
This is a repository copy of Hierarchical Graph Transformation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/127096/

Version: Accepted Version

Proceedings Paper:
Plump, Detlef orcid.org/0000-0002-1148-822X, Drewes, Frank and Hoffmann, Berthold 
(2000) Hierarchical Graph Transformation. In: Proceedings Foundations of Software 
Science and Computation Structures (FOSSACS 2000). Lecture Notes in Computer 
Science . Springer , pp. 98-113. 

https://doi.org/10.1007/3-540-46432-8_7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Hierar
hi
al Graph Transformation

?

Frank Drewes

1

, Berthold Ho�mann

1

, and Detlef Plump

2 ??

1

Fa
hberei
h Mathematik/Informatik, Universit�at Bremen

Postfa
h 33 04 40, D-28334 Bremen, Germany

fdrewes, hofg�informatik.uni-bremen.de

2

Department of Computing and Ele
tri
al Engineering

Heriot-Watt University, Edinburgh EH14 4AS, S
otland

det�
ee.hw.a
.uk

Abstra
t. We present an approa
h for the rule-based transformation

of hierar
hi
ally stru
tured (hyper)graphs. In these graphs, distinguished

hyperedges 
ontain graphs that 
an be hierar
hi
al again. Our framework

extends the double-pushout approa
h from 
at to hierar
hi
al graphs. In

parti
ular, we show how to 
onstru
t re
ursively pushouts and pushout


omplements of hierar
hi
al graphs and graph morphisms. To further en-

han
e the expressiveness of the approa
h, we also introdu
e rule s
hemata

with variables whi
h allow to 
opy and to remove hierar
hi
al subgraphs.

1 Introdu
tion

Re
ently, the idea of using rule-based graph transformation as a framework

for spe
i�
ation and programming has re
eived some attention, and several re-

sear
hers have proposed stru
turing me
hanisms for graph transformation sys-

tems to make progress towards this goal (see for example [2, 8, 10℄). Stru
turing

me
hanisms will be indispensable to manage large numbers of rules and to de-

velop 
omplex systems from small 
omponents that are easy to 
omprehend.

Moreover, we believe that it will be ne
essary to stru
ture the graphs that are

subje
t to transformation, too, in order to 
ope with appli
ations of a realisti


size. A me
hanism for hiding (or abstra
ting from) subgraphs in large graphs will

fa
ilitate both the 
ontrol of rule appli
ations and the visualization of graphs.

In this paper we introdu
e hierar
hi
al hypergraphs in whi
h 
ertain hyper-

edges, 
alled frames, 
ontain hypergraphs that 
an be hierar
hi
al again, with

an arbitrary depth of nesting. We show that the well-known double-pushout

approa
h to graph transformation [5, 3℄ extends smoothly to these hierar
hi-


al (hyper)graphs, by giving re
ursive 
onstru
tions for pushouts and pushout


omplements in the 
ategory of hierar
hi
al graphs. Hierar
hi
al transformation

rules 
onsist of hierar
hi
al graphs and 
an be applied at all levels of the hi-

erar
hy, where the \dangling 
ondition" known from the transformation of 
at

graphs is adapted in a natural way.

?

This work has been partially supported by the ESPRIT Working Group Appli
a-

tions of Graph Transformation (Appligraph) and by the TMR Resear
h Network

Getgrats through the University of Bremen.

??

On leave from Universit�at Bremen.

1



To further enhan
e the expressiveness of hierar
hi
al graph transformation

for programming purposes (without damaging the theory), we also introdu
e

rule s
hemata 
ontaining frame variables. These variables 
an be instantiated

with frames 
ontaining hierar
hi
al graphs, and 
an be used to 
opy or remove

frames without looking at their 
ontents. Our running example of a queue im-

plementation indi
ates that this 
on
ept is useful, as it allows to delete and to

dupli
ate queue entries regardless of their stru
ture and size.

Finally, we relate hierar
hi
al graph transformation to the 
onventional trans-

formation of 
at graphs by introdu
ing a 
attening operation. Flattening re
ur-

sively repla
es ea
h frame in a hierar
hi
al graph by its 
ontents, yielding a 
at

graph without frames. Every transformation step on hierar
hi
al graphs|under

a mild assumption on the transformed graph|gives rise to a 
onventional step

on the 
attened graphs by using the 
attened rule.

2 Graph Transformation

If S is a set, the set of all �nite sequen
es over S, in
luding the empty sequen
e

�, is denoted by S

�

. The ith element of a sequen
e s is denoted by s(i), and its

length by jsj. If f : S ! T is a fun
tion then the 
anoni
al extensions of f to

the powerset of S and to S

�

are also denoted by f . The 
omposition g Æ f of

fun
tions f : S ! T and g : T ! U is de�ned by (g Æ f)(s) = g(f(s)) for s 2 S.

A pushout in a 
ategory C (see, e.g., [1℄) is a tuple (m

1

;m

2

; n

1

; n

2

) of mor-

phisms m

i

: O ! O

i

and n

i

: O

i

! O

0

with n

1

Æm

1

= n

2

Æm

2

, su
h that for all

morphisms n

0

i

: O

i

! P (i 2 f1; 2g) with n

0

1

Æm

1

= n

0

2

Æm

2

there is a unique

morphism n : O

0

! P satisfying n Æ n

1

= n

0

1

and n Æ n

2

= n

0

2

.

Let L be an arbitrary but �xed set of labels. A hypergraph H is a quintuple

(V

H

; E

H

; att

H

; lab

H

; p

H

) su
h that

{ V

H

and E

H

are �nite sets of nodes and hyperedges, respe
tively,

{ att

H

: E

H

! V

�

H

is the atta
hment fun
tion,

{ lab

H

: E

H

! L is the labelling fun
tion, and

{ p

H

2 V

�

H

is a sequen
e of nodes, 
alled the points of H .

In the following, we will simply say graph instead of hypergraph and edge instead

of hyperedge. We denote by A

H

the set V

H

[ E

H

of atoms of H . In order to

make this a useful notation, we shall always assume without loss of generality

that V

H

and E

H

are disjoint, for every graph H .

