P uptake distribution parameter 10.0 100.0 
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uncertainty of 163% determined for Newby Beck here is much lower than the maximum 

value of 397% quoted by Coxon et al. (2015). 

     As daily TP loads are determined from both discharge and in stream TP concentrations.  

To evaluate the uncertainty on the in-situ concentrations, measurements from the bankside 

analyser were paired with land analysed grab samples and ISCO data. An empirical power 

law was then fitted, once again using a voting point likelihood in a Monte-Carlo framework. 

In this case, the lab-analysed sample was assumed representative of the true concentration. 

Finally, the unique combination of behavioural parameter sets from both the discharge and 

TP time series were used to estimate the uncertainty on the resultant TP load.  

For the in-situ TP concentrations from the bankside analyser, uncertainty intervals ranged 

from 231% for the lower concentrations (the bottom 5%) to around 81% for the highest 

concentrations. When combined with the discharge uncertainty this resulted in an average 

271% for the lowest loads (bottom 5%) and 76% for the highest loads.      

3 Results 

3.1 Model performance and rejection 

     For the initial limits of acceptability (see 2.4), none of the 5,000,000 parameter sets 

sampled produced a model that satisfied the limits at every time-step for both discharge and 

TP loads. In order to investigate why the sampled parameter sets were not producing 

behavioural models a subset of the best parameter sets was chosen on which to perform 

further analysis.  In order to identify this subset of models we took two different approaches. 

These two different methods were adopted to evaluate the sensitivity of accepted model 

parameter sets to the choice of evaluation measure. The first approach was to find the 

minimum relaxation of the normalized limits across all time-steps that was required to accept 

a set of 1000 models. The second approach was to only require the model to fall within the 

limits in the high and low flow time-steps. In this case, the thresholds for high and low flows 
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(for both discharge and TP) were set as the top and bottom 5% of discharges as defined from 

the flow duration curve. For this second evaluation measure if no parameter sets satisfied the 

initial limits of acceptability for all the selected time steps, they were again relaxed until a set 

of 1000 models was accepted on which to perform further diagnostics.  

3.1.1 Evaluation across all model time-steps  

     When the normalized scores of acceptance were allowed to relax (based on normalized 

scores falling within the limits at all time-steps) to   6.72, 1016 simulations can be 

considered acceptable. In order to gain a better understanding of why such large relaxation of 

the limits was required, a more detailed examination of the scores was made for the accepted 

simulations to look for systematic deviations between the simulations and observations. 

Figure 2 shows a summary of the performance of the 1016 simulations against observations 

over all time-steps, for the rising/falling limbs of the hydrograph and for the high and low 

flow periods (as defined above). Figure 2 also shows a comparison of the normalized scores 

against the observations. 

 

Figure 2: Generalised likelihood uncertainty estimation (GLUE) likelihood 

distributions, based upon the evaluation of models using criteria set for all time steps 

(normalized scores of ± 6.72), of Qsim (simulated discharge), normalised score for Q 

(discharge), TP loadsim (simulated total phosphorus) and normalised scores for TP, 

respectively, against observations (panels A-D). The plots are repeated for the low flow 

periods (panels E-H), rising time-steps (panels I-L), falling (recession) time-steps (panels 

M-P) and high flow periods (panels Q-T). The areas between the distribution percentiles 

max/min, 5
th

/95
th

 and 25
th

/75
th

 are shown in grey shades of increasing intensity. The 

medians of the distribution are shown by black dots. 1:1 lines and normalised scores of 

0 lines have been added for orientation.    
 

     For both discharge (Figure 2E) and TP loads (Figure 2G) the models tend to show a bias 

towards over-prediction during the low flow periods. In contrast there is systematic under-

prediction shown for both discharge (Figure 2Q) and TP (Figure 2S) during the high flow 

periods although the normalized scores show a tendency to be smaller for these periods which 



  

 

20 

 

reflects the larger absolute uncertainty intervals on the higher flow observations for both 

measures (Figure 2). Overall, the majority of scores which tend to be outside the original 

limits occur during the falling limb of the time-series, particularly for the lower magnitude 

flows and loads during these periods, which could be a constraint on model performance.  

     This under-prediction of peaks during the high flow periods is reflected in Figure 3, which 

shows the time series of the performance of the 1016 accepted models during the summer, 

autumn and early winter of the 2012-2013 hydrological year. Overall, the model captures the 

timings of the peaks and low flow periods fairly well, however the under-prediction of the 

peaks in December and January is emphasized for both discharge (Figure 3a) and TP loads 

(Figure 3b). Despite relatively high normalized scores shown in Figure 2 during the low flow 

periods, the over-prediction of observations is less emphasized in Figure 3 due to the smaller 

absolute widths of the uncertainty intervals at these time-steps. However, over-prediction is 

evident during the low flow period in late January 2013, particularly in the discharge time-

series. 

