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Abstract

Inferring mathematical models of sensory processing systems directly from input-output

observations, while making the fewest assumptions about the model equations and the

type of measurements available, is still a major issue in computational neuroscience.

This paper introduces two new approaches for identifying sensory circuit models con-

sisting of linear and nonlinear filters in series with spiking neuron models, based only on



the sampled analogue input to the filter and the recorded spike train output of the spik-

ing neuron. For an ideal integrate-and-fire neuron model the first algorithm can identify

the spiking neuron parameters as well as the structure and parameters of an arbitrary

nonlinear filter connected to it. The second algorithm can identify the parameters of the

more general, leaky integrate-and-fire spiking neuron model as well as the parameters

of an arbitrary linear filter connected to it. Numerical studies involving simulated and

real experimental recordings are used to demonstrate the applicability and to evaluate

the performance of the proposed algorithms.

1 Introduction

System identification is widely used to develop quantitative models of sensory neuro-

physiology (Wu et al., 2006). The neural behaviour can be reproduced accurately using

a wide range of models with various levels of complexity (Koch & Segev, 1998; Gab-

biani & Cox, 2010). The sensory processing circuits, consisting of receptive fields and

spiking neurons, have often been represented as cascade models, which aim to capture

the key processing steps from the measured data (Herz et al., 2006). These models

represent the receptive field as a filter that is linear (Paninski, 2004; Paninski et al.,

2004; Lazar & Slutskiy, 2014) or nonlinear, satisfying the fading memory requirement

(Lazar & Slutskiy, 2015; Song et al., 2016). The spiking neuron in a cascade model was

represented by a threshold device with a feedback after-potential (Song et al., 2016), a

static nonlinearity in series with a Poisson spike generator (Simoncelli et al., 2004),

an integrate-and-fire (IF) neuron (Lazar & Slutskiy, 2015; Paninski et al., 2004), or a

detailed Hodgkin-Huxley (HH) model (Lazar & Slutskiy, 2014). The linear-nonlinear-
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Poisson (LNP) cascade model was extended to the generalized linear model (GLM),

which includes additionally a feedback filter (Paninski, 2004). Other cascade model

architectures can be found in (Hunter & Korenberg, 1986; Herz et al., 2006; Keat et al.,

2001).

The integrate-and-fire (IF) neuron is one of the most common models of the spik-

ing neuron (Lapicque, 1907; Tuckwell, 1988). The IF model has been shown to be a

good approximation for biophysically detailed models like the Hodgkin-Huxley neuron

(Kistler et al., 1997; Lazar & Slutskiy, 2010), as well as a good predictor for elec-

trophysiological recordings (Clopath et al., 2007). There are two main classes of IF

models: the ideal IF (IIF) and the more general leaky IF (LIF). Several variations of

this model are presented in (Burkitt, 2006).

A popular identification methodology for sensory circuits estimates the LNP as well

as the GLM model by maximizing a likelihood function depending on the model param-

eters (Simoncelli et al., 2004; Paninski, 2004; Pillow, 2007). This method was extended

to cascade models comprising a linear filter in series with a variation of the LIF neuron

with a feedback filter (Paninski et al., 2004). The maximum likelihood estimation of this

model was performed successfully using extracellularly recorded spike train responses

of the primate retinal ganglion cells to light stimuli (Pillow et al., 2005). Here, the

threshold parameter δ of the LIF neuron is considered to be known a priori. Moreover,

there is no detection routine performed to determine the structure of the filter, which is

assumed to be known. A review on various identification methods for IF neurons can

be found in (Burkitt, 2006).

Lazar & Tóth (2003) have proven that the IF neuron is a type of time encoding
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machine (TEM) that converts the amplitude of an input signal into a sequence of spike

times. The identification of neural circuits comprising filters in series with spiking neu-

rons was formulated as an input reconstruction problem (Lazar & Slutskiy, 2015). More

specifically, a method to identify circuits comprising of a linear filter in series with an

IIF neuron (LF-IIF) was proposed by Lazar & Slutskiy (2010). By making additional

assumptions, the identification approach has been extended to circuits where the IIF

neuron is replaced by the LIF neuron (Lazar & Slutskiy, 2010) as well as the Hodgkin-

Huxley (HH) model (Lazar & Slutskiy, 2014). In the first case, it is assumed that the

LIF neuron parameters are known. In the second case, input-output measurements of

the HH neuron are assumed to be available. The identification framework was extended

further to circuits consisting of a nonlinear filter in series with an IIF neuron (NF-IIF),

under the assumption that the filter admits a Volterra series representation (Lazar &

Slutskiy, 2015). Another approach estimates multiple-input multiple-output (MIMO)

generalized Volterra models, consisting of Volterra models in series with threshold de-

vices with feedback after-potentials (Song et al., 2016). To solve the problem caused by

the large number of coefficients, a group regularized estimation method is used to iden-

tify the model. This model was shown to predict accurately the spike trains from the

hippocampal region CA1 based on spike train inputs recorded from CA3 during multi-

ple memory events, making it suitable for implementation on a hippocampal memory

prosthesis (Song et al., 2016).

The identification methods summarized above can accommodate a wide range of

filters and spiking neurons. However, the assumptions made, such as the availability of

input-output data from the spiking neuron or the a priori knowledge of spiking neuron
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parameters, limit to some extent their practical applicability. Furthermore, if the filter

is assumed to be nonlinear, which is often the case in practice, the direct identification

of Volterra kernels has well known practical limitations (Chen & Billings, 1989).

This paper introduces two approaches for identifying a circuit comprising a filter

in series with a spiking neuron model, based only on a relatively small number of

input-output measurements, assuming that no input measurements of the neuron are

available, and that the neuron parameters and the structure of the filter are unknown a

priori. Therefore, the new approaches eliminate a number of assumptions of the previ-

ous methods.

Both approaches involve the estimation of the spiking neuron parameters first fol-

lowed by the identification of the linear or nonlinear filter. A new technique is in-

troduced that estimates the spiking neuron parameters using only the responses of the

circuit to specific stimulus sequences. In both cases, the convergence to the true neuron

parameters is guaranteed by proposed theoretical results, and practical algorithms are

given to estimate the parameters in a realistic noisy environment.

The first approach addresses the problem of identifying a NF-IIF circuit. The pa-

rameters of the spiking neuron are estimated first, which allows reconstructing the non-

linear filter output (the IIF input) from the NF-IIF circuit output. Subsequently, the

NARMAX methodology is applied to perform structure detection and parameter esti-

mation of the nonlinear filter based on the input and the reconstructed filter output. The

NARMAX methodology is arguably the most complete and advanced nonlinear system

identification methodology, covering all aspects from stimulus design to model selec-

tion, parameter estimation and model validation (Billings & Chen, 1989; Billings et al.,
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1988, 1989; Billings, 2013). This methodology has been successfully applied to char-

acterize, directly or indirectly, neural processing circuits (Coca et al., 2000b; Friederich

et al., 2016; Wei et al., 2009).

The second approach addresses the problem of identifying a LF-LIF circuit. A new

algorithm is developed for estimating the LIF model parameters and, subsequently, the

NARMAX methodology is used to infer the structure and estimate the parameters of

the filter.

This paper is structured as follows. Section 2 introduces the proposed NF-IIF cir-

cuit model, and presents new theoretical results that enable redefining the identification

problem for a circuit with fewer parameters, in two steps: the identification of the spik-

ing neuron and the identification of the nonlinear filter. Section 3 introduces a new

identification method for LF-LIF circuits. The conclusions are in Section 4.

2 A new method for identifying NF-IIF circuits from spike time sequences

The proposed circuit consists of a nonlinear filter connected in series with an IIF neuron,

as depicted in Figure 1.

Figure 1: The structure of the circuit proposed for identification.
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The nonlinear filter is described by the following equations





dx
dt
(t) = h1 (x(t), u(t)) ,

v(t) = h2 (x(t), u(t)) ,

(1)

where h1 : R
n × R → R

n and h2 : R
n × R → R are nonlinear functions, u(t) and v(t)

are the filter input and output, respectively, and x : R → R
n is the state variable vector.

Let x0 be the initial condition of system (1).

The system (1) is assumed to have an input-output representation

dnv

dtn
= h

(
v, v′, . . . , v(n−1), u, u′, . . . , u(nu−1)

)
,

where 1 ≤ nu ≤ n, i.e., the system is casual, and h : Rn+nu → R.