A morphism m : G ! H between graphs G and H is a pair (m

V

;m

E

) of

mappings m

V

: V

G

! V

H

and m

E

: E

G

! E

H

su
h that m

V

(p

G

) = p

H

and,

for all e 2 E

G

, lab

H

(m

E

(e)) = lab

G

(e) and att

H

(m

E

(e)) = m

V

(att

G

(e)). Su
h

a morphism is inje
tive (surje
tive, bije
tive) if both m

V

and m

E

are inje
tive

(respe
tively surje
tive or bije
tive). If there is a bije
tive morphism m : G! H

then G and H are isomorphi
, whi
h is denoted by G

�

=

H . For a morphism

m : G ! H and a 2 A

G

we let m(a) denote m

V

(a) if a 2 V

G

and m

E

(a) if

a 2 E

G

. The 
omposition of morphisms is de�ned 
omponentwise.



For graphs G and H su
h that A

G

\A

H

= ;, the disjoint union G+H yields

the graph (V

G

[ V

H

; E

G

[ E

H

; att ; lab; p

G

), where

att(e) =

�

att

G

(e) if e 2 E

G

att

H

(e) otherwise

and lab(e) =

�

lab

G

(e) if e 2 E

G

lab

H

(e) otherwise

for all edges e 2 E

G

[ E

H

. (If A

G

\ A

H

6= ;, we assume that some impli
it

renaming of atoms takes pla
e.) Noti
e that this operation is asso
iative but

does not 
ommute sin
e G+H inherits its points from the �rst argument.

We re
all the following well-known fa
ts about pushouts and pushout 
omple-

ments in the 
ategory of graphs and graph morphisms (see [5℄). Let m

1

: G! H

1

and m

2

: G ! H

2

be morphisms. Then there is a graph H and there are mor-

phisms n

1

: H

1

! H and n

2

: H

2

! H su
h that (m

1

;m

2

; n

1

; n

2

) is a pushout.

Furthermore, H and the n

i

are determined as follows. Let H

0

be the disjoint

union of H

1

and H

2

, and let � be the equivalen
e relation on A

H

0

generated

by the set of all pairs (m

1

(a);m

2

(a)) su
h that a 2 A

G

. Then H is the graph

obtained from H

0

by identifying all atoms a; a

0

su
h that a � a

0

(i.e., H is the

quotiont graphH

0

=�). Moreover, for i 2 f1; 2g and a 2 A

H

i

, n

i

(a) = [a℄

�

, where

[a℄

�

denotes the equivalen
e 
lass of a a

ording to �.

In order to ensure the existen
e and uniqueness of pushout 
omplements (i.e.,

the existen
e and uniqueness of m

2

and n

2

if m

1

and n

1

are given), additional


onditions must be satis�ed. Below, we only need the 
ase where both of the

given morphisms are inje
tive. In this 
ase it is suÆ
ient to assume that the

dangling 
ondition is satis�ed. Two morphisms m

1

: G ! H

1

and n

1

: H

1

! H

satisfy the dangling 
ondition if no edge e 2 E

H

nn

1

(E

H

1

) is atta
hed to a node

in n

1

(V

H

1

) n n

1

(m

1

(V

G

)). It is well-known that, if m

1

and n

1

are inje
tive, then

there are m

2

and n

2

su
h that (m

1

;m

2

; n

1

; n

2

) is a pushout, if and only if m

1

and n

1

satisfy the dangling 
ondition. Furthermore, if they exist, then m

2

and

n

2

are uniquely determined (up to isomorphism).

A transformation rule (rule, for short) is a pair t : L

l

 I

r

!R of morphisms

l : I ! L and r : I ! R su
h that l is inje
tive. L, I , and R are the left-hand

side, interfa
e, and right-hand side of t. A graph G 
an be transformed into a

graph H by an appli
ation of t, denoted by G )

t

H , if there is an inje
tive

morphism o : L! G, 
alled an o

urren
e morphism, su
h that two pushouts

L I R

G K H

l

r

o

exist. It follows from the fa
ts about pushouts and pushout 
omplements re
alled

above that su
h a diagram exists if and only if l and o satisfy the dangling


ondition, and in this 
ase H is uniquely determined up to isomorphism. Noti
e

that we only 
onsider inje
tive o

urren
e morphisms, whi
h is done in order to

avoid additional diÆ
ulties when 
onsidering the hierar
hi
al 
ase. On the other

hand, the morphism r of a rule t : L

l

 I

r

!R is allowed to be non-inje
tive.



3 Hierar
hi
al Graphs

Graphs as de�ned in the previous se
tion are 
at. If someone wished to imple-

ment, say, some 
ompli
ated abstra
t data type by means of graph transforma-

tion, there would be no stru
turing me
hanisms available, ex
ept for the possi-

bilities the graphs themselves provide. Thus, any stru
tural information would

have to be 
oded into the graphs, a solution whi
h is usually inappropriate and

error-prone. To over
ome this limitation, we introdu
e graphs with an arbitrarily

deep hierar
hi
al stru
ture. This is a
hieved by means of spe
ial edges, 
alled

frames, whi
h may 
ontain hierar
hi
al graphs again. In fa
t, it turns out to

be useful to be even more general by allowing some frames to 
ontain variables

instead of graphs. These stru
tures will be 
alled hierar
hi
al graphs.

Let X be a set of symbols 
alled variables. The 
lass H(X ) of hierar
hi
al

graphs with variables in X 
onsists of triples H = hG;F; 
tsi su
h that G is a

graph (the root of the hierar
hy), F � E

G

is the set of frame edges (or just

frames), and 
ts : F ! H(X ) [ X assigns to ea
h frame f 2 F its 
ontents


ts(f) 2 H(X ) [ X . Formally, H(X ) is de�ned indu
tively over the depth of

frame nesting, as follows. A triple H = hG;F; 
tsi as above is in H

0

(X ) if F = ;.

In this 
ase, H may be identi�ed with the graph G. For i > 0, H 2 H

i

(X ) if


ts(f) 2 H

i�1

(X ) [ X for every frame f 2 F . Finally, H(X ) denotes the union

of all these 
lasses: H(X ) =

S

i�0

H

i

(X ). (Noti
e that H

i

(X ) � H

i+1

(X ) for

all i � 0. We have H

0

(X ) � H

1

(X ) be
ause an empty set of frames trivially

satis�es the requirement; using this, H

i

(X ) � H

i+1

(X ) follows by an obvious

indu
tion on i � 0.) The sets H(;) and H

i

(;) (i � 0) are brie
y denoted by H

and H

i

, respe
tively. These variable-free hierar
hi
al graphs are those in whi
h

we are mainly interested.

