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Abstract 21 

Understanding the key drivers that affect a decline of soil organic carbon (SOC) stock in 22 

agricultural areas is of major concern since leading to a decline in service provision from soils and 23 

potentially carbon release into the atmosphere. Despite an increasing attention is given to SOC 24 

depletion and degradation processes, SOC dynamics are far from being completely understood 25 

because they occur in the long term and are the result of a complex interaction between 26 

management and pedo-climatic factors. In order to improve our understanding of SOC reduction 27 

phenomena in the mineral soils of Veneto region, this study aimed to adopt an innovative 28 

probabilistic Bayesian Belief Network (BBN) framework to model SOC dynamics and identify 29 

management scenarios that maximise its accumulation and minimise GHG emissions.  30 

Results showed that the constructed BBN framework was able to describe SOC dynamics of the 31 

Veneto region, predicting probabilities of general accumulation (11.0%) and depletion (55.0%), 32 

similar to those already measured in field studies (15.3% and 50%, respectively). A general 33 

enhancement in the SOC content was observed where a minimum soil disturbance was adopted. 34 

This outcome suggested that management strategies of conversion from croplands to grasslands, no 35 

tillage and conservation agriculture are the most promising management strategies to reverse 36 

existing SOC reduction dynamics. Moreover, measures implying SOC stocks were also those 37 

providing major benefits in terms of GHGs reduction emissions. Finally, climate change scenarios 38 

slightly affected management practice. Advancements in our BBN framework might include more 39 

detailed classes at higher resolution as well as any socio-cultural or economic aspect that should 40 

improve the evaluation of prediction scenarios. 41 

 42 
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1. Introduction 45 

Soils are critical for the provision of economic goods and ecosystem services, including the 46 

accumulation of atmospheric carbon (Lal, 2010). However, there is growing concern among 47 

scientists and policy makers that soil organic carbon (SOC) is declining (Bouma, 2014; Stockmann 48 

et al., 2015), particularly in agricultural areas, leading to a decline in service provision from soils 49 

and potentially carbon release into the atmosphere (Koch et al., 2013; Smith, 2012). Monitoring 50 

changes in SOC content can help identify degrading soils in order to target them for management 51 

interventions that arrest declines and promote SOC accumulation.  52 

Despite the attention that has been given to SOC (EC, 2012, Minelli et al., 2017), agricultural and 53 

environmental impacts as a result of SOC changes in Europe still have large uncertainties associated 54 

with them. These are dependent on several factors; economic (e.g., difficulty quantifying values of 55 

ecosystem services), ecological (e.g., uncertainty about climate change scenarios) or socio-cultural 56 

(e.g., willingness to adopt new technologies) (Burton and Schwarz, 2013; Smith et al., 2007a; 57 

Yigini and Panagos, 2016). At the local scale, long-term field studies have shown different SOC 58 

accumulation or depletion dynamics (Saby et al., 2008), mainly dependent on inherent pedologic 59 

and climatic conditions, land use intensity, and cropping systems management (Berti et al., 2016; 60 

Heikkinen et al., 2013; Maillard and Angers, 2014; Reijneveld et al., 2009). Predictions of SOC 61 

dynamics under different management strategies and/or climate scenarios have been extensively 62 

investigated using biogeochemical models (e.g., Borrelli et al., 2016; Lugato et al., 2014; Xu et al., 63 

2011) at the large scale (from regional to trans-national). However, these models are limited if 64 

quantitative information is missing or uncertain.  65 

Indeed, several SOM models rely on functional criteria related to microbial function (e.g. decay rate 66 

of C pools) with the aim of representing the effect of biochemical and physical factors on SOC 67 

turnover and C fluxes. However, as underlined by Dungait et al. (2012), the relative contribution of 68 

biochemical and physical controls on the decay are rarely tested empirically, instead, the weakness 69 
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of a model’s theoretical background is compensated for by calibration procedures. It follows that 70 

too often models are over-calibrated in order to operate effectively in the soil systems where they 71 

are validated. However, they are less consistent when applied to unusual soils or a different climate, 72 

at “the edge of, or beyond, their validation” range (Dungait et al., 2012, p. 1790).  73 

For these reasons, environmental processes and management have been increasingly modelled 74 

following probabilistic approaches, where the uncertainty and variability of results is included in 75 

modelling (Uusitalo, 2007). Bayesian belief networks (BBNs) are probabilistic models that 76 

accommodate data uncertainty and variability and have increasingly been applied in ecological 77 

modelling since they are able to integrate both qualitative and quantitative variables in a unique 78 

model platform (Landuyt et al., 2013). By linking the different variables in a graphical interface, 79 

BBN users define cause-and-effect relationships that provide both diagnosis and prognosis under 80 

specific variable conditions, aiding the decision-making processing. 81 

A first attempt to use BBNs to evaluate soil degradation was carried out by Hough et al. (2010) by 82 

modelling peat erosion in Scotland using a combination of a national soil properties inventory and 83 

local empirical observations. The authors identified climate variables the main factors associated 84 

with peat erosion, while a secondary role was associated with land management practices, in 85 

particular vegetation cover. Qualitative and quantitative information were merged also to evaluate 86 

the risk of soil compaction (Troldborg et al., 2013), although a lack of data for model validation (at 87 

field scale or from laboratory tests) partly weakened improvements in understanding factors (e.g., 88 

inherent soil characteristics, land management) and priorities to combat soil degradation.  89 