 3.1.2. Evaluation across high and low flow periods only 

When the model evaluation is constrained to the high and low time-steps (top and bottom 5% 

of time-steps across the flow duration curve), none of the 5,000,000 model runs fall within 

the original limits of acceptability. Hence, in order to gain a subset of model runs for the 

calculation of model diagnostics, we relaxed the limits to 5.30 to gain a set of 1001 

behavioural simulations. Figure 4 shows a comparison of the model performance versus the 

observations over all time-steps, rising/falling time-steps and high/low flow time-steps. 

Overall, the picture is consistent when the models were constrained over all time-steps 

(section 3.2.1) with over-prediction of both discharge and TP during the low flow periods 

(Figure 4F and 4H) and under-prediction during the high flow periods (Figure 4R and 4T). 

However, much higher over-predictions are shown for lower discharge and TP loads, 
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particularly those classified as falling time-steps (Figure 4N and 4P respectively) where 

normalized scores approach 15 for discharge and 30 for TP. These higher scores (compared 

to Figure 2) reflect the fact that we are only constraining the model on a smaller number of 

time-steps, albeit these are the high and low flow periods that are often considered important 

to simulate accurately to best capture catchment dynamics. This once again shows that poor 

performance during the recession periods is a constraint on finding behavioural parameter 

sets for SWAT in application to this catchment. 

 

Figure 3: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby 

Beck outlet (part of the calibration period) based on normalized scores on both 

discharge and total phosphorus (TP) load evaluation measures when criteria 

(normalized scores of ± 6.72) set over all model time-steps (1016 simulations).  The black 

line in each plot shows the observed discharge (a) and TP loads (b), respectively. The 

dashed lines show the uncertainty limits on the calibration data. 
 

Figure 4: Generalised Likelihood Uncertainty Estimation (GLUE) likelihood 

distributions of, based upon the evaluation of models using criteria set for high and low 

flow periods only (normalized scores of ± 5.30), Qsim (simulated discharge), normalised 

score for Q (discharge), TP loadsim (simulated total phosphorus) and normalised scores 

for TP, respectively, against observations (panels A-D). The plots are repeated for the 

low flow periods (panels E-H), rising time-steps (panels I-L), falling (recession) time-

steps (panels M-P) and high flow periods (panels Q-T). The areas between the 

distribution percentiles max/min, 5
th

/95
th

 and 25
th

/75
th

 are shown in grey shades of 

increasing intensity. The medians of the distribution are shown by black dots. 1:1 lines 

and normalised scores of 0 lines have been added for orientation.      
 

     Figure 5 shows the time-series of model performance of the 1001 accepted models during 

the summer, autumn and early winter of the 2012-2013 hydrological year. In this case as the 

high and low flow periods that are being used to constrain the model the dynamics of the 

catchment are captured much better by the accepted simulations with the model capturing 

both the timing and magnitude of the peaks for both discharge (Figure 5a) and TP loads 

(Figure 5b). However, there is still under-prediction of peaks during December and early 
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January and over-prediction of low flow periods during late January with this once again 

most evident in the discharge time-series (Figure 5a).  

Figure 5: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby 

Beck outlet (part of the calibration period) based on normalized scores on both 

discharge and total phosphorus (TP) load evaluation measures when criteria 

(normalized scores of ± 5.30) set over high and low flow time-steps only (1001 

simulations).  The black line in each plot shows the observed discharge (a) and TP loads 

(b), respectively. The dashed lines show the uncertainty limits on the calibration data. 
    

3.2 Evaluation of model parameter uncertainty  

  

      Figure 6 shows projections of the sampled points on the likelihood surface (as calculated 

by Equation 5) onto single parameter axes for the parameters in Table 1 for each of the 

behavioral simulations. These have previously been called dotty plots and can be used to 

infer sensitivities of the individual parameters using the Hornberger-Spear-Young method 

(see Beven, 2009). The points shown are the 1016 simulations which satisfy the relaxed 

limits of acceptability for both discharge and P when evaluated across all time-steps. The 

same plot is shown in Figure 7 when the models are evaluated across the high and low flow 

period only. Both Figures 7 and 8 show consistency in the sensitivity of the parameters 

varied. Of the 39 parameters varied, only four parameters exhibited any clear identifiability. 