Let v0(t) be the response of the nonlinear filter to a step input u0(t) = A · 1[0,∞[(t),

∀t ∈ R, where 1[0,∞[(t) is the characteristic function of interval [0,∞[. The filter is

assumed to be bounded-input bounded-output (BIBO)-stable and that, ∀A ∈ R, v0(t)

converges to a steady state value v0∞, i.e., ∃ limt→∞ v0(t) = v0∞. In other words, this

assumes that the system is globally asymptotically stable, which is a reasonable as-

sumption for the model of a sensory system (Smith, 2008). The filter output is assumed

to be corrupted by Gaussian white noise w(t) with zero mean and standard deviation

σw.

The IIF neuron with capacitance C, threshold δ and bias b, denoted IIF{C,δ,b}, is

described by the t-transform equation (Lazar & Pnevmatikakis, 2008)

∫ tk+1

tk

v(τ)dτ = Cδ − b(tk+1 − tk), (2)

for ∀k ∈ Z, where v(t) is the neuron input.
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The IIF input v(t) can be perfectly reconstructed (Lazar & Pnevmatikakis, 2011) if

v(t) > −b, ∀t ∈ R, v ∈ PWΩ and b
Cδ

> Ω
π

, where PWΩ is the Paley-Wiener space of

bandwidth Ω > 0

PWΩ =
{
v ∈ L2 (R) : supp (Fv) ⊆ [−Ω,Ω]

}
,

where Fv(jω) is the Fourier transform of v(t) and supp(Fv) denotes the support of

Fv(jω). For a function that is not bandlimited, or whose bandwidth is unknown, there

are alternative reconstruction methods available (Lazar & Pnevmatikakis, 2010; Lazar

et al., 2010).

In the following it is assumed that, for any u(t), the output of the nonlinear filter (1)

satisfies v ∈ PWΩ, such that Ω < πb
Cδ

.

The observed spike times sequence generated by the IIF neuron is assumed to be

corrupted by uniform noise {ξk}k∈Z with zero mean and amplitude Aξ, which models

the error associated with the measurement of the spike times {tk}k∈Z.

2.1 An identification method based on an equivalent NF-IIF circuit

To simplify the identification problem, an equivalent model of the NF-IIF circuit, which

involves a single tunable parameter, is derived first. This strategy was used in (Lazar &

Slutskiy, 2010) for identifying the spiking neuron component of a LF-IIF circuit. Here,

this approach is extended to NF-IIF circuits.

Two NF-IIF circuits are said to be input-output equivalent if, given input function

u(t), they generate the same output spike times {tk}k∈Z. The equivalence relation is a

consequence of the following lemma.

Lemma 1. Let {tk}k∈Z be the sequence of spike times generated by neuron IIF{C,δ,b}
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given input v(t). Let r be an arbitrary number satisfying r > −b. Then the following

holds true
∫ tk+1

tk

y(τ)dτ = δb − (tk+1 − tk), ∀k ∈ Z,

where δb =
Cδ
b+r

and y(t) = v(t)−r

b+r
, ∀t ∈ R.

Proof. The t-transform of IIF{C,δ,b} satisfies (2)

∫ tk+1

tk

v(τ)dτ = Cδ − b(tk+1 − tk) = Cδ − (b+ r)(tk+1 − tk) + r(tk+1 − tk)

⇔

∫ tk+1

tk

(v(τ)− r) dτ = Cδ − (b+ r)(tk+1 − tk). (3)

The required result follows after dividing both sides of (3) by (b+ r).

In essence, the previous result demonstrates that the neuron IIF{C,δ,b} with input

v(t) generates the same spike times {tk}k∈Z as the neuron IIF{1,δb,1} with input y(t).

In practice, r = r(u) is the steady state output of the nonlinear filter in response to

a step input. As a consequence, it follows that the NF-IIF circuits depicted in Figure 1

and Figure 2 are input-output equivalent.

A method to identify the circuit in Figure 2, which involves first the identification of

the spiking neuron followed by the identification of the nonlinear filter, is summarized

below.

Step 1. Spiking neuron parameter estimation

For a given filter input u0(t) = A · 1[0,∞[(t), ∀t ∈ R, it is assumed that the output of

the NF-IIF circuit is {t0k}k∈Z, which corresponds to the nonlinear filter output v0(t).

It is assumed that the filter input amplitude A is selected such that v0∞ = limt→∞ v0(t) >

−b. In essence, this means that the IIF neuron generates spikes in response to a step
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Figure 2: Input-output equivalent NF-IIF circuit.

input of amplitude v0∞. According to Lemma 1 for v(t) = v0(t) and r = v0∞, in the

absence of noise, it follows that limk→∞

∫ tk+1

tk
y(τ)dτ = 0, and thus

lim
k→∞

∆t0k = δb,

where ∆t0k = t0k+1 − t0k, ∀k ∈ Z.

In a more realistic scenario assuming the presence of noise and that only a finite

number of noise corrupted spike times {t̃0k}
N
k=1 are available, an estimate of the param-

eter δb is given by

δ̂b =

∑N−1
k=k0

∆̃t0k
N − k0

, (4)

where k0 satisfies
∣∣∣∆̃t0k −

1
N−k

∑N−1
i=k ∆̃t0i

∣∣∣ < ∆t0err, ∀k = k0, . . . , N , and ∆t0err is a

parameter selected by the user.

Step 2. Estimation and structure detection of the nonlinear filter

Let {t̃k}k∈Z be the noisy output of the NF-IIF circuit given the input u(t). The output

y(t) of the transformed nonlinear filter in Figure 2 is reconstructed from the spike times

{t̃k}k∈Z, assuming that they are generated by the neuron IIF{1,δ̂b,1}
, where δ̂b is the
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estimated in the previous step. The reconstruction is performed with the algorithm

introduced by Lazar & Pnevmatikakis (2010). This function reconstructed with this

algorithm is consistent, i.e., it triggers the same spike times when encoded with the

same IIF neuron and, additionally, it minimizes a smoothness criterion.

In practice u(t) and ŷ(t) are sampled with period ε1, which is usually too small to

enable the correct identification of the nonlinear filter. For this reason, the functions

u(t) and ŷ(t) are then downsampled to period ε2 ≥ ε1 before performing system iden-

tification. The value of ε2 is selected using the procedure in (Billings & Aguirre, 1995),

which is known to produce improved results for identification problems.

Let u[k] and ŷ[k] be the input and output sequences of the nonlinear filter, sampled

with the period ε2. Given the input/output data, the NARMAX system identification

methodology is used to infer a NARMAX model (Leontaritis & Billings, 1981)

ŷ[k] = F (ŷ[k − 1], . . . , ŷ[k − ny],u[k − 1], . . . , u[k − nu],

e[k − 1], . . . , e[k − ne]) + e[k],

where e[k] represents the combined effects of measurement noise, modelling errors and

unmeasured disturbances, nu, ny and ne are constants denoting the maximum input,

output and noise lags, respectively, and F : Rny+nu+ne → R is a multivariate poly-

nomial of degree l. The structure and parameters are assumed to be unknown and are

determined using the Orthogonal Forward Regression (OFR) algorithm (Chen et al.,

1989). Specifically, given a set of candidate regressors consisting of all possible mono-

mials {pi}Mi=1, pi : R
ny+nu+ne → R, a greedy iterative selection algorithm is employed

which, at each step, selects the regressor that contributes the most to the reduction of

the error. The process terminates when the estimated model equation satisfies an infor-
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mation theoretic criterion (Akaike, 1969). The resulting model is given by

ŷ[k] =
m∑

s=1

θsps(X[k]) + e[k],

where

X[k] = [ŷ[k − 1], . . . , ŷ[k − ny],u[k − 1], . . . , u[k − nu],

e[k − 1], . . . , e[k − ne]].

To validate the model we compute the model predictions for a stimulus function

not used in identification and calculate the normalized mean squared error between the

output reconstructed with the method in (Lazar & Pnevmatikakis, 2010) and the model

predicted output (Billings, 2013)

NMSE =
‖ˆ̂y[k]− ŷ[k]‖2

ℓ2

‖¯̂y − ŷ[k]‖2
ℓ2

,

where ˆ̂y[k] is the model predicted output sequence, ¯̂y is the average of the sequence

ŷ[k], and ‖ · ‖ℓ2 denotes the norm in space ℓ2 .

To further evaluate the extend to which the identified nonlinear model captured the

dynamic characteristics of the system, we compute and compare the Generalized Fre-

quency Response Functions (GFRFs), of the original and identified model (Billings,

2013). The NARMAX model could also be mapped onto a continuous-time equivalent

model, for example using an approach based on the GFRFs calculated for the NAR-

MAX model (Swain et al., 1998), which would allow simulating the system at any

desired sampling period.
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2.2 Numerical study

The performance of the proposed identification method is demonstrated using four nu-

merical examples.