In the Veneto region, north-eastern Italy, one of the most important impacts of intensive agriculture 90 

on arable soils is the decline of SOC content, estimated at average rates of 1.1 Mg ha-1 y-1 (Morari 91 

et al., 2006) as a result of continuous tillage, low organic inputs and over-simplification of cropping 92 

systems (i.e. monocultures). In this context policy makers, as well as land managers and scientists, 93 
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need decision support tools to enable them to weigh up the benefits and drawbacks of different 94 

agricultural systems and to explore best agri-environmental management strategies.  95 

According to previous European experiences on modelling soil properties with a probabilistic 96 

approach, it is expected that BBNs can provide new insights in soil management strategies. With 97 

the general purpose of evaluating the feasibility of simulating the C biogeochemical cycle using 98 

BBN models, this work aims: i) to quantify SOC accumulation and reduction in croplands and 99 

grasslands across the Veneto region, north-eastern Italy, after independent model validation; ii) to 100 

identify the main factors influencing SOC stock change dynamics; iii) to evaluate alternative 101 

management scenarios that maximise SOC accumulation and simultaneously minimise GHG 102 

emissions.  103 

  104 

2. Material and methods 105 

2.1 Study area 106 

The Veneto region (NUTS-2, total area of 18,400 km2) is located in north-eastern Italy, where 55% 107 

of the region is occupied by the Venetian plain, which is a complex system of urban, industrial, and 108 

intensive agricultural areas characterised by high population density. According to the last 109 

agricultural census (ISTAT, 2010), croplands and grasslands are mainly concentrated on the plain 110 

(78%), comprising mainly cereals (maize, wheat), soybean, and fodder crops (ca. 70% of total 111 

agricultural cultivations). Croplands and grasslands are generally irrigated where the shallow water 112 

table, mainly located in the low-lying area around the Venice lagoon, does not contribute to soil 113 

moisture in the root zone. A spatial visualisation of the Veneto region based on Corine Land Cover 114 

inventory (2012) is reported in Figure 1. 115 

Most of the soils of the regional low plain (<15 m a.s.l.) are Calcisols and Cambisols characterised 116 

by sandy and silty-clay deposits with medium natural fertility deriving from low SOC content 117 
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(usually in the range of 10-20 g kg-1) and low cation exchange capacity. Luvisols and Cambisols 118 

(calcareous and skeletal loam, clay-loam soils) characterise mainly the high Venetian plain and hilly 119 

areas in the north (15-300 m a.s.l.), while Leptosols and Cambisols are alternated in the mountains, 120 

from sloping areas to valleys, respectively (WRB, 2014).  121 

 122 

2.2 Bayesian Belief Network (BBN) model construction 123 

A BBN model was built with the aim of combining the climate, biogeochemical and management 124 

drivers that influence SOC stock change in the 0-30 cm layer, according to the conceptual 125 

framework proposed in Morari et al. (2015). Drivers leading to changes in the SOC cycle were 126 

identified from either natural- or human-induced processes (e.g., net primary production, soil 127 

structure degradation), whose cause-and-effect relationships were identified after an iterative 128 

process that aimed to put theory into a regional context. Only agroecosystems including croplands 129 

and grasslands across the Veneto region were considered in this study. The target node was SOC 130 

stock change (Fig. 2), which considered climate, soil and management as the main group-factors 131 

comprising a total of 22 nodes and 30 links. According to Marcot et al. (2006), the number of nodes 132 

and their states was kept as low as possible in order to favour their tractability and understanding, 133 

while contemporarily describing SOC processes and SOC-related phenomena. In this context, some 134 

intermediate nodes were required to summarise nodes into major themes (e.g., endogen and 135 

hexogen carbon, soil fertility). Parentless input nodes represented the main geographic information 136 

associated with cropping systems and pedo-climatic parameters. The BBN model was built using 137 

Genie Academic 2.1 software (BayesFusion LLC, University of Pittsburgh, PA, USA).  138 

 139 

2.3 BBN model parameterisation 140 
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Conditional probability tables (CPTs) were incorporated into the BBN model (each node was 141 

associated with a CPT) through available data, expert knowledge and existing models gathered from 142 

the literature and previous work conducted in the area, while parentless nodes had unconditional 143 

probability tables composed of prior knowledge on the frequencies of each state.  144 

Parentless pedo-climatic nodes were populated using empirical evidence: in particular soil data 145 

from the Veneto Region 1:250,000 soil map (Regione Veneto, 2005), which is linked to an 146 

alphanumeric database with physicochemical characteristics (pH, texture, depth, intrinsic SOC 147 

content etc.). The database is regularly revised by the Veneto Region Environmental Protection 148 

Agency (ARPA Veneto), which provided an upgraded version of the database whose SOC data (0-149 

3- cm soil layer) referred to the year 2010 (http://www.arpa.veneto.it/arpavinforma/indicatori-150 

ambientali/indicatori_ambientali/geosfera/qualita-dei-suoli/contenuto-di-carbonio-organico-nello-151 

strato-superficiale-di-suolo/view). The database did not include soil porosity information, which 152 

was estimated from bulk and particle density (Jury and Horton, 2004). Despite bulk density was 153 

present in the database and represent a key parameter to determine SOC stocks, here it is was not 154 

included among the basic parentless nodes. Firstly, because bulk density is correlated with soil 155 

texture properties and may represent a redundant information that is not needed in the BBN (Marcot 156 

et al., 2006). Secondly, because the aim of the work was to quantify the SOC stock change (rather 157 

than its absolute value), whose dynamic is not correlated with bulk density which was assumed a 158 

steady property.   159 

The climatic database of Veneto used was that already adopted by Dal Ferro et al. (2016) in a study 160 

conducted in the same area and based on 35 meteorological stations evenly spread over the region, 161 

which provided 20 years of climatic data (1993-2013). Rainfall and reference evapotranspiration 162 

