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A B S T R A C T

Taylor’s classical paint scraping problem provides a framework for analyzing wall-driven corner flow induced by
the movement of an oblique plane with a fixed velocity U. A study of the dynamics of the inertialess limit of a
Carreau fluid in such a system is presented. New perturbation results are obtained both close to, and far from, the
corner. When the distance from the corner r is much larger than UΓ, where Γ is the relaxation time, a loss of
uniformity arises in the solution near the region, where the shear rate becomes zero due to the presence of the
two walls. We derive a new boundary layer equation and find two regions of widths −r n and −r ,2 where r is the
distance from the corner and n is the power-law index, where a change in behavior occurs. The shear rate is
found to be proportional to the perpendicular distance from the line of zero shear. The point of zero shear moves
in the layer of size −r 2. We also find that Carreau effects in the far-field are important for corner angles less than
2.2 rad.

1. Introduction

Corner flows of both Newtonian and non-Newtonian fluids have
been widely studied. Dean and Montagon [1] showed that for the flow
of an inertialess Newtonian fluid, in plane polar coordinates (r, θ), the
stream function ψ(r, θ) permits similarity solutions of the form rλf(θ).
They identified the existence of a critical corner angle for which λ be-
comes complex. Later Moffatt [2] correctly asserted that these complex
values would give rise to an infinite series of eddies of decreasing size.
An experimental study by Taneda [3] revealed the existence of a series
of decreasing eddies, thus confirming Moffatt’s theoretical predictions.

Following Moffatt’s work, Proudman and Asadullah [4] considered
the case of two inertialess immiscible Newtonian fluids of different
viscosities with a planar contact line and found that the limit to a one
phase system introduced an additional mode. Later, Henriksen and
Hassager [5] studied power-law fluids in a corner region, though due to
physical constraints imposed on the power-law model, the results were
limited to the parameter regime 0< n<2, where n is the power-law
exponent. Likewise, Keiller and Hinch [6] examined a system suspen-
sion of rigid rods in a corner, but neglected the Brownian motion term
of the constitutive equation in order to permit a similarity solution.
They considered the aligned and unaligned orientations of the rods
separately, but found that the solutions gave rise to unphysical eddies.

In this study, we consider a two-dimensional incompressible fluid
that occupies the region between two semi-infinite planes (Fig. 1). One
plane is moved with constant velocity U that drives the flow. The other
plane is fixed at an angle α relative to the moving plane. In the vicinity

of the corner wall effects dominate, the flow and inertial terms become
negligible so the creeping flow approximation can be used. This pro-
blem was first solved by Taylor [7]. Inertial effects were incorporated
by Hancock et al. [8] by means of a perturbation expansion for the
stream function. A study of the three-dimensional analogue of the paint
scraping problem for a Newtonian fluid was first presented by Hills and
Moffatt [9], motivated by the fact that this mechanism is used
throughout the chemical process industry to induce mixing. The un-
derstanding of mixing in the chemical processing industry is of great
importance as efficient mixing can improve consistency of products and
reduce overall manufacturing costs [10,11]. As many industrial fluids
exhibit non-Newtonian effects this motivates our further investigation
into non-Newtonian fluids. The two-dimensional system has been
analyzed for several types of non-Newtonian fluids. Riedler and
Schneider [12] found an exact solution for a power-law fluid in the
creeping flow regime, and further considered the effects of leakage at
the apex of the corner. Analysis of this geometry is not limited to power-
law fluids but can be applied to other constitutive relations [13]. The
power-law model has the unphysical feature of having zero or infinite
shear viscosity in regions where the shear rate tends to zero depending
upon whether n is greater than or less than 1. Often an alternative
model is needed to obtain correct physical behavior. The most com-
monly used alternative is the Carreau model, where the kinematic
viscosity, ν, is given by

= + − +∞ ∞
−ν ν ν ν γ( )(1 Γ ˙ ) ,0

2 2 n 1
2 (1)

where γ̇ is the generalized shear rate, Γ is the relaxation time and ν∞
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and ν0 are the infinite shear and zero shear viscosities respectively. In
the limit of low shear rates the viscosity approaches Newtonian beha-
vior, thus overcoming the unphysical features of the power-law model.
Throughout this article we will take =∞ν 0, as this is a common as-
sumption when fitting experimental data to the Carreau model [14].