These are GW_DELAY (ground water delay), RCHRG_DP (deep aquifer percolation 

fraction), LAT_TTIME (lateral flow travel time) and LAT_ORGP (organic P in the 

baseflow). Further to this, behavioural models are identified at both high and low values of 

the GW_DELAY parameter, which is consistent across both evaluation metrics. Some levels 

of identifiability were shown for the CN2 (SCS runoff curve number) and SLSOIL (slope 

length for lateral subsurface flow), however the responses of these parameters differed 

between the method chosen to evaluate the models. For SLSOIL, when the model was 

evaluated on all time-steps, higher likelihood values were shown towards the higher end of 
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the sample range. The opposite was shown for evaluation over the high and low time-steps 

only with higher likelihood values shown towards the lower end of the sampled parameter 

range. Overall the majority of parameters showed no sign of sensitivity and indicated high 

equifinality across the sampled ranges.  

 

Figure 6: Dotty plots for 39 of the parameters varied in the Monte-Carlo runs. 

Parameter names and definitions are shown in Table 1. These are based on the 1016 

behavioral simulations evaluated across all time-steps (normalized scores of ± 6.72).  
 

 

Figure 7: Dotty plots for 39 of the parameters varied in the Monte-Carlo runs. 

Parameter names and definitions are shown in Table 1. These are based on the 1001 

behavioral simulations evaluated across the high and low flow time-steps only 

(normalized scores of ± 5.30).  
 

     The parameters that exhibit sensitivity are all linked to runoff and sub-surface processes 

and all interact to affect the time taken for water to reach the river network, and thus affect 

the transport of P. However, the high equifinality in the other parameters (particularly those 

in relation to the levels of P in the soils SOL_ORGP and SOL_LABP) indicates that given 

the present assumptions and data available for the catchment, there is not enough information 

to calibrate these parameters effectively.      

3.3 Critical time-steps for model failure  

     Figure 8 shows a breakdown of the classification (high/low or rising/falling) of the time-

steps of the sub-sample of models chosen on which to perform model diagnostics that result 

in model failure (lie outside the original limits of acceptability). For both evaluation measures 

used in this study, the falling limb time-steps contribute the largest proportion of failing time-

steps for both simulated discharge (37% for all time-steps evaluation and 34% for evaluation 

on high/low time-steps) and TP loads (30% and 50% respectively). All other time step 

classifications contribute roughly the same to model failure with the rising limb and high 
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flow time-steps accounting for approximately 10-15% of failures for both discharge and TP. 

For discharge, the low flow time-steps account for around 10% of failures. However, for TP 

loads they provide a much smaller contribution at around 3-4% indicating that model 

performance at these time-steps may be less of a constraint on model performance for TP. 

Overall it is shown that despite using two different model evaluation measures to accept 

behavioural models, the falling limb time-steps are consistently shown to be a constraint on 

model performance in this SWAT application to Newby Beck.  

3.4 Model validation. 

     The 1016/1001 behavioral simulations (all time steps evaluation/high and low flows 

evaluation) were then used to predict the discharge and P loads for a period not used in 

calibration (winter of the 2013-2014 hydrological year due to data availability) in order to 

validate the model performance (Figures 9 and 10). For discharge (Figures 9a and 10a), the 

picture was somewhat similar during the validation period where the model tended to pick 

out the timings of the peaks and recession periods well. Overall, under-prediction of the 

observed discharge peaks was seen throughout the validation period being most evident 

during mid-December 2013 and early January 2014. As when calibrating the model, the 

under prediction of peaks was more pronounced when the models were evaluated across all 

time-steps (Figure 9a). Both the timing and magnitude of the peaks was picked up much 

better when constraining the models on the high and low flow periods (Figure 10a). As in 

calibrating the model, the low flow periods were typically over-predicted by the model (on 

both evaluation measures) with this being most evident towards the end of January 2014. 

Figure 8: Breakdown of classification of time-steps resulting in model failure for the 

1016 simulations constrained on all time-steps (upper panel) and the 1001 simulations 

constrained on the high and low flow periods only (lower panel). The bars show the 

median % contribution to failing time-steps and the error bars show the 2.5/97.5
th

 

percentiles from the Generalised likelihood uncertainty estimation (GLUE) weighted 

distributions.  
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For TP loads, the picture is the same as during calibration with the model under-predicting all 

peaks, particularly when they were constrained using all time-steps where the model failed to 

capture the magnitude of any peak (Figures 9b and 10b). When constrained on the high and 

low flows time-steps only, the model reproduced the magnitudes and timings of the majority 

of the peak loads, however there are still cases where the model under predicts a peak by up 

to 75% (15
th
 December 2013). Further to this the uncertainty bounds on the model predictions 

are much wider during the recession limbs of the TP time series, and shows over-prediction 

of the observations during this period. 