In the first example, the nonlinear filter that satisfies the fading memory requirement,

and thus can be represented as a Volterra series, is considered. The second example

demonstrates the more general applicability of our approach, by considering a case

where the spiking neuron does not satisfy the proposed assumptions. Specifically, the

circuit consists of a nonlinear filter in series with a HH neuron (NF-HH), where the

HH neuron is connected via multiplicative coupling (Lazar & Slutskiy, 2010). The

third example considers a NF-IIF circuit where the dynamics of the nonlinear filter

are chaotic and cannot be described by a Volterra series. cannot be described by a

Volterra system. The fourth example tests the proposed methodology using input-output

recordings from a spiking neuron located in the primary visual area of the mouse.

Example 1.

The nonlinear filter block of the NF-IIF circuit is described by the following equa-

tion

v′′(t) + αv′(t) + βv(t) + γ (v(t))2 = u(t), ∀t ∈ R, (5)

where α = 0.2, β = 1, γ = 0.1. The output of the nonlinear filter is corrupted by

additive Gaussian white noise w(t) with zero mean and standard deviation σw = 10−2.

The nonlinear system is connected in series with an IIF neuron with parameters b =

15, δ = 3 and C = 1. It is assumed that the output spike times sequence is noise free,

i.e., Aξ = 0.

13



Step 1. Spiking neuron parameter estimation

The NF-IIF was simulated numerically using a step input u0(t) = 1[0,∞[(t) with

duration T = 180 s, sampled with period ε1 = 10−2 s. The selected value of T is longer

than the transient regime of the nonlinear system response. The differential equation (5)

was solved numerically to compute the nonlinear system output v0(t) using the ode15s

routine in Matlab with fixed time step ε1.

The output spike train of the IIF neuron {t0k}
N
k=1, where N = 995, is computed as

t0k = (lk + 1)ε1 − ε1 ·
U((lk + 1)ε1)− kCδ

U((lk + 1)ε1)− U(lkε1)
, k = 1, . . . , N, (6)

where U(lkε1) =
∫ lkε1

0
(u0(τ) + b)dτ is computed using the trapezoid rule, ε1 is the

sampling time, and lk is the unique solution of

U(lkε1) ≤ kCδ < U((lk + 1)ε1).

The parameter δb was estimated for k0 = 125 satisfying
∣∣∣∆t0k −

1
N−k

∑N−1
i=k ∆t0i

∣∣∣ <

10−3, ∀k = k0, . . . , N.

The constant v0∞ is estimated as v0∞ = v0(180) = 0.916. Given δ, b, C, and v0∞, δb

was calculated as δb = Cδ
b+v0

∞

= 0.1885. In this particular case, the estimation error of δb

was eδb = δb − δ̂b = 5.92 · 10−7.

Step 2. Estimation and structure detection of the nonlinear filter

The data used to identify the nonlinear filter was generated by simulating the NF-IIF

circuit using an input function utr(t). The sampling period was ε1 = 10−2 s and the

duration T = 180 s. The samples were drawn from N(0, 1). The input is subsequently

low-pass filtered to Ω0 = 4 rad/s using a Butterworth filter with bandpass corner

14



frequency 2 rad/s, stopband corner frequency 4 rad/s, maximum attentuation in the

passband of 10 dB, and minimum attenuation in the stopband of 40 dB. The input was

subsequently normalized such that |utr(t)| ≤ 1.

The output of the circuit consisted of a spike time sequence {ttrk }
898
k=1. To validate

the model, a separate circuit input uval(t) and output sequence {tvalk }897k=1 were generated

using the above procedure.

The output signal used to identify the filter was reconstructed first, based on the

spike time sequence {ttrk }
898
k=1 and the spiking neuron model identified in step 1, and the

sampling period is ε1 = 10−2 s.

Functions utr(t) and ŷtr(t) were preprocessed to remove the mean. To ensure that

the distortions of the reconstructed filter output due to boundary effects are not affect-

ing the identification procedure, the first and last 1800 samples were discarded. The

resulting functions are depicted in Figure 3.

The input/output data used to identify the transformed nonlinear filter was obtained

by downsampling the original data sampled at ε1. The sampling period used in identifi-

cation ε2 = 0.15 s was determined using the approach proposed by Billings & Aguirre

(1995).

The input and output data used in identification utr[k], ŷtr[k] was subsequently ob-

tained by downsampling the original data.

The degree of nonlinearity and the maximum number of input and output lags to

initialize the regression for the NARMAX model were determined iteratively starting

from small values. The best results in terms of prediction performance and model size

were l = 2, nu = 10, ny = 10, and ne = 0. The OFR algorithm selected, in a stepwise
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Figure 3: Filter identification and validation inputs and outputs: a) filter inputs and b)

reconstructed filter outputs.

manner, an increasing number of regressors until the stop criterion NMSE < 7 · 10−4,

was met for m = 10. The final set of regressors {ps(X[k])}ms=1 and the corresponding

estimated parameters {θs}ms=1 are presented in the Appendix A.

The model predicted output ˆ̂yval[k], computed using the validation input uval[k], is

shown in Figure 4a. The corresponding model prediction error eval[k] is shown in Figure

4b. The NMSE for estimation and validation are 2.52 · 10−4 and 2 · 10−4, respectively.

The magnitude functions for the first and second order GFRFs for the original sys-

tem (5), derived in (Li & Billings, 2011), are given by

H1(jω) =
1

−ω2 + αjω + β
,

H2(jω1, jω2) = −γH1(jω1)H1(jω2)H1(jω1 + jω2).
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Figure 4: (a) Validation ŷval[k] and the model predicted output ˆ̂yval[k]. (b) The model

predicted error eval[k].

The identified NARMAX model is used to derive analytically the first and second

order generalized frequency response functions Ĥ1(jω) and Ĥ2(jω1, jω2) (Billings,

2013). The following errors are defined for quantifying the error between the GFRFs

of the original and identified transformed filter

E1(jω) = 100 ·
|H1(jω)| −

∣∣∣Ĥ1(jω)(b+ v0∞)
∣∣∣

‖H1‖∞
(%), (7)

E2(jω1, jω2) = 100 ·
|H2(jω1, jω2)| −

∣∣∣Ĥ2(jω1, jω2)(b+ v0∞)
∣∣∣

‖H2‖∞
(%), (8)

where ‖H1‖∞ = maxω∈R |H1(jω)| and ‖H2‖∞ = maxω1,ω2∈R |H2(jω1, jω2)| .

The functions H1(jω) and H2(jω2, jω2) are shown in Figure 5, and the error func-

tions E1(jω) and E2(jω1, jω2) are illustrated in Figure 6.
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Figure 5: The absolute values of the GFRF functions H1(jω) and H2(jω1, jω2), asso-

ciated with system (5).

The NARX model was inferred from input/output measurements sampled with pe-

riod ε2 = 15 · ε1, which is often too large for computing accurately the output spike

times of the NF-IIF circuit. In order to simulate the circuit with inputs utr(t), uval(t),

sampled with period ε1, a new set of inputs ui
tr[k], u

i
val[k], i = 1, . . . , 15, were gener-
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Figure 6: The error functions E1(jω) and E2(jω2, jω2).

ated, satisfying

ui
tr[k] = utr ((i+ 15k)ε1) ,

ui
val[k] = uval ((i+ 15k)ε1) , i = 1, . . . , 14.

(9)

Essentially, the filter inputs ui
tr[k], u

i
val[k] represent the samples of u(t) measured

with period ε2, where the first sampling time is iε1, respectively. The output of the filter

for the required sampling time can then be computed by simulating the NARX model

with these inputs, for every i, as follows.

The corresponding outputs of the NARX system, given the inputs above, consisted
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of ˆ̂yitr[k], ˆ̂y
i
val[k], i = 1, . . . , 15. The functions ˆ̂ytr(t) and ˆ̂yval(t), sampled with ε1, were

computed as

ˆ̂ytr ((15k + i)ε1) = ˆ̂yitr[k],

ˆ̂yval ((15k + i)ε1) = ˆ̂yival[k], i = 1, . . . , 14.

(10)

Finally, the neuron IIF{1,δ̂b,1}
generated spike time sequences {t̂trk }

719
k=1 and {t̂valk }718k=1

in response to inputs ˆ̂ytr(t), ˆ̂yval(t), respectively.