A Carreau fluid exhibits increased complexity in a wall-driven
corner flow in comparison to a power-law fluid. This arises as it tran-
sitions from exhibiting Newtonian behavior to power-law behavior in
the geometry. The physics of this system does not permit a global self-
similar solution, such as those that which can be found for the cases of
purely Newtonian or purely power-law fluids. As no global solution
exists, our approach will be to consider the solution in two different
domains: firstly, in the region far from the corner apex, where the shear
rates are low and the solution is approximately Newtonian with a small
power-law correction, and secondly, in the vicinity of the corner apex,
where the behavior is predominantly power-law coupled with a small
Newtonian effect. It is worth noting that a global solution can be found
for situations where the shear-rate has no radial dependence. This
scenario occurs for the shear-driven problem and is discussed later in
Section 7.

The structure of this article is as follows. The governing equations,
boundary conditions and perturbation approach are discussed in
Section 2. Section 3 presents the analysis of the system far from the
corner, and the analysis near to the corner is described in Section 4. The
matching process associated with the arising boundary layer system is
analyzed in Section 5. The importance of eigen-modes and far field
conditions are discussed in Section 6. Conclusions and further discus-
sion are given in Section 7.

2. Governing equations

The governing equations for the model are given by

∇ = −∇ + ∇ τρ pu u( · ) · , (2)

∇ =u· 0, (3)

where τ is the viscous stress tensor given by =τ ρν γ̇, where
= ∇ + ∇γ u u˙ T is the rate of deformation tensor, ρ is the density and u

denotes the velocity field. The kinematic viscosity, ν, is given by (1)
with the generalized shear rate =γ γ γ˙ ˙ : ˙2 1

2 . Under the scalings

= = = =∼ τU r U r p
ρν

p
ρν

u u τ, Γ ,
Γ

,
Γ

,͠ ͠͠0 0
(4)

the system reduces to

∇ = ∇ + ∇ =∼ ∼∼ ∼ ∼Re p ν γu u τ τ γ( · ) ·( ) , ( ˙ ) ˙͠ ͠ ͠ ͠͠͠ (5)

∇ =∼∼ u· 0, (6)

where the scaled kinematic viscosity is given by = +
−

ν γ γ( ˙ ) (1 ˙ )͠ ͠ ͠ 2 n 1
2 and

the Reynolds number is given by =Re U νΓ/2
0. Henceforth we assume

that the Reynolds number is sufficiently small that the inertial terms are
negligible. Using the parameters from Table 1 and assuming that all of
the fluids have density of approximately 103 kg m− ,3 we can obtain
estimates for U for which the inertial terms can be neglected. The most
restrictive case (fluid A1) requires that for inertia to be negligible
U≪ 0.1 m s−1. The least restrictive case (fluid A4) gives the condition
U≪ 4 m s−1. Henceforth, we drop tilde notation for convenience.

Mass conservation can be satisfied by the introduction of a stream-
function Ω and the pressure can be eliminated by taking the curl of
Eq. (5). Thus, the momentum equation can be expressed in terms of the
stress tensor τ:

⎜ ⎟
⎛
⎝
− ∂

∂
+ ∂
∂

∂
∂

+ ∂
∂ ∂

− ⎞
⎠
=− { }r

r
τ
θ r r r

r τ
r r θ

r τ τ1 1 ( ) 1 { ( )} 0,rθ
rθ θθ rr

1
2

2
2

2

(7)

where the components of τ are given in terms of the stream-function by

⎜ ⎟= − = ∂
∂

∂
∂

= ⎛
⎝

∂
∂

− ∂
∂

∂
∂

⎞
⎠{ } { }τ τ ν γ

r r θ
τ ν γ

r θ
r

r r r
2 ( ˙ ) 1 Ω , ( ˙ ) 1 Ω 1 Ω ,rr θθ rθ 2

2

2

(8)

⎜ ⎟ ⎜ ⎟= ⎛
⎝

∂
∂

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

− ∂
∂

∂
∂

⎞
⎠{ } { }γ

r r θ r θ
r

r r r
˙ 4 1 Ω 1 Ω 1 Ω .2

2

2

2

2

2

(9)

Eq. (7) is subject to no-slip and moving wall boundary conditions on the
fixed and moving planes, respectively,

= ∂
∂

= =

= ∂
∂

= =

r θ
θ

θ
θ α

Ω 0, 1 Ω 1, on 0,

Ω 0, Ω 0, on .
(10)

From the form of the boundary condition (10), if a global similarity
solution were to exist one would expect = rf θΩ ( ). The problem with
such an ansatz is that the radial viscosity behavior ∼ + − −ν γ r( ˙ ) (1 ) ,1 n 1

2

and thus no similarity solution is permitted. We note that for large r the
Newtonian effects dominate and that for small r shear-thinning effects
dominate. At such scales the problem proves amenable to mathematical
analysis. To distinguish between these regimes we will introduce a
scaled radius =− R r,1E where =R (1),O and a scaled stream function
= −ψ Ω,1E where =ψ (1)O . This allows one to formally separate the

behavior in the far regime → 0E (see Section 3) and the near regime
→ ∞E (see Section 4). It is helpful to express the momentum equation

and boundary conditions in terms of the scaled variables:

∇ × ∇ ⎡⎣ + ⎤⎦ =−γ γ· (1 ˙ ) ˙ 0,2 2 n 1
2E (11)

=
∂
∂

= =

=
∂
∂

= =

ψ
R

ψ
θ

θ

ψ
ψ
θ

θ α

0, 1 1, on 0,

0, 0, on ,
(12)

Fig. 1. Sketch of the driven corner flow system.