Noti
e that, to avoid unne
essary restri
tions, the de�nition of a hierar
hi
al

graph H = hG;F; 
tsi does not impose any relation between the nodes and

edges of G and those of 
ts(f), f 2 F . Restri
tions of this kind may be added

for spe
i�
 appli
ation areas, but the results of this paper hold in general.

Example 1 (Queue graphs). As a running example, we show how queues and

their typi
al operations 
an be implemented using hierar
hi
al graph transfor-

mation. Two kinds of frames are used to represent queues as hierar
hi
al graphs:

Unary item frames 
ontain the graphs stored in the queue; binary queue frames


ontain a queue graph, whi
h is a 
hain of edges 
onne
ting their begin point to

their end point, every node in between 
arrying an item frame.

Figure 1 shows two queue frames. Nodes are drawn as 
ir
les, and �lled if

they are points. Edges are drawn as boxes, and 
onne
ted to their atta
hments

(a)

Fig. 1. Two queue frames representing (a) an empty queue (b) a queue of length 3



by lines that are ordered 
ounter-
lo
kwise, starting at noon. Frames have double

lines, and their 
ontents is drawn inside.Plain binary edges are drawn as arrows

from their �rst to their se
ond atta
hment (as in simple graphs). In our examples,

their labels do not matter, and are omitted. (In the item graphs, the arrowheads

are omitted too.) Frame labels are not drawn either, as queue and item frames


an be distinguished by their arity.

Note that item frames may 
ontain graphs of any arity; in Figure 1 (b), they

have 1, 2, and no points, respe
tively.

Unless they are expli
itly named, the three 
omponents of a hierar
hi
al

graph H are denoted by H , F

H

, and 
ts

H

, respe
tively. The notations V

H

, E

H

,

att

H

, lab

H

, p

H

, and A

H

are used as abbreviations denoting V

H

, E

H

, att

H

,

lab

H

, p

H

, and A

H

, respe
tively. Furthermore, we denote by X

H

the set ff 2

F

H

j 
ts

H

(f) 2 Xg of variable frames of H and by

var (H) = 
ts

H

(X

H

) [

[

f2F

H

nX

H

var(
ts

H

(f))

the set of variables o

urring in H .

Let G and H be hierar
hi
al graphs su
h that A

G

\ A

H

= ;. The disjoint

union of G and H is denoted by G + H and yields the hierar
hi
al graph K

su
h that K = G +H , F

K

= F

G

[ F

H

, and 
ts

K

(f) equals 
ts

G

(f) if f 2 F

G

and 
ts

H

(f) if f 2 F

H

. For a hierar
hi
al graph G and a set S = fH

1

; : : : ; H

n

g

of hierar
hi
al graphs, we denote G +H

1

+ � � �+H

n

by G +

P

H2S

H . (Noti
e

that, although the disjoint union of hierar
hi
al graphs does not 
ommute, this

is well de�ned as it does not depend on the order of H

1

; : : : ; H

n

).

We will now generalize the 
on
ept of morphisms to the hierar
hi
al 
ase.

The de�nition is quite straightforward. Su
h a hierar
hi
al morphism h : G! H


onsists of an ordinary morphism on the topmost level and, re
ursively, hierar-


hi
al morphisms from the 
ontents of non-variable frames to the 
ontents of

their images. Naturally, only variable frames 
an be mapped to variable frames,

but they 
an also be mapped to any other frame 
arrying the right label.

Formally, let G;H 2 H(X ). A hierar
hi
al morphism h : G ! H is a pair

h = hh; (h

f

)

f2F

G

nX

G

i where

{ h : G! H is a morphism,

{ h(f) 2 F

H

for all frames f 2 F

G

, where h(f) 2 X

H

implies f 2 X

G

, and

{ h

f

: 
ts

G

(f) ! 
ts

H

(h(f)) is a hierar
hi
al morphism for every f 2 F

G

nX

G

.

For atoms a 2 A

G

, we usually write h(a) instead of h(a). Furthermore, a hier-

ar
hi
al morphism h : G! H for whi
h G;H 2 H

0

is identi�ed with h.

The 
omposition h Æ g of hierar
hi
al morphisms g : G ! H and h : H ! L

is de�ned in the obvious way. It yields the hierar
hi
al morphism l : G! L su
h

that l = h Æ g and, for all frames f 2 F

G

nX

G

, l

f

= h

g(f)

Æ g

f

. The hierar
hi
al

morphism g is inje
tive if g is inje
tive and, for all f 2 F

G

nX

G

, g

f

is inje
tive.

It is surje
tive up to variables if g is surje
tive and, for all f 2 F

G

nX

G

, g

f

is

surje
tive up to variables. Finally, g is bije
tive up to variables if it is surje
tive up

to variables and inje
tive. If G does not 
ontain variables, we speak of surje
tive



and bije
tive hierar
hi
al morphisms. A bije
tive hierar
hi
al morphism is also


alled an isomorphism, and G;H 2 H are said to be isomorphi
, G

�

=

H , if there

is an isomorphism m : G! H .

Let H be the 
ategory whose obje
ts are variable-free hierar
hi
al graphs

and whose morphisms are the hierar
hi
al morphisms h : G! H with G;H 2 H

(whi
h is indeed a 
ategory, as one 
an easily verify). The main result we are

going to establish in order to obtain a notion of hierar
hi
al graph transformation

is that H has pushouts. For this, looking at the indu
tive de�nition of hierar
hi
al

graphs and their morphisms, it is a rather obvious idea to pro
eed by indu
tion

on the depth of the frame nesting. The indu
tion basis is then provided by

the non-hierar
hi
al 
ase re
alled in Se
tion 2. In order to use the indu
tion

hypothesis, we have to redu
e the depth of a hierar
hi
al graph in some way. This


an be done on the basis of a rather simple 
onstru
tion. Given a hierar
hi
al

graph H 2 H

i

, we take the 
ontents of its frames out of these frames (whi
h,

thereby, be
ome ordinary edges) and add them disjointly to H , thus obtaining

a hierar
hi
al graph in H

i�1

(provided that i > 0). Denoting this mapping by

', we get the desired theorem, whi
h is the main result of this se
tion. It states

that the 
ategory H has pushouts, and the proof shows how to 
onstru
t them

e�e
tively.

