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SUMMARY

We extend Locally Refined (LR) B-splines to Locally Refined T-splines (LR T-splines) within the Bézier
extraction framework. This discretisation technique combines the advantages of T-splines to model the
geometry of engineering objects exactly with the ability to flexibly carry out local mesh refinement. In
contrast to LR B-splines, LR T-splines take a T-mesh as input instead of a tensor-product mesh. The LR
T-mesh is defined and examples are given how to construct it from an initial T-mesh by repeated meshline
insertions. The properties of LR T-splines are investigated by exploiting the Bézier extraction operator,
including the nested nature, linear independence and the partition of unity property. A technique is presented
to remove possible linear dependencies between LR T-splines. Like for other spline technologies, the Bézier
extraction framework enables to fully use existing finite element datastructures. Copyright c© 2017 John
Wiley & Sons, Ltd.

Received . . .

KEY WORDS: LR T-splines; LR T-mesh; Bézier extraction; partition of unity property; linear
dependency

1. INTRODUCTION

In isogeometric analysis (IGA), NURBS basis functions, which are commonly used in the

Computer Aided Design (CAD) model, are directly employed in the computational model [1].

The approximation error that that can arise from the geometry description is reduced, or even

completely removed, which is unlike when curved surfaces are modelled using standard finite

element technology. However, the standard manner to extend B-splines or NURBS, which are

essentially one-dimensional concepts, to two or three dimensions is not sufficiently flexible. Indeed,

the tensor-product structure which is used to define meshes that use B-splines or NURBS in two or

three dimensions, precludes local mesh refinement.

To remove this deficiency, various local refinement strategies have been developed, including

T-splines [2–4], hierarchical and truncated T-splines [5–7], LR B-splines [8–10], hierarchical and

truncated B-splines [11–14], and PHT-splines [15–17].

Locally Refined (LR) B-splines were introduced by Dokken et al. [8] and were subsequently

studied in [9, 10, 18, 19]. The basic idea of the LR B-splines is to locally enrich the space of

basis functions by replacing coarse grid B-splines by fine grid B-splines, thereby breaking the

above mentioned tensor-product structure. Further, an a posteriori error estimator has been proposed

[20, 21], which enables to obtain super-convergence rates. Finally, Locally Refined Non-Uniform

Rational B-Splines (LR NURBS) have been developed and used in contact analysis as an extension

to LR B-splines [22].
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2 L. CHEN

LR B-splines and LR NURBS are constructed by meshline insertions into an initial B-spline or

NURBS mesh with a tensor-product structure. While more flexible than B-spline or NURBS meshes

in the sense that local mesh refinement is possible, an even more flexible representation of the object

can be desirable. To achieve such an enhanced flexibility, we extend Locally Refined B-splines to

Locally Refined T-splines (LR T-splines), which are directly constructed from an initial T-mesh. To

implement the technology into any existing finite element codes, the Bézier extraction framework

will be employed. This framework also enables to determine important properties of LR T-splines,

like the nested nature, the linear independence and the partition of unity property, and it provides a

way to remove possible linear dependencies in a straightforward manner.

After a concise summary of T-splines and Bézier extraction in Section 2 and an introduction into

LR-splines, LR T-splines are defined, including the update of anchors after meshline insertions. A

central part of the manuscript is the development of a Bézier extraction framework for LR T-splines

after subsequent meshline insertions. Examples are given to illustrate how the methodology works.

An in-depth discussion of the properties of LR T-splines follows in Section 6.

Figure 1. Example of a quadratic T-spline mesh. The object in the index domain (i, j), the physical domain

(x1, x2), the parameter domain
(

ξ1, ξ2
)

is given.

2. T-SPLINES AND BÉZIER EXTRACTION

In this section we review some basic concepts of T-splines and Bézier extraction [23–25].

2.1. T-splines

The fundamental object in a T-spline discretisation is the T-mesh, which is a quadrilateral

mesh in the physical space. In the T-mesh, T-junctions are allowed to split element edges.

An example of a quadratic T-spline mesh is given in Figure 1. Conceptually, T-spines can be

considered as a generalisation of B-splines. A univariate B-spline is defined on a knot vector

Ξ = {ξ1, ξ2, · · · , ξn+p+1}. For standard B-splines we obtain n linearly independent basis functions

Ni,p (ξ) of degree p using the Cox-de Boor recursion formula [26, 27]. The extension to the multi-

variate case follows in a straightforward manner by exploiting the tensor-product structure.

The concept of constructing basis functions by their local knot vectors is also applicable to T-

splines. In a T-mesh, several anchors are prescribed in the index domain and in the parameter

domain, Figure 1. For each anchor, the local knot vector is defined by radiating rays in two

parametric directions [25]. The intersections on the left and the right are collected to construct

the local knot vector of anchor i, Ξi (i = 1, · · · , n). Now, n denotes the number of anchors in a

T-mesh. A multi-variate blending function Nα

(

ξ1, ξ2
)

is attached to each anchor, see Reference

[25] for the construction of local knot vectors and blending functions. A T-spline surface S
(

ξ1, ξ2
)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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LOCALLY REFINED T-SPLINES 3

is subsequently constructed by the anchors and the blending functions:

S
(

ξ1, ξ2
)

=
∑

α∈A

PαNα

(

ξ1, ξ2
)

(1)

where A is the index set of anchors. In a T-mesh the elements are non-zero parametric areas defined

by the edges of the T-mesh and the continuity reduction lines, Figure 1.

2.2. Bézier extraction

Bézier extraction allows to cast T-spline technology in a standard finite element data structure, while

preserving their exact representation [24]. We divide the domain into E elements with n anchors.

The local knot vectors of anchor i are Ξ1
i and Ξ2

i . Then, the blending function Ni of anchor i can

be expressed as:

Ne
i

(

ξ1, ξ2
)

= [Ce
i ]

TBe
(

ξ1, ξ2
)

(2)

over element e. Be
(

ξ1, ξ2
)

contains the element-local Bernstein shape functions with dimension

(p+ 1)2 × 1 [25]. Ce
i represents the Bézier extraction operator for anchor i over element e [7].

We consider T-splines with the same polynomial degree p in the ξ1 and ξ2 parametric directions.

Similarly, the Bézier extraction operator for anchor i over E elements can be derived to read:

Ci =







C1
i

...

CE
i






(3)

with E (p+ 1)2 × 1 the dimension of Ci. Considering the local support property of Ni the matrix

Ci will have a sparse character.

Subsequently, the Bézier extraction operator of n anchors is also cast in a matrix form:

N
(

ξ1, ξ2
)

= CB
(

ξ1, ξ2
)

=







N1

(

ξ1, ξ2
)

...

Nn

(

ξ1, ξ2
)






=







CT
1

...

CT
n













B1

...

BE






(4)

in which C has the dimension n× E (p+ 1)
2

and B
(

ξ1, ξ2
)

has the dimension E (p+ 1)
2 × 1.