(ET0), calculated using Penman-Monteith equation (Allen et al., 1998) by linking vegetation, 163 

temperature and time of year, were included as parentless nodes. Despite temperature is usually 164 
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associated with crop biomass, in our BBN framework it was not explicitly used because implicitly 165 

included in the ET0 node.  166 

Parentless crops and fertiliser information were provided by the Veneto Region agricultural 167 

administration (Dal Ferro et al., 2016; Regione Veneto, 2012) at the municipal level. The database 168 

was used to describe cropland and grassland probability distributions across the region as well as 169 

type (organic or mineral) and quantity (kg ha-1 y-1) of nutrient input. Irrigation was also included in 170 

the BBN model by considering the regional partition between irrigated and non-irrigated areas 171 

according to the ISTAT database (ISTAT, 2010). 172 

Node-associated conditional probabilities were built using to a composite approach, in some cases 173 

using data derived by local field trials and modelling experiments while in others expert knowledge 174 

and literature review. In particular, data on soil tillage and cover crop practices were extracted from 175 

information on their spatial distribution across the Veneto region gathered through regional surveys 176 

carried out by the Rural Development Programme (Regione Veneto, 2013). Probability distributions 177 

of SOC turnover rate and crop biomass were derived from the modelling study of Dal Ferro et al. 178 

(2016) that was conducted in the Veneto region. Following Landuyt et al. (2016) these CPTs were 179 

determined based on the spatial relationship with associated parameters, such as soil fertility, ET0, 180 

water supply, etc. (Table 1). In this context, soil moisture was not included to affect SOC dynamics 181 

because it is strictly related to soil texture. Similarly, soil nitrogen was also correlated with texture 182 

parameters and therefore not sensitive to change SOC. Nevertheless, experimental and modelling 183 

results showed that the fertiliser type, that in turn affected hexogen carbon, was the main factor to 184 

change soil carbon-nitrogen dynamics. According to Marcot et al., (2006), pedo-climatic and childe 185 

nodes were categorised by probabilistic state values (e.g., high, medium, low), defined through the 186 

conversion of continuous variables. The number of categories was kept the lowest as possible, 187 

although able to represent influences.  188 

 189 
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2.4 BBN scenarios 190 

2.4.1 Land use and management  191 

Land use and management scenarios, selected among others since the most promising and readily 192 

applicable in Europe to maintain SOC in agricultural soils (Morari et al., 2015; Powlson et al., 193 

2011), have been hypothesised as the conversion from current agronomic conditions (hereafter 194 

called “standard scenario”) to those adopting different strategies:  195 

a. Croplands to 50% and alternatively 100% grassland: areas currently under arable 196 

production were converted to permanent grassland where grazing, hay making or mixed 197 

practices are generally applied; 198 

b. Arable lands to 50% and alternatively 100% under no tillage practices: conventional 199 

practices, which usually include several tillage operations after crop harvest (mouldboard 200 

ploughing) and throughout the crop season (disk harrowing before sowing, hoeing, etc.), 201 

were converted to no tillage management;    202 

c. Croplands to 50% and alternatively 100% of continuous soil cover with cover crops: this 203 

scenario simulated that cover crops followed the main crop in order to maintain continuous 204 

soil cover throughout the year. Cover crops were completely incorporated (i.e., used as 205 

green manure) into the soil;    206 

d. Monoculture croplands to 50% and alternatively 100% under crop rotation: a succession of 207 

different crops including legumes in arable lands replaced intensive monoculture practices 208 

(mainly maize); 209 

e. Croplands to 50% and alternatively 100% under conservation agriculture: following the 210 

regional guidelines that were proposed in the RDP 2007-2013 (Regione Veneto, 2013), this 211 

scenario was set up to predict the effects of conservation agriculture by including 212 

simultaneously crop rotation, cover crops and no tillage management practices; 213 
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f.  Organic (farmyard manure) to 50% and alternatively 100% of total fertiliser input: an 214 

increase in the use of soil amendments (farmyard manure) was modelled as a substitute to 215 

mineral fertiliser. 216 

2.4.2 Climate change scenarios 217 

Projections of changes in climate, as provided by the Intergovernmental Panel on Climate Change 218 

(IPCC, 2007; IPCC, 2013), were combined with land use and management data in order to evaluate 219 

the effectiveness of potentially adopted strategies (see paragraph 2.4.1) to mitigate climate change. 220 

For this purpose, the quantification of greenhouse gas fluxes was included in the BBN model in 221 

terms of net carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) changes in agricultural 222 

fields. In particular, CO2 was directly correlated with SOC dynamics, while CH4 was associated 223 

with the degree of hexogen C input and rainfall, and N2O was linked to fertilisers type and dose as 224 

well as climate conditions (i.e., temperature) (Smith et al., 2014; Smith et al., 2007b). Finally, 225 

GHGs emissions were converted into CO2 equivalent (CO2-eq) terms to enable an evaluation of 226 

integrated global warming potential (GWP) for CO2 (GWP = 1), CH4 (GWP = 28) and N2O (GWP 227 