Theorem 1. For every pair m

1

: G! H

1

and m

2

: G! H

2

of morphisms in H

there are morphisms n

1

: H

1

! H and n

2

: H

2

! H in H (for some hierar
hi
al

graph H) su
h that (m

1

;m

2

; n

1

; n

2

) is a pushout. Furthermore, (m

1

;m

2

; n

1

; n

2

)

is a pushout in the 
ategory of graphs.

Proof sket
h. The proof works by indu
tion on i, where H

1

; H

2

2 H

i

. The 
ase

i = 0 is the non-hierar
hi
al one, and it is easy to see that every pushout in the


ategory of non-hierar
hi
al graphs and morphisms is a pushout in H as well.

Thus, let i > 0. Extending ' to morphisms in the 
anoni
al way, one obtains

'(m

1

) = (m

0

1

: G

0

! H

0

1

) and '(m

2

) = (m

0

2

: G

0

! H

0

2

) where H

0

1

; H

0

2

2 H

i�1

.

By the indu
tion hypothesis, this yields a pushout (m

0

1

;m

0

2

; n

0

1

; n

0

2

) for some

n

0

j

: H

0

j

! H

0

(j 2 f1; 2g). Now, it 
an be shown that n

0

j

= '(n

j

) for hierar-


hi
al morphisms n

j

: H

j

! H , yielding a 
ommuting square (m

1

;m

2

; n

1

; n

2

).

Intuitively, the parts of H

0

whi
h stem from the 
ontents of a frame f in H

j


an

be stored in n

0

j

(f), turning this edge into a frame of the hierar
hi
al graph H


onstru
ted. The main part of the proof is to show that H and the hierar
hi
al

morphisms n

j

obtained in this way are well de�ned.

Finally, one has to verify the universal pushout property of (m

1

;m

2

; n

1

; n

2

).

Let l

1

: H

1

! L and l

2

: H

2

! L be su
h that (m

1

;m

2

; l

1

; l

2

) 
ommutes and let

'(l

j

) = (l

0

j

: H

0

! L

0

) for j 2 f1; 2g. Then (m

0

1

;m

0

2

; l

0

1

; l

0

2

) 
ommutes as well.

Therefore, the pushout property of (m

0

1

;m

0

2

; n

0

1

; n

0

2

) yields a unique morphism

l

0

: H

0

! L

0

su
h that l

0

j

= l

0

Æ n

0

j

. Again, l

0


an be turned into l : H ! L with

l

0

= '(l) and l

j

= l Æ n

j

for j 2 f1; 2g. Furthermore, for k : H ! L with k 6= l

we have '(k) 6= '(l), whi
h shows that l is unique, by the uniqueness of l

0

. ut

Noti
e that the proof of Theorem 1 yields a re
ursive pro
edure to 
onstru
t

pushouts in H , based on the 
onstru
tion of pushouts in the 
ase of ordinary

graph morphisms.



The 
onstru
tion in the proof of the theorem yields a 
orollary for the spe
ial


ase where m

1

and m

2

are inje
tive. Obviously, in this 
ase the hierar
hi
al

morphisms m

0

1

and m

0

2

in the proof are also inje
tive. As a 
onsequen
e, it

follows that (m

f

1

;m

f

2

; n

m

1

(f)

1

; n

m

2

(f)

2

) is a pushout for every frame f 2 F

G

. This

yields the following spe
ialization of Theorem 1.

Corollary 1. Let m

1

: G! H

1

and m

2

: G! H

2

be inje
tive hierar
hi
al mor-

phisms in H . Then, one 
an 
onstru
t hierar
hi
al morphisms n

1

: H

1

! H and

n

2

: H

2

! H su
h that (m

1

;m

2

; n

1

; n

2

) is a pushout, as follows:

{ n

1

and n

2

are su
h that (m

1

;m

2

; n

1

; n

2

) is a pushout,

{ for every frame f 2 F

G

, n

m

1

(f)

1

and n

m

2

(f)

2

are 
onstru
ted re
ursively in

su
h a way that (m

f

1

;m

f

2

; n

m

1

(f)

1

; n

m

2

(f)

2

) is a pushout, and

{ for every frame f 2 F

H

i

nm

i

(F

G

) (i 2 f1; 2g), n

f

i

is an isomorphism.

Next, we shall see how pushout 
omplements 
an be obtained. For simpli
ity,

we 
onsider only the 
ase where the two given hierar
hi
al morphisms are both

inje
tive. This enables us to make use of Corollary 1 in an easy way, whereas

the more general 
ase would be unreasonably 
ompli
ated as it required a hier-

ar
hi
al version of the so-
alled identi�
ation 
ondition [5℄.

Clearly, in order to ensure the existen
e of pushout 
omplements, a hier-

ar
hi
al version of the dangling 
ondition must be satis�ed. However, for the

hierar
hi
al 
ase it must also be required that, intuitively, no frame is deleted

unless its 
ontents is deleted as well. Let H

1

2 H(X ) and G;H 2 H (right be-

low, we shall only use the following de�nition for H

1

2 H, but later on the more

general 
ase H

1

2 H(X ) will turn out to be valuable, too). Two hierar
hi
al

morphisms m : I ! L and n : L! G satisfy the hierar
hi
al dangling 
ondition

(dangling 
ondition, for short) if

{ m and n satisfy the (non-hierar
hi
al) dangling 
ondition,

{ for every frame f 2 F

L

n (m(F

I

) [X

L

), n

f

is bije
tive up to variables, and

{ for every frame f 2 F

I

nX

I

, m

f

and n

m(f)

satisfy the dangling 
ondition.