 

Figure 9: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus (TP) loads (b) for Newby 

Beck outlet during the validation period (winter of the 2013-2014 Hydrological year) 

using the 1016 behavioral simulations accepted on both discharge and total phosphorus 

load criteria when evaluating constrained across all time-steps. The black line in each 

plot shows the observed discharge (a) and TP loads (b), respectively. The dashed lines 

show the uncertainty limits on the calibration data.   

 

4 Discussion 

This work, presents for the first time, a ‘limits of acceptability’ GLUE uncertainty analysis of 

the widely used SWAT model, using continuous high frequency water quality measurements. 

It was shown that when initial limits of acceptability (based upon the uncertainty in the outlet 

data for the calibration period), are accounted for and given the assumptions detailed, none of 

the 5,000,000 simulations provided suitable predictability of the dynamics of the catchment 

(i.e. none of them were classed as behavioral). 

 

Figure 10: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus (TP) loads (b) for Newby 

Beck outlet during the validation period (winter of the 2013-2014 Hydrological year) 

using the 1001 behavioral simulations accepted on both discharge and total phosphorus 

load criteria when evaluating constrained across high and low flow time-steps only. The 

black line in each plot shows the observed discharge (a) and TP loads (b), respectively. 
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    Therefore, in order to obtain behavioral simulations to investigate the uncertainty in the 

SWAT model predictions, a subset of samples was obtained on which to perform further 

diagnostics, with this subset chosen using two different criteria. The first was to find the 

minimum level of relaxation across all model time-steps in the calibration period required to 

consider the models acceptable. In this case relaxation of the limits to ±6.72 gave a subset of 

1016 acceptable models. In the second case, we only required the models to fall within the 

relaxed limits during periods of high and low flow (here defined as the top and bottom 5% of 

discharges based on the flow duration curve). For these criteria, the limits had to be relaxed 

(over the high and low flow periods only) ±5.30 to give a subset of 1001 accepted models. 

This was across both discharge and TP loads.  

     Using these two different evaluation measures produced two distinctly different time 

series when the models were compared with observations (Figures 5 and 7) and during the 

validation period (Figures 9 and 10). When the models were constrained to fit within the 

limits across all time-steps the parameter sets that are considered acceptable consistently 

under predict the peaks in both discharge and TP loads, particularly during the validation 

period. In contrast, when we only constrain the model on the low and high flow periods, the 

simulations from the accepted parameter sets produce a much better representation of the 

catchment dynamics, particularly in the magnitudes of the TP load peaks. However, 

constraining the model in this way accepts simulations that have poor performance during the 

rising limb and recession periods where the normalized scores approach 15 in the case of 

discharge and 30 in the case of TP loads. This contrast between the chosen metric to evaluate 

the model is the result of several different factors and depends on the characteristics and 

dynamics of the Newby Beck catchment. Due to its flashy nature and low baseflow index 

(Ockenden et al., 2016; Outram et al., 2014), Newby Beck is dominated by sub-daily 

processes which may lead to timing errors in the simulated hydrograph from SWAT due to 
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the use of the daily time-step of the model. Therefore, when all time-steps are included in the 

evaluation metric, there is a high chance of the model simulations producing high normalized 

scores. However, as reported recently by (Coxon et al., 2014), constraining the model using 

time-step measures such as these can be a very critical test of the model, particularly due to 

the strong influence of observational uncertainty on such metrics (see Section 3.1). This is 

shown in Figure 3 where all of the accepted 1016 simulations (when using the all-time-step 

metric) under-predicted the peaks by a large amount for both discharge and TP loads, despite 

being considered acceptable within the relaxed limits of 6.72. This could be because the 

normalized scores are based upon the relative uncertainty intervals around the observations, 

which allows a larger absolute deviation from the observed value on the peaks. This is a case 

of accepting a model that is not a good representation of the processes but which fits within 

the errors in the calibration data (Beven, 2012; Beven and Smith, 2015). It should also be 

noted that the normalized scores are also based on estimates of the 95% limits around each 

observation (see 2.4) and therefore the potential range of uncertainty could be larger. In order 

to test the effect of this on model evaluation, we performed the same analysis of relaxing the 

scores until 1057 simulations were accepted. However, in this instance we only required the 

model to fit the limits at 95% of the time-steps. Figure 11 shows the time series of discharge 

and TP compared to the observations and shows that when accounting for the model only 

fitting the time-steps 95% of the time, the model still produces simulations where the peaks 

are underestimated, such as in early January 2013. Hence, there is the still the risk of poor 

models being accepted due to uncertainty in the calibration data.  