Table 1
A collection of Carreau parameters for a range of fluids. Fluids A1 and A2 are polystryrene
solutions with mass fractions 0.45 and 0.3, respectively [14]. Fluids A3 and A4 are wood
flour polypropylene mixtures [15], with wood flour volume fractions of 0 and 0.28, re-
spectively. The viscosity μ0 is the dynamic viscosity which is related to the kinematic
viscosity by =ν μ ρ/0 0 .

Fluid n Γ (s) μ0 (Pa s)

A1 0.304 1.11 8.08
A2 0.305 0.03 135
A3 0.652 0.319 1.18× 103

A4 0.0459 5.92 9.26× 104
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where the shear-rate and rate of strain tensor are now expressed in
terms of ψ and R. We will proceed by first analyzing the far corner
region in Section 3.

3. The far corner approximation ≪ 1E

We seek a solution in the form of a regular perturbation series

∼ + + + ⋯ψ ψ ψ ψ0
2

1
4

2E E (13)

in the limit as → 0E . In this limit, the natural expansion of the viscosity
is given by

+ ∼ + ⎛
⎝

− ⎞
⎠

+ ⎛
⎝

− ⎞
⎠
⎛
⎝

− ⎞
⎠

+−γ n γ n n γ[1 ˙ ] 1 1
2

˙ 1
2

1
2

3
2

˙ ( ).2 2 2 2 4 4 6n 1
2E E E O E

(14)

Substituting the expansion for the viscosity into the momentum Eq. (7)
and imposing the boundary conditions (10) one can see that the zeroth
order term reduces to the Newtonian system, which is given by the
biharmonic equation. The solution is given [16] as

= − + +ψ R B θ Cθ θ Dθ θ( sin( ) cos( ) sin( )),0 (15)

where B, C, D are constants given by

= −
−

=
−

= −
−

B α
α α

C α
α α

D α α α
α αsin ( )

,
sin ( )

sin ( )
,

sin( )cos( )
sin ( )

.
2

2 2

2

2 2 2 2

(16)

Proceeding to ( )O E the momentum equation can be written as

∇ = ∇ × ∇ψ κ γ γ·( ˙ ˙ ),4
1 0

2
0 (17)

where = −κ ,n
1

1
2 γ̇0 and γ̇0 are the zeroth order terms of the shear rate

and rate of deformation tensor, given by
= − = +− e e e eγ R C θ D θ γγ˙ 2 ( sin( ) cos( )), ˙ ˙ ( ),r θ θ r0

2
0 0 where er, eθ are

unit vectors in the r, θ directions. Eq. (17) can now be expressed as

∇ = ⎧
⎨⎩
∂
∂

− − − ⎫
⎬⎭

−ψ κ R
θ

C θ D θ C θ D θ8 [( sin cos ) ] 3( sin cos ) .4
1 1

5
2

2
3 3

(18)

For ψ1 to have consistent dimensions, we seek a solution in the form
= −ψ R f θ( )1

1
1 . Thus (18) reduces to

+ ″ + = ⎧
⎨⎩
∂
∂

−

− − ⎫
⎬⎭

f f f κ
θ

C θ D θ

C θ D θ

10 9 8 [( sin cos ) ]

3( sin cos ) ,

iv
1 1 1 1

2

2
3

3

(19)

subject to the boundary conditions = ′ = = ′ =f f f α f α(0) (0) ( ) ( ) 0.
Eq. (19) can be solved analytically for f1 and leads to the expression

= + + + + +

+ +

−ψ R A B θ θ C D θ θ E F θ θ

G H θ θ

{( )cos(3 ) ( )sin 3 ( )cos

( )sin },
1

1
1 1 1 1 1 1

1 1

(20)

where

= − = −

= + = +

B C CD κ D DC D κ

F C D C κ H D DC κ

1
2

( 3 ) , 1
2

(3 ) ,

3
2

( ) , 3
2

( ) .