The rate of coincidence between two sequences of spike times was evaluated by

computing the coincidence factor Γ, introduced by (Jolivet et al., 2006) where

Γ =
Ncoinc − 〈Ncoinc〉

0.5(Ndata +Nmodel)

1

N
,

where Ndata is the number of spikes in the reference spike train, Nmodel is the number

of spikes predicted by the NF-IIF model, Ncoinc is the number of coincidences with

precision ∆ between the two spike trains, 〈Ncoinc〉 = 2Nmodel∆Ndata
1
T

is the expected

number of coincidences by chance, and N = 1 − 2Nmodel∆
1
T

, where T denotes the

time duration of the simulation. The coincidence factor satisfies Γ = 1 only when

there is complete coincidence with precision ∆ between the predicted and the reference

spike train, respectively. Moreover, a homogeneous Poisson process with a rate equal

to Nmodel
1
T

has a coincidence factor Γ = 0. The exact value for ∆ is not critical and,

for experimental data, Jolivet et al. (2006) introduce the constraint ∆ ∈ [1 ms, 4 ms].

For the synthetic data used in this example, we selected ∆ = 0.025 s, which satisfies

∆ << 0.5 ·min
k

(ttrk+1 − ttrk ) = 0.09 s.

In this example, the coincidence factor was Γtr = 1 for the training data and Γval =

1 for the validation data. The values correspond to a percentage of correctly predicted

spike times of 100%.
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To evaluate the effect of noise on the identification method, the procedure was car-

ried out for different levels of noise applied to the filter output and the measurement of

the spike times. The results in Table 1 show that eδb is not changing significantly for

different noise levels. Because the NMSE errors are higher when the spike times are

corrupted by noise, i.e. Aξ 6= 0, the number of regressors was increased in this case to

m = 7.

Table 1: The identification results in Example 1 for different values of σw and Aξ.
σw Aξ eδb m NMSEtr NMSEval Γtr Γval

0.01 0 6.92 · 10−7 6 8.45 · 10−4 5.3 · 10−4 1 1

0.03 0 9.51 · 10−7 6 0.005 0.006 0.61 0.95

0.05 0 1.21 · 10−6 6 0.005 0.006 0.59 0.92

0.01 3 · 10−4 1 · 10−6 7 0.01 0.011 0.4 0.42

0.03 3 · 10−4 1.26 · 10−6 7 0.008 0.009 0.32 0.39

0.05 3 · 10−4 1.52 · 10−6 7 0.008 0.009 0.33 0.38

Example 2.

This example demonstrates that the proposed approach can be applied to identify a

more biophysically realistic neural circuit, that does not satisfy the proposed assump-

tions. Specifically, the spiking neuron is represented as a Hodgkin-Huxley (HH) model,

given by

C
dV

dt
=− gNam

3h(V − ENa)− gKn
4(V − EK)− gL(V − EL) + Ib

dm

dt
=αm(V )(1−m)− βm(V )m

dh

dt
=αH(V )(1− h)− βh(V )h

dn

dt
=αn(V )(1− n)− βn(V )n,
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where V is the membrane voltage of the neuron, m,h, n are the gating variables, and Ib

is the injected current. The explicit values for each parameter can be found in (Izhike-

vich, 2007). Here, the value for the injected current was chosen Ib = 120 µA/cm2.

The HH equations above can be rewritten as dz
dt

= f(z), where z = [V,m, h, n] and

f : R4 → R
4.

The proposed circuit consists of a nonlinear filter, described by system (5), con-

nected via multiplicative coupling to a HH model, such that (Lazar & Slutskiy, 2010)

dz

dt
= (b+ v(t))f(z), (11)

where b is a bias parameter. The output spike times {tk}k∈Z are defined as the local

maxima of the voltage trace z1(t) = V (t), such that

dz1
dt

(tk) = 0,
d2z1
dt2

(tk) < 0, ∀k ∈ Z.

Lazar & Slutskiy (2010) have proven that the spiking neuron defined above is input-

output equivalent to the neuron model IIF{1,δ,b}, where the δ depends on the HH pa-

rameters. The new proposed methodology is used in the following for identifying an

input-output equivalent NF-IIF model for the proposed NF-HH circuit.

Step 1. Spiking neuron parameter estimation

The NF-HH circuit was excited with the same step input u0(t) as in Example 1. The

output of the filter was v0(t) and the solution z(t) of system (11) was computed using

the ode15s routine in Matlab with fixed step ε1. The sequence of spike times {t0k}
450
k=1

was computed as the local maxima of z1(t).

The IF parameter δb was estimated for k0 = 150 as δ̂b = 0.399245.
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Step 2. Estimation and structure detection of the nonlinear filter

The identification of the nonlinear filter is carried out as in Example 1. The final set

of model terms selected for a stopping criterion NMSE < 7 · 10−4 is summarized in

Table 5.

The NMSEs calculated for the training and validation data sets are 5.82 · 10−5 and

1.35 · 10−4, respectively. The error functions E1(jω) and E2(jω), computed between

the magnitudes of the GFRFs, are shown in Figure 7.

The predicted spike time sequences generated by the identified NF-IIF circuit in re-

sponse to the inputs utr(t) and uval(t) were also compared with the original ones gener-

ated by the original NF-HH model. The coincidence factors for training and validation

were Γtr = 1 and Γval = 1 respectively, corresponding to 100% correctly predicted

spike times.
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Figure 7: The error functions E1(jω) and E2(jω2, jω2).

Example 3.

In this example, the nonlinear filter block in Figure 1 is the well known Duffing-

Ueda chaotic nonlinear dynamical system (Ueda, 1985)

v′′(t) + kv′(t) + (v(t))3 = u(t), ∀t ∈ R, (12)

where k = 0.1. The nonlinear system is connected in series with an IIF neuron with

parameters b = 15, δ = 1.5 and C = 1. In this example it is assumed that σw = Aξ = 0.

The system (12) is solved using the ode45 Matlab routine, with initial conditions

v(0) = v′(0) = 0. The output of the IIF neuron {tk}
N
k=1 is computed with (6).

Step 1. Spiking neuron parameter estimation

To estimate the spiking neuron parameter, the response of the circuit to a step input
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u0(t) = 1[0,∞[(t), ∀t ∈ [0, T ], T = 720 s, was computed using a sampling period

ε1 = π
300

. The output of the circuit consisted of a spike time sequence {t0k}
N
k=1, where

N = 7678. The noise-free data was used to estimate δ̂b = δb = ∆t0N−1 = 9.375 · 10−2.

Step 2. Estimation and structure detection of the nonlinear filter

An input function utr(t) = 11 · cos(t) was generated, with sampling time ε1 and

duration 360 s. The spike time sequence generated by the NF-IIF circuit in response to

input utr(t) was {ttrk }
3582
k=1 .

Function ŷtr(t) was reconstructed from {ttrk }
3582
k=1 . The functions utr(t) and ŷtr(t)

are depicted in Figure 8.

The sampling period for identification was ε2 = π
60

s and the original input and

output data were downsampled appropriately to generate the data set used for identifi-

cation.

The model was estimated from a set of 1771 candidate regressors corresponding

to l = 3, nu = 10, ny = 10, and ne = 0. The model terms selection and parameter

estimation was performed using a final set of m = 23 regressors, input utr[k], and

output ŷtr[k].

The selected model terms and parameters estimates corresponding to the identified

NARMAX model are presented in Appendix A, Table 4.

It is well known that chaotic systems exhibit sensitivity to the initial conditions and

thus validating them using the NMSE lacks consistency (Billings & Aguirre, 1993).

Moreover, the chaotic response doesn’t admit a Volterra series expansion, and thus

cannot be validated by computing error functions (7), (8). The bifurcation diagram

was proven to be a useful tool for assessing the characteristics of a system by revealing
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Figure 8: Filter input utr(t) and the corresponding reconstructed nonlinear filter output

ŷtr(t).

at which values A it bifurcates, and also by detecting the parameter ranges for which

the system shows chaotic behaviour (Billings & Aguirre, 1993).

The bifurcation diagrams of the true and identified nonlinear model, computed as in

(Billings & Aguirre, 1993), are depicted in Figure 9.
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Example 4.

The proposed methodology is tested here using input-output recordings from a neu-

ron located in the primary visual area of the mouse, layer 5. The data, recorded us-

ing brain slice electrophysiology, was downloaded from the Allen Cell Type Database

(Allen Institute for Brain Science, 2015). The neuron selected has adaptation index

0.002, rheobase 390 pA, membrane time constant 7.7 ms, and firing rate 179.3 spikes/s

(Allen Institute for Brain Science, 2016). Although the database provides recordings of

the full voltage trace in response to stimuli, here only the spike times, computed as the

peak values of the voltage trace, were used in the identification procedure.

