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Abstract. We present an approach for the rule-based transformation
of hierarchically structured (hyper)graphs. In these graphs, distinguished
hyperedges contain graphs that can be hierarchical again. Our framework
extends the double-pushout approach from flat to hierarchical graphs. In
particular, we show how to construct recursively pushouts and pushout
complements of hierarchical graphs and graph morphisms. To further en-
hance the expressiveness of the approach, we also introduce rule schemata
with variables which allow to copy and to remove hierarchical subgraphs.

1 Introduction

Recently, the idea of using rule-based graph transformation as a framework
for specification and programming has received some attention, and several re-
searchers have proposed structuring mechanisms for graph transformation sys-
tems to make progress towards this goal (see for example [2, 8, 10]). Structuring
mechanisms will be indispensable to manage large numbers of rules and to de-
velop complex systems from small components that are easy to comprehend.
Moreover, we believe that it will be necessary to structure the graphs that are
subject to transformation, too, in order to cope with applications of a realistic
size. A mechanism for hiding (or abstracting from) subgraphs in large graphs will
facilitate both the control of rule applications and the visualization of graphs.

In this paper we introduce hierarchical hypergraphs in which certain hyper-
edges, called frames, contain hypergraphs that can be hierarchical again, with
an arbitrary depth of nesting. We show that the well-known double-pushout
approach to graph transformation [5, 3] extends smoothly to these hierarchi-
cal (hyper)graphs, by giving recursive constructions for pushouts and pushout
complements in the category of hierarchical graphs. Hierarchical transformation
rules consist of hierarchical graphs and can be applied at all levels of the hi-
erarchy, where the “dangling condition” known from the transformation of flat
graphs is adapted in a natural way.

* This work has been partially supported by the ESPRIT Working Group Applica-
tions of Graph Transformation (APPLIGRAPH) and by the TMR Research Network
GETGRATS through the University of Bremen.

** On leave from Universitidt Bremen.



To further enhance the expressiveness of hierarchical graph transformation
for programming purposes (without damaging the theory), we also introduce
rule schemata containing frame variables. These variables can be instantiated
with frames containing hierarchical graphs, and can be used to copy or remove
frames without looking at their contents. Our running example of a queue im-
plementation indicates that this concept is useful, as it allows to delete and to
duplicate queue entries regardless of their structure and size.

Finally, we relate hierarchical graph transformation to the conventional trans-
formation of flat graphs by introducing a flattening operation. Flattening recur-
sively replaces each frame in a hierarchical graph by its contents, yielding a flat
graph without frames. Every transformation step on hierarchical graphs—under
a mild assumption on the transformed graph—gives rise to a conventional step
on the flattened graphs by using the flattened rule.

2 Graph Transformation

If S is a set, the set of all finite sequences over S, including the empty sequence
A, is denoted by S*. The ith element of a sequence s is denoted by s(i), and its
length by |s|. If f: S — T is a function then the canonical extensions of f to
the powerset of S and to S* are also denoted by f. The composition g o f of
functions f: S — T and g: T — U is defined by (g o f)(s) = g(f(s)) for s € S.

A pushout in a category C (see, e.g., [1]) is a tuple (mq,msa,nq,n2) of mor-
phisms m;: O — O; and n;: O; — O' with ny o m; = ny o ms, such that for all
morphisms n}: O; — P (i € {1,2}) with n] o m1 = n), o m» there is a unique
morphism n: O' — P satisfying n on; = n} and nony =nj.

Let L be an arbitrary but fixed set of labels. A hypergraph H is a quintuple
(Vi, Eg, atty, laby,py) such that

— Vi and Epg are finite sets of nodes and hyperedges, respectively,
— attg: Eg — Vj; is the attachment function,

— labg: Eg — L is the labelling function, and

— pu € V} is a sequence of nodes, called the points of H.

In the following, we will simply say graph instead of hypergraph and edge instead
of hyperedge. We denote by A the set Vi U Eg of atoms of H. In order to
make this a useful notation, we shall always assume without loss of generality
that Vg and Eg are disjoint, for every graph H.

A morphism m: G — H between graphs G and H is a pair (my,mpg) of
mappings my: Vg — Vg and mg: Eq — Epg such that my(pg) = py and,
for all e € Eq, labp(mp(e)) = labg(e) and attg(mp(e)) = my (attg(e)). Such
a morphism is injective (surjective, bijective) if both my and mpg are injective
(respectively surjective or bijective). If there is a bijective morphism m: G — H
then G and H are isomorphic, which is denoted by G = H. For a morphism
m: G — H and a € Ag we let m(a) denote my (a) if a € Vg and mg(a) if
a € Eg. The composition of morphisms is defined componentwise.