1
3 2

1 1
2 3

1

1
3 2

1 1
3 2

1 (21)

The constants A1, C1, E1, G1 are then derived from the boundary con-
ditions. For simplicity, we give the result for the case =α π/2, for which

=
−

⎧
⎨⎩

− −

+ − − −

− + + + − +

+ +

ψ κ
R π

π π θ θ

π π π θ θ

π π θ θ π

π θ θ

( 4)
(8 8(3 4) )cos(3 )

(2( 16) 4 ( 12) )sin(3 )

( 8 24( 4) )cos ( 2(3 16)

12( 4) )sin }.

1
1

2 3
3 2

4 2

3 2 4

2 (22)

Proceeding to find the second order contribution leads to the partial
differential equation

∇ = ∇ × ∇ + +ψ κ γ κ γ κ γγ γ γ·[ ˙ ˙ ˙ ˙ ˙ ˙ ],4
2 1 1

2
0 1 0

2
1 2 0

4
0 (23)

where = − −κ n n( 1)( 3)/8,2 γ̇ ,1 and γ̇1 are the ( )2O E terms of the shear
rate and rate of deformation tensor and can be expressed as

= ″ + ″ − = ⎛

⎝
⎜
− ′ ″ −
″ − ′

⎞

⎠
⎟

− −γ R f f f f R
f f f

f f f
γ˙ 2 ( )( 3 ), ˙

4 3
3 4

,1
2 4

0 0 1 1 1
3 1 1 1

1 1 1 (24)

respectively. We seek a solution in the form = −ψ R f θ( ),2
3

2 and the re-
sulting ordinary differential equation (ODE) is

+ ″ + = ″ − − ″f θ f f N N N( ) 34 225 15 8 ,iv
2 2 2 1 1 2 (25)

where

= ″ + ″ − + ″ + = − ″ + ′N κ f f f f κ f f N κ f f f3 ( ) ( 3 ) ( ) , 4 ( ) .1 0 0
2

1 1 2 0 0
5

2 0 0
2

1 (26)

Eq. (25) could be solved analytically but as the solution is rather
cumbersome we instead chose to solve it numerically to give f2(θ). The
series (13) is not uniformly convergent throughout the entire domain. If
one considers the ratio of the first two terms, ∼ −ψ ψ R/ ,2

1 0
2 2E E it can be

seen that the assumption ≪ψ ψ2
1 0E fails when ∼R E (i.e. ∼r (1)O ).

Physically, the loss of uniformity arises from the increase in shear rate
as the apex of the corner is approached, thus the term γ̇2 2E becomes
significant in the viscosity expansion (14). The solution is geometric in
nature with −R 2 acting analogous to a geometric ratio. Therefore, one
might suspect that a rational fraction approximation might give a more
uniform approximation. Applying Shanks transform, see [17] for fur-
ther details, to the first three terms of the perturbation series and re-
introducing the scaling for r, Ω we obtain the following approximation
of the stream function:

⎜ ⎟= ⎛

⎝

− −
−

⎞

⎠

−

−r θ rf
f f r f f f

f f r f f
Ω ( , )

( )
.Shank 0

0 1
2

2 0 1
2

0 1
2

2 0 (27)

The streamlines are given in Fig. 2(a) for the case of a shear thinning
fluid and Fig. 2(b) for a shear thickening fluid. The Newtonian solution
is plotted together with the first and second order perturbation terms
and the Shanks transform. To prove the validity of the expansion,
Eqs. (2) and (3) are solved numerically using the finite element solver
COMSOL Multiphysics. A Newtonian velocity field was imposed far
from the corner with the moving and no-slip boundary conditions ap-
plied along the walls. Note that the first and second order terms quickly
become invalid as the corner is approached, and thus only provide an
appropriate correction from the zeroth order solution far from the
corner. The Shanks transform improves convergence remarkably well
for the shear thickening fluid even as the corner is approached, despite
the underlying assumptions becoming invalid. However, for the shear
thinning fluid, the Shanks transform does not perform as well. These
results indicate that for shear thinning fluids the streamlines under-
shoot those of the Newtonian fluid, and that for shear-thickening fluids,
the streamlines overshoot the Newtonian solution. A possible ex-
planation for this is that as the viscosity of the system is reduced
through shear thinning, the wall exerts a small shear stress on the fluid.
A fluid element must be then closer to the moving wall before it can be
dragged off horizontally.