Finally, the blending functions with support over element e are expressed as:

Ne

(

ξ1, ξ2
)

= CeBe

(

ξ1, ξ2
)

(5)

with Ce the element Bézier extraction operator.

3. FUNDAMENTALS OF LR B-SPLINES

The basic idea of LR B-splines is to locally enrich the space of basis functions by replacing coarse

grid B-splines by fine grid B-splines, such that it breaks the tensor-product structure. An LR B-spline

surface S is built by a set of control points Pα and LR B-spline basis functions:

S
(

ξ1, ξ2
)

=
∑

α∈A

PαBα

(

ξ1, ξ2
)

γα (6)

with Bα

(

ξ1, ξ2
)

the LR B-spline basis function, which is computed through the Cox-de Boor

formula using local knot vectors [10]. γα denotes the scaling weight, which enables the LR B-

splines to satisfy the partition of unity property.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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4 L. CHEN

(a) LR mesh (b) minimal support (c) no minimal support

Figure 2. Example of an LR mesh in the parameter domain. The green line indicates a meshline insertion
into the tensor mesh. (a) LR mesh constructed from a tensor mesh; (b) B-spline defined over the grey area

with minimal support; (c) B-spline defined over the grey area without minimal support.

3.1. A locally refined mesh

A Locally Refined mesh (LR mesh) M is generated by a series of meshline insertions. As stated,

this breaks the tensor-product structure and enables a local mesh refinement. Figure 2(a) gives an

example. Initially, a quadratic tensor mesh (box mesh) is constructed by open knot vectors in the

ξ1 and ξ2 parametric directions. Then, green mesh lines, denoted by ε, are inserted into the tensor

mesh. They must:

(i) not stop in the centre of an element (knot span);

(ii) insert one line at a time;

(iii) span across at least p+ 2 knots.

A meshline insertion can be either a new meshline, an elongation of an existing meshline, a joining

of two existing meshlines, or increasing the multiplicity of an existing line.

On the basis of an LR mesh M, we can define an LR B-spline space B, if a function B: R2 → R

in B satisfies:

• BΞ

(

ξ1, ξ2
)

= γBΞ1

(

ξ1
)

BΞ2

(

ξ2
)

is a weighted B-spline.

• B has a minimal support on M, Figures 2(b) and 2(c). Minimal support means that no other

meshline traverses the interior of the support of B [10].

Figure 3. B-spline with the local knot vector Ξ1 split into two B-splines with respective local knot vectors

Ξ
1
1 and Ξ

1
2, by a knot insertion at ξ1 = 3.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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LOCALLY REFINED T-SPLINES 5

3.2. Local refinement of B-splines

The basic idea of locally refined B-splines is to maintain the minimal support property of LR B-

splines after inserting meshlines into an LR mesh M. This refinement is realised by knot insertions

in each parametric direction. As an example we take a knot insertion in the ξ1 parametric direction.

We consider an LR B-spline which is defined by a local knot vector Ξ1. A new knot vector ξ̂ is

inserted in Ξ1, yielding two additional local knot vectors Ξ1
1 and Ξ1

2:

Ξ1 =
[

ξ11 , ξ
1
2 , · · · , ξ

1
i−1, ξ1i , · · · , ξ

1
p+1, ξ

1
p+2

]

Ξ1
1 =

[

ξ11 , ξ
1
2 , · · · , ξ

1
i−1, ξ̂, ξ

1
i , · · · , ξ

1
p+1

]

Ξ1
2 =

[

ξ12 , · · · , ξ
1
i−1, ξ̂, ξ

1
i , · · · , ξ

1
p+1, ξ

1
p+2

]

(7)

The LR B-spline in the ξ1 parametric direction is then given by:

γBΞ1 = γα1BΞ
1

1

+ γα2BΞ
1

2

(8)

where γ is the scaling weight of BΞ1 , α1 and α2 are the refinement operators [10], γBΞ1 denotes

the old LR B-spline, and γα1BΞ
1

1

and γα2BΞ
1

2

represent the new LR B-splines. Figure 3 illustrates

the refinement.

(a) full span (b) minimum span (c) structured mesh

Figure 4. Different refinement strategies for LR B-splines (the green lines indicate meshline insertions): (a)
full span, which splits all B-splines with support over one element; (b) minimum span, which splits one
B-spline with support over one element; (c) structured mesh, which splits all knot spans constructing one

B-spline. Options (a) and (b) refine an element, while option (c) refines a B-spline.

There exist different refinement strategies for LR B-splines [10], see Figure 4, which shows the

full span and minimal span refinement strategies, which are built on the assumption of element

refinement, and structured mesh refinement, which refines the LR B-spline function itself rather

than elements. We will come back to the different refinement strategies in Section 5.

4. LR T-SPLINES

4.1. Definitions

The introduction of Locally Refined T-splines (LR T-splines) is now relatively straightforward. We

consider an initial T-mesh with n anchors. Each anchor is associated with a local knot vector

Ξi (i = 1, · · · , n) and a blending function Ni

(

ξ1, ξ2
)

. We restrict the initial T-mesh to be a

structured T-mesh with a nested spline space, such as a semi-standard T-spline mesh.

Definition 1. The Locally Refined T-mesh (LR T-mesh) Tn is a box mesh which results from a

series of single meshline insertion {εi}
n
i=1

, starting from an initial T-mesh T0, i.e. Tn ⊃ Tn−1 ⊃
· · · ⊃ T1 ⊃ T0. Each intermediate state Ti+1 = {Ti ∪ εi} is also a box mesh.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
Prepared using nmeauth.cls DOI: 10.1002/nme



6 L. CHEN

(a) initial T-mesh T0 (b) LR T-mesh T

Figure 5. Example of an LR T-mesh in the parameter domain (the green lines indicate meshline insertions
in the initial T-mesh).

(a) minimal support (b) without minimal support

Figure 6. Example of blending functions (defined over the grey area) with and without minimal support on
an LR T-mesh T . The green lines indicate meshline insertions into the initial T-mesh T0.

Definition 2. In an LR T-mesh, elements are non-zero parametric areas defined by the edges of a

T-mesh, by continuity reduction lines and by inserted meshlines, Figure 5(b).

Definition 3. T is an LR T-mesh. A function N : R2 → R is then called an LR T-spline blending

function on T if:

• NΞ

(

ξ1, ξ2
)

= γNΞ1

(

ξ1
)

NΞ2

(

ξ2
)

is a weighted blending function.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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LOCALLY REFINED T-SPLINES 7

• N has a minimal support on T , see Figure 6. Here, the term minimal support implies that

there is no other meshline or continuity reduction line that traverses the interior space of N .

The union of LR T-spline functions N is called an LR T-spline space N , N = {Ni : suppNi ∈ T },

T being the T-mesh in the parameter domain.