Noti
e that this 
ondition 
oin
ides with the usual one in the spe
ial 
ase

where m and n are ordinary graph morphisms, be
ause in this 
ase only the �rst

requirement is relevant as there are no frames. Intuitively, the se
ond part of

the 
ondition states that, as mentioned above, a frame 
an be deleted only if its


ontents is deleted as well (at least in the 
ase where L 2 H; the more general


ase is not yet our 
on
ern). As the proof below shows, this 
orresponds to the

last item in Corollary 1 (and is thus indeed ne
essary).

Theorem 2. Let m

1

: G ! H

1

and n

1

: H

1

! H be inje
tive hierar
hi
al

morphisms in H . Then there are hierar
hi
al morphisms m

2

: G ! H

2

and

n

2

: H

2

! H su
h that (m

1

;m

2

; n

1

; n

2

) is a pushout, if and only if m

1

and n

1

satisfy the dangling 
ondition. In this 
ase m

2

and n

2

are uniquely determined.

Proof. Let G 2 H

i

. Again, we pro
eed by indu
tion on i. Clearly, if m

2

and n

2

exist, thenm

2

must be inje
tive sin
e n

1

Æm

1

= n

2

Æm

2

is inje
tive. By Corollary 1

this means that m

2

and n

2

exist if and only if they 
an be 
onstru
ted in su
h

a way that the following are satis�ed:



(1) m

2

and n

2

are su
h that (m

1

;m

2

; n

1

; n

2

) is a pushout,

(2) for every frame f 2 F

G

, the hierar
hi
al morphisms m

f

2

and n

m

2

(f)

2

are


onstru
ted re
ursively, so that (m

f

1

;m

f

2

; n

m

1

(f)

1

; n

m

2

(f)

2

) is a pushout, and

(3) for every frame f 2 F

H

i

nm

i

(F

G

) (i 2 f1; 2g), n

f

i

is an isomorphism.

Asm

1

and n

1

satisfy the dangling 
ondition,m

2

and n

2

exist and are uniquely

determined (sin
e m

1

and n

1

satisfy the dangling 
ondition for non-hierar
hi
al

morphisms), and (3) is satis�ed for i = 1 (be
ause of the se
ond part of the

dangling 
ondition). Furthermore, the indu
tion hypothesis yields the required

hierar
hi
al morphisms m

f

2

and n

m

2

(f)

2

satisfying (2), for every frame f 2 F

G

.

Together with the remaining requirement in (3) (i.e., the 
ase where i = 2) this

determines m

2

and n

2

up to isomorphism, thus �nishing the proof. ut

4 Hierar
hi
al Graph Transformation

Based on the results presented in the previous se
tion we are now able to de�ne

rules and their appli
ation in the style of the double-pushout approa
h. From

now on, a rule t : L

l

 I

r

!R is assumed to 
onsist of two hierar
hi
al morphisms

l : I ! L and r : I ! R, where L; I;R 2 H and l is inje
tive. The hierar
hi
al

graphs L, I , and R are 
alled the left-hand side, interfa
e, and right-hand side.

The appli
ation of rules is de�ned by means of the usual double-pushout


onstru
tion, with one essential di�eren
e. In order to make sure that transfor-

mations 
an take pla
e on an arbitrary level in the hierar
hy of frames (rather

than only on top level) one has to employ re
ursion.

De�nition 1 (Transformation of hierar
hi
al graphs). Let t : L

l

 I

r

!R

be a rule. A hierar
hi
al graph G 2 H is transformed into a hierar
hi
al graph

H 2 H by means of t, denoted by G)

t

H , if one of the following holds:

(1) There is an inje
tive hierar
hi
al morphism o : L! G, 
alled an o

urren
e

morphism, su
h that there are two pushouts

L I R

G K H

l

r

o

in H , or

(2) H

�

=

G via some isomorphism m : G ! H , and there is a frame f 2 F

G

su
h that 
ts

G

(f) )

t


ts

H

(m(f)) and 
ts

H

(m(f

0

))

�

=


ts

G

(f

0

) for all f

0

2

F

G

n ffg.

For a set T of rules, we write G)

T

H if G)

t

H for some t 2 T .




on
at

0 1 2 3 4 5 6 7 8 9

 

0 1 2 3 4 5 6 7 8 9

!

0

5

1

6

2

7

3

8

4

9

# # #


on
at

dequeue

 

dequeue

!

dequeue

Fig. 2. The 
on
atenation rule and its appli
ation

Example 2 (Con
atenation of queues). In Figure 2, we show a 
on
atenation rule

for queues that identi�es two queue frames and 
on
atenates their 
ontents, and

a transformation with this rule. The digits in the rule indi
ate how the nodes of

the graphs have to be mapped onto ea
h other.

It should be noti
ed that the de�nition of transformation steps requires o
-


urren
e morphisms to be inje
tive. Therefore, we need three variants of this

rule where node 1 is identi�ed with node 2, or 7 with 8, or both 1 with 2 and 7

with 8. (Similar variants are needed for the rules in the subsequent examples.)

Sin
e o

urren
e morphisms are inje
tive, we get the following theorem as a


onsequen
e of Theorems 1 and 2.

Theorem 3. Let t : L

l

 I

r

!R be a rule, G 2 H, and o : L! G an o

urren
e

morphism. Then the two pushouts in De�nition 1(1) exist if and only if o satis�es

the dangling 
ondition.

1

Furthermore, in this 
ase the pushouts are uniquely

determined up to isomorphism.

Proof. By Theorem 2 the pushout on the left exists if and only if the dangling


ondition is satis�ed, and if it exists then it is uniquely determined up to iso-

morphism. Finally, by Theorem 1 the pushout on the right always exists, and it

is a general fa
t known from 
ategory theory that a pushout (m

1

;m

2

; n

1

; n

2

) is

uniquely determined (up to isomorphism) by the morphisms m

1

and m

2

. ut

The reader should also noti
e that, as a 
onsequen
e of the e�e
tiveness of

the results presented in Se
tion 3, given a tranformation rule, a hierar
hi
al

graph, and an o

urren
e morphism satisfying the dangling 
ondition, one 
an

e�e
tively 
onstru
t the required pushouts.

1

If the rule t : L

l

 I

r

!R in question is 
lear we say that o satis�es the dangling


ondition if l and o do.