For graphs G and H such that AgN Ay = (), the disjoint union G + H yields
the graph (Vg U Vg, Eq U Eg, att, lab, pg), where

attg(e) ife€ Eg
att g (e) otherwise

labg(e) ifee Eg
labg (e) otherwise

att(e) = { and lab(e) = {
for all edges e € Eg U Ex. (If Ag N Ay # (), we assume that some implicit
renaming of atoms takes place.) Notice that this operation is associative but
does not commute since G + H inherits its points from the first argument.

We recall the following well-known facts about pushouts and pushout comple-
ments in the category of graphs and graph morphisms (see [5]). Let m;: G — H;
and mso: G — Hy be morphisms. Then there is a graph H and there are mor-
phisms nq: H; — H and no: Hy — H such that (mq,ma,n1,mn2) is a pushout.
Furthermore, H and the n; are determined as follows. Let H' be the disjoint
union of H; and Hs, and let ~ be the equivalence relation on Apr generated
by the set of all pairs (m;(a), m2(a)) such that a € Ag. Then H is the graph
obtained from H' by identifying all atoms a,a’ such that a ~ a' (i.e., H is the
quotiont graph H'/~). Moreover, for i € {1,2} and a € Ag,, n;(a) = [a]~, where
[a]~ denotes the equivalence class of a according to ~.

In order to ensure the existence and uniqueness of pushout complements (i.e.,
the existence and uniqueness of ms and ns if m; and n; are given), additional
conditions must be satisfied. Below, we only need the case where both of the
given morphisms are injective. In this case it is sufficient to assume that the
dangling condition is satisfied. Two morphisms my: G — Hy, and n,: Hy - H
satisfy the dangling condition if no edge e € Ex \ n1(Ep, ) is attached to a node
in nq (Vi, ) \ n1(m1(V)). It is well-known that, if m; and n; are injective, then
there are mo and no such that (mj,ms,ny,n2) is a pushout, if and only if m,
and ny satisfy the dangling condition. Furthermore, if they exist, then ms and
no are uniquely determined (up to isomorphism).

A transformation rule (rule, for short) is a pair ¢: L LTLRof morphisms
l: I — L and r: I — R such that [ is injective. L, I, and R are the left-hand
side, interface, and right-hand side of t. A graph G can be transformed into a
graph H by an application of ¢, denoted by G =; H, if there is an injective
morphism o: L — G, called an occurrence morphism, such that two pushouts

«— ] —> R

]

G+<—K—>H

! r

exist. It follows from the facts about pushouts and pushout complements recalled
above that such a diagram exists if and only if [ and o satisfy the dangling
condition, and in this case H is uniquely determined up to isomorphism. Notice
that we only consider injective occurrence morphisms, which is done in order to
avoid additional difficulties when considering the hierarchical case. On the other

hand, the morphism r of a rule ¢: L LTS R is allowed to be non-injective.



3 Hierarchical Graphs

Graphs as defined in the previous section are flat. If someone wished to imple-
ment, say, some complicated abstract data type by means of graph transforma-
tion, there would be no structuring mechanisms available, except for the possi-
bilities the graphs themselves provide. Thus, any structural information would
have to be coded into the graphs, a solution which is usually inappropriate and
error-prone. To overcome this limitation, we introduce graphs with an arbitrarily
deep hierarchical structure. This is achieved by means of special edges, called
frames, which may contain hierarchical graphs again. In fact, it turns out to
be useful to be even more general by allowing some frames to contain variables
instead of graphs. These structures will be called hierarchical graphs.