Definition 4. A meshline insertion ε in an LR T-mesh Tn is either

(i) a new meshline,

(ii) an elongation of an existing meshline or a continuity reduction line,

(iii) a joining of two existing meshlines or two existing continuity reduction lines,

(iv) a joining of an existing meshline and a continuity reduction line,

(v) increasing the multiplicity of an existing line, including existing meshlines and continuity

reduction lines.

Remark 1: When a meshline insertion is an elongation or a joining of existing meshlines or

continuity reduction lines, we use the union of the meshline, the existing meshlines and the

continuity reduction lines to perform the LR T-spline splitting.

Remark 2: For an LR T-mesh, the meshline insertions should meet the following requirements:

(i) Pass through an element (knot span),

(ii) Insert one meshline at a time,

(iii) Span across at least p+ 2 knots.

Remark 3: The initial T-mesh is defined as a rectangular tiling of a region in R
2. Classically, the

initial T-mesh is refined by inserting new anchors (vertex T-grid). Herein, we refine this initial T-

mesh in the parameter domain by meshline insertions like for the LR B-splines. Thus, the refinement

is directly related to the sequence of splines space. T-splines, LR B-splines and LR T-splines are

related approaches to local refinement of B-splines. We open up the possibility to start from a T-

spline type vertex mesh but driving the LR B-spline type refinement in the parameter domain [8].

For completeness, we also consider Locally Refined Rational T-splines, which are defined by:

Rα (ξ) =
wαNα

(

ξ1, ξ2
)

W (ξ1, ξ2)
=

wαNα

(

ξ1, ξ2
)

∑

α∈A
wαNα (ξ1, ξ2)

(9)

where Nα

(

ξ1, ξ2
)

is the standard LR T-spline blending function, A is the index set of anchors and

wα denotes the weight of anchor α. For LR rational T-splines the LR T-spline surface is defined as:

S
(

ξ1, ξ2
)

=
∑

α∈A

PαRα

(

ξ1, ξ2
)

γα (10)

where Pα =
(

x1α, x
2
α, wα

)

contains the coordinates of anchor α. The weighted coordinates of

anchor α are Pw
α =

(

wαx
1
α, wαx

2
α, wα

)

. γα represents the scaling weight of Rα

(

ξ1, ξ2
)

, see

Section 5 for details.

4.2. Update of anchors after meshline insertions

A meshline is defined by its parameter values [10]. For instance, a horizontal line is defined as:

ε =
[

ξ1α, ξ
1
β

]

× ξ2η and a vertical line as: ε = ξ1η ×
[

ξ2α, ξ
2
β

]

. In Figure 7 we give an example of

meshline insertions into an LR T-mesh of an even degree. Figure 7(a) displays the initial T-mesh T0,

while Figures 7(b)-(d) represent LR T-meshes T after meshline insertions. Figure 7(b) represents

the case of an elongation of the continuity reduction line ξ15 ×
[

ξ24 , ξ
2
8

]

by a meshline ξ15 ×
[

ξ23 , ξ
2
4

]

.

Figure 7(c) indicates the case of a new meshline insertion, ξ17 ×
[

ξ21 , ξ
2
4

]

. Figure 7(d) finally presents

the case of a joining of the existing meshline ξ17 ×
[

ξ21 , ξ
2
4

]

and the continuity reduction line

ξ17 ×
[

ξ27 , ξ
2
10

]

by a meshline ξ17 ×
[

ξ24 , ξ
2
7

]

.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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8 L. CHEN

(a) initial T-mesh T0 (b) elongate a continuity reduction line

(c) insert a new meshline (d) join a meshline and a continuity reduction line

Figure 7. Determination of anchors for an LR T-mesh after meshline insertions (quadratic case). The anchors
are given in the parameter domain and in the index domain. Anchors deleted after meshline insertions are

shown in red.

For an LR T-mesh T0, either of an even degree or of an odd degree, the intermediate LR T-

mesh after meshline insertions {εi}
m
i=1

, is indicated by Ti+1 = {Ti ∪ εi}. The anchors for each

intermediate LR T-mesh Ti+1 are then updated as follows:

S1 Determine the parameter values of the inserted meshline εi: horizontal line, εi =
[

ξ1α, ξ
1
β

]

×

ξ2η; vertical line, εi = ξ1η ×
[

ξ2α, ξ
2
β

]

. The type of meshline insertion is given in Definition 4.

S2 Check for the local knot vectors of each anchor whether they are traversed by the meshline εi.
If so, delete the anchor and split the local knot vector of the anchor by εi in order to introduce

new anchors, see Figures 7(b) and 8(b).

In Figure 7(b), a vertical meshline is introduced by an elongation of a continuity reduction

line: εi = ξ15 ×
[

ξ23 , ξ
2
8

]

. The local knot vectors of anchor A are Ξ1
A =

{

ξ13 , ξ
1
4 , ξ

1
6 , ξ

1
8

}

and

Ξ2
A =

{

ξ22 , ξ
2
3 , ξ

2
4 , ξ

2
5

}

. While the meshline εi is not included in the interior space confined

by Ξ1
A and Ξ2

A, anchor A should be kept. This is different for anchor B, with the local knot

vectors Ξ1
B =

{

ξ13 , ξ
1
4 , ξ

1
6 , ξ

1
8

}

and Ξ2
B =

{

ξ23 , ξ
2
4 , ξ

2
5 , ξ

2
6

}

. Since the meshline εi is included in

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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LOCALLY REFINED T-SPLINES 9

(a) initial cubic T-mesh T0 (b) inset a new meshline

Figure 8. The update of anchors for a cubic LR T-mesh after a meshline insertion. The anchors are shown in
the parameter domain and in the index domain.

the interior space confined by Ξ1
B and Ξ2

B , anchorB must be deleted and the local knot vectors

must be split to introduce new anchors, C and D, which have the local knot vectors: Ξ1
C =

{

ξ13 , ξ
1
4 , ξ

1
5 , ξ

1
6

}

, Ξ2
C =

{

ξ23 , ξ
2
4 , ξ

2
5 , ξ

2
6

}

, and Ξ1
D =

{

ξ14 , ξ
1
5 , ξ

1
6 , ξ

1
8

}

, Ξ2
D =

{

ξ23 , ξ
2
4 , ξ

2
5 , ξ

2
6

}

,

respectively.

In Figure 8(b), a vertical meshline, εi = ξ1α ×
[

ξ24 , ξ
2
9

]

, is inserted. The local knot vectors of

anchor A are Ξ1
A =

{

ξ15 , ξ
1
6 , ξ

1
7 , ξ

1
8 , ξ

1
9

}

and Ξ2
A =

{

ξ26 , ξ
2
7 , ξ

2
8 , ξ

2
9 , ξ

2
10

}

. The meshline εi is

not included in the interior space confined by Ξ1
A and Ξ2

A, so that anchor A must be kept.