Figure 11: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby 

Beck outlet (part of the calibration period) based on normalized scores on both 

discharge and total phosphorus (TP) load evaluation measures when criteria set over 

95% of time steps (1057 simulations). The black line in each plot shows the observed 

discharge (a) and TP loads (b), respectively. 
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     When the lesser constraint of just high and low flows (often the periods of most nutrient 

transport in flashy catchments (Haygarth et al., 2005; Ockenden et al., 2016; Perks et al., 

2015)) was applied simulations that match the peaks and low flow periods with a greater 

degree of accuracy were produced. This also required less relaxation of the limits of 

acceptability (± 5.30). This is in agreement with the recent work of (Coxon et al., 2014) 

showing that the performance of behavioural models accepted using different diagnostics can 

be strongly linked to the dominant processes occurring in the catchment. In this case, we have 

shown that constraining the models on high and low flow periods only in a flashy catchment 

produces a model ensemble that captures the peak discharges and TP loads better. However, 

the utilization of this diagnostic further highlights the time-steps resulting in poor model 

performance, where time-steps not used in the evaluation (e.g. the rising and falling time-

steps) return much higher normalized scores (in excess of 30 as shown in Figure 5) than when 

the metric across all time-steps is used.    

     However, we have shown here that, despite the choice of evaluation metric, a consistent 

picture emerges about which class of time-step is contributing most to model failures (Figure 

8). Overall, the falling limb/recession time-steps were consistently a constraint on model 

performance contributing between 30-50% of failing time-steps for discharge and TP time-

steps across both evaluation measures. This therefore indicates potential errors in the model 

structure of SWAT of the representation of sub-surface processes, an area of the model that 

has been shown to perform poorly in the past (Guse et al., 2014). 

     For a large number of the parameters, it is difficult to identify any sensitivity in fitting the 

observations, and a large amount of equifinality is evident (Figures 7 and 8). This is 

particularly the case for the SOL_ORGP (soil organic P) and SOL_LABP (soil labile P) 

parameters, which show no clear sensitivity at all using the likelihood measure based on the 

limits of acceptability. Both of these parameters have been shown to play an important role in 
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the amount of P in the water course and are often very difficult to measure in any detail at the 

catchment scale (Schoumans et al., 2009). It is accepted that given a 39 dimension parameter 

space, 5,000,000 SWAT runs provides only a small sample of the model parameter space, 

albeit many more than any previously published SWAT calibration exercise, and that such a 

small sample can contribute to the uncertainty. Thus, there is the possibility of missing 

potentially behavioral models during the sampling process. They are clearly, however, 

sparsely distributed even with the relaxed limits of acceptability. Further adding to model 

parameter uncertainty is the GW_DELAY parameter, which exhibits strong identifiability, 

but showing the identification behavioural models at both extremes of the parameter range. 

Therefore in this application of SWAT both high and low groundwater delay times produce 

equivalent model performance in terms of the relaxed limits of acceptability. This infers that 

there could be compensation processes occurring in the sub-surface module of the model or 

could highlight additional issues in the model structural representation of groundwater 

attenuation in the catchment.  

      The limits of acceptability approach provides advantages over more traditional evaluation 

metrics such as NSE and root mean square error (RMSE). These are global measures, which 

tend to focus on the average error from the data over the calibration period, rather than focus 

on the individual time-steps that are causing the model to fail. The limits approach utilizes the 

high frequency data to provide a more detailed evaluation of the model and allows the 

identification of critical time-steps that are causing poor model performance. Further to this, 

the limits approach goes someway to accounting for uncertainty in the data/observations used 

to calibrate the model.   

     However, it is impossible to make this method completely objective due to the difficulty 

in accounting for error in the model inputs. In past applications of the GLUE limits of 

acceptability approach (Liu et al., 2009) the relaxation of the limits was justified to account 



  

 

30 

 

for uncertainty in the model input data. However, in this case the model user must examine 

the degree of relaxation in the scores and utilize the available knowledge of the inputs to see 

if the level of relaxation is acceptable.  Given the epistemic nature of the input uncertainties, 

it is difficult to truly assess the effect of input error and its representation needs to be 

independent of the model structure (e.g. Beven, 2006). One method is to employ the use of an 

statistical error model to account for input error in the model (e.g. Krueger et al. (2010), go 

some way to accounting for this) but it is difficult to create a realistic error model, even for 

rainfall inputs.  It would also be even more computationally expensive and thus was not 

implemented in the present work.   