Step 1. Spiking neuron parameter estimation

To estimate the IIF parameter, we used the response of the neuron to a long square

stimulus with amplitude of 470 pA. The output spike times computed from the voltage

trace are {t0k}
N
k=1, N = 238. The neuron parameter was estimated as δ̂b = 0.0044 for

k0 = 72, which satisfies |∆t0k −
1

N−k

∑N−1
i=k ∆t0i | < 2.2 · 10−3, ∀k > k0.

Step 2. Estimation and structure detection of the nonlinear filter

Two different periodic stimuli of duration 1 s were used for the training and vali-

dation of the model, denoted utr(t) and uval(t), consisting of pink noise with sampling

rate 200 kHz, coefficient of variation of 0.2, amplitude of 555 pA, and period 1 s.

The stimuli utr(t), uval(t) and the corresponding voltage traces Vtr(t), Vval(t), recorded

from the neuron, are depicted in Figure 10. The spike times used for the training and

validation of the filter, computed from the voltage traces, are denoted {ttrk }
Ntr

k=1} and

{tval,1k }Nval

k=1 }, respectively, where Ntr = 275, Nval = 277.
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Figure 10: Stimuli utr(t), uval(t) and recorded neuron voltage traces Vtr(t), Vval(t).

Given that the stimulus is periodic, in this example, the output of the nonlinear

filter (input to the IIF neuron) was reconstructed using the algorithm proposed by Lazar

et al. (2010), which uses a regularization parameter λ to trade off the consistency of the

reconstruction, i.e., its ability to match the original spike times when encoded with the

same neuron, for increased smoothness. Given that the output of a biological neuron is

known to be highly corrupted by noise, this algorithm was found to give good results

for reconstructing the nonlinear filter output. After a line search algorithm, the value

λ = 10−7 was found to lead to the smallest model predicted NMSE.

The filter output signals used for training and validation were reconstructed based

on spike trains {ttrk }
Ntr

k=1 and {tvalk }
Nval,1

k=1 , respectively. The inputs and reconstructed

outputs of the nonlinear filter utr(t), uval,1(t), ŷtr(t), ŷval,1(t) are depicted in Figure 11.
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Figure 11: Filter input functions utr(t), uval,1(t) and the corresponding filter responses

ŷtr(t), ŷval(t), reconstructed using the method in (Lazar et al., 2010) with λ = 10−7.

The data was subsequently downsampled and processed to remove the mean. The new

sampling period is ε2 = 3.5 · 10−3 s = 700 · ε1.

The model was estimated from a set of 231 candidate regressor terms corresponding

to l = 2, nu = 10, ny = 10, and ne = 0. The OFR algorithm met the stop criterion

NMSE < 0.23 for m = 4. The NARMAX model identified form the training data set

is summarized in Appendix A.

The model predicted output ˆ̂yval[k], computed using the validation input uval[k], is

shown in Figure 12a, superimposed over the output of the filter reconstructed using

the original spike-time sequence. The corresponding model prediction error eval[k]

is shown in Figure 12b. The NMSE for estimation and validation are 0.21 and 0.18,

respectively.

The identified NF-IIF circuit was validated as before in terms of the output spike
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Figure 12: (a) The model predicted output ŷval[k] superimposed on the reconstructed fil-

ter output reserved for model validation ˆ̂yval,1[k]. (b) The model predicted error eval[k],

computed over the validation dataset .

times prediction. For a precision of ∆ = 1.5ms, the coincidence factors for ttrk and tvalk

are Γtr = 0.55 and Γval = 0.48, respectively. The corresponding percentage of correctly

predicted spike times is 91.9% and 92%, respectively. These performance indicators

are in line with similar identification results for real data using simple threshold models

(Jolivet et al., 2006). Although previous work has motivated the approximation of the

subthreshold dynamics of the neuron under random current injection by a linear filter

(Jolivet et al., 2006), this example gives more insight into these dynamics, by showing

they have a significant nonlinear behaviour. This can be quantified in the proposed

model by the ERR value of the nonlinear regressor, i.e., its percentage contribution to

the model output, which amounts to 5.43% (see Appendix A). The proposed work also
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has the advantage that it requires only extracellular recordings of the neuron (the spike

times) unlike the method by Jolivet et al. (2006), that uses intracellular recordings for

the fitting procedure (the whole voltage trace) .
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3 A new method for identifying LF-LIF circuits from spike time sequences

The LF-LIF circuit (Figure 13) consists of a linear filter in series with a LIF neuron.

Figure 13: The structure of the circuit proposed for identification.

The linear filter has an impulse response function g(t) satisfying
∫
R
|g(τ)|dτ <

∞, that is, the filter is BIBO-stable. The filter gain K satisfies K = lims→∞ G(s),

where G(s) denotes the Laplace transform of g(t). It is assumed that the filter output is

corrupted by Gaussian white noise w(t) with zero mean and standard deviation σw.

The LIF{R,C,δ,b} neuron is described by the t - transform equation (Lazar, 2005)

∫ tk+1

tk

v(τ)e−
tk+1−τ

RC dτ = C(δ − bR) + bRC · e−
tk+1−tk

RC , ∀k ∈ Z, (13)

where v(t) is the neuron input, {tk}k∈Z denotes the spike time sequence generated by

the LIF neuron, b is the bias, δ is the threshold, and R and C are the neuron resistance

and capacitance, respectively.

Lazar (2005) has proven that the neuron input v(t) can be reconstructed from the

corresponding output spike time sequence {tk}k∈Z if v ∈ PWΩ and

RC · ln

(
1−

δ

δ − (b− c)R

)
Ω

π
<

1− ǫ

1 + ǫ
,
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v(t) >
δ

R
− b, ∀t ∈ R, (14)

where ǫ = δ
(b−c)R

.

The output of the LIF neuron is assumed to be corrupted by Gaussian white noise

{ξk}k∈Z with zero mean and standard deviation Aξ, which models the error associated

with the measurement of the spike times {tk}k∈Z.

3.1 An identification method based on an equivalent LF-LIF circuit

As before, the identification of the LF-LIF circuit is carried out in two distinct steps.

The first step involves the identification of the LIF neuron, which requires estimating

four parameters. By deriving an input-output equivalent LF-LIF circuit, the problem

can be simplified, requiring the estimation of only two parameters. The equivalence

relation is a consequence of the following lemma.

Lemma 2. Let {tk}k∈Z be the spike times sequence generated by neuron LIF{R,C,δ,b}

in response to input v(t). Let r be an arbitrary number satisfying r > δ
R
− b. Then the

following holds true

∫ tk+1

tk

y(τ)e−
tk+1−τ

RC dτ = δb −RC +RC · e−
tk+1−tk

RC , ∀k ∈ Z,

where δb =
Cδ
b+r

and y(t) = v(t)−r

b+r
.

Proof. The t-transform of LIF{R,C,δ,b} satisfies (13)

∫ tk+1

tk

v(τ)e−
tk+1−τ

RC dτ = Cδ − (b+ r)RC
(
1− e−

tk+1−tk
RC

)
− r ·RC

(
1− e−

tk+1−tk
RC

)

⇔

∫ tk+1

tk

(v(τ)− r) dτ = Cδ − (b+ r)(tk+1 − tk). (15)

The required result follows after dividing both sides of (15) by (b+ r).
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The previous result proves that the neuron LIF{R,C,δ,b} with input v(t) generates

the same spike times sequence {tk}k∈Z as the neuron LIF{RC,1,δb,1} with input y(t).

In practice, r = r(u) represents, as in Section 2, the steady state output of the filter

in response to a step input. As a consequence, it follows that the circuits depicted in

Figure 13 and Figure 14 are input-output equivalent.

Figure 14: Input-output equivalent LF-LIF circuit.

A method to identify the circuit in Figure 14, which involves first the identification

of the spiking neuron followed by the identification of the transformed linear filter, is

summarized below.

Step 1. Spiking neuron parameters estimation

The following theorem establishes the basis for the estimation of the spiking neuron

parameters. Specifically, it proves that the LIF parameter RC is the unique zero of a

function P (x) depending only on the responses of the LF-LIF circuit to a specific set

of stimuli. Moreover, the theorem proves that P (x) takes values with opposite signs on

each side of RC, which guarantees that the estimator converges to the true value.