4. Near corner approximation ≫ 1E

To further extend the domain in which analytic results can be found,
we will now focus on the region closest to the corner where the shear
rates are extremely large. We now consider the asymptotic series as
→ ∞E . As we expect the leading order behavior to be the power-law

solution, the appropriate series expansions for the stream function and
viscosity are
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∼ + + + ⋯− −ψ ψ ψ ψ0
2

1
4

2E E (28)

and

+ ∼ + + ⋯− − − −−γ γ κ γ[1 ˙ ] ˙ ˙ .n n n n2 2 1 1
1

3 3n 1
2E E E (29)

Comparing orders of ,E the momentum equation gives

∇ × ∇ =− −0γ γ·{ ˙ ˙ } : at order ( ),n n
0

1
0

1O E (30)

∇ × ∇ − + + =− − − −0n γ γ γ κ γγ γ γ·{( 1) ˙ ˙ ˙ ˙ ˙ ˙ ˙ } : at order ( ).n n n n
1 0

2
0 0

1
1 1 0

3
0

3O E

(31)

The zeroth order solution, ψ0, was obtained previously by Riedlerand
Schneider [12], where =ψ Rg θ( )0 0 and g0 is given by the expression

⎜ ⎟= ⎛
⎝

− ⎞
⎠

+g θ K θ
K α

θ K θ
K α

θ( ) 1
( )
( )

sin
( )
( )

cos ,0
1

1

2

1 (32)

where

∫ ∫= ′ ′ ′ = ′ ′ ′K θ F θ θ dθ K θ F θ θ dθ( ) ( ) cos( ) , ( ) ( ) sin( ) ,
θ θ

1 0 2 0

n
n

1
1

(33)

with

=
⎧

⎨
⎪

⎩⎪

− − <

− =

− − >

∞

∞

∞

F θ

n n θ θ n

θ θ n

n n θ θ n

( )

sin( (2 ) ( )) for 2,

( ) for 2,

sinh( ( 2) ( )) for 2. (34)

The parameter θ∞ is found by requiring that =K α( ) 02 . The solution for
g0 can be obtained from analysis of the momentum equation which
reduces to

− + ″ + ″ = + ″ + ″ ″− −n n g g g g g g g g( 2) ( ) [ ( )] ,n n
0 0

1
0 0 0 0

1
0 0 (35)

where ′ denotes differentiation with respect to θ. The solution for
+ ″g g0 0 gives

+ ″ + ″ =
⎧

⎨
⎪

⎩⎪

− − <
− =

− − >

∞

∞

∞

g g g g
A n n θ θ n
A θ θ n
A n n θ θ n

sgn( )
sin( (2 ) ( )) for 2,
( ) for 2,
sinh( ( 2) ( )) for 2,

n
0 0 0 0

(36)

where = −−A K α n n( ) ( 2)1n n
1 1

2 . Eqs. (32) and (33) can then be ob-
tained by the method of variation of parameters and applying the
constraints = = ′ =g g α g α(0) ( ) ( ) 00 0 0 and ′ =g (0) 10 . We will now focus
on the perturbed partial differential equation (PDE) (31). On dimen-
sional grounds we will seek a solution of the form =ψ R g θ( )1

3
1 . One can

examine the region where the series is valid prior to the calculation of
g1. If one assumes g1 is (1),O and that ψ0 and ψ1 increase as R and R3,
respectively, then the first order solution loses its uniformity again
when −

ψ
ψ

0
2

1E
is (1),O i.e. when R is −( )1O E . This corresponds to the same

region as that where the Newtonian solution loses uniformity. In effect,
we have sandwiched the region of non-uniformity from above and from
below. The zeroth and first order terms for the shear rate and rate of
strain tensors can be written as

= + ″ = ⎛

⎝
⎜

+ ″
+ ″

⎞

⎠
⎟

= ″ + ″ − = ⎛

⎝
⎜

′ ″ −
″ − − ′

⎞

⎠
⎟

− −γ R g g R
g g

g g

γ R g g g g R
g g g

g g g

γ

γ

˙ , ˙
0

0
,

˙ ·sgn{( )}·( 3 ), ˙
4 3

3 4
.

0
1

0 0 0
1 0 0

0 0

1 0 0 1 1 1
1 1 1

1 1 1 (37)

Substituting (37) into the 1st order momentum Eq. (31) leads to the
ODE

− + ″ ″ − + + ″

+ − + ″ ′

+ − − + ″ ″ − + + ″ =

− −

−

− −

d
dθ

n g g g g κ g g

n d
dθ

g g g

n n n g g g g κ g g

{ ( 3 ) }

8( 3) { }

( 2)( 4){ ( 3 ) } 0,

n
p

n

n

n
p

n

2

2 0 0
1

1 1 0 0
2

0 0
1

1

0 0
1

1 1 0 0
2

(38)

where

= ″ +κ g g κsgn{( )} .p 0 0 (39)

g1 is subject to the homogeneous conditions

= ′ = = ′ =g g g α g α(0) (0) ( ) ( ) 0.1 1 1 1 (40)