Unfortunately, the notion of transformation of hierar
hi
al graphs is not yet

expressive enough to be satisfa
tory for 
ertain programming purposes. There

are some natural e�e
ts that one would 
ertainly like to be able to implement as

single transformation steps, but whi
h 
annot be expressed by rules. Consider

the example of queues, for instan
e. It should be possible to design a rule dequeue

whi
h removes the �rst item in a queue, regardless of its 
ontents. However, this

is not possible as the dangling 
ondition requires the o

urren
e morphism to

be bije
tive on the 
ontents of deleted frames. Conversely, another rule enqueue

should take an item frame, again regardless of its 
ontents, and add it to the

queue|preferably without a�e
ting the original item frame. In order to imple-

ment this, one has to 
ir
umvent two obsta
les. First, hierar
hi
al morphisms

preserve the frame hierar
hy, whi
h implies that, intuitively, rules 
annot move

frames a
ross frame boundaries. Se
ond, by now it is simply not possible to

dupli
ate frames together with their 
ontents.

This is where variables start to play an important role. The idea is to turn

from rules to rule s
hemata and to transform hierar
hi
al graphs by applying

instan
es of these rule s
hemata. In order to make sure that an o

urren
e mor-

phism satisfying the dangling 
ondition always yields a well-de�ned transforma-

tion, we restri
t ourselves to left-linear rule s
hemata. For this, a hierar
hi
al

graph H is 
alled linear if no variable o

urs twi
e in H .

A variable instantiation for H 2 H(X ) is a mapping � : var (H) ! H. The

appli
ation of � to H is denoted by H�. It turns every variable frame f 2 X

H

into

a frame whose 
ontents is �(
ts

H

(f)). By the de�nition of hierar
hi
al morphisms,

for every hierar
hi
al morphism h : G! H su
h that G 2 H and every variable

instantiation � for H , h 
an as well be understood as a hierar
hi
al morphism

from G to H�. In the following, this hierar
hi
al morphism will be denoted by h�.

Based on this observation, rule s
hemata and their appli
ation 
an be de�ned.

De�nition 2 (Transformation by rule s
hemata). A rule s
hema, denoted

by t : L

l

 I

r

!R, is a pair 
onsisting of hierar
hi
al morphisms l : I ! L and

r : I ! R, where L;R 2 H(X ), I 2 H, L is linear, and var (R) � var(L). If � is

a variable instantiation for L then the rule t

0

: L�

l�

 I

r�

!R� is an instan
e of t.

A rule s
hema t transforms G 2 H into H 2 H, denoted by G V

t

H ,

if G )

t

0

H for some instan
e t

0

of t. For a set T of rule s
hemata we write

GV

T

H if GV

t

H for some t 2 T .

Example 3 (The rule s
hemata enqueue and dequeue). In Figure 3, we show

a rule s
hema that inserts a framed item graph at the tail of a queue graph,

and a transformation with that rule. The item frame 
ontains the variable x.

Otherwise, it would not be possible to dupli
ate the item graph, and to move it

into the queue frame.

In Figure 4, we show a rule s
hema that removes the �rst item frame in a

queue graph. The item graph is denoted by the variable x so that it 
an be

removed entirely.

For pra
ti
al purposes De�nition 2 is not very 
onvenient be
ause there are

in�nitely many instan
es of a rule s
hema as soon as it 
ontains at least one



enqueue

x

 !

x

x

# # #

enqueue

dequeue

 

dequeue

!

dequeue

Fig. 3. The rule s
hema enqueue and its appli
ation

dequeue

x

1

 

1

!

1

Fig. 4. The rule s
hema dequeue

variable. Therefore, the naive approa
h to implement V

t

by 
onstru
ting all

its instan
es and then testing ea
h of them for appli
ability does not work.

However, there is quite an obvious way how one 
an do better than that. Consider

some linear hierar
hi
al graph L 2 H(X ) and a hierar
hi
al graph G 2 H, and

let o : L ! G be a hierar
hi
al morphism. Then, due to the linearity of L, o

indu
es a variable instantiation �

o

: var(L) ! H and an o

urren
e morphism

inst(o) : L�

o

! G, as follows. For all x 2 var(L), if there is some f 2 X

L

su
h

that 
ts

L

(f) = x then �

o

(x) = 
ts

G

(o(f)). Otherwise, �

o

(x) = �

o

f
(x), where

f 2 F

L

n X

L

is the unique frame su
h that x 2 var (
ts

L

(f)). Furthermore,

inst(o) = o and for all f 2 F

L

, inst(o)

f

is the identity on 
ts

G

(o(f)) if f 2 X

L

and inst(o)

f

= inst(o

f

) otherwise.

The theorem below states that the transformations given by a rule s
hema

t : L

l

 I

r

!R 
an be obtained by 
onsidering o

urren
e morphisms o : L ! G

that satisfy the dangling 
ondition.

Theorem 4. Let t : L

l

 I

r

!R be a rule s
hema and G 2 H.

1. If o : L ! G is an o

urren
e morphism satisfying the dangling 
ondition,

then inst(o) is an o

urren
e morphism for L�

o

satisfying the dangling 
on-

dition.



2. If � : var(L)! H is a variable instantiation and q : L�! G is an o

urren
e

morphism satisfying the dangling 
ondition, then � = �

o

and q = inst(o)

(up to isomorphism) for some o

urren
e morphism o : L! G satisfying the

dangling 
ondition.

The proof by indu
tion on i, where L 2 H

i

(X ), is rather straightforward and

is therefore skipped in this short version.

5 Flattening

A natural operation on hierar
hi
al graphs is the 
attening operation whi
h

removes the hierar
hy by re
ursively repla
ing every frame with its 
ontents.

For this, we use the well-known 
on
ept of hyperedge repla
ement (see [9, 4℄) in

a slightly generalized form. Flattening is similar to (a re
ursive version of) the

operation ' 
onsidered in Se
tion 3, but it removes all frames and identi�es their

atta
hed nodes with the 
orresponding points of their 
ontents. If the numbers

of atta
hed nodes and points di�er, the additional nodes of the longer sequen
e

are treated like ordinary nodes. In addition, 
attening forgets about the points

of its argument, so that the resulting graph is \unpointed".