= 265) over a time horizon of 100 years (Smith et al., 2007b). Equivalent CO2 emissions were 228 

modelled as utility values (Fig. 3), which refer to the combination of different management 229 

strategies with climate change emission scenarios as described in Nakicenovic et al. (2000). In 230 

particular, scenarios labelled as B1 (“Sustainable world”, corresponding to atmospheric CO2 231 

concentration of 538 ppm), A1B (“Rich world”, corresponding to CO2 concentration of 674 ppm) 232 

and A2 (“Separated world”, corresponding to CO2 concentration of 754 ppm) were selected for 233 

comparison in this study. Some simplifications have been done: i) climate change effects were 234 

considered only in terms of rainfall and air temperature variations, neglecting the potential effects 235 

of CO2 increase on other factors such as biomass yield; ii) only climate data without any further 236 

prediction on socio-cultural and economic change was considered; iii) CO2-eq quantified only 237 

emissions from the biogeochemical cycles of different crop systems, thus excluding management 238 
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aspects (e.g., machinery use) that directly contribute to changes in GHGs emissions; iv) despite the 239 

major contribution of rice paddy fields to GHGs emissions, they were not considered in the current 240 

analysis (ca. 0.9% of regional agricultural fields); v) potential adaptations of farm management 241 

systems (e.g. selection of new crop species and varieties, application of efficient irrigation methods) 242 

to climate change scenarios were not considered; vi) IPCC Special Report on Emission Scenarios 243 

(Nakicenovic et al., 2000), instead of the most recent IPCC Representative Concentration Pathways 244 

(IPCC, 2013), was used for consistency and comparison with previous studies (Lugato et al., 2015).   245 

The stochastic weather generator LARS-WG (Semenov and Barrow, 2002) was used to produce a 246 

daily time series of climatic variables. Weather parameters were calibrated by using probability 247 

distributions of locally observed daily weather variables. Semi-empirical distributions of observed 248 

data were successively found, while Fourier series were used to describe precipitation amount, solar 249 

radiation, minimum and maximum temperatures. Finally, LARS-WG generated climate change 250 

weather data from multi-model ensemble of 15 climate models (Semenov et al., 2013) that were 251 

used in the IPCC 4th Assessment Report. In this context, the weather database for the Veneto region 252 

was used to describe alternative climate scenarios and evaluate their impact on CO2-eq emissions. 253 

2.5 BBN model validation 254 

BBNs have been extensively used to evaluate ecosystem services and environmental management 255 

without any model validation, or simply based on stakeholder evaluation (Landuyt et al., 2013). 256 

However, assessing the ability of the model to represent target variables is a key step to providing 257 

reliable scenarios (Death et al., 2015), particularly in the case of SOC stock change, which is rather 258 

difficult to quantify without real-world data. Moreover, due to the low reactivity of SOC to 259 

management changes and high spatial variability, SOC dynamics should be evaluated in the 260 

medium/long term after stabilised management conditions, so as to reduce uncertainties in detecting 261 

changes in SOM stocks (Kuikman et al., 2012). In this context, the model was validated by 262 

comparing the BBN predictions on SOC stock change to a total of 212 unique values that were 263 
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obtained from different case studies (Fig. 1). Field data (187 sampling points), collected in large 264 

plots (7.8 × 6 m) from a long-term experiment (established in 1962 and still ongoing) (Berti et al., 265 

2016) were representative of different cropping systems (e.g. monoculture, crop rotation, grassland) 266 

and fertiliser inputs (e.g. mineral, organic, mixed) that are traditionally adopted across the Veneto 267 

region (Regione Veneto, 2012). The experiment is located at the experimental farm of the 268 

University of Padova (45° 20ƍ N 11° 18ƍ E, 6 m a.s.l.), characterised by a loamy Fluvi-Calcaric 269 

Cambisol. Agricultural practices that have only recently been introduced in the study area (i.e., no 270 

tillage, use of cover crops) were monitored in three different farms (69 sampling points) over a 3-271 

year time span (Piccoli et al., 2016). The farms are located in three different areas of the Veneto 272 

region from east (Caorle municipality, 45° 38ƍ N 12° 57ƍ E, −2 m a.s.l.; silty-clay to sandy-loam, 273 

Gleyc Fluvisols or Endogleyc Flucic Cambisols) to centre (Mogliano Veneto municipality, 45° 35ƍ 274 

N 12° 18ƍ E, 6 m a.s.l.; silty-loam, Endogleyc Cambisols) and south-west (Ceregnano municipality, 275 

45° 3ƍ N 11° 53ƍ E, 2 m a.s.l.; silty-loam, Endogleyc Cambisols) and well represented the pedo-276 

climatic variability of the Venetian plain.  277 

 278 

3. Results 279 

3.1 Model validation and sensitivity analysis 280 

In general, results showed that the BBN framework was reasonably accurate in modelling the SOC 281 

dynamics in the 0-30 cm profile (Fig. 4) since it was able to predict probabilities of general 282 

accumulation (11.0% vs. 15.3%) and depletion (55.0% vs. 50%) as already measured in the field. 283 

Small variations (-0.1 Mg ha-1 y-1 < SOC change < 0.1 Mg ha-1 y-1) were also well described (34.0% 284 

vs. 34.7%). Nevertheless, by analysing SOC dynamics in detail, an overestimation was observed 285 