The meshline εi is included in the local knot vectors of anchors B and F , and these anchors

therefore have to be deleted. New anchors should be introduced: C, D and E. For these

anchors, the local knot vectors are: Ξ1
C =

{

ξ16 , ξ
1
7 , ξ

1
α, ξ

1
8 , ξ

1
9

}

, and Ξ2
C =

{

ξ24 , ξ
2
5 , ξ

2
6 , ξ

2
7 , ξ

2
8

}

,

Ξ1
D =

{

ξ14 , ξ
1
5 , ξ

1
6 , ξ

1
7 , ξ

1
α

}

and Ξ2
D =

{

ξ24 , ξ
2
5 , ξ

2
6 , ξ

2
7 , ξ

2
8

}

, and Ξ1
E =

{

ξ15 , ξ
1
6 , ξ

1
7 , ξ

1
α, ξ

1
8

}

and

Ξ2
E =

{

ξ24 , ξ
2
5 , ξ

2
6 , ξ

2
7 , ξ

2
8

}

, respectively.

S3 Check the support of each new anchor whether it is completely traversed by an existing

meshline or continuity reduction lines. If not, stop the process of updating anchors for the

current meshline insertion and insert the next meshline. Otherwise return to S2 and further

split the local knot vectors of newly introduced anchors by the traversing meshlines.

5. BÉZIER EXTRACTION OF LR T-SPLINES AFTER MESHLINE INSERTIONS

We will now extend the Bézier extraction framework to allow for the implementation of LR T-splines

after meshline insertions.

We consider an LR T-mesh, T , with n anchors. We carry out a series of single meshline insertions

{εi}
n
i=1

in T , which yields a new LR T-mesh Tr with nr anchors and updated local knot vectors.

Consequently, the LR T-splines N associated with T can now be described by the LR T-splines Nr

associated with Tr:

ΓN
(

ξ1, ξ2
)

= ΓSNr

(

ξ1, ξ2
)

(11)

with N and Nr the LR T-spline blending functions associated with the LR T-meshes T and Tr,

respectively. S is the refinement operator [7, 28], Γ is a diagonal matrix with the scaling weight γ of

N along the diagonal. This makes it possible that the LR T-splines N satisfy the partition of unity

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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property. The refinement operator S can be obtained from Equations (4) and (11):

ΓN = ΓCBr = ΓSCrBr (12)

where C denotes the Bézier extraction operator of each anchor on the LR T-mesh T over the

elements on the LR T-mesh Tr. Cr represents the Bézier extraction operator of each anchor on

Tr over the elements in Tr. Br contains the Bernstein polynomials of the elements in Tr.

Expanding Equation (12) in a vector form and eliminating Γ lead to:







CT
1

...

Cn
T






=







ST
1

...

ST
n













CT
r1
...

CT
rnr






(13)

where Ci denotes the Bézier extraction operator of anchor i in the LR T-mesh T over the elements

on the LR T-mesh Tr, with dimensionEr (p+ 1)2 × 1. Cri represents the Bézier extraction operator

of anchor i on the LR T-mesh Tr over the elements in Tr, with dimensionEr (p+ 1)
2 × 1. Er is the

number of elements in Tr. The row values of S are then obtained from:

Ci = CT
r Si for i = 1, · · · , n (14)

Next, we define the function

f
(

ξ1, ξ2
)

=

n
∑

i=1

γiNi

(

ξ1, ξ2
)

(15)

with γi the ith diagonal term in Γ, and Ni

(

ξ1, ξ2
)

denoting the ith LR T-spline blending function

associated with the LR T-mesh T . n is the number of anchors on T . Substitution of Equation (11)

into (15) yields:

f
(

ξ1, ξ2
)

=

n
∑

i=1

γiNi

(

ξ1, ξ2
)

=

n
∑

i=1

γi

nr
∑

j=1

SijNrj

(

ξ1, ξ2
)

=

nr
∑

j=1

(

n
∑

i=1

γiSij

)

Nrj

(

ξ1, ξ2
)

=

nr
∑

j=1

γrjNrj

(

ξ1, ξ2
)

(16)

with Nrj

(

ξ1, ξ2
)

the jth LR T-spline blending function associated with Tr. nr is the number of

anchors on Tr. From the definition of LR T-splines, it is known that γrj denotes the scaling weight

of the LR T-spline blending function Nrj :

γrj =

n
∑

i=1

γiSij (17)

which represents the column summation of the matrix ΓS. Using Equation (10), the weighted

surface Sw is then given by:

Sw
(

ξ1, ξ2
)

=

n
∑

α=1

γαNα

(

ξ1, ξ2
)

Pw
α (18)

We require that the weighted surface defined by the LR T-meshes T and Tr represents the same

geometry:

Sw
(

ξ1, ξ2
)

= Sw
r

(

ξ1, ξ2
)

(19)

Substitution of Equation (18) into Equation (19) leads to:

n
∑

α=1

γαNα

(

ξ1, ξ2
)

Pw
α =

nr
∑

β=1

γrβNrβ

(

ξ1, ξ2
)

Pw
rβ (20)
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where γα, Nα

(

ξ1, ξ2
)

and Pw
α are geometrical properties associated with the LR T-mesh T . γrβ,

Nrβ

(

ξ1, ξ2
)

and Pw
rβ are geometrical properties associated with the LR T-mesh Tr.

Employing the Bézier extraction operator results in:

n
∑

α=1

γαC
T
αBrP

w
α =

nr
∑

β=1

γrβC
T
rβBrP

w
rβ (21)

and considering the linear independence of Bernstein polynomials Br, one obtains:

n
∑

α=1

γαC
T
αP

w
α =

nr
∑

β=1

γrβC
T
rβP

w
rβ (22)

Elaborating Equation (22) in a matrix form and considering Equation (12) yield:

CTΓPw = CT
r ΓrP

w
r (23)

with C and Cr defined in Equation (12). Γ is a diagonal matrix with the scaling weight γα of the LR

T-splines N along the diagonal, while Γr is a diagonal matrix with the scaling weight γrβ of the LR

T-splines Nr, see Equation (17). Pw and Pw
r are column vectors which contain the control points

P2
α and Pw

rβ , respectively. Using Equations (12), (13) and (23), the following result is obtained:

Pw
r = Γ−1

r STΓPw (24)

(a) initial LR B-spine mesh T (b) LR B-spline mesh after meshline insertions Tr

Figure 9. Inserting meshlines into an LR B-spline mesh. The green lines indicate meshline insertions. The
circles denote the anchors associated with the corresponding LR B-spline meshes T and Tr, respectively.

In the following subsections, we present several examples of the LR T-splines after meshline

insertions. The first two examples consider LR B-splines and LR NURBS as a special case of the

LR T-splines. The last two examples directly illustrate LR T-splines after meshline insertions. An

example of error-guided refinement in isogeometric analysis can be found in [29].