Theorem 1. Let {tnk}
Nn

k=0, n = 0, 1, 2, be the output spike times sequences generated by
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the LF-LIF circuit in the absence of noise, in response to the following inputs

un(t) = un
∞ · 1[0,∞[(t), n = 0, 1, 2,

where u0
∞ = A, u1

∞ = A−a, u2
∞ = A+a,A ∈ R and a ∈]0, aM [, aM = (b+KA)(RC−δb)

K·RC
,

where K denotes the filter gain constant. Let vn(t) be the output of the linear filter

component of the circuit in response to input un(t), and let yn(t) = vn(t)−KA

b+KA
, for n =

0, 1, 2. Assuming that the linear filter is BIBO-stable and that the neuron LIF{R,C,δ,b}

satisfies condition (14), the following hold true

(a) The limit limk→∞ ∆tnk = ∆tn∞ exists and is finite,

where ∆tnk = tnk+1 − tnk , n = 0, 1, 2;

(b) The spiking neuron parameters satisfy

P (x = RC) = 0,

δb = RC

[
1− e−

−∆t0
∞

RC

]
, (16)

where P (x) = 1−e−
∆tn

∞

x

1−2e−
∆t1

∞

x +e−
∆t0

∞

x

− 1−e−
∆t2

∞

x

1−e−
∆t0

∞

x

, ∀x > 0;

(c) P (x) = 0 has a unique solution;

(d) sgn (P (x)) = sgn(RC − x), ∀x > 0,

where sgn : R → {−1, 0, 1} is the sign function.

Proof. See Appendix.

The assumption a ∈]0, aM [, aM = (b+KA)(RC−δb)
K·RC

, from Theorem 1 guarantees that

the sequences ∆tnk converge for n = 0, 1, 2, as demonstrated in the proof. In practice, if

a 6∈]0, aM [, it means that the LF-LIF circuit does not generate spikes in response to one
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or more of the inputs un(t), n = 0, 1, 2. In this scenario, the requirement a ∈]0, aM [ can

be met by adjusting the values A and a.

The parameter RC is obtained by solving P (x) = 0 using the bisection method

(Courant & Hilbert, 1965). Specifically, the method calculates iteratively sequence

{xm}m∈N, xm = [xm,1 xm,2], where

xm+1 =





[
xm,1+xm,2

2
xm,2

]
, P

(
xm,1+xm,2

2

)
> 0,

[
xm,1

xm,1+xm,2

2

]
, P

(
xm,1+xm,2

2

)
< 0,

(17)

where x0,1, x0,2 ∈ R denote the initial conditions satisfying x0,1 < x0,2 and P (x0,1) ·

P (x0,2) < 0. From Theorem 1 (d), it follows that xm,1 < RC < xm,2, ∀m ∈ N, and

thus

lim
m→∞

xm,i = RC,

for i = 1, 2. The parameter δb is subsequently determined using equation (16).

In a more realistic scenario assuming the presence of noise and a given finite spike

times sequence {t̃nk}
Nn

k=1, the value ∆tn∞ is estimated as

∆̂tn∞ =

∑Nn−1
k=kn

∆̃tnk
Nn − kn

, (18)

where ∆̃tnk = t̃nk+1 − t̃nk , and kn is the index of spike time t̃nkn , such that, for ∀k =

kn, . . . , Nn−1,
∣∣∣∆̃tnk −

1
Nn−k

∑Nn−1
i=k ∆̃tni

∣∣∣ < ∆tnerr, where ∆tnerr is a parameter selected

by the user.

The neuron parameter RC is computed iteratively using (17). The stop criterion for

the iterations is given by |xm,2 − xm,1| < tol2, where tol2 denotes a tolerance value

selected by the user.
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The estimate of δb is given by

δ̂b = R̂C

[
1− e−

̂
∆t0

∞

R̂C

]
, (19)

where R̂C denotes the estimation of the neuron parameter RC.

Step 2. Estimation and structure detection of the linear filter

Let {tk}k∈Z be the output spike times sequence generated by the LF-LIF circuit

given the input u ∈ PWΩ,Ω > 0. The output y(t) of the transformed linear filter is

reconstructed from the spike train {tk}k∈Z using the method in (Lazar & Pnevmatikakis,

2010), using neuron parameters δ̂b, R̂C computed in Step 1.

In practice functions u(t) and ŷ(t) are sampled uniformly with period ε1. The data

is subsequently downsampled with period ε2, for identification purposes. Let u[k] and

ŷ[k] be the input and output sequences, sampled with period ε2, used to identify the

linear ARMAX model

ŷ[k] + a1ŷ[k − 1] + · · ·+ any
ŷ[k − ny] = b1u[k − 1] + . . . , bnu

u[k − nu]

+ e[k] + c1e[k − 1] + · · ·+ cne
e[k − ne],

where e[k] is the noise variable and nu, ny, ne are the maximum input, output and

noise lags, respectively. The structure of the system is assumed to be unknown, and is

identified, as before, using the OFR algorithm (Billings et al., 1989).

3.2 Numerical study

Let G(s) be the transfer function of the linear filter component in the LF-LIF circuit,

given by

G(s) =
0.8

0.01s2 + 0.04s+ 1
. (20)
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The output of the filter is perturbed by additive white Gaussian noise function w(t)

with zero mean and standard deviation σw = 10−2. The linear system (20) is connected

in cascade with a LIF neuron with parameters R = 0.02, C = 1, δ = 0.02 and b = 4. It

is assumed that the output of the circuit is measured with no noise, i.e., Aξ = 0.

Step 1. Spiking neuron parameters estimation

The inputs u0(t) = 0, u1(t) = −2 · 1[0,∞[(t), u
2(t) = 2 · 1[0,∞[(t), t ∈ [0, 7 s],

sampled with a period ε1 = 10−6 s, were used to generate the spike train sequences

{tnk}
Nn

k=1, n = 0, 1, 2, respectively, where N0 = 1216, N1 = 652, and N2 = 1776.

The data was used to determine the spiking neuron parameters following the procedure

outlined in Subsection 3.1 above. The parameters ∆̂t0∞ = 5.8 ·10−3, ∆̂t1∞ = 10.8 ·10−3,

and ∆̂t2∞ = 3.9 · 10−3 were calculated using (18), where the indices kn = 1070 were

calculated for ∆tnerr = 8 · 10−7, n = 0, 1, 2.

The function P (x) and the estimated parameter R̂C are depicted in Figure 15. Al-

though the function is clearly not monotonic, the bisection method is always convergent

due to Theorem 1 (d).

The spiking neuron parameters were estimated as R̂C = x40,2−x40,1

2
= 0.02003 (17)

and δ̂b = 5.0008 · 10−3 (19), where x0 = [10−3 104] and tol2 = 10−8.

The approximation errors were eRC = R̂C−RC = 3.74 · 10−5 and eδb = δ̂b− δb =

8.7 · 10−7, where, in this case, δb = δ/b = 5 · 10−3.

Step 2. Estimation and structure detection of the linear filter

The data used to identify the linear filter was generated by simulating the NF-IIF

circuit using an input function utr(t) with sampling period ε1 and duration 7 s, whose

39



0 0.02 0.04 0.06 0.08 0.1
x

0

0.01

0.02

0.03

0.04
P (x)

R̂C

Figure 15: Function P (x) and the estimated value R̂C.

samples are drawn from N(0, 1). The input is subsequently low-pass filtered using a

Butterworth filter with bandpass corner frequency 30 rad/s, stopband corner frequency

50 rad/s, maximum attentuation in the passband of 10 dB, and minimum attenuation

in the stopband of 40 dB.

The output of the circuit consisted of a spike time sequence {ttrk }
1214
k=1 . To validate

the model, a separate input uval(t) and output sequence {tvalk }1210k=1 were generated using

the above procedure.

The data used for estimation was generated by reconstructing the input of the spik-

ing neuron (output of nonlinear filter) from {ttrk }
1214
k=1 and the spiking neuron model

identified in step 1, where the sampling period is ε1. The input/output data was pre-

processed to remove the mean, and the first and last 50 samples were discarded, to

ensure that the reconstruction distortions due to boundary effects are not affecting the

identification procedure. The resulting functions are depicted in Figure 16.

The input and output data used in identification utr[k], ŷtr[k] was subsequently ob-
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Figure 16: (a) The filter input functions utr(t), uval(t) and (b) filter outputs ŷtr(t), ŷval(t)

used to estimate and validate the ARMAX model.

tained by downsampling the original data with ε2 = 10−2. The maximum number of

lags used in identification are nu = ny = 10, ne = 0. The model terms selection and

parameter estimation of an ARMAX model was performed using input utr[k] and out-

put ŷtr[k] with the stop criterion NMSE < 10−3. The final set of regressors and the

corresponding estimated parameters are presented in Table 2.