(18.0% vs 7.1%) of the “medium decrease” state value (-0.5 Mg ha-1 y-1 < SOC change < 1.0 Mg 286 
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ha-1 y-1), while extreme increases (> 1 Mg ha-1 y-1) or decreases (< 1 Mg ha-1 y-1) were negligible in 287 

both the real and modelled state.  288 

Under standard land use and management conditions, the BBN model predicted that a moderate 289 

reduction in the SOC stock (here estimated in the range of  0.1 – 0.5 Mg C ha-1 y-1) prevailed across 290 

the Veneto region, with a probability of 34% (Fig. 2), similar to the 33% estimated for the 291 

equilibrium in SOC dynamics (between -0.1 and 0.1 Mg C ha-1 y-1). Further probabilities 292 

emphasised land degradation conditions (total 50%), while contrasting dynamics leading to SOC 293 

accumulation had a probability of only 17%, although in some cases they were estimated as greater 294 

than 1.0 Mg C ha-1 y-1.  295 

SOC stock change dynamics were the result of a complex interaction between management and 296 

pedo-climatic conditions. The influence of every node was calculated in Genie Academic 2.1 297 

through a one-way sensitivity analysis, which estimated the spread of posterior probabilities of the 298 

specified target node (here SOC stock change) according to Castillo et al. (1997). In this context, 299 

field management practices, in particular the “Cropping system” and “Tillage operations”, were the 300 

nodes that most strongly influenced SOC stock change (Table 2). A secondary role was provided 301 

by: i) the intrinsic SOC content (Table 2), which depended on the peculiar pedo-climatic condition 302 

of the region and was mainly classified as medium low (10-20 g kg-1); ii) the SOC turnover 303 

coefficient, here generally implying SOC degradation conditions (89%) and associated with both 304 

pedo-climatic (soil texture, soil porosity, temperature) and management factors (soil disturbance by 305 

tillage). In contrast, the sensitivity analysis diagnosed negligible effects for soil-water factors 306 

(rainfall, irrigation) as well as nutrient quantity-related parameters (available N input, fertiliser 307 

dose), while their quality (e.g. organic amendments instead of mineral fertilisers) could partially 308 

modify SOC accumulation or depletion.  309 

 310 
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3.2 Soil management scenarios  311 

A change in land use and management from standard conditions to soil-improving scenarios 312 

showed contrasting effects between different strategies. A general enhancement in the SOC content 313 

was observed when adopting practices of minimum soil disturbance as a consequence of conversion 314 

from croplands to grasslands, no tillage and conservation agriculture. Moreover, the modelled 315 

scenarios showed their ability to reverse the overall SOC dynamics trend, since all predicted a 316 

major accumulation that mainly offset the SOC reduction. In this context, croplands to grasslands, 317 

no tillage and conservation agriculture measures were able to increase the SOC content in the 0-30 318 

soil layer, whether adopted on 50% (+29%, on average) or 100% (+57.7%, on average) of current 319 

arable land, with negligible differences between measures (Fig. 5). The estimated increase in SOC 320 

mainly involved medium (0.5 to 1.0 Mg ha-1 y-1) and strong (>1.0 Mg ha-1 y-1) improvements, 321 

overall reaching up to 60% of SOC stock change probability vs. 7% under the standard scenario.  322 

By contrast, crop management strategies involving continuous soil cover and crop rotation showed 323 

only minor changes in the SOC dynamics of arable lands, highlighting the slight contribution of 324 

related nodes (e.g., organic carbon input from residues) as reported in the sensitivity analysis (Table 325 

2). In particular, maintaining continuous soil cover through using cover crops, on both 50% and 326 

100% of arable land, slightly reduced the probability of a SOC low decrease (-1%) towards 327 

equilibrium (no change, +1%), while crop rotation – instead of monoculture – led to some increase 328 

in medium SOC (+1%) in place of its general equilibrium (-1%). 329 

Intermediate changes were observed when simulating a management change in fertiliser use, 330 

especially when farmyard manure was entirely (100%) adopted. Although SOC accumulation 331 

increased its overall probability by only 1% with respect to the standard scenario, the highest 332 

increase was observed for the most performing categories (i.e., high increase, +2%; medium 333 

increase, +1%) in place of minor changes for the others (i.e., no change, low increase). By contrast, 334 
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this scenario highlighted weak capabilities to reverse overall SOC accumulation/reduction dynamics 335 

(Fig. 5).  336 

  337 

3.3 GHGs emission scenarios 338 

Impacts that might be generated by current and modelled management scenarios were evaluated in 339 

terms of CO2 equivalents (CO2-eq) and predicted in the context of climate change emissions 340 

scenarios (Table 3). In the standard scenario, state values of CO2-eq balance from cropland and 341 

grassland showed net emissions, quantified at 1613.9 kg ha-1 y-1, with major contributions of CO2 342 

and N2O. In this context, estimated CO2 fluxes from agricultural fields had 52% low emission 343 

probability (0-1000 kg C-CO2 ha-1 y-1), followed by 8% high (> 1000 kg C-CO2 ha-1 y-1), while 344 

those associated with N2O were estimated 71% medium (1-3 kg N-N2O ha-1 y-1), 27% low (0-1 kg 345 

N-N2O ha-1 y-1) and finally 2% high (> 3 kg N-N2O ha-1 y-1). Methane emissions were always low 346 

(0-10 kg ha-1 y-1). Modelled land use and management scenarios provided, in some cases, strong 347 

improvements in terms of GHGs emissions (e.g., minimum soil disturbance), while in others the 348 

difference with the standard scenario was negligible (e.g., continuous soil cover, conversion to 349 

organic input). In particular adopting no tillage, conversion from cropland to grassland and 350 

conservation agriculture (100% of the area) favoured net CO2-eq adsorption dynamics (984 kg CO2-351 

eq ha-1 y-1, on average), while 50% of their adoption involved lower equivalent CO2 emissions (321 352 

kg CO2-eq ha-1 y-1, on average) with respect to the standard scenario. Modelled land use and 353 

management strategies under climate change scenarios generally involved worsening conditions in 354 

terms of CO2-eq emissions with respect to the current climatic conditions although always lower 355 

than 70 kg CO2-eq ha-1 y-1 (Table 3). In particular, the higher temperatures affected an increase of 356 