It will be shown in this se
tion that, under modest assumptions, hierar
hi
al

graph transformation is 
ompatible with the 
attening operation: A transforma-

tion G)

t

H indu
es a 
orresponding transformation G

0

)

t

0

H

0

, where G

0

, H

0

,

and t

0

are the 
attened versions of G, H , and t, respe
tively.

In order to pro
eed, we �rst need to de�ne hyperedge repla
ement on hierar-


hi
al graphs. Let H be a hierar
hi
al graph and 
onsider a mapping � : E ! H

su
h that E � E

H

, 
alled a hyperedge substitution for H . Hyperedge repla
ement

yields the hierar
hi
al graph H [�℄ obtained from H+

P

e2E

�(e) by deleting the

edges in E and identifying, for all e 2 E, the ith node of att

H

(e) with the ith

point of p

�(e)

, for all i su
h that both these nodes exist.

Finally, for all H 2 H, let 
(H) = H [�℄ where � : F

H

! H is given indu
-

tively by �(f) = 
(
ts

H

(f)) for all f 2 F

H

. Then, the 
attening of H yields the

graph 
at(H) = hV


(H)

; E


(H)

; att


(H)

; lab


(H)

; �i. For most of the 
onsidera-

tions below, it is suÆ
ient to study the mapping 
 , whi
h removes the hierar
hy

without forgetting points, instead of 
at .

We 
an 
atten morphisms as well. Consider a hierar
hi
al morphism h : G!

H with G;H 2 H and let � = 
 Æ 
ts

G

and � = 
 Æ 
ts

H

. Then, 
(h) is

the morphism m : 
(G) ! 
(H) de�ned indu
tively, as follows. For all a 2

A


(G)

, if a 2 A

G

then m(a) = h(a), and if a 2 A

�(f)

for some f 2 F

G

then

m(a) = 
(h

f

)(a). Furthermore, 
at(h) = (m

0

: 
at(G) ! 
at(H)) is given by

m

0

(a) = m(a) for all a 2 A


at(G)

. (Noti
e that, although the two 
ases in the

de�nition of m(a) above interse
t, they are 
onsistent with ea
h other.)

Above, it was mentioned that the main result of this se
tion holds only

under a 
ertain assumption. The reason for this is that a morphism 
at(h)

may be non-inje
tive although h : G ! H itself is inje
tive. This is 
aused by

the fa
t that building 
(G) may identify some nodes in V

G

be
ause they are



in
ident with a frame whose 
ontents has repetitions in its point sequen
e. If

the atta
hed nodes of the frame are distin
t, hyperedge repla
ement identi�es

them (by identifying ea
h with the same point of the 
ontents). Thus, 
attening

may turn an o

urren
e morphism into a non-inje
tive morphism, making it

impossible to apply the 
orresponding 
attened rule. In fa
t, the dual situation

where there are identi
al atta
hed nodes of a frame while the 
orresponding

points of its 
ontents are distin
t, must also be avoided. The reason lies in the

re
ursive part of the de�nition of )

t

. If a rule is applied to the 
ontents of some

frame, but the repla
ement of the frame identi�es two distin
t points of the


ontents be
ause the 
orresponding atta
hed points of the frame are identi
al,

the 
attened rule 
annot be applied either.

For this, 
all a hierar
hi
al graph H 2 H identi�
ation 
onsistent if every

frame f 2 F

H

satis�es the following:

(1) For all i; j 2 [min(jatt

H

(f)j ;

�

�

p


ts

H

(f)

�

�

)℄, att

H

(f)(i) = att

H

(f)(j) if and only

if p


ts

H

(f)

(i) = p


ts

H

(f)

(j), and

(2) 
ts

H

(f) is identi�
ation 
onsistent.

The reader ought to noti
e that identi�
ation 
onsisten
y is preserved by

the appli
ation of a rule t : L

l

 I

r

!R if R is identi�
ation 
onsistent and r is

inje
tive. Thus, if we restri
t ourselves to systems with rules of this kind then

all derivable hierar
hi
al graphs are identi�
ation 
onsistent (provided that the

initial ones are).

It is not very diÆ
ult to verify the following two lemmas.

Lemma 1. For every inje
tive hierar
hi
al morphism h : G ! H (G;H 2 H)

su
h that H is identi�
ation 
onsistent, 
(h) is inje
tive.

Lemma 2. If (m

1

;m

2

; n

1

; n

2

) is a pushout in H , then (
at(m

1

);
at(m

2

);


at(n

1

);
at(n

2

)) is a pushout as well.

As a 
onsequen
e, one obtains the main theorem of this se
tion: If a rule 
an

be applied to an identi�
ation 
onsistent hierar
hi
al graph, then the 
attened

rule 
an be applied to the 
attened graph, with the expe
ted result.

Theorem 5. Let t : L

l

 I

r

!R be a rule and let t

0

: L

0

l

0

 I

0

r

0

!R

0

be the rule

given by l

0

= 
at(l) and r

0

= 
at(r). For every transformation G )

t

H su
h

that G is identi�
ation 
onsistent, there is a transformation 
at(G))

t

0


at(H).

Proof sket
h. Consider a transformation step G)

t

H . Due to the de�nition of

)

t

there are two 
ases to be distinguished. If there is a double-pushout dia-

gram as in the �rst 
ase of De�nition 1, Lemmas 1 and 2 yield a 
orresponding

\
attened" diagram. The se
ond 
ase to be 
onsidered is the re
ursive one, i.e.,

the transformation takes pla
e inside a frame f . In this 
ase it may be assumed

indu
tively that the diagram 
orresponding to a transformation of the 
attened


ontents of f exists. Due to the assumed identi�
ation 
onsisten
y the 
attened


ontents of f is inje
tively embedded in 
at(G). Therefore, the given diagram


an be extended to a larger pushout diagram in the required way, retaining the

inje
tivity of the o

urren
e morphism. ut



It should be noti
ed that the 
attening pro
ess implies a loss of 
ru
ial stru
-

tural information so that there is no 
han
e to prove the 
onverse of the theorem.

6 Con
lusion

We 
on
lude this paper by brie
y mentioning some related work and possible

dire
tions for future resear
h.