5.1. Example 1: Bézier extraction of LR B-splines after meshline insertions

We first consider an example to illustrate the method, Figure 9 [10]. Noting that B-splines are

a special case of T-splines, LR B-splines after meshline insertions can be generated using basis

function subdivisions. The scaling weights γ of the initial LR B-splines in Figure 9(a) are equal to

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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one [10]. From Figure 9 the Bézier extraction operators C and Cr are obtained, while the refinement

operator S follows from Equation (14). Because S is rather large, only a sub-matrix of S is shown

below, namely that which is associated with the modified anchors from T to Tr, Figure 9:











BA

BB

BC

BD

BE











=



















1 0 2

9

2

9
0 0 0 0

0 1 2

9
0 0 2

9
0 0

0 0 4

9

4

9
0 4

9

4

9
0

0 0 0 2

9
1 0 2

9
0

0 0 0 0 0 2

9

2

9
1









































B1

B2

B3

B4

B5

B6

B7

B8























(25)

with the LR B-spline functions defined as:

BA = B [1245, 0124] ; BB = B [0124, 1245] ; BC = B [1245, 1245]

BD = B [2456, 1245] ; BE = B [1245, 2456]

B1 = B [1245, 0123] ; B2 = B [0123, 1245] ; B3 = B [1234, 1234]

B4 = B [2345, 1234] ; B5 = B [3456, 1245] ; B6 = B [1234, 2345]

B7 = B [2345, 2345] ; B8 = B [1245, 3456]

(26)

The scaling weights of the LR B-spline functions Bi (i = 1, · · · , 8) in Figure 9(b) are obtained

from Equation (17):

γr1 = 1; γr2 = 1; γr3 =
8

9
; γr4 =

8

9

γr5 = 1; γr6 =
8

9
; γr7 =

8

9
; γr8 = 1

(27)

It is noted that for the scaling weights of the remaining LR B-spline functions B in Figure 9(b)

γrj = 1. The control points associated with the LR B-spline functions Bi (i = 1, · · · , 8) read, cf.

Equation (24):

Pr1 = PA;Pr2 = PB;Pr3 =
1

8
(2PA + 2PB + 4PC) ;Pr4 =

1

8
(2PA + 4PC + 2PD)

Pr5 = PD;Pr6 =
1

8
(2PB + 4PC + 2PE) ;Pr7 =

1

8
(4PC + 2PD + 2PE) ;Pr8 = PE

(28)

the control points associated with the other LR B-spline functions B in Figure 9(b) are unchanged

with respect to the original control points in Figure 9(a). The results in Equations (27) and (28)

equal those in Reference [10].

5.2. Example 2: Bézier extraction of LR NURBS after meshline insertions

Next, we consider the quadratic NURBS surface of Figure (10). This is taken as the initial LR

NURBS surface and has been generated by h-refinement of open knot vectors introduced in [7].

The three local refinement strategies of Figure 4 are all employed. The prerequisite for each strategy

is that a certain element is marked for refinement.

Figure 11 illustrates the idea of a full span refinement strategy. It refines every NURBS function

with support on the element marked in grey. This element is subdivided into four child elements.

Moreover, the neighbouring elements are split by a single line, which will render these elements

having poor aspect ratios.

The minimum span refinement strategy inserts a cross through the centre of the element marked

in grey, Figure 12. The inserted meshline should be as short as possible, but splitting at least one

NURBS function. Figure 13 shows the concept of the structured mesh refinement strategy. It inserts

a net of meshlines which halve the largest supported knot intervals of a NURBS function.
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Figure 10. Initial NURBS surface.

Figure 11. LR NURBS surface generated by the full span refinement strategy.

Figure 12. LR NURBS surface generated by the minimum span refinement strategy.
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Figure 13. LR NURBS surface generated by the structured mesh refinement strategy.

5.3. Example 3: LR T-mesh with multiplicities

In the third example, an LR T-mesh T with multiplicities is considered, Figure 14, and is generated

from the initial T-mesh of Figure 1. The mesh represents a discontinuous interface at ξ2 = 1/2
in elements e1 and e2. To produce such interface, C−1 continuous blending functions have to be

created, which is achieved by using knot lines of multiplicity m = p+ 1 [28]. In Figure 14(a), the

number of knot lines at ξ2 = 1/2 is m = 2 + 1 = 3. Due to this discontinuity, the coordinates of

control points 1, · · · , 4 equal those of the control points 5, · · · , 8, Figures 14(a) and 14(b). To better

illustrate the discontinuity in Figure 14(c) a shift
(

δ1, δ2
)

has artificially been applied to the control

points 1, · · · , 8:

(

δ11 , δ
2
1

)

= (−0.15,−0.15)
(

δ12 , δ
2
2

)

= (−0.15,−0.15)
(

δ13 , δ
2
3

)

= (−0.15,−0.15)
(

δ14 , δ
2
4

)

= (−0.15,−0.15)
(

δ15 , δ
2
5

)

= (0.15, 0.15)
(

δ16 , δ
2
6

)

= (0.15, 0.15)
(

δ17 , δ
2
7

)

= (0.15, 0.15)
(

δ18 , δ
2
8

)

= (0.15, 0.15)

(29)

Figure 14(c) shows that a crack passes through the element boundary at ξ2 = 1/2. This crack

not only separates the elements e1 and e2, but also the elements e3 and e4. In the analysis of crack

propagation, crack opening will be enforced only in the elements e1 and e2, Figure 14(d). This is

achieved by applying the following relation to the control points 1, · · · , 8:

(

δ11 , δ
2
1

)

=
(

δ15 , δ
2
5

)

= (0, 0)
(

δ12 , δ
2
2

)

= (−0.15,−0.15)
(

δ13 , δ
2
3

)

= (−0.15,−0.15)
(

δ14 , δ
2
4

)

=
(

δ18 , δ
2
8

)

= (0, 0)
(

δ16 , δ
2
6

)

= (0.15, 0.15)
(

δ17 , δ
2
7

)

= (0.15, 0.15)
(30)

5.4. Example 4: LR T-mesh with diagonal refinement

In the final example, we consider diagonal refinement of a cubic LR T-mesh. The initial T-mesh, T0,

in the parameter domain and the physical domain is shown in Figures 15(a) and 15(b). The latter

figure also shows the anchors on T0. The refinement is carried out for the diagonal elements and

the full span refinement strategy has been used. Figures 15(c) and 15(d) present the results of the

third step of the refinement process. The refinement has clearly been carried out in a band along

the diagonal. Figure 15(d) illustrates the LR T-mesh T in the physical domain. It shows that more

elements have been created along the diagonal, which leads to a high resolution in this area.
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(a) LR T-mesh T in the parameter domain (b) LR T-mesh T in the physical domain

(c) LR T-mesh T in the physical domain (d) LR T-mesh T in the physical domain

Figure 14. Example of an LR T-mesh T with multiplicities.