N-N2O emissions ( the “High” class increased up to 5%, on average), offsetting a lowering of CO2 357 

emissions (ca. 1%) as a result of major endogen carbon inputs. By contrast, the BBN framework 358 
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was seldom able to identify changes between rich (A1B), separate (A2) and sustainable (B1) world 359 

scenarios since differences were always ≤ 1.0 kg CO2-eq ha-1 y-1. 360 

 361 

4. Discussion 362 

The comparison of experimental results of SOC stock change with those from the developed 363 

Bayesian Belief Network suggests that the model performed well when evaluated with independent 364 

data, suggesting that the BBN was able to accurately describe the effects of different scenarios. 365 

Although BBNs work effectively with retrieval of partial data (Aguilera et al., 2011) it has also 366 

been recently reported in other studies (Death et al., 2015; Marcot, 2012) that steps leading to their 367 

accurate application should include independent validation to avoid bias in results as a consequence 368 

of expert, albeit subjective, knowledge.  369 

As also observed in our study, in general the BBN simulation matched the general trend of SOC 370 

accumulation and depletion dynamics, whereas some specific classes (“medium decrease”) were 371 

overestimated. This is likely due to some binding balance between requirements, on the one hand of 372 

detailed information, and on the other of simplification in the definition of state values and number 373 

of nodes. Predictions of SOC stock change across the Veneto region by the BBN model highlighted 374 

general soil degradation conditions, whose SOC reduction was quantified with high probability in 375 

the “Low increase” category (0.1-0.5 Mg C ha-1 y-1). These results were similar to those reported in 376 

a study that was conducted in the same area using the DAYCENT biogeochemical model (Dal 377 

Ferro et al., 2016), showing average losses of 257 kg C ha-1 y-1 (0-20 cm layer), although with 378 

negative peaks lower than –4.0 Mg C ha-1 y-1 that were conversely not found here. Very few 379 

experimental results have assessed SOC stock changes on a large scale. Extensive field surveys on 380 

SOC content over the period 1979-2008 were combined with a geostatistical approach by Fantappiè 381 

et al. (2010) in an attempt to map Italian soil C dynamics. The authors, although with great 382 
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uncertainties, reported SOC stock variations of between -1.5 Mg ha-1 y-1 and +1.5 Mg ha-1 y-1 (0-50 383 

cm) for most soils in Veneto, emphasising that a dynamic SOC input-output equilibrium was far 384 

from being reached. In  particular, they observed that land use type (e.g. cropland or grassland) was 385 

the most important factor leading to SOC variation, while a secondary role was associated with 386 

changes in land use intensity (e.g. crop system change). Similarly, the one-way sensitivity analysis 387 

(Table 2) showed that the type of cropping system per se and tillage operations, which are the 388 

factors that mainly characterise land use type (e.g. cropland instead of grassland), were primarily 389 

involved in SOC stock change dynamics, as also observed in long-term studies that have been 390 

conducted in north-eastern Italy (Morari et al., 2006). Improvements for SOC content were 391 

specifically modelled with the BBN through decreasing soil disturbance with zero-tillage (both in 392 

cropland and with the conversion to grassland) and maintaining a continuous soil cover (cover crops 393 

and grassland), although with contrasting results. Interestingly, only the omission of tillage 394 

operations was able to reverse the C dynamics trend from a general SOC reduction to major 395 

accumulation, although some SOC equilibrium/reduction phenomena were still likely. Maintaining 396 

continuous soil cover through cover crops had only a minor effect, even when its application was 397 

extended to 100% of arable lands. Mazzoncini et al. (2011) have reported contrasting results on the 398 

effects of cover crops on a loam soil in central Italy, where SOC increases were mainly observed in 399 

the soil surface layer (0-10 cm). However, these effects were observed some 15 years after the 400 

establishment of cover crops and the adoption of high nitrogen supply legume cover crops, which 401 

are seldom adopted in the Veneto region. In addition, a recent meta-analysis on SOC sequestration 402 

via cultivation of cover crops (Poeplau and Don, 2015) reported a mean annual accumulation rate of 403 

0.32 ±0.08 Mg ha-1 y-1 (0-22 cm soil layer) in a time span of 54 years, in contrast to our findings. 404 

However, their study was conducted at the global scale including a wide variety of pedo-climatic 405 

conditions.  406 
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Findings on the different effects of no tillage and cover crops were combined with those from crop 407 

rotations in the conservation agriculture scenario, which showed comparable results to those 408 

reported for no tillage practices. As a consequence, general SOC improving conditions were partly 409 

mitigated by “No change” and “Low decrease” conditions. This was recently observed by Piccoli et 410 

al. (2016), although they also suggested that SOC stock changes should be evaluated over a deeper 411 

profile (50 cm) and longer periods of time to better evaluate the contribution of conservation 412 

practices to SOC accumulation or distribution, although the wide spatial variability could 413 

compensate the short-term period. Nevertheless, bias in our estimations cannot be completely 414 

excluded as our BBN model validation (Fig. 3) showed, in particular, some overestimation of SOC 415 

reduction rates. Moreover, the mismatch between SOC dynamics, derived from agricultural 416 

experimental studies, and their representativeness whether adopted at the large-scale is still debated, 417 

highlighting management and biological uncertainties on their real effectiveness (Smith et al., 418 