The model predicted output ˆ̂yval[k] corresponding to the validation input uval[k] is
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Table 2: The model terms selection and parameter estimation results.

Index s Model term ps(X[k]) Parameter θs ERR (%)

1 ŷ[k − 1] 1.95 98.98

2 ŷ[k − 2] −0.96 1.009

3 u[k − 1] 2 · 10−3 4.92 · 10−3

shown in Figure 17a. The model prediction error eval[k] is shown in Figure 17b. The

NMSE for training and validation are 3.004 · 10−5 and 3.23 · 10−5, respectively.

0 1 2 3 4 5 6 7
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0
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0.3 ŷval[k]
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3
×10-3

eval[k]

(a)

(b)

Figure 17: (a) Validation ŷval[k] and model predicted output ˆ̂yval[k]. (b) Prediction error

eval[k].

To validate the ARMAX model, the linear frequency response function of the iden-
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tified model Ĝ(jω) was compared to the one of the original system. The magnitude

frequency response function of the original system G(jω) is shown in Figure 18a. The

magnitude error function E1(ω) is computed (7), and depicted in Figure 18b.

100 101 102
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2.5
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100 101 102
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-0.2

0
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0.4
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0.8

E(jω)(%)

(a)

(b)

Figure 18: (a) The magnitude frequency response function G(jω) associated with the

linear system; (b) The magnitude error function E1(jω).

Moreover, the identified circuit was validated in terms of the spiking output, by

simulating its response to inputs utr(t) and uval(t). In order to simulate the linear filter,

a new set of inputs uε2,i
tr [k], uε2,i

val [k], i = 1, . . . , 104, were generated as in Example 1 (9).
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The outputs of the linear filter ˆ̂ytr(t), ˆ̂yval(t), sampled with ε1, are subsequently com-

puted from the responses of the filter with inputs uε2,i
tr [k], uε2,i

val [k], respectively (10). The

generated output spike times were validated against the original spike time values using

the coincidence factor with precision ∆ = 0.0015 s. The values of the coincidence

factor for training and validation were Γtr = 1 and Γval = 1, respectively.

This methodology can be used for the identification of a linear filter connected via

multiplicative coupling to a Hodgkin-Huxley model (LF-HH). This results in a very

large resistance value for the LIF, which essentially turns it into a IIF model. Moreover,

the neuron identified in Example 4, Section 2, was shown to have significantly nonlinear

subthreshold dynamics, thus making it unsuitable for this methodology.

4 Conclusions

The paper introduced two novel identification methodologies for circuits consisting of

filters in cascade with spiking neurons. The first approach concerns circuits consisting

of nonlinear filters in cascade with IIF neurons. The second approach is suitable for

circuits comprising linear filters in series with LIF neurons. Compared to the previ-

ous approaches, the methods do not require a priori knowledge of the spiking neuron

parameters or the filter structure, and do not assume that the input of the neuron (i.e.

the output of the filter) is available for measurement. Both approaches are based on

an equivalent representation of the circuit, which decreases the number of tunable pa-

rameters. The identification procedure involves two steps: the estimation of the spiking

neuron and the identification of the filter.

Numerical simulations are used to demonstrate the applicability and performance of

44



both proposed methodologies in the presence of additive noise applied to the output of

the filter as well as to the measured spike time sequence.

In the case of the NF-IIF circuit, the proposed identification method addresses the

well known limitations of the Volterra-based identification approaches. In particular,

the proposed approach can be used to identify NF-IIF circuits where the nonlinear filter

is not memoryless, and can even be chaotic. It is also shown that the identification

approach can be used to infer an equivalent NF-IIF model of circuits incorporating a

Hodgkin-Huxley model. The proposed identification method was also demonstrated

using a real experimental data set from the Allen Cell Type Database. It is shown that

the proposed approach can be used to identify neuron models that reproduce robustly

the experimental data.

In the case of sensory circuit models incorporating the LIF spiking neuron model,

identifying the parameters of the neuron is performed under the assumption that the

filter is linear. This allows estimating the two parameters of the equivalent LIF neuron

from the output spike time sequences corresponding to three step inputs. This method

trades off the generality of a nonlinear filter for a more general model of the spiking

neuron.

In essence, the proposed approaches allow identifying computational models that

can characterize the neural computations performed by early sensory circuits incorpo-

rating graded-potential as well as spiking neurons. These models can be connected to

models of downstream neural circuits that are identified subsequently based on record-

ings made in the downstream spiking neurons. This provides a route to constructing

more complex models of early sensory processing.
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Appendix A

Identification results

Table 3: The model terms selection and parameter estimation results for the nonlinear

system in Subsection 2.2, Example 1. The terms are given in the descending order of

their error reduction ratios (ERRs), which show the percentage contribution of the term

to the model output.

Index s Model term ps(X[k]) Parameter θs ERR (%)

1 ŷ[k − 1] 1.12 98.01

2 ŷ[k − 2] −0.56 1.96

3 u[k − 1] 1.1 · 10−3 8.6 · 10−3

4 ŷ[k − 4] −0.91 3.2 · 10−3

5 ŷ[k − 3]ŷ[k − 1] −0.14 2.2 · 10−3

6 u[k − 3] 4.4 · 10−3 1 · 10−3

7 ŷ[k − 3] 1.12 8 · 10−4

8 ŷ[k − 5] 0.66 5 · 10−4

9 ŷ[k − 6] −0.53 2 · 10−4

10 const. 1 · 10−4 2 · 10−4
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Table 4: The model terms selection and parameter estimation results for the nonlinear

system in Subsection 2.2, Example 2.

Index s Model term ps(X[k]) Parameter θs

1 ŷ[k − 1] 3.55

2 ŷ[k − 2] −4.9

3 ŷ[k − 3] 2.91

4 ŷ[k − 4] −0.12

5 ŷ[k − 6] 0.29

6 ŷ[k − 9](ŷ[k − 1])2 −0.69

7 u[k − 10](ŷ[k − 1])2 9.55 · 10−3

8 u[k − 10]ŷ[k − 1]ŷ[k − 2] −2.3 · 10−2

9 u[k − 10]ŷ[k − 1]ŷ[k − 3] 1.39 · 10−2

10 u[k − 7]ŷ[k − 10]ŷ[k − 1] −1.88 · 10−4

11 ŷ[k − 10]ŷ[k − 1]ŷ[k − 2] 1.7

12 u[k − 1] −9 · 10−5

13 (ŷ[k − 1])3 −6.28

14 ŷ[k − 10]ŷ[k − 4]ŷ[k − 2] 1.15

15 u[k − 10]ŷ[k − 4]ŷ[k − 1] −3.05 · 10−4

16 ŷ[k − 10] (ŷ[k − 2])2 −2.41

17 ŷ[k − 2](ŷ[k − 1])2 13.96

18 ŷ[k − 3](ŷ[k − 1])2 −8.39

19 u[k − 2] 1.68 · 10−4

20 ŷ[k − 8](ŷ[k − 1])2 1.04

21 ŷ[k − 10] −1.72 · 10−2

22 ŷ[k − 9]ŷ[k − 8]ŷ[k − 3] −0.37

23 ŷ[k − 5] −0.72

47



Table 5: The model terms selection and parameter estimation results for the nonlinear

system in Subsection 2.2, Example 3.

Index s Model term ps(X[k]) Parameter θs

1 ŷ[k − 1] 6.97

2 ŷ[k − 2] −23.68

3 ŷ[k − 3] 51.3

4 ŷ[k − 4] −78.07

5 ŷ[k − 5] 86.9

6 ŷ[k − 6] −71.5

7 ŷ[k − 7] 42.89

8 ŷ[k − 8] −17.93

9 ŷ[k − 9] 4.71

10 ŷ[k − 10] −0.58

11 u[k − 5] −3.53 · 10−4

12 u[k − 1] 3.68 · 10−4

13 u[k − 2] −5.84 · 10−4

14 ŷ[k − 10]ŷ[k − 1] 4.32 · 10−4

15 u[k − 6]ŷ[k − 1] −1.84 · 10−5

16 u[k − 10] 1.24 · 10−5

17 u[k − 4] 6.08 · 10−4

18 (u[k − 1])2 −1.36 · 10−3

19 const. 2.63 · 10−6
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Table 6: The model terms selection and parameter estimation results for the nonlinear

system in Subsection 2.2, Example 4.

Index s Model term ps(X[k]) Parameter θs ERR (%)

1 u[k − 2] 0.0054 65.4

2 (u[k − 2])2 −8.44 · 10−6 5.43

3 u[k − 3] −0.0016 4.41

4 u[k − 1] 0.0995 2.53

Appendix B

Proofs of theorems

The following auxiliary lemma is used in the proof of Theorem 1 (c) and (d).