     The effects of both input error and model structural errors should be seen in the deviations 

outside the normalised limits.  The results show that the limits have to be relaxed by a very 

large amount (up to a factor of 6.72) to gain a set of behavioral simulations that allows the 

sensitivity of the parameter sets to be explored. An examination of the potential input errors 

to the catchment system has been taken in this study to determine whether a relaxation by 

factors of up to seven are acceptable. In the Newby Beck catchment, there are four rain 

gauges sited in a relatively small area (12.5 km
2
 – Figure 1). It is still possible that some 

rainfall in the catchment could be missed in the model input, particularly during summer 

convective storms, leading to commensurability issues with the rainfall input (Beven and 

Smith, 2015; Beven et al., 2011). Different rainfall input realizations and associated errors 

have previously been shown to impact model performance (Blazkova and Beven, 2009). 

However, due to the relatively good coverage by the rain gauges in the Newby Beck 

catchment, errors in the rainfall input are likely to be small.  It can therefore be concluded 

that it is model structural error, rather than input error, that is leading to the high relaxation of 

the limits required to define model realisations of the hydrograph as acceptable. 
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With respect to P, there is a much larger uncertainty in the overall inputs into the catchment, 

particularly to the exact amounts of fertilizer spread on the land and the amount of dung 

deposited from grazing. Lacking more detailed information, the inputs used in this 

application of SWAT are based upon Defra recommendations (Defra, 2013) and local 

knowledge of the catchment. Furthermore, the lumped nature of the SWAT model requires 

average P inputs for each HRU, which can add further uncertainty in the amount of nutrients 

added to the system. This can therefore lead to the locations of the inputs being smoothed out 

leading to commensurability issues. However, the average amount of P added to the 

catchment per year during the run (2.3 kg ha
-1

) is much smaller than the levels of P in the soil 

stores during the course of the run (approximately 15000 kg ha
-1

). Thus, errors in P inputs 

and timing are unlikely to have an effect on the levels of P being transported to the stream 

compared to uncertainty and errors in the parameters and model structures, which govern the 

mobilisation and transport of P in the soil. Previous work on similar small-sized catchments 

also suggests that hydrological and biochemical processes have a much larger control on the 

temporal variations in stream P in the catchment, rather than the timings and magnitudes of 

the agricultural inputs (Dupas et al., 2015; Haygarth et al., 2012). In this work, we explicitly 

account for the uncertainty in soil P by varying the SOL_ORGP and SOL_LABP (organic 

and labile P soil stores) as part of the GLUE analysis with both of these parameters showing 

high equifinality. It has also been shown in previous analysis on Newby Beck (Ockenden et 

al., 2016), that the observed TP loads during storm events in the catchment are highly 

correlated with peaks in rainfall. These storm events account for approximately 83% of the 

annual TP load indicating that rainfall plays a strong role in controlling the transport of TP 

into the stream network. As discussed above, the errors in rainfall are likely to be relatively 

low in this catchment, and given its importance as a driver of TP transport along with the 

small contribution of P inputs to overall soil P, we can conclude that relaxing the limits by a 
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factor of 6.72 is not acceptable in this application of SWAT to Newby Beck. We can 

therefore conclude that, as with discharge, model structural error is the likely cause of this 

requirement to relax the constraints by such a substantial amount.  

     The ability of the model to adequately simulate the observed TP loads is also further 

compounded by the poor performance of SWAT in terms of discharge evaluation, given that 

discharge is part of the TP load calculation. Hence, as model structural error has been shown 

to be such a large constraint in the accurate prediction of discharge and thus TP loads, it is 

unlikely that improvements in input data will greatly improve model predictions. In addition 

to this, even in a small experimental catchment, gaining sufficient improvement in model 

input data would require significant expense. In the case of TP, this would require detailed 

farmer logs in timings and location of fertilizer applications, detailed monitoring of surface 

and subsurface storage and availability of TP in the catchment, along with detailed field scale 

budgets of the nutrients in the soils. 

     This prompts an additional question, if we are required to relax the limits, which are 

primarily due to structural error in the model, by a factor of 6.72, should we go to the expense 

of collecting the additional input data required by such a complex model structure? It has 

been shown in previous work (Dean et al., 2009; Shen et al., 2012a) that insufficient input 

data are a constraint on even the best of models, therefore clearly improvement is required on 

both sides. The advantage of using the limits of acceptability approach is that we can use the 

results of the model evaluation to target which areas of the model structure require 

improvement and infer which areas are best to target our efforts for additional data collection, 

particularly in situations where funds for such efforts are limited.  

 

5 Conclusions 
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     This study has presented the first ‘limits of acceptability’ assessment of the SWAT model 

using continuous high frequency discharge and water quality monitoring data. We highlight 

that having the availability of high frequency data coupled with the GLUE ‘limits of 

acceptability’ approach; the model performance can be assessed taking into account the 

uncertainty on the calibration data at each time-step. This provides greater insights into why 

the model is failing beyond the more traditional global measures of model evaluation such as 

NSE and RMSE.     