2005). Finally, it must be noted that differences in soil sampling and quantification of SOC content 419 

may increase the uncertainty on SOC dynamics from field regional scale because of its nonlinear 420 

accumulation/decomposition rate (Six and Jastrow, 2002).  421 

Measures for increasing soil carbon inputs with high refractory coefficients have been suggested to 422 

reduce SOC turnover and contribute to SOC stock. Recent findings (Berti et al., 2016; Kätterer et 423 

al., 2011) have confirmed that farmyard manure, among different hexogen C inputs, had the greatest 424 

potential in stabilising SOC content, since it shows the highest humification coefficient. In this 425 

context, a massive conversion of mineral nutrients input to organic amendments (farmyard manure) 426 

was hypothesised. Although the 100% application of farmyard manure instead of mineral fertiliser 427 

is not realistic, it was useful to investigate here to provide evidence on its effectiveness, since it is 428 

considered one of the best practices to increase SOC in mineral soils (Lal, 2004). Some benefits 429 

were observed in terms of SOC increases, especially at high rates (> 1.0 Mg ha-1 y-1), likely 430 

influenced by sharp initial accumulations in arable soils of the low-lying plain that hardly receive 431 



19 

 

organic amendments. Nevertheless, according to early studies on SOC stock scenarios (Smith et al., 432 

1997), soils amended with organic manure has low C accumulation potential when compared to 433 

other management options (Fig. 5). In addition, care should be taken to consider the overall 434 

efficiency of the agricultural system when adopting organic inputs that might imply significant 435 

releases of nitrogen (N), especially in the low-lying Venetian plain that often has loose soils and a 436 

shallow water table, which makes it vulnerable to N leaching (Morari et al., 2012).  437 

Climate variability, evaluated with the BBN in terms of climate change scenarios (temperature, 438 

rainfall and crop evapotranspiration), provided information on utility values of adopting different 439 

management strategies in terms of CO2-eq emissions. The input-output CO2-eq budget changed 440 

from current climatic conditions to those foreseen by the IPCC (Nakicenovic et al., 2000), on 441 

average by increasing the overall GHGs emissions as a result of increasing N2O emissions, which 442 

counterbalanced reduced CO2 emissions (from increased SOC stock) due to its greater global 443 

warming potential. However, the adoption of SOC-improving strategies (zero tillage, cropland to 444 

grassland, conservation agriculture) was still able to contribute actively to reducing GHGs 445 

emissions (Table 3). By contrast, marginal differences due to climate variability were observed 446 

since changing scenarios resulted in similar trends on GHGs emissions, as also reported in previous 447 

studies conducted at the European level (Lugato et al., 2014). Nevertheless, long-term validation is 448 

still required, especially for conservation agriculture practices, to evaluate possible changes on SOC 449 

and GHGs dynamics from short to long run. 450 

These outcomes demonstrate that variability of management strategies across the Veneto region are 451 

likely to affect the SOC stock change more than climate variability, at least at the regional level 452 

(Table 2), thus emphasising the major contribution of CO2, which is strictly related to SOC stock 453 

change (Fig. 3), to CO2-eq emissions with respect to N2O (Montzka et al., 2011). On the other hand, 454 

these results might have been affected by the sensitivity of the BBN model to slight variations in 455 

temperature and rainfall. Nevertheless, improvements in the BBN model (e.g., definition of more 456 
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detailed classes, including experimental data at higher resolution) could overcome the low 457 

sensitivity to climate variability that was found, by providing more accurate outcomes as a result of 458 

slight variations in BBN parameters. Finally, at this stage the BBN framework did not take into 459 

account any socio-cultural or economic aspects that might affect economical support to farmers for 460 

soil-improving systems, the level of farmer expertise or technological developments leading to 461 

increased applicability and acceptance of sustainable land management practices. Nevertheless, it 462 

was largely achieved that BBNs can be used in an adaptive modelling framework that is often 463 

missing from traditional modelling approaches (Landuyt et al., 2013). Further work will be targeted 464 

to updating our framework to achieve socio-cultural and economic objectives.  465 

 466 

5. Conclusions  467 

The constructed BBN model well described the main management and climatic aspects related to 468 

SOC dynamics in croplands and grasslands across Veneto, showing its ability to act from farm 469 

(validation) to regional scale (consistent results with previous studies). By reflecting the variability 470 

of SOC dynamics in real world conditions and by including quali-quantitative information 471 

following a probabilistic approach, the BBN has proven to be a valuable decision support tool to 472 

distinguish the effect of different management practices. Strategies to reduce SOC depletion and 473 

soil degradation include minimum soil disturbance through no tillage and conversion from arable 474 

lands to grasslands. Covers crops, the use of organic amendments and crop rotation had only slight 475 

effects on SOC accumulation. In this context, the model was suitable to fill the gap between 476 

localised experimental studies and their extension to territorial application since including 477 

uncertainties that are usually not included in biogeochemical models. Finally, measures implying 478 

greater SOC stock were also those providing major benefits in terms of GHGs emissions. Further 479 

improvements should include socio-cultural and economic aspects, especially in the evaluation of 480 

prediction scenarios.  481 
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List of figures 658 

Figure 1 - Veneto region study area according to 2-level Corine Land Cover inventory (2012). 659 
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Figure 2 - Bayesian belief network showing factors determining SOC stock change in the 0-30 cm 667 

soil layer. Each node represents a specific factor that, interacting with other factors, influences the 668 

SOC stock change. The arrows represent the cause-and-effect direction between nodes. Each node 669 

can have a range of values (e.g. high, medium, low), each associated to a conditional probability. 670 
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Figure 3 - BBN with utility values for climate change emissions scenarios. 678 
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Figure 4 - Comparison of SOC stock change probability distributions as a result of field surveys 684 

and BBN modelling. 685 
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Figure 5 - SOC stock change probability distribution under different land use and management 696 

scenarios. 697 
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Table 1 Description of nodes included in the BBN their state values to evaluate SOC stock change.  699 