Let X be a set of symbols called variables. The class H(X') of hierarchical
graphs with variables in X consists of triples H = (G, F, cts) such that G is a
graph (the root of the hierarchy), F C Eg is the set of frame edges (or just
frames), and cts: F — H(X) U X assigns to each frame f € F its contents
cts(f) € H(X) U X. Formally, H(X) is defined inductively over the depth of
frame nesting, as follows. A triple H = (G, F|, cts) as above is in Ho(X) if F = {).
In this case, H may be identified with the graph G. For i > 0, H € H;(X) if
cts(f) € Hi—1(X) U X for every frame f € F. Finally, H(X) denotes the union
of all these classes: H(X) = J;5o Hi(X). (Notice that H;(X) C Hip1(X) for
all i > 0. We have Ho(X) C Hi(X) because an empty set of frames trivially
satisfies the requirement; using this, H;(X) C Hi+1(X) follows by an obvious
induction on i > 0.) The sets H(0) and H;(#) (i > 0) are briefly denoted by H
and H;, respectively. These variable-free hierarchical graphs are those in which
we are mainly interested.

Notice that, to avoid unnecessary restrictions, the definition of a hierarchical
graph H = (G, F, cts) does not impose any relation between the nodes and
edges of G and those of cts(f), f € F. Restrictions of this kind may be added
for specific application areas, but the results of this paper hold in general.

Ezample 1 (Queue graphs). As a running example, we show how queues and
their typical operations can be implemented using hierarchical graph transfor-
mation. Two kinds of frames are used to represent queues as hierarchical graphs:
Unary item frames contain the graphs stored in the queue; binary queue frames
contain a queue graph, which is a chain of edges connecting their begin point to
their end point, every node in between carrying an item frame.

Figure 1 shows two queue frames. Nodes are drawn as circles, and filled if
they are points. Edges are drawn as boxes, and connected to their attachments

(a) o e—>e |0 o o
g | LB 28

Fig. 1. Two queue frames representing (a) an empty queue (b) a queue of length 3



by lines that are ordered counter-clockwise, starting at noon. Frames have double
lines, and their contents is drawn inside.Plain binary edges are drawn as arrows
from their first to their second attachment (as in simple graphs). In our examples,
their labels do not matter, and are omitted. (In the item graphs, the arrowheads
are omitted too.) Frame labels are not drawn either, as queue and item frames
can be distinguished by their arity.

Note that item frames may contain graphs of any arity; in Figure 1 (b), they
have 1, 2, and no points, respectively.

Unless they are explicitly named, the three components of a hierarchical
graph H are denoted by H, Fy, and ctsy, respectively. The notations Vi, Fx,
atty, laby, py, and Ay are used as abbreviations denoting V4, Er7, atty,
labyz, pg, and Ay, respectively. Furthermore, we denote by X the set {f €
Fr | ctsp(f) € X} of variable frames of H and by

var(H) = ctsp(Xp) U U var(ctsu (f))
fE€EFu\XH

the set of variables occurring in H.

Let G and H be hierarchical graphs such that Ag N Ay = 0. The disjoint
union of G and H is denoted by G + H and yields the hierarchical graph K
such that K = G + H, Fx = Fg U Fy, and ctsg(f) equals ctsq(f) if f € Fg
and ctsy(f) if f € Fy. For a hierarchical graph G and a set S = {Hy,...,H,}
of hierarchical graphs, we denote G + Hy +---+ H, by G + > ;¢ H. (Notice
that, although the disjoint union of hierarchical graphs does not commute, this
is well defined as it does not depend on the order of Hy, ..., Hy,).

We will now generalize the concept of morphisms to the hierarchical case.
The definition is quite straightforward. Such a hierarchical morphism h: G — H
consists of an ordinary morphism on the topmost level and, recursively, hierar-
chical morphisms from the contents of non-variable frames to the contents of
their images. Naturally, only variable frames can be mapped to variable frames,
but they can also be mapped to any other frame carrying the right label.

Formally, let G, H € H(X). A hierarchical morphism h: G — H is a pair

h = (h, (hf)fepg\xg> Where

: G — H is a morphism, _
(f) € Fy for all frames f € Fg, where h(f) € X implies f € X, and
Ficetsa(f) — ctsar(h(f)) is a hierarchical morphism for every f € Fg\ Xg.

> >

For atoms a € Ag, we usually write h(a) instead of h(a). Furthermore, a hier-
archical morphism h: G — H for which G, H € H, is identified with h.

The composition h o g of hierarchical morphisms g: G — H and h: H — L
is defined in the obvious way. It yields the hierarchical morphism /: G — L such
that I = h o and, for all frames f € Fg \ Xg, I¥ = h9) 0 g/ The hierarchical
morphism g is injective if § is injective and, for all f € Fg \ Xg, g/ is injective.
It is surjective up to variables if § is surjective and, for all f € Fg \ Xg, g7 is
surjective up to variables. Finally, g is bijective up to variables if it is surjective up
to variables and injective. If G does not contain variables, we speak of surjective



and bijective hierarchical morphisms. A bijective hierarchical morphism is also
called an isomorphism, and G, H € H are said to be isomorphic, G = H, if there
is an isomorphism m: G — H.