Pratt [15℄ was probably the �rst to 
onsider a 
on
ept of hierar
hi
al graph

transformation, where he used a 
ertain kind of node repla
ement to de�ne the

semanti
s of programming languages. His graph 
on
ept was extended in [6℄

by allowing edges between subgraphs 
ontained in di�erent nodes, but without

de�ning transformation.

A di�erent 
on
ept of graph nesting is given by the abstra
tion me
hanisms

of the (old) graph transformation system Agg [12℄ and the multi-level graph

grammars of [13℄, providing 
at graphs with several views whi
h are related by

a rigid layering and a partial in
lusion ordering, respe
tively.

An indire
t nesting 
on
ept 
an be found in the framework of [16℄ and the new

Agg system [7℄, where nesting is realized by labels and attributes, respe
tively.

The idea of using variables to extend the double-pushout approa
h with

non-lo
al e�e
ts, like 
opying and removal of subgraphs, is also followed in the

so-
alled substitution-based approa
h to graph transformation [14℄ (working on


at hypergraphs).

One dire
tion for future work on hierar
hi
al graph transformation is to lift

to the hierar
hi
al setting the 
lassi
al results of the double-pushout approa
h,

like sequential and parallel 
ommutativity, results on parallelism, 
on
urren
y

and amalgamation, et
. Another important task is to 
ombine hierar
hi
al graph

transformation in an orthogonal way with 
on
epts for stru
turing and 
ontrol-

ling systems of rules. As mentioned in the introdu
tion, several su
h 
on
epts

(mainly for 
at graphs) have re
ently been proposed in the literature.

A further topi
 of resear
h is to develop hierar
hi
al graph transformation

towards obje
t-oriented graph transformation, as outlined in [11℄. There the idea

is to restri
t the visibility of frames so that only rules designated to some frame

type may inspe
t or update the 
ontents of frames of this type. Su
h frame types


ome 
lose to \
lasses", and the designated rules 
orrespond to \methods". In

this way frames 
an be seen as obje
ts of their types that 
an only be manipulated

by invoking the methods of the 
lass.

A
knowledgement We thank the referees for their helpful 
omments.

Referen
es

[1℄ J. Ad�amek, H. Herrli
h, and G. Stre
ker. Abstra
t and Con
rete Categories. John

Wiley, New York, 1990.

[2℄ M. Andries, G. Engels, A. Habel, B. Ho�mann, H.-J. Kreowski, S. Kuske,

D. Plump, A. S
h�urr, and G. Taentzer. Graph transformation for spe
i�
ation

and programming. S
ien
e of Computer Programming, 34:1{54, 1999.



[3℄ A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. He
kel, and M. L�owe. Algebrai


approa
hes to graph transformation | Part I: Basi
 
on
epts and double pushout

approa
h. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing

by Graph Transformation, volume 1, 
hapter 3, pages 163{245. World S
ienti�
,

1997.

[4℄ F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge repla
ement graph gram-

mars. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing

by Graph Transformation, volume 1, 
hapter 2, pages 95{162. World S
ienti�
,

Singapore, 1997.

[5℄ H. Ehrig. Introdu
tion to the algebrai
 theory of graph grammars. In Pro
. Graph-

Grammars and Their Appli
ation to Computer S
ien
e and Biology, volume 73 of

Le
ture Notes in Computer S
ien
e, pages 1{69. Springer-Verlag, 1979.

[6℄ G. Engels and A. S
h�urr. En
apsulated hiera
hi
al graphs, graph types, and

meta types. In A. Corradini and U. Montanari, editors, Pro
. Joint COMPU-

GRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation, vol-

ume 2 of Ele
troni
 Notes in Theoreti
al Computer S
ien
e. Elsevier, 1995.

[7℄ C. Ermel, M. Rudolf, and G. Taentzer. The agg approa
h: Language and en-

vironment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,

Handbook of Graph Grammars and Computing by Graph Transformation, vol-

ume 2, pages 551{603. World S
ienti�
, 1999.

[8℄ P. Fradet and D. L. M�etayer. Stru
tured Gamma. S
ien
e of Computer Program-

ming, 31(2/3):263{289, 1998.

[9℄ A. Habel. Hyperedge Repla
ement: Grammars and Languages, volume 643 of

Le
ture Notes in Computer S
ien
e. Springer-Verlag, Berlin, 1992.

[10℄ R. He
kel, H. Ehrig, and G. Taentzer. Classi�
ation and 
omparison of module


on
epts for graph transformation systems. In H. Ehrig, G. Engels, H.-J. Kre-

owski, and G. Rozenberg, editors, Handbook of Graph Grammars and Computing

by Graph Transformation, volume 2, 
hapter 17, pages 669{689. World S
ienti�
,

1999.

[11℄ B. Ho�mann. From graph transformation to rule-based programming with dia-

grams. In M. Nagl and A. S
h�urr, editors, Pro
. Int'l Workshop on Appli
ations

of Graph Transformations with Industrial Relevan
e (Agtive'99), Le
ture Notes

in Computer S
ien
e, 1999. To appear.

[12℄ M. L�owe and M. Beyer. AGG | an implementation of algebrai
 graph rewriting.

In C. Kir
hner, editor, Pro
. Rewriting Te
hniques and Appli
ations, volume 690

of Le
ture Notes in Computer S
ien
e, pages 451{456, 1993.

[13℄ F. Parisi-Presi

e and G. Piersanti. Multi-level graph grammars. In E. W. Mayr,

G. S
hmidt, and G. Tinhofer, editors, Graph-Theoreti
al Con
epts in Computer

S
ien
e (WG '94), volume 903 of Le
ture Notes in Computer S
ien
e, pages 51{64,

1995.

[14℄ D. Plump and A. Habel. Graph uni�
ation and mat
hing. In Pro
. Graph Gram-

mars and Their Appli
ation to Computer S
ien
e, volume 1073 of Le
ture Notes

in Computer S
ien
e, pages 75{89. Springer-Verlag, 1996.

[15℄ T. W. Pratt. Pair grammars, graph languages and string-to-graph translations.

Journal of Computer and System S
ien
es, 5:560{595, 1971.

[16℄ H.-J. S
hneider. On 
ategori
al graph grammars integrating stru
tural transfor-

mations and operations on labels. Theoreti
al Computer S
ien
e, 109:257{274,

1993.