Eq. (38) has a regular singular point when + ″ =g g 00 0 . From Eq. (36), it
can be seen that this occurs when = ∞θ θ . We now shift the coordinate
system so that = ∞θ θ maps to =θ 0. One would expect difficulties to
arise in the formulation as →γ̇ 0, as the expansion for the viscosity (29)
will clearly fail. This problem is rectified in Section 5. As no exact
closed form analytical solution to Eq. (38) can be found except for
special parameter choices (see Appendix A), we proceed by seeking the
homogeneous solution to (38). To find the general solution we will seek
a series in the form

̂∑=
=

∞
+g θ g θ( ) ( ) ,

i
i

i β
1

0 (41)

and use the series expansion

Fig. 2. A plot of the streamlines for (a) =n 0.5 and (b) =n 1.7, with a corner angle of
=α π

2
. The first and second order perturbation solutions are given by the dashed and

dotted–dashed lines, respectively. The exact numerical solution is denoted by the solid
black line with the open circles and solid circles denoting the Shanks and Newtonian
solutions, respectively.
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+ ″ ∼ ⎡
⎣⎢

+ − − − − ⎤
⎦⎥

+ ≠+( )
g g K α θ θ n θ n n θ

θ n

sgn( ( ) ) 1
( 2)

6
( 2) (2 5)

360

for 2 ,n

0 0 1
2

2
4

6 1

n
1

A

O

(42)

which is obtained from Eq. (36) and we define
= −−K α n n( ) 21

1 n n
1

2
1

2A . Substituting the series (41) and (42) into
(38), it is seen that for a non-trivial series expansion β must satisfy

− − + − + =β β nβ n nβ n( 1)( ( 1))( (2 1)) 0. (43)

The roots of (43) allow one to construct the four linearly independent
solutions which can be written for ∉n

1 as

⎜

⎟

⎜

⎟

⎜ ⎟

∼ + + −
−

+⋯

∼ ⎛
⎝

+ −
−

− − + − +
− − −

+ ⋯⎞
⎠

∼ ⎛
⎝

+ − + +
+ +

− − − + − + + +
+ + + +

+ ⋯⎞
⎠

∼ ⎛
⎝

− − + +
+ +

+ − − + − + +
+ + + + +

+ ⋯⎞
⎠

+

+

k θ n
n

θ

k θ n
n

θ n n n n
n n n

θ

k θ n n n
n n

θ

n n n n n n n
n n n n

θ

k θ n n n
n n

θ

n n n n n n
n n n n n

θ

1 3
2

25 51
8(3 1)

,

1 1
6

(14 27)
(2 1)

128 2136 7258 8001 2025
120(2 1)(3 1)(4 1)

,

1 1
2

( 2)(2 33 25)
(2 1)(3 1)

( 2)(48 116 220 18095 11362 31171 8170)
360(2 1)(3 1)(4 1)(5 1)

,

1 6 53 65 42
6(3 1)(4 1)

336 716 6516 47975 93312 16385 11380
360(2 1)(3 1)(4 1)(5 1)(6 1)

.

n

n

1 2 4

2 2
4 3 2

4

3 1 1 2
2

6 5 4 3 2
4

4 2 1 3 2
2

7 6 5 4 3 2
4

(44)

The homogeneous solution is unphysical for θ<0 as for certain values
of n the solution may be complex, moreover, the functions k3 and k4 are
never smooth at the point =θ 0. The way to overcome this is by se-
parating the solution into two domains for θ>0 and θ<0, and then
matching the solution across the boundary =θ 0. The homogeneous
equation, obtained by setting =κ 0p in Eq. (38), is invariant under the
transformation → −θ θ. We thus separate the solution into

= ⎧
⎨⎩

+ + + >
− + − + − + − <

+ + + +

− − − −g
A k θ B k θ C k θ D k θ θ
A k θ B k θ C k θ D k θ θ

( ) ( ) ( ) ( ) 0,
( ) ( ) ( ) ( ) 0.homo

1 2 3 4

1 2 3 4 (45)

We later show that = = − =+ − + − + −A A B B C C, , and = −+ −D D . The
inhomogeneous solution can again be found by seeking a Frobenius
series solution given by

⎜

⎟

= ⎛
⎝
−

−

− − + − + −
− − − −

+ ⋯⎞
⎠

− −k θ θ n
n

n n n n n n
n n n n

θ

sgn( )
2(2 1)

(12 60 187 81 2) ( 2)
12(4 1)(3 1)(3 2)(2 1)

.