Let H be the category whose objects are variable-free hierarchical graphs
and whose morphisms are the hierarchical morphisms h: G — H with G,H € ‘H
(which is indeed a category, as one can easily verify). The main result we are
going to establish in order to obtain a notion of hierarchical graph transformation
is that H has pushouts. For this, looking at the inductive definition of hierarchical
graphs and their morphisms, it is a rather obvious idea to proceed by induction
on the depth of the frame nesting. The induction basis is then provided by
the non-hierarchical case recalled in Section 2. In order to use the induction
hypothesis, we have to reduce the depth of a hierarchical graph in some way. This
can be done on the basis of a rather simple construction. Given a hierarchical
graph H € H;, we take the contents of its frames out of these frames (which,
thereby, become ordinary edges) and add them disjointly to H, thus obtaining
a hierarchical graph in H;_; (provided that ¢ > 0). Denoting this mapping by
p, we get the desired theorem, which is the main result of this section. It states
that the category H has pushouts, and the proof shows how to construct them
effectively.

Theorem 1. For every pair my: G — Hy and ms: G — Hs of morphisms in H
there are morphisms ny: Hy — H and ny: Ho — H in H (for some hierarchical
graph H ) such that (my,m2,n1,n2) is a pushout. Furthermore, (T, Mz, 71, T2)
is a pushout in the category of graphs.

Proof sketch. The proof works by induction on i, where Hy, Hy € H;. The case
1 = 0 is the non-hierarchical one, and it is easy to see that every pushout in the
category of non-hierarchical graphs and morphisms is a pushout in H as well.
Thus, let ¢ > 0. Extending ¢ to morphisms in the canonical way, one obtains
p(my) = (my: G —» Hy) and p(ms) = (mh: G' — H)) where H{, H) € H;_1.
By the induction hypothesis, this yields a pushout (m},mb,ni,n}) for some
n: Hp — H' (j € {1,2}). Now, it can be shown that n = ¢(n;) for hierar-
chical morphisms n;: H; — H, yielding a commuting square (mq, ms,nq, ns2).
Intuitively, the parts of H' which stem from the contents of a frame f in H; can
be stored in n’(f), turning this edge into a frame of the hierarchical graph H
constructed. The main part of the proof is to show that H and the hierarchical
morphisms n; obtained in this way are well defined.

Finally, one has to verify the universal pushout property of (mj,ms,n1,ns).
Let ly: Hi — L and lo: Hy — L be such that (my,mo,l;,l2) commutes and let
o(lj) = (I5: H' — L') for j € {1,2}. Then (m},my,l},15) commutes as well.
Therefore, the pushout property of (mj,m},n},n}) yields a unique morphism
I': H — L' such that I; = I’ on/. Again, I' can be turned into I: H — L with
I'"= () and l; = lon; for j € {1,2}. Furthermore, for k: H — L with k # [
we have ¢(k) # (1), which shows that [ is unique, by the uniqueness of I'. O

Notice that the proof of Theorem 1 yields a recursive procedure to construct
pushouts in H, based on the construction of pushouts in the case of ordinary
graph morphisms.



The construction in the proof of the theorem yields a corollary for the special
case where m; and ms are injective. Obviously, in this case the hierarchical
morphisms m) and m) in the proof are also injective. As a consequence, it
follows that (m{, mg, n’lm(f), n;nz(f)) is a pushout for every frame f € F. This
yields the following specialization of Theorem 1.

Corollary 1. Let my: G — Hy and mo: G — Hy be injective hierarchical mor-
phisms in H. Then, one can construct hierarchical morphisms ny: Hy — H and
no: Hy — H such that (m1,ma,n1,n2) is a pushout, as follows:

— 71 and Tiy are such that (M7, M2, N1,N2) is a pushout,
— for every frame f € Fg, n’f“(f) and ng”(f) are constructed recursively in
such a way that (m{,mg,nTl(f),nTZ(f)) s a pushout, and

— for every frame f € Fy, \mi(Fg) (i € {1,2}), n! is an isomorphism.