6. PROPERTIES OF LR T-SPLINES

Now, we will investigate some properties of LR T-splines, in particular the partition of unity

property, the nested nature and linear dependence. The proofs are carried out by exploiting the

Bézier extraction framework. Furthermore, we will propose a new approach to remove the linear

dependencies of LR T-splines by the means of Bézier extraction operation.

6.1. Partition of unity property

We consider an initial LR T-mesh, T , with n anchors. The LR T-splines N associated with T
satisfy the partition of unity property, N = {Nj : suppNj ⊆ T }. When we carry out a series of

single meshline insertions {εi}
n
i=1

into T , a new LR T-mesh, Tr, is generated with nr anchors and

a corresponding LR T-spline space Nr. We will prove that Nr also satisfies the partition of unity

property. Rewriting Equation (15) using the Bézier extraction operator yields:

f
(

ξ1, ξ2
)

=

n
∑

i=1

γiNi

(

ξ1, ξ2
)

=

n
∑

α=1

γαC
T
αBr = 1 (31)
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(a) Initial T-mesh T0 in the parameter domain (b) T0 in the physical domain

(c) LR T-mesh T of the third refinement (d) T in the physical domain

Figure 15. Example of a cubic LR T-mesh T with diagonal refinement. The full span refinement strategy is
employed with single knot lines.

in which Cα denotes the Bézier extraction operator of each anchor in the LR T-mesh T over the

elements in the LR T-mesh Tr. Br

(

ξ1, ξ2
)

is the Bernstein polynomial over the elements in Tr.

Substitution of Equations (3) and (4) into Equation (31) leads to:

f
(

ξ1, ξ2
)

=
(

γ1[C
1
1]

T + · · ·+ γn[C
1
n]

T
)

B1 + · · ·+
(

γ1[C
E
1 ]

T + · · ·+ γn[C
E
n ]

T
)

BE (32)

We now rewrite Equation (32) in a matrix form,

f
(

ξ1, ξ2
)

=
[

[B1]T · · · [BE ]T
]







γ1C
1
1 + · · ·+ γnC

1
n

...

γ1C
E
1 + · · ·+ γnC

E
n







(33)

or, equivalently,

f
(

ξ1, ξ2
)

=
[

[B1]T · · · [BE ]T
] [

C1 · · · Cn

]







γ1
...

γn






(34)
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In view of Equation (13), Equation (34) can also be expressed as:

f
(

ξ1, ξ2
)

=
[

[B1]T · · · [BE ]T
] [

Cr1 · · · Crnr

] [

S1 · · · Sn

]







γ1
...

γn







(35)

where Crj (j = 1, · · · , nr) is the Bézier extraction operator of each anchor in the LR T-mesh Tr
over the elements in Tr. Using Equation (17), Equation (35) can subsequently be formulated as:

f
(

ξ1, ξ2
)

=
[

[B1]T · · · [BE ]T
] [

Cr1 · · · Crnr

]







γr1
...

γrnr






(36)

where γrj (j = 1, · · · , nr) is the scaling weight of the LR T-spline blending function Nrj . We

rewrite Equation (36) as:

f
(

ξ1, ξ2
)

=
(

γr1 [C
1
r1]

T + · · ·+ γrnr

[C1
rnr

]T
)

B1 + · · ·+
(

γr1 [C
E
r1]

T + · · ·+ γrnr

[CE
rnr

]T
)

BE

(37)

Using Equations (3), (4) and (31) then leads to:

f
(

ξ1, ξ2
)

=

nr
∑

i=1

γriNri

(

ξ1, ξ2
)

= 1 (38)

which shows that LR T-splines generated by a series of meshline insertions also satisfy the partition

of unity property.

6.2. Nested space

An LR T-spline space will be nested, i.e. Ni−1 ⊂ Ni, if and only if for any f ∈ Ni−1 there exists

an f̂ ∈ Ni such that f = f̂ . Here, Ni−1 and Ni are the LR T-spline spaces associated with the LR

T-meshes Ti−1 and Ti, respectively. Ti is generated by meshline insertions in Ti−1.

We define the functions f and f̂ by their control points:

f =

n
∑

k=1

Nk
i−1

(

ξ1, ξ2
)

pki−1 f̂ =

m
∑

j=1

N j
i

(

ξ1, ξ2
)

pji (39)

in which Nk
i−1 and pki−1 are geometrical properties associated with the LR T-spline space Ni−1,

while N j
i and pji are those associated with Ni. n and m are the number of anchors defined on the

LR T-meshes Ti−1 and Ti, respectively.

To obtain the relation between an arbitrary f = pi−1 and f̂ = pi, Equation (11) is employed,

leading to:

Ni−1

(

ξ1, ξ2
)

= SNi

(

ξ1, ξ2
)

pi = STpi−1 (40)

with

pi−1 =
[

p1i−1, · · · , p
n
i−1

]T
pi =

[

p1i , · · · , p
m
i

]T

Ni−1 =
[

N1
i−1, · · · , N

n
i−1

]T
Ni =

[

N1
i , · · · , N

m
i

]T
(41)

Accordingly, the LR T-meshes are nested by construction.

6.3. Linear dependence of LR T-splines

LR T-splines can be linearly dependent, and we take the example of Reference [10] to illustrate this,

see also Figure 16(a). The linear relation is given by:

720B0 = 108B1 + 135B2 + 108B3 + 268B4 + 324B5 + 360B6 + 383B7 (42)
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(a) Linearly dependent quadratic LR B-spline mesh (b) Linearly dependent quartic LR T-mesh

Figure 16. Example of globally linearly dependent LR meshes.

where B represents the LR B-spline function [10]. In general, it is more difficult to derive such

a relation for LR T-splines, and therefore, to check possible linear dependencies after meshline

insertions. Herein, we will first present a method for verifying linear independence of LR T-splines

on the basis of the Bézier extraction operator. Then, a solution for removing linear dependencies will

be described. In the remainder we will distinguish between two categories of linear independence:

• globally linearly independent,

• locally linearly independent.

6.3.1. Global linear independence An LR T-mesh T with n anchors has globally linearly

independent LR T-splines N if and only if the solution for

n
∑

i=1

αiNi(ξ
1, ξ2) = 0 (43)

is αi = 0 for i = 1, · · · , n. Considering the Bézier extraction operator this leads to:

n
∑

i=1

αiC
T
αB = 0 (44)

where Cα denotes the Bézier extraction operator of each anchor in T over the elements in T and

B is the Bernstein polynomial over the elements in T . Because of the linear independence of B,

Equation (44) can be replaced by:
n
∑

i=1

αiC
T
α = 0 (45)

Writing Equation (45) in a matrix form then leads to:

[

C1 · · · Cn

]







α1

...

αn






=







0
...