     In the application of SWAT to the Newby Beck headwater catchment in the UK, it is 

shown that the limits of acceptability based on output observational uncertainties have to be 

relaxed by a substantial amount (by factors of between 5.3 and 6.72 on a normalized scale 

depending on the evaluation criteria used) in order to produce a set of behavioral simulations 

(1001 and 1016 respectively out of 5,000,000 realizations) on which to perform model 

diagnostics. In this case, despite the evaluation metric used, the model is shown to 

consistently perform poorly during periods of recession in both the discharge and TP time 

series, with uncertainty in the representation of subsurface flow pathways identified as a 

potential cause for this poor performance. During the validation period the model was shown 

to capture the timings of peaks in the river TP load, however, it was shown to often predict 

the magnitude of these peaks poorly. This work raises an interesting point- how much 

relaxation is allowable in the limits of acceptability before we consider the model as not 

providing useful predictions of the processes occurring in the catchment? On the one hand, 

we have learnt from the model to identify areas where we need to focus future model 

development and data collection efforts in river catchments. On the other, we have shown 

that in this particular case, SWAT is not fit for purpose to be used as a management tool due 

to the large uncertainty bounds on predictions, particularly during the validation period. This 

conclusion agrees with previous applications of SWAT to other catchments of similar 
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catchment areas and similar geoclimatic circumstances (Hoang et al., 2017; Moges et al., 

2017; Schneiderman et al., 2007). Therefore, despite being used in numerous catchments 

worldwide (often with less rigorous evaluation), SWAT may not be fit for purpose as a 

general management tool, particularly in flashy catchments being dominated by overland 

flow where the model structure may be inadequate to accurately capture the major catchment 

processes dominating P transfer. 

     However, there is still a need to advise policy makers on how changes in the environment 

are likely to affect hydrology and water quality in the future and what mitigation measures to 

take, if any. A number of potential options are available, such as precautionary methods 

suggested by Beven (2011), or the use of fuzzy modelling methods (Page et al., 2012; Zhang 

et al., 2013) or finding another process based model to use – though it is highly likely that 

another model will suffer the same uncertainty issues as shown here with SWAT. A final 

option is to shift towards more simple P transfer model (E.g. Dupas et al. (2016)) which have 

been shown to capture P losses well with minimum input data. However as highlighted by 

Dupas et al. (2016), such models still have uncertainties associated with them and in some 

cases still require substantial relaxation of the ‘limits of acceptability’. 

     We acknowledge that process-based models may be potentially useful catchment 

management tools. They are often used to quantify the effects of changes in catchment 

conditions (e.g. climate change) on the behavior of nutrients in catchments (Crossman et al., 

2014; Wang and Sun, 2016). They are primarily used because they provide a numerical 

representation of conceptual processes that in theory represent how these processes adapt to 

changing environmental conditions under different scenarios. However, the results presented 

here stress the importance of having the best available input data along with high frequency 

data from continuous monitoring systems for rigorous model evaluation, as highlighted in 

previous studies (Benettin et al., 2015; Dupas et al., 2016; Halliday et al., 2015; Ockenden et 
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al., 2017). High frequency data allows us to set more robust ‘limits of acceptability’, 

particularly in catchments with a flashy response where infrequent grab samples may fail to 

capture key processes/events and may not provide a stringent enough test of the model 

structure/processes. The results also imply that more needs to be done to improve the ability 

of the model to simulate the dynamics of key catchment processes with parameters that are 

more identifiable in practical applications, or more easily estimated in predicting future 

conditions. Finally, our results also indicate the possibility that even with the best 

representation of the key processes in the model structure; we still may have a long way to go 

to have sufficient input data to adequately drive such complex model structures.  

The study has not resolved the issue of how far the limits of acceptability should be relaxed 

to provide a set of models considered useful for predicting outcomes. That is a question for 

individual users to consider for particular types of applications, i.e. can we be objective about 

the effects of input error on model performance, particularly for predicting nutrient 

responses? This study suggests that SWAT may not be fit-for-purpose in this particular 

application, however, confirmation of its general applicability, or not, requires critical testing 

of the method on multiple models and multiple catchment datasets in ways that allow for 

uncertainty and potential equifinality of model representations. 
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Figure Captions 

Figure 1: Summary of spatial data in the Newby Beck catchment. Panel a) shows the 

catchment topography, panel b) shows the locations of the monitoring station (discharge 

and total phosphorus (TP)), weather station and rain gauges, panel c) shows the main 

soil classes in the catchment and panel d) shows the broad land use classifications. 