K3

Next, we shall see how pushout complements can be obtained. For simplicity,
we consider only the case where the two given hierarchical morphisms are both
injective. This enables us to make use of Corollary 1 in an easy way, whereas
the more general case would be unreasonably complicated as it required a hier-
archical version of the so-called identification condition [5].

Clearly, in order to ensure the existence of pushout complements, a hier-
archical version of the dangling condition must be satisfied. However, for the
hierarchical case it must also be required that, intuitively, no frame is deleted
unless its contents is deleted as well. Let Hy € H(X) and G, H € H (right be-
low, we shall only use the following definition for H; € H, but later on the more
general case H; € H(X) will turn out to be valuable, too). Two hierarchical
morphisms m: I — L and n: L — G satisfy the hierarchical dangling condition
(dangling condition, for short) if

— m and 7 satisfy the (non-hierarchical) dangling condition,
— for every frame f € Fy, \ (m(Fr)U X1), n/ is bijective up to variables, and
— for every frame f € Fr \ X7, m? and n™(/) satisfy the dangling condition.

Notice that this condition coincides with the usual one in the special case
where m and n are ordinary graph morphisms, because in this case only the first
requirement is relevant as there are no frames. Intuitively, the second part of
the condition states that, as mentioned above, a frame can be deleted only if its
contents is deleted as well (at least in the case where L € #; the more general
case is not yet our concern). As the proof below shows, this corresponds to the
last item in Corollary 1 (and is thus indeed necessary).

Theorem 2. Let my: G — Hy and ny: Hi — H be injective hierarchical
morphisms in H. Then there are hierarchical morphisms ms: G — Hs and
na: Hy — H such that (mq,ma,n1,n2) is a pushout, if and only if m1 and ny
satisfy the dangling condition. In this case ms and no are uniquely determined.

Proof. Let G € H;. Again, we proceed by induction on i. Clearly, if ms and nq
exist, then my must be injective since njom; = ngpomy is injective. By Corollary 1
this means that my and no exist if and only if they can be constructed in such
a way that the following are satisfied:



(1) m3 and M3 are such that (a7, Mz, 71, M) is a pushout,

(2) for every frame f € Fg, the hierarchical morphisms mJ and n;nz(f)

constructed recursively, so that (mf, mg, n;nl(f),ng”(f))

are
is a pushout, and
(3) for every frame f € F, \ m;(Fg) (i € {1,2}), n{ is an isomorphism.

As m; and n; satisfy the dangling condition, M5 and 75 exist and are uniquely
determined (since T and 77 satisfy the dangling condition for non-hierarchical
morphisms), and (3) is satisfied for i = 1 (because of the second part of the
dangling condition). Furthermore, the induction hypothesis yields the required
hierarchical morphisms mg and ng”(f) satisfying (2), for every frame f € Fg.
Together with the remaining requirement in (3) (i.e., the case where i = 2) this
determines my and ns up to isomorphism, thus finishing the proof. O

4 Hierarchical Graph Transformation

Based on the results presented in the previous section we are now able to define
rules and their application in the style of the double-pushout approach. From

now on, a rule t: L L T 5 R is assumed to consist of two hierarchical morphisms
l:I - Landr:I — R, where L,I, R € ‘H and [ is injective. The hierarchical
graphs L, I, and R are called the left-hand side, interface, and right-hand side.

The application of rules is defined by means of the usual double-pushout
construction, with one essential difference. In order to make sure that transfor-
mations can take place on an arbitrary level in the hierarchy of frames (rather
than only on top level) one has to employ recursion.

Definition 1 (Transformation of hierarchical graphs). Let t: L LTLR
be a rule. A hierarchical graph G € H is transformed into a hierarchical graph
H € H by means of £, denoted by G =; H, if one of the following holds:

(1) There is an injective hierarchical morphism o: L — G, called an occurrence
morphism, such that there are two pushouts
l r
R
H

L+—]—
G K
in H, or

(2) H = G via some isomorphism m: G — H, and there is a frame f € Fg
such that ctsq(f) =¢ ctsa(m(f)) and ctsg(m(f')) = ctsa(f') for all f' €

Fe \{f}.

For a set T of rules, we write G =7 H if G =; H for some t € T.