0






(46)

with equivalence to

CTααα = 0 (47)
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Because an LR T-mesh T has globally linearly independent LR T-splines N when ααα = 0 is the

only solution for Equation (47), this condition can be checked directly by the rank inspection of

C in Equation (47). If C has full rank and the rank is equal to n, the LR T-splines N are globally

linearly independent. Otherwise, N is globally linearly dependent. Hence, the condition for global

linear independence is:

rank (C) = n (48)

Conversely, if an LR T-mesh is globally linearly dependent, the dependences between anchors can

be detected by transforming Equation (47) into a row echelon form by the Gaussian elimination. As

an example we take the quartic LR T-mesh T of Figure 16(b). There are 51 anchors defined over T .

Applying Equation (4) to obtain the Bézier extraction operator C, the rank of C is rank (C) = 50,

which shows that the LR T-splines defined over T are globally linearly dependent. The linear

dependencies between the anchors can be obtained by the Gaussian elimination:

3N0

(

ξ1, ξ2
)

= 2N1

(

ξ1, ξ2
)

+N2

(

ξ1, ξ2
)

(49)

where anchors 0, 1 and 2 have the Bézier extraction operators:









CT
0

CT
1

CT
2









=
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1

6

1

3

7
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5
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5
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1

8

5
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1
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(50)

It is noted that only a sub-matrix of the Bézier extraction operators C0, C1 and C2 with non-zero

values is shown.

To remove global linear dependence of LR T-splines, several approaches have been proposed,

including the hand-in-hand principle, the peeling algorithm and tensor expansion [8]. Herein, we

will exploit the concept of analysis-suitable T-splines [4] to enforce global linear independence of

LR T-splines. Analysis-suitable T-splines are a subset of T-splines [30], for which the extended T-

mesh is analysis suitable. In an analysis-suitable T-mesh, T-junctions do not intersect. It is noted

that in the remainder we consider a continuity reduction line as a special case of a meshline, such

as line ε1 =
[

ξ11 , ξ
1
9

]

× ξ25 .

We next introduce the following notions:

• An end anchor Al
i, A

u
i , which is the first anchor defined over meshline εi. There are two first

anchors for each meshline: at the start, Al
i, and at the end point, Au

i , for example the anchors

1 (Al
5) and 4 (Au

5 ) of meshline ε5 =
[

ξ13 , ξ
1
12

]

× ξ27 in Figure 17(a). For LR T-splines of even

degree, the first anchor is the one which first appears in the knot vector Ξ which defines εi.
For LR T-splines of odd degree, the determination of the first anchor is also straightforward,

as it is the first anchor on the meshline εi.
• ex-meshline εli, ε

u
i , which is the part of the meshline εi with the end, see Figure 17.

The superscripts l and u denote the position: at the start (l) or at the end point (u) of

εi. The ex-meshline is determined as follows. Taking for example the vertical meshline

εi = ξ1η ×
[

ξ2α, ξ
2
β

]

, then:
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(a) cubic LR T-mesh (b) elongation of meshline ε1 by
[

ξ19 , ξ
1
10

]

× ξ25

Figure 17. A globally linearly dependent cubic LR T-mesh in the parameter domain and in the index domain.
The linear dependencies between anchors 0, 1 and 2 are: 3N0 = 3N1 +N2, Figure (a). Figure (b) presents

an elongation of meshline ε1 by a meshline ε =
[

ξ19 , ξ
1
10

]

× ξ25 .

– For LR T-splines of even degree, εli = ξ1η ×
[

ξ2α, ξ
2
ζ

]

and εui = ξ1η ×
[

ξ2κ, ξ
2
β

]

. ξ2ζ is the

(p/2 + 2)th knot of the local knot vector Ξ2 of the end anchor Al
i. ξ

2
κ is the (p/2 + 1)th

knot of the local knot vector Ξ2 of the end anchor Au
i .

– For LR T-splines of odd degree, εli = ξ1η ×
[

ξ2α, ξ
2
ζ

]

and εui = ξ1η ×
[

ξ2κ, ξ
2
β

]

. ξ2ζ is the

((p+ 1) /2 + 2)th knot of the local knot vector Ξ2 of the end anchor Al
i. ξ

2
κ is the

((p− 1) /2 + 1)th knot of the local knot vector Ξ2 of the end anchor Au
i .

• The intersection Iji of ex-meshline εzi and ex-meshline εzj , (i, j = 1, · · · , k; z = l oru).
Herein, only the case of a horizontal ex-meshline and a vertical ex-meshline is considered,

for example the blue rectangles in Figure 17.

• The intersection setψψψ:ψψψ = {ψi, i = 1, · · · , k}, where ψi denotes the number of intersections

Iji for ex-meshline εzi , i = 1, · · · , k, and k is the total number of ex-meshlines.

ψψψ has to be an empty set in order that LR T-splines can be analysis suitable. To enforce this,

new meshlines εI have to be added. Here, the new meshlines εI are only elongations of existing

meshlines or continuity reduction lines by one edge length, see Figure 17(b). The algorithm to

construct analysis-suitable LR T-splines reads:

S1 Check the LR T-mesh T whether it is globally linearly independent. If this is not the case,

go to S2 in order to make the LR T-mesh T analysis suitable. It is noted that this results in a

mildly restricted subset of globally linearly independent LR T-splines.

S2 Obtain the intersection set ψψψ of ex-meshlines.

S3 Among the possible meshline insertions εI , add the meshline for which
∑k

i=1
ψi is smallest.

For example, there are three intersections for ex-meshline εu1 , while the other ex-meshlines

only have one or two intersections, Figure 17(a). After inserting all possible meshlines, the

sum of ψi is updated as:

∑k

i=1
ψi εu1 εl2 εl3 εu4 εl5

before meshline insertion 10 10 10 10 10

after meshline insertion 8 10 10 8 8
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We thus add the new meshline εI =
[

ξ19 , ξ
1
10

]

× ξ25 to εu1 , which generates the meshline

ε1 =
[

ξ11 , ξ
1
10

]

× ξ25 , Figure 17(b).

S4 Repeat S3 until ψψψ is an empty set,
∑k

i=1
ψi = 0. εzi should be removed from the ex-meshline

set and there should be no consideration of εzi in the intersection set ψψψ if the ex-meshline εzi
is elongated to the boundary edge of the LR T-mesh T during the meshline insertion process.

As an example, the intersection set ψψψ is not empty after inserting meshline εI =
[

ξ19 , ξ
1
10

]

×
ξ25 . Therefore, we have to insert a new meshline in the LR T-mesh T . After checking all

possible meshline insertions εI , the new meshline εI =
[

ξ12 , ξ
1
3

]

× ξ27 is inserted, which

transforms ε5 into ε5 =
[

ξ12 , ξ
1
12

]

× ξ27 , see Figure 18(a). Still, the intersection set ψψψ is not

empty. We must therefore insert a new meshline, εI =
[

ξ11 , ξ
1
2

]

× ξ27 , which is inserted to

meshline ε5, yielding ε5 =
[

ξ11 , ξ
1
12

]

× ξ27 , see Figure 18(b). However, the ex-meshline εl5
now touches the boundary edge of T . Hence, we have to remove εl5 from the ex-meshline set

and do not consider εl5 in the intersection setψψψ, Figure 18(b). Repeating step S3, we obtain the

final LR T-mesh T , Figure 19(d), which is globally linearly independent and analysis suitable.