 Node State value Value/Description Type of information 
Pedo-climatic nodes Intrinsic SOC content   

(g kg-1) 
High > 40 Soil map (Regione Veneto, 2005) 
Medium high 40 – 20  
Medium Low 20 – 10  
Low < 10 

 Soil porosity (m3 m-3) High > 0.55 Soil map (Regione Veneto, 2005) 
Medium 0.55 – 0.40 
Low < 0.40  

 Clay + Silt (kg kg-1) High > 0.6 Soil map (Regione Veneto, 2005) 
Medium high 0.6 – 0.4 
Medium low 0.4 – 0.2 
Low < 0.2 

 ET0 (mm) High > 1000  derived from Penman-Monteith 
equation on data from the 
Environmental Protection Agency 
(ARPAV) 

Medium 1000 – 800  
Low < 800  

 Rainfall (mm) High > 1200  Environmental Protection Agency 
(ARPAV) Medium 1200 – 1000  

Low < 1000  
 Temperature (°C) High > 13 Environmental Protection Agency 

(ARPAV) Low < 13 
     
Management nodes Crop system Grassland  Regione Veneto (2012) 

Rotation 
Monoculture 

 Fertiliser type Mineral  Regione Veneto (2012) 
Slurry 
Farmyard manure 
Biochar 
Compost 

 N fertiliser dose  
(kg ha-1 y-1) 

High > 340 Regione Veneto (2012) 
Medium 340 – 170  
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Low < 170  
 Tillage operation Tillage  Regione Veneto (2013) 

No tillage 
 Continuous soil cover Yes  Regione Veneto (2013) 

No 
 Water management Irrigated  ISTAT, 2010  

Rainfed 
     
Child nodes Available N input  

(kg ha-1) 
High > 200 Expert opinion 
Low < 200 

 Crop biomass  
(Mg ha-1 d.m.) 

High > 30 Dal Ferro et al., 2016 
Medium high 30 – 20 
Medium low 20 – 10 
Low < 10 

 Endogen OC input  
(Mg ha-1 y-1) 

High > 4.0 Expert opinion 
Low < 4.0 

 Hexogen OC input  
(Mg ha-1 y-1) 

High > 4.0 Expert opinion  
Low 0.0 – 4.0 
Null 0.0 

 Root carbon (Mg ha-1 y-1) High > 4.0 Expert opinion  
Medium 4.0 – 2.0 
Low < 2.0 

 Residue carbon  
(Mg ha-1 y-1) 

High > 4.0 Expert opinion 
Medium 4.0 – 2.0 
Low < 2.0 

 SOC turnover coefficient 
(y-1) 

High decomposition > 0.02 Six and Jastrow, 2002 

  Low decomposition 0.0 – 0.02 
  Low accumulation 0.0 – -0.02 
  High accumulation < -0.02  
 Soil fertility High  Literature review; Expert opinion 

Medium high 
Medium low 
Low 
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 Water supply Adequate  Literature review; Expert opinion  
  Not adequate 
 SOC stock change  

(Mg ha-1 y-1) 
High increase > 1.0 
Medium increase 1.0 – 0.5 

 SOC stock change  
(Mg ha-1 y-1) 

Low increase 0.5 – 0.1 Dal Ferro et al., 2016 
No change 0.1 – -0.1 
Low decrease -0.1 – -0.5 
Medium decrease -0.5 – -1.0 
High decrease < -1.0 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 
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Table 2 One-way sensitivity analysis of posterior probabilities for the node SOC stock change.  714 

 715 

Order Node Sensitivity node 
1 Cropping system 0.374 
2 Tillage operations 0.226 
3 Intrinsic SOC 0.139 
4 SOC turnover coefficient 0.049 
5 Fertiliser type 0.027 
6 Clay+Silt 0.021 
7 Endogen C 0.016 
8 Porosity 0.015 
9 Residue C 0.010 
10 Hexogen C 0.009 
11 Temperature 0.006 
12 Fertiliser dose 0.005 
13 Soil cover 0.004 
14 Root C 0.004 
15 Rainfall 0.001 
16 Water management 0.001 
17 Water supply 0.001 
18 Soil fertility 0.001 
19 Crop biomass 0.001 
20 ET0 0.000 
21 Available N input 0.000 
 716 

 717 

 718 

 719 
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Table 3 Utility values of equivalent CO2 emissions (CO2-eq, kg ha-1 y-1) under different land use and management and climate scenarios. The 720 

higher are the values, the greater are the CO2-eq emissions. 721 

 722 

Land use and management 
Area 
investment 

Climate scenarios 

Current Rich – A1B Separate – A2 Sustainable – B1 

Standard  1613.9 1647.2 1646.3 1647.2 
Croplands to grasslands 50% 311.4 361.9 361.9 361.9 

 
100% -991.0 -923.4 -922.4 -923.4 

No tillage 50% 326.7 378.1 378.1 378.1 

 
100% -972.9 -904.3 -904.3 -904.3 

Continuous soil cover 50% 1617.7 1651.0 1651.0 1651.0 

 
100% 1621.5 1656.7 1656.7 1656.7 

Monoculture to rotation 50% 1613.9 1647.2 1647.2 1646.3 

 
100% 1612.0 1645.3 1645.3 1645.3 

Conservation agriculture 50% 324.8 376.2 376.2 376.2 

 
100% -990.1 -923.4 -923.4 -923.4 

Organic input 50% 1604.3 1643.4 1643.4 1643.4 

 
100% 1558.6 1588.1 1588.1 1588.1 

 723 

 724 

 725 