— K —»
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o—e[—0 O ° <—o—ooo—oo—ooo—o—>g—1 %—g
01 2 3|45 ()6 7 8|9 01 2 3|45 ()6 7 8|9 5 |6 81 9

° T
i S

d as

0

Fig. 2. The concatenation rule and its application

Ezample 2 (Concatenation of queues). In Figure 2, we show a concatenation rule
for queues that identifies two queue frames and concatenates their contents, and
a transformation with this rule. The digits in the rule indicate how the nodes of
the graphs have to be mapped onto each other.

It should be noticed that the definition of transformation steps requires oc-
currence morphisms to be injective. Therefore, we need three variants of this
rule where node 1 is identified with node 2, or 7 with 8, or both 1 with 2 and 7
with 8. (Similar variants are needed for the rules in the subsequent examples.)

Since occurrence morphisms are injective, we get the following theorem as a
consequence of Theorems 1 and 2.

Theorem 3. Lett: LTS R be a rule, G € H, and o: L — G an occurrence
morphism. Then the two pushouts in Definition 1(1) exist if and only if o satisfies
the dangling condition.! Furthermore, in this case the pushouts are uniquely
determined up to isomorphism.

Proof. By Theorem 2 the pushout on the left exists if and only if the dangling
condition is satisfied, and if it exists then it is uniquely determined up to iso-
morphism. Finally, by Theorem 1 the pushout on the right always exists, and it
is a general fact known from category theory that a pushout (m1,ms,ni,mn2) is
uniquely determined (up to isomorphism) by the morphisms m; and ms. ad

The reader should also notice that, as a consequence of the effectiveness of
the results presented in Section 3, given a tranformation rule, a hierarchical
graph, and an occurrence morphism satisfying the dangling condition, one can
effectively construct the required pushouts.

UIf the rule t: L& TSR in question is clear we say that o satisfies the dangling
condition if [ and o do.



Unfortunately, the notion of transformation of hierarchical graphs is not yet
expressive enough to be satisfactory for certain programming purposes. There
are some natural effects that one would certainly like to be able to implement as
single transformation steps, but which cannot be expressed by rules. Consider
the example of queues, for instance. It should be possible to design a rule dequeue
which removes the first item in a queue, regardless of its contents. However, this
is not possible as the dangling condition requires the occurrence morphism to
be bijective on the contents of deleted frames. Conversely, another rule enqueue
should take an item frame, again regardless of its contents, and add it to the
queue—preferably without affecting the original item frame. In order to imple-
ment this, one has to circumvent two obstacles. First, hierarchical morphisms
preserve the frame hierarchy, which implies that, intuitively, rules cannot move
frames across frame boundaries. Second, by now it is simply not possible to
duplicate frames together with their contents.

This is where variables start to play an important role. The idea is to turn
from rules to rule schemata and to transform hierarchical graphs by applying
instances of these rule schemata. In order to make sure that an occurrence mor-
phism satisfying the dangling condition always yields a well-defined transforma-
tion, we restrict ourselves to left-linear rule schemata. For this, a hierarchical
graph H is called linear if no variable occurs twice in H.

A wvariable instantiation for H € H(X) is a mapping +: var(H) — H. The
application of ¢ to H is denoted by Hz. It turns every variable frame f € Xy into
a frame whose contents is 1(cts g (f)). By the definition of hierarchical morphisms,
for every hierarchical morphism h: G — H such that G € H and every variable
instantiation 2 for H, h can as well be understood as a hierarchical morphism
from G to H:. In the following, this hierarchical morphism will be denoted by hz.
Based on this observation, rule schemata and their application can be defined.

Definition 2 (Transformation by rule schemata). A rule schema, denoted

by t: L Lr 5 R, is a pair consisting of hierarchical morphisms [: I — L and
r: I — R, where L, R € H(X), I € H, L is linear, and var(R) C var(L). If ¢ is

a variable instantiation for L then the rule #': L1 T 7% R1 is an instance of t.

A rule schema t transforms G € H into H € H, denoted by G =; H,
if G =4 H for some instance t' of ¢t. For a set T of rule schemata we write
G=rHifG=; HforsometecT.

Ezample 8 (The rule schemata enqueue and dequeue). In Figure 3, we show
a rule schema that inserts a framed item graph at the tail of a queue graph,
and a transformation with that rule. The item frame contains the variable z.
Otherwise, it would not be possible to duplicate the item graph, and to move it
into the queue frame.

In Figure 4, we show a rule schema that removes the first item frame in a
queue graph. The item graph is denoted by the variable z so that it can be
removed entirely.