p n1 2 1

4 3 2
2

A

(46)

Note that the singularity at =n 2 arises as a result of the change of
behavior of the zeroth order solution and must be considered sepa-
rately. The singularities at =n 1

2 in the first term and =n , ,1
4

1
3

3
2 in the

second term can be resolved using by the introduction of logarithmic
terms [18]. Eq. (46) gives the complete outer-solution, however, for
matching across the boundary we need only consider the limit as θ→ 0.
The leading order behavior could be found more directly without the
need to obtain the full solution (see Appendix B). Evaluation of either
method results in the expression

∼

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

−
−

−

+

→

−
− −

+

→

− − +

− − −

( )

( )
ψ

n
n

K α n n R θ θ

n
n

K α n n R θ θ

2(2 1)
( ) ( 2)

homogeneous terms

as 0 ,

2(2 1)
( ) ( 2) ( )

homogeneous terms

as 0 .
1

1
1 3 2

1
1 3 2

n n n

n n n

1
2

1
2

1

1
2

1
2

1

(47)

The asymptotic behavior of g0 as θ→ 0 can be found by solving (42)
and keeping the first term on the left hand side of the series. The
equation can be integrated to give a solution which can be written in
terms of hyper-geometric functions. However, for the case of ∉ ,n

1 if

we take the leading order term in the Taylor series we find

∼ + + ± + ⋯ → ±±
∞

± +( )g θ θ C θ θsin( ) ( ) , as 0,n0 0
2 1

(48)

where the first term, which arises from the homogeneous term in
Eq. (36), does not contribute to the shear rate and ±C0 is given by

= ±
+ +

±C
n K α

n n
sgn( ( ))

(2 1)( 1)
.0

2
1A

(49)

We can see that the stream function ψ behaves as (1)O where the first
order term has fractional powers of + −θ θ,1 2n n

1 1
. The stream function is

uniformly valid if θ→ 0 for − >2 0n
1 . However, the shear rate and thus

the stress tensor, are not uniformly valid for any n>0. It is clear that
the solution breaks down along the line =θ 0 due to the shift from
power law to Newtonian behavior. To analyze this change in physical
behavior we assume that a boundary layer of unknown thickness exists
around =θ 0. We adopt Cartesian variables as polar coordinates offer
no advantage, and we use the approach proposed by Renardy [19]. We
chose our Cartesian system such that x, y are parallel and perpendicular
to the line =θ 0 respectively (Fig. 3).1 Let us now suppose that the
boundary layer has thickness δ which leads to the introduction of the
scalings = =y δY x X, . Note that the polar coordinates are related to
the Cartesian coordinates by R∼ X, θ∼ δY/X, which will be used later
in the matching process. In the inner boundary layer, the scaling of the
stream function remains unknown, and we adopt an arbitrary scaling

= + + ′ψ g X δg YΔ Ψ (0) (0) ,inner 0 (50)

where X, Y and Ψ are (1)O and the orders of δ and Δ0 remain to be
determined. The last two terms in Eq. (50) are included to account for
the homogeneous term in Eq. (48). Physically these terms represent a
constant velocity flowing into the boundary layer, but have no effect on
the momentum equation. Under these scalings it useful to note that the
velocity gradients are given by

= − = − = = −− −u v δ v u δΔ Ψ , Δ Ψ , Δ Ψ .x y XY x XX y YY0
1

0 0
2 (51)

Physically the X derivatives should be small compared to the Y deri-
vatives as no change in the velocity gradients occurs in the outer so-
lution in this direction. In Cartesian variables, the momentum Eq. (7)
can be written as

⎜ ⎟
⎛
⎝

∂
∂

− ∂
∂

⎞
⎠

+ ∂
∂ ∂

− =
x y

τ
x y

τ τ( ) 0.xy yy xx
2

2

2

2

2

(52)

Substituting (50) into (7) and keeping the lowest order terms, one finds

∇ × ∇ + =− −−{ } 0δ δ e e· (1 Δ Ψ ) Δ Ψ .YY YY x y
2

0
2 4 2

0
2n 1

2E (53)

We now argue that within this layer there must be a transition between
Newtonian and non-Newtonian behavior. In the power-law region, the
shear-dependent term γ̇2 2E dominates the + 1 term in the viscous
Eq. (1), and likewise in the Newtonian case the+ 1 term dominates over
the shear term, thus for a transition to occur we require that they are
both of the same order. Hence −δΔ0

2E must be (1),O giving the first
condition, = − δΔ0

1 2E . Substituting for Y and keeping the leading order
terms gives

⎡
⎣

+ ⎤
⎦

=
−

(1 Ψ ) Ψ 0,YY YY
YY

2 n 1
2

(54)

which we will refer to throughout as “the boundary layer equation”. We
can readily see that this PDE permits similarity solutions of the form