Lemma 3. Let Λz :]1,+∞[→]1,+∞[,Λz(s) =
1

1−(1− 1

s)
z , z ∈]0,+∞[.

Then Λz(s) is strictly concave for z < 1, and strictly convex for z > 1.

Proof. The following holds true.

Λ′
z(s) =

z

s2
((

s
s−1

) z−1

2 −
(
s−1
s

) z+1

2

)2 = z
((s− 1)s)z−1

(sz − (s− 1)z)2
,

and

Λ′′
z(s) =

((s− 1)s)z−2 h(s)

(sz − (s− 1)z)3
,

where

h(s) = (z − 1)(2s− 1)(sz − (s− 1)z)− 2zs(s− 1)(sz−1 − (s− 1)z−1).

It is easy to see that sgn(Λ′′
z(s)) = sgn(h(s)), ∀s ∈]1,+∞[. After simple calcula-

tions, it follows that

h(s) = (s− 1)z(2s+ z − 1)− sz(2s− z − 1)
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= sz(2s+ z − 1)

((
s− 1

s

)z

−
2s− z − 1

2s+ z − 1

)
.

To assess the sign of h(s), the following function is evaluated

h (λ(p)) =

(
1

1− p

)z (
2

1− p
+ z − 1

)(
pz −

p(1 + z) + (1− z)

p(1− z) + (1 + z)

)
, (21)

where λ :]0, 1[→]1,+∞[, λ(p) , 1
1−p

, ∀p ∈]0, 1[. The following holds

(
1

1− p

)z (
2

1− p
+ z − 1

)
> 0, ∀p ∈]0, 1[.

Case I. z < 1.

In this case p(1 + z) + (1 − z) > 0, ∀p, z ∈]0, 1[. It follows that sgn (h(λ(p))) =

sgn(θ(p)), ∀p ∈]0, 1[, where θ :]0, 1[→ R,

θ(p) , z · ln(p)− ln

(
p(1 + z) + (1− z)

p(1− z) + (1 + z)

)
,

such that p(1− z) + (1 + z) > 0, ∀p ∈]0, 1[. Furthermore,

θ′(p) =
z

p
−

4z

(p(1− z) + (1 + z)) (p(1 + z) + (1− z))

=
z(1− z2)(p− 1)2

p (p(1− z) + (1 + z)) (p(1 + z) + (1− z))
.

Then θ′(p) > 0, ∀p ∈]0, 1[ and limp→1 θ(p) = 0. It follows that θ(p) < 0, h(λ(p)) <

0, ∀p ∈]0, 1[, h(s) < 0,Λ′′
z(s) < 0, ∀s ∈]1,+∞[, and thus the lemma holds true.

Case II. z > 1. The following holds.

p(1 + z) + (1− z) ≤ 0, p ∈ ]0, p0]

p(1 + z) + (1− z) > 0, p ∈ ]p0, 1[ .

where p0 =
z−1
z+1

.
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For p ∈ ]0, p0] it follows that h(λ(p)) > 0, ∀p ∈ ]0, p0] (21), and thus h(s) >

0,Λ′′
z(s) > 0, ∀s ∈]1, 1

1−p0
[.

For p ∈ ]p0, 1[, θ(p) and θ′(p) are calculated as in Case I. Then θ′(p) < 0, limp→1 θ(p) =

0, θ(p) > 0, ∀p ∈ ]p0, 1[ , and the result follows.

Proof of Theorem 1.

(a) Because the linear system is BIBO-stable, it follows that ∃ limt→∞ vn(t) = vn∞ =

K · un
∞, n = 0, 1, 2, and thus

yn∞ = lim
t→∞

yn(t) = lim
t→∞

vn(t)−KA

b+KA
=

Kun
∞ −KA

b+KA
= Kb (u

n
∞ − A) , (22)

for n = 0, 1, 2, where Kb =
K

b+KA
.

Let ∆tn∞ denote one of the limits of the sequence ∆tnk , for every n = 0, 1, 2. This

limit will be proven to be unique in the following. The following holds from Lemma 2

with neuron inputs vn(t), neuron output sequences {tnk}
Nn

k=1, n = 0, 1, 2, and r = KA

∫ tn
k+1

tn
k

(yn(τ) + 1) e−
tn
k+1

−τ

RC dτ = δb,

for ∀k ∈ Z, where δb =
Cδ

b+KA
. Therefore, it follows that

δb = lim
k→∞

∫ tn
k+1

tn
k

(yn(τ) + 1) e−
tn
k+1

−τ

RC dτ

=
τ=(tn

k+1
−ζ)

lim
k→∞

∫ ∆tn
k

0

(
yn(tnk+1 − ζ) + 1

)
e−

ζ

RC dζ

=

∫ ∆tn
∞

0

(yn∞ + 1) · e−
ζ

RC dζ

= (yn∞ + 1)RC
[
1− e−

∆tn
∞

RC

]

(22)
= (Kb (u

n
∞ − A) + 1)RC

[
1− e−

∆tn
∞

RC

]
, (23)

for n = 0, 1, 2, or, equivalently,

∆tn∞ = −RC · ln

(
1−

δb
RC(Kb (un

∞ − A) + 1)

)
. (24)
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It follows that ∆tn∞ exists and satisfies ∆tn∞ ∈]0,∞[ if and only if

δb
RC(Kb (un

∞ − A) + 1)
< 1 ⇔ un

∞ − A >
δb −RC

Kb ·RC
, (25)

for n = 0, 1, 2, or, equivalently, a < aM = RC−δb
Kb·RC

.

(b) The following holds true (23)

δb = RC

[
1− e−

∆t0
∞

RC

]
. (26)

The expression of δb in (26) is substituted in (23) for n = 1

Kb =
1

a


1− 1− e−

∆t0
∞

RC

1− e−
∆t1

∞

RC


 . (27)

Finally, the result follows after the substitution of (27) and (26) in (23), for n = 2.

(c) The values ∆tn∞, n = 0, 1, 2, satisfy (24)

∆tn∞ = −RC · ln(dn), ∀n = 0, 1, 2,

where dn , 1 − δb
RC(Kb(un

∞
−A)+1)

, n = 0, 1, 2. It follows that 0 < d2 < d0 < d1 < 1

(25). Function P (x) satisfies

P (x) =
1− d

RC
x

1

1− 2d
RC
x

1 + d
RC
x

0

−
1− d

RC
x

2

1− d
RC
x

0

. (28)

It can be easily verified that x = RC is a solution to P (x) = 0, by substituting the

expressions of {dn}n=0,1,2 in (28).

Let z > 0, z , RC
x
. Then the following holds

P (x) = 0 ⇔
1− 2dz1 + dz0

1− dz1
=

1− dz0
1− dz2

⇔
(2− 2dz1)− (1− dz0)

1− dz1
=

1− dz0
1− dz2

⇔
2

1− dz0
=

1

1− dz1
−

1

1− dz2
. (29)
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Let λ :]0, 1[→]1,+∞[ be a strictly increasing and continuous function with expres-

sion λ(p) , 1
1−p

, ∀p ∈]0, 1[. Then λ is a one-to-one and onto function, and thus it has

an inverse λ−1 :]1,+∞[→]0, 1[, λ−1(s) = 1 − 1
s
. Equation (29) is satisfied for z = 1,

such that

2λ(d0) = λ(d1) + λ(d2).

Let sn = λ(dn), n = 0, 1, 2, and let Λz :]1,+∞[→]1,+∞[,Λz(s) = λ(λ−1(s)z).

Then the following holds true (29)

2s0 = s1 + s2,

2Λz(s0) = Λz(s1) + Λz(s2).

The function Λz is strictly convex for z > 1, due to Lemma 3, and thus it is also

strictly midpoint convex, i.e.,

2Λz(s0) < Λz(s1) + Λz(s2), z > 1. (30)

Similarly, Lemma 3 proves that Λz is strictly concave for z < 1, and thus

2Λz(s0) > Λz(s1) + Λz(s2), z < 1. (31)

Therefore there is a unique solution z ∈]0,+∞[ to equation (29).

(d) The following holds, which concludes the proof

sgn (P (x)) = −sgn

(
1− 2d

RC
x

1 + d
RC
x

0

1− d
RC
x

1

−
1− d

RC
x

0

1− d
RC
x

2

)

= −sgn
(
2ΛRC

x
(s0)− ΛRC

x
(s1) + ΛRC

x
(s2)

)

(30),(31)
= −sgn(x−RC), ∀x ∈]0,+∞[.
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