Remark 3: The algorithm always terminates, because the limiting case of meshline insertions in T
renders T a tensor-product mesh.

(a) elongation of meshline ε5 by
[

ξ12 , ξ
1
3

]

× ξ27 (b) elongation of meshline ε5 by
[

ξ11 , ξ
1
2

]

× ξ27

Figure 18. Elongation of meshline ε5. Figure (a) presents an elongation of meshline ε5 by a meshline
[

ξ12 , ξ
1
3

]

× ξ27 , which generates ε5 =
[

ξ12 , ξ
1
12

]

× ξ27 . Figure (b) presents an elongation of meshline ε5 by

a meshline
[

ξ11 , ξ
1
2

]

× ξ27 , which generates ε5 =
[

ξ11 , ξ
1
12

]

× ξ27 .

6.3.2. Local linear independence When considering the Bézier extraction operator at element level,

the condition for local linear independence is that αααe = 0 is the only solution of

CT
e αααe = 0 for e = 1, · · · , E (51)

where Ce is the element Bézier extraction operator, Equation (5). The condition of local linear

independence in Equation (51) is equivalent to:

rank (Ce) = ne for e = 1, · · · , E (52)

with ne the number of anchors with support over element e. When an LR T-mesh is locally linearly

dependent, the dependencies between the anchors can be detected by transforming Equation (51)

into a row echelon form by Gaussian elimination.
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(a) elongation of meshline ε1 by
[

ξ110, ξ
1
11

]

× ξ25 (b) elongation of meshline ε1 by
[

ξ111, ξ
1
12

]

× ξ25

Figure 19. Elongation of meshline ε1. Figure (a) presents an elongation of meshline ε1 by a meshline
[

ξ110, ξ
1
11

]

× ξ25 , which generates ε1 =
[

ξ11 , ξ
1
11

]

× ξ25 . Figure (b) presents an elongation of meshline ε1 by

a meshline
[

ξ111, ξ
1
12

]

× ξ25 , which generates ε1 =
[

ξ11 , ξ
1
12

]

× ξ25 .

(a) (b) (c)

Figure 20. Example of a locally linearly dependent LR mesh in the parameter domain. The linear
dependencies between anchors 0 and 1 over element e are: 6N0 = N1, Figure (a). Figure (b) presents
the extension lines of anchors 0 and 1. Figure (c) illustrates the cell rectangles with the extension line

intersections.

Equation (52) implies Equation (48) – local linear independence yields global linear

independence. Conversely, global linear independence does not imply locally linear independence,

see Figure 20(a). For the LR T-mesh T of Figure 20(a), the rank of the Bézier extraction operator

C in Equation (47) is rank (C) = 21, which indicates the LR T-splines defined over T are globally

linearly independent. However, T is not a locally linearly independent LR T-mesh. For instance,

there are 10 anchors defined over element e, Figure 20(a). The rank of the element Bézier extraction

operator Ce is rank (Ce) = 9. The dependencies between anchors 0 and 1 are: 6N0 = N1. To

remove this dependency, a new meshline must be inserted. First, we draw extension lines from

anchors 0 and 1, the blue lines in Figure 20(b), where the extension line is defined by shooting a ray

from the anchor and matching horizontally and vertically until the edges defined by the local knot

vectors confronting. These extension lines intersect in the red cell rectangles i and j, Figure 20(c).
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Figure 21 shows the possible meshline insertions for the cell rectangles i and j. In Figure 21(a),

the meshline insertion for the cell rectangle i is an elongation of an existing meshline. It yields a

globally and locally linearly independent LR T-mesh. This is also the case in Figure 21(b). However,

the meshline insertions in Figures 21(c) and 21(d) yield a globally linearly independent LR T-mesh,

which is not locally linearly independent.

We can repeat this process to remove the linear dependencies. In the analysis, one can impose a

strong condition for the linear independence of LR T-splines: locally linear independence, because

this also yields global linear independence. The steps to guarantee local linear independence of LR

T-splines are as follows:

S1 Check local linear independence for each element. If all elements are equipped with locally

linearly independent blending functions, the LR T-mesh is globally linearly independent.

Otherwise, mark this element and go to step S2.

S2 Find the locally linearly dependent anchors defined over the marked element by Gaussian

elimination and mark these anchors.

S3 Build the extension lines of the marked anchors and find the intersections of these lines.

S4 Locate the cell rectangles with the intersections and insert new meshlines into these cell

rectangles. Update anchors, local knot vectors and elements, and go to step S1 until the LR

T-mesh is locally linearly independent.

Figure 21. Possible meshline insertions for the red cell rectangles in Figure 20(c). (a) meshline insertions for
the cell rectangle i; (b)–(d) meshline insertions for the cell rectangle j. The LR T-meshes in Figures (a) and
(b) are locally linearly independent, while those in Figures (c) and (d) are locally linearly dependent. The
element with locally linearly dependent blending functions is indicated in corresponding figures, including

the respective anchors.

7. CONCLUDING REMARKS

We have extended the LR B-splines to the LR T-splines by exploiting the Bézier extraction operator

concept. The basic idea of LR T-splines is to locally enrich the basis function space by replacing

coarse grid T-splines by fine grid T-splines. The properties of LR T-splines have been investigated

using the Bézier extraction framework. They include the partition of unity property, the nested nature

and linear dependence, both globally and locally. Globally linearly dependent LR T-splines cannot

be used in analysis. But even when global linear independence is satisfied, local linear dependence

can occur, which necessitates the LR T-mesh to be refined by adding new meshlines in order to split

existing elements.
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and application as an adaptive basis for isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering 2015; 284:1–20.

[6] Wei X, Zhang Y, Liu L, Hughes TJR. Truncated T-splines: Fundamentals and methods. Computer
Methods in Applied Mechanics and Engineering 2017; 316:349–372.

[7] Chen L, de Borst R. Adaptive refinement of hierarchical T-splines. Computer Methods in Applied
Mechanics and Engineering 2017; (submitted).

[8] Dokken T, Lyche T, Pettersen KF. Polynomial splines over locally refined box-partitions. Computer
Aided Geometric Design 2013; 30:331–356.

[9] Bressan A. Some properties of LR-splines. Computer Aided Geometric Design 2013; 30:778–794.

[10] Johannessen KA, Kvamsdal T, Dokken T. Isogeometric analysis using LR B-splines. Computer
Methods in Applied Mechanics and Engineering 2014; 269:471–514.
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