Figure 2: Generalised likelihood uncertainty estimation (GLUE) likelihood 

distributions, based upon the evaluation of models using criteria set for all time steps 

(normalized scores of ± 6.72), of Qsim (simulated discharge), normalised score for Q 

(discharge), TP loadsim (simulated total phosphorus) and normalised scores for TP, 

respectively, against observations (panels A-D). The plots are repeated for the low flow 

periods (panels E-H), rising time-steps (panels I-L), falling (recession) time-steps (panels 

M-P) and high flow periods (panels Q-T). The areas between the distribution percentiles 

max/min, 5
th

/95
th

 and 25
th

/75
th

 are shown in grey shades of increasing intensity. The 

medians of the distribution are shown by black dots. 1:1 lines and normalised scores of 

0 lines have been added for orientation 

Figure 3: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby 

Beck outlet (part of the calibration period) based on normalized scores on both 

discharge and total phosphorus (TP) load evaluation measures when criteria 

(normalized scores of ± 6.72) set over all model time-steps (1016 simulations).  The black 

line in each plot shows the observed discharge (a) and TP loads (b), respectively. The 

dashed lines show the uncertainty limits on the calibration data. 
 

Figure 4: Generalised Likelihood Uncertainty Estimation (GLUE) likelihood 

distributions of, based upon the evaluation of models using criteria set for high and low 

flow periods only (normalized scores of ± 5.30), Qsim (simulated discharge), normalised 

score for Q (discharge), TP loadsim (simulated total phosphorus) and normalised scores 

for TP, respectively, against observations (panels A-D). The plots are repeated for the 

low flow periods (panels E-H), rising time-steps (panels I-L), falling (recession) time-

steps (panels M-P) and high flow periods (panels Q-T). The areas between the 

distribution percentiles max/min, 5
th

/95
th

 and 25
th

/75
th

 are shown in grey shades of 

increasing intensity. The medians of the distribution are shown by black dots. 1:1 lines 

and normalised scores of 0 lines have been added for orientation. 

Figure 5: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby 

Beck outlet (part of the calibration period) based on normalized scores on both 

discharge and total phosphorus (TP) load evaluation measures when criteria 

(normalized scores of ± 5.30) set over high and low flow time-steps only (1001 

simulations).  The black line in each plot shows the observed discharge (a) and TP loads 

(b), respectively. The dashed lines show the uncertainty limits on the calibration data. 
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Figure 6: Dotty plots for 39 of the parameters varied in the Monte-Carlo runs. 

Parameter names and definitions are shown in Table 1. These are based on the 1016 

behavioural simulations evaluated across all time-steps (normalized scores of ± 6.72).  
 

Figure 7: Dotty plots for 39 of the parameters varied in the Monte-Carlo runs. 

Parameter names and definitions are shown in Table 1. These are based on the 1001 

behavioural simulations evaluated across the high and low flow time-steps only 

(normalized scores of ± 5.30). 

Figure 8: Breakdown of classification of time-steps resulting in model failure for the 

1016 simulations constrained on all time-steps (upper panel) and the 1001 simulations 

constrained on the high and low flow periods only (lower panel). The bars show the 

median % contribution to failing time-steps and the error bars show the 2.5/97.5
th

 

percentiles from the Generalised Likelihood Uncertainty Estimation (GLUE) weighted 

distributions. 

Figure 9: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus (TP) loads (b) for Newby 

Beck outlet during the validation period (winter of the 2013-2014 Hydrological year) 

using the 1016 behavioural simulations accepted on both discharge and total 

phosphorus load criteria when evaluating constrained across all time-steps. The black 

line in each plot shows the observed discharge (a) and TP loads (b), respectively. The 

dashed lines show the uncertainty limits on the calibration data. 

Figure 10: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus (TP) loads (b) for Newby 

Beck outlet during the validation period (winter of the 2013-2014 Hydrological year) 

using the 1001 behavioural simulations accepted on both discharge and total 

phosphorus load criteria when evaluating constrained across high and low flow time-

steps only. The black line in each plot shows the observed discharge (a) and TP loads 

(b), respectively. 

Figure 11: Generalized Likelihood Uncertainty Estimation (GLUE) weighted prediction 

bounds (green shading) for discharge (a) and total phosphorus loads (b) for Newby 

Beck outlet (part of the calibration period) based on normalized scores on both 

discharge and total phosphorus (TP) load evaluation measures when criteria set over 

95% of time steps (1057 simulations). The black line in each plot shows the observed 

discharge (a) and TP loads (b), respectively. 

  



  

 

62 

 

Highlights 

This limits of acceptability approach is applied for the first time to the SWAT model 

 

Identifies exact time steps of poor performance during calibration 

 

Accounts for evaluation data uncertainty in calibration 

 

It may be difficult to obtain sufficient data to drive complex models with confidence 

 