For practical purposes Definition 2 is not very convenient because there are
infinitely many instances of a rule schema as soon as it contains at least one



Fig. 4. The rule schema dequeue

variable. Therefore, the naive approach to implement =; by constructing all
its instances and then testing each of them for applicability does not work.
However, there is quite an obvious way how one can do better than that. Consider
some linear hierarchical graph L € H(X') and a hierarchical graph G € H, and
let 0: L — G be a hierarchical morphism. Then, due to the linearity of L, o
induces a variable instantiation 4,: var(L) — H and an occurrence morphism
inst(o): L1, — G, as follows. For all x € var(L), if there is some f € X, such
that ctsp(f) = = then 1,(x) = ctsg(o(f)). Otherwise, #,(x) = 1,7(z), where
f € Fr \ Xy is the unique frame such that x € wvar(ctsy(f)). Furthermore,
inst(o) = o and for all f € Fy,, inst(o)’ is the identity on ctsg(o(f)) if f € X1,
and inst(0)” = inst(of) otherwise.

The theorem below states that the transformations given by a rule schema

t: L& TS R can be obtained by considering occurrence morphisms o: L — G
that satisfy the dangling condition.

Theorem 4. Let t: L< T2 R be a rule schema and G eH.

1. If o: L — G is an occurrence morphism satisfying the dangling condition,
then inst(o) is an occurrence morphism for L, satisfying the dangling con-
dition.



2. If v: var(L) — H is a variable instantiation and q: Lr — G is an occurrence
morphism satisfying the dangling condition, then 1 = 1, and ¢ = inst(0)
(up to isomorphism) for some occurrence morphism o: L — G satisfying the
dangling condition.

The proof by induction on i, where L € H;(X), is rather straightforward and
is therefore skipped in this short version.

5 Flattening

A natural operation on hierarchical graphs is the flattening operation which
removes the hierarchy by recursively replacing every frame with its contents.
For this, we use the well-known concept of hyperedge replacement (see [9, 4]) in
a slightly generalized form. Flattening is similar to (a recursive version of) the
operation ¢ considered in Section 3, but it removes all frames and identifies their
attached nodes with the corresponding points of their contents. If the numbers
of attached nodes and points differ, the additional nodes of the longer sequence
are treated like ordinary nodes. In addition, flattening forgets about the points
of its argument, so that the resulting graph is “unpointed”.

It will be shown in this section that, under modest assumptions, hierarchical
graph transformation is compatible with the flattening operation: A transforma-
tion G =4 H induces a corresponding transformation G' =4 H', where G', H',
and t' are the flattened versions of G, H, and %, respectively.

In order to proceed, we first need to define hyperedge replacement on hierar-
chical graphs. Let H be a hierarchical graph and consider a mapping o: £ — H
such that £ C Eg, called a hyperedge substitution for H. Hyperedge replacement
yields the hierarchical graph H{[o] obtained from H + ) o(e) by deleting the
edges in E and identifying, for all e € E, the ith node of atty(e) with the ith
point of ps(), for all i such that both these nodes exist.

Finally, for all H € #, let fl(H) = HJ[o] where o: Fir — #H is given induc-
tively by o(f) = fi(ctsu(f)) for all f € Fr. Then, the flattening of H yields the
graph flat(H) = (Vaca), Eacay, ottacey, labacy, ). For most of the considera-
tions below, it is sufficient to study the mapping fi, which removes the hierarchy
without forgetting points, instead of flat.

We can flatten morphisms as well. Consider a hierarchical morphism h: G —
H with G,H € H and let 0 = flo ctsqg and 7 = fl o ctsy. Then, fi(h) is
the morphism m: fi(G) — fl(H) defined inductively, as follows. For all a €
Aqa), if a € Ag then m(a) = h(a), and if a € A,y for some f € Fg then
m(a) = fi(h')(a). Furthermore, flat(h) = (m': flat(G) — flat(H)) is given by
m'(a) = m(a) for all @ € Aga (). (Notice that, although the two cases in the
definition of m(a) above intersect, they are consistent with each other.)

Above, it was mentioned that the main result of this section holds only
under a certain assumption. The reason for this is that a morphism flat(h)
may be non-injective although h: G — H itself is injective. This is caused by
the fact that building fI(G) may identify some nodes in Vi because they are



incident with a frame whose contents has repetitions in its point sequence. If
the attached nodes of the frame are distinct, hyperedge replacement identifies
them (by identifying each with the same point of the contents). Thus, flattening
may turn an occurrence morphism into a non-injective morphism, making it
impossible to apply the corresponding flattened rule. In fact, the dual situation
where there are identical attached nodes of a frame while the corresponding
points of its contents are distinct, must also be avoided. The reason lies in the
recursive part of the definition of =;. If a rule is applied to the contents of some
frame, but the replacement of the frame identifies two distinct points of the
contents because the corresponding attached points of the frame are identical,
the flattened rule cannot be applied either.

For this, call a hierarchical graph H € H identification consistent if every
frame f € Fg satisfies the following;:

(1) For all4,j € [min(|attm(f)], pctsH(f)|)], att (f)(4) = attg(f) () if and only

if Petsy (f) (’L) = Petsu(f) (.7)7 and
(2) ctsp(f) is identification consistent.

The reader ought to notice that identification consistency is preserved by

the application of a rule ¢: L LIS Rif R is identification consistent and r is
injective. Thus, if we restrict ourselves to systems with rules of this kind then
all derivable hierarchical graphs are identification consistent (provided that the
initial ones are).

It is not very difficult to verify the following two lemmas.

Lemma 1. For every injective hierarchical morphism h: G — H (G,H € H)
such that H is identification consistent, fl(h) is injective.

Lemma 2. If (mi,m2,n1,n2) is a pushout in H, then (flat(mi), flat(ms),
flat(nq), flat(n2)) is a pushout as well.

As a consequence, one obtains the main theorem of this section: If a rule can
be applied to an identification consistent hierarchical graph, then the flattened
rule can be applied to the flattened graph, with the expected result.

Theorem 5. Let t: L& TR be a rule and let t': L' & T' 5 R’ be the rule
given by I' = flat(l) and r' = flat(r). For every transformation G = H such
that G is identification consistent, there is a transformation flat(G) = flat(H).

Proof sketch. Consider a transformation step G =; H. Due to the definition of
= there are two cases to be distinguished. If there is a double-pushout dia-
gram as in the first case of Definition 1, Lemmas 1 and 2 yield a corresponding
“flattened” diagram. The second case to be considered is the recursive one, i.e.,
the transformation takes place inside a frame f. In this case it may be assumed
inductively that the diagram corresponding to a transformation of the flattened
contents of f exists. Due to the assumed identification consistency the flattened
contents of f is injectively embedded in flat(G). Therefore, the given diagram
can be extended to a larger pushout diagram in the required way, retaining the
injectivity of the occurrence morphism. O



It should be noticed that the flattening process implies a loss of crucial struc-
tural information so that there is no chance to prove the converse of the theorem.

6 Conclusion

We conclude this paper by briefly mentioning some related work and possible
directions for future research.

Pratt [15] was probably the first to consider a concept of hierarchical graph
transformation, where he used a certain kind of node replacement to define the
semantics of programming languages. His graph concept was extended in [6]
by allowing edges between subgraphs contained in different nodes, but without
defining transformation.

A different concept of graph nesting is given by the abstraction mechanisms
of the (old) graph transformation system Acca [12] and the multi-level graph
grammars of [13], providing flat graphs with several views which are related by
a rigid layering and a partial inclusion ordering, respectively.

An indirect nesting concept can be found in the framework of [16] and the new
Aqa system [7], where nesting is realized by labels and attributes, respectively.

The idea of using variables to extend the double-pushout approach with
non-local effects, like copying and removal of subgraphs, is also followed in the
so-called substitution-based approach to graph transformation [14] (working on
flat hypergraphs).

One direction for future work on hierarchical graph transformation is to lift
to the hierarchical setting the classical results of the double-pushout approach,
like sequential and parallel commutativity, results on parallelism, concurrency
and amalgamation, etc. Another important task is to combine hierarchical graph
transformation in an orthogonal way with concepts for structuring and control-
ling systems of rules. As mentioned in the introduction, several such concepts
(mainly for flat graphs) have recently been proposed in the literature.

A further topic of research is to develop hierarchical graph transformation
towards object-oriented graph transformation, as outlined in [11]. There the idea
is to restrict the visibility of frames so that only rules designated to some frame
type may inspect or update the contents of frames of this type. Such frame types
come close to “classes”, and the designated rules correspond to “methods”. In
this way frames can be seen as objects of their types that can only be manipulated
by invoking the methods of the class.
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