= −( )X ϕ X YΨ .b b
2 (55)

The constant b is determined by requiring that the inner solution must
match up to the outer solution = ∼+ + − + +( )ψ Rθ δ X Y2 2 1 2n n n n

1 1 1 1
. This

1 We assume that x, y are of the same order of R and not r, i.e. = +R x y2 2 2.
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requires that − + = − +( ) ( )b 2 1 ,b
n n2
1 1 which leads to = +b n2 2 . The

boundary layer equation subsequently becomes

= ⎡
⎣

+ ″ ″⎤
⎦

″
=+

−
X ϕ χ ϕ ϕΨ ( ), (1 ) 0,n2 2 2

n 1
2

(56)

where ′ denotes differentiation with respect to χ, with = − +χ X Yn(1 ) .
This matching condition is satisfied if ∼ +ϕ χ2 n

1
as χ→∞. Integrating

twice and setting the constant term to be zero we obtain the non-linear
second order ODE

+ ″ ″ =
−

ϕ ϕ A χ[1 ] .b
2

n 1
2 (57)

Though no general closed form solution to Eq. (57) can be found, the
asymptotic behavior can be readily seen. First let us consider the case as
χ→∞, whereby the left-hand side of (57) must become large. This
requires ϕ′′ to become large and thus the + 1 term becomes negligible,

hence + ″ ″ ≈ ″
−

ϕ ϕ ϕ[1 ] ( )n2
n 1

2 . Thus ″ ∼ϕ χ n
1

as χ→∞ and hence
∼ +ϕ χ ,2n

1
which is the correct matching condition. For the inner solu-

tion as χ→ 0 the left-hand side of Eq. (57) must be small and thus

ϕ′′≪ 1. Hence + ″ ″ ≈ ″
−

ϕ ϕ ϕ[1 ]2
n 1

2 . Thus, the inner behavior is as
ϕ∼ χ3. We can see the change in behavior by solving the boundary

layer equation + ″ ″ =
−

ϕ ϕ χ(1 )2
n 1

2 numerically. This was achieved by
integrating ″ =ϕ Z x( ) using a second order finite difference scheme,

where Z(x) is the inverse function of = +
−

P x x x( ) (1 ) ,2 n( 1)
2 which was

found using the Newton Raphson method. The solution is shown in
Fig. 4, along with the inner and outer approximations. This permits us
to examine the boundary layer behavior as the Newtonian limit is ap-
proached. If the fluid is everywhere Newtonian, there is no change in
behavior and thus there must be no boundary layer. One might have
expected that the size of the layer would tend to zero, however, we find
its size in fact tends to −1E . In the Newtonian limit, we actually find the
inner behavior χ3, and the outer behavior +χ ,2 n

1
coincide and thus no

change in behavior occurs.
We can now see that behavior of the inner solution far from the

boundary can be written in terms of the outer variables x, y as

∼ =− + + − + − + +( )ψ X Y δ x yΔ Δ .inner
n n n n n0

1 1 2 1
0

(2 1 ) (1 1 ) 2 1
(58)

Thus, for the orders to match, we require that = +( )δΔ0
2 n

1
. By

combining this with the first condition, = − δΔ ,0
1 2E we get the explicit

scaling of the boundary layer = −δ nE and = − +Δ n
0

(2 1)E . Physically, we
see that this new scaling is applicable when ∼ −γ̇ 1E as to be expected.

This scaling could alternatively have been deduced from looking at
the form of the behavior of the outer solution. The behavior of the
zeroth order term it is as +rθ2 n

1
and for the first order term it is as

− −R θ2 3 2 n
1

E for n<2. By considering the ratio of these terms we see that
the solution loses its uniformity when

= =
+

− −
−Rθ

R θ
R θ( ) (1).n n

2

2 3 2

n

n
n

1

1
2

E
E O

(59)

As we consider R to be (1)O this gives the required scaling for θ as
−( )nO E . The scaling for ψ becomes apparent whilst expressing the first

term in the outer series in terms of the scaled θ, i.e. if = −θ Θ,nE then
= − + +ψ R Θn

0
(2 1) 2 n

1
E . Likewise, one can see that the similarity variable

appears as the ratio of the power-law and viscous correction terms. In
Section 5, we will formally match the boundary layer equation to the
outer solution.

The boundary layer occurs when ∼ −Y nE . The scaling suggests that
as n grows large this boundary layer region becomes infinitely small,
with the inner stream function scaling also becoming smaller, though
we later find that for asymmetric flows an additional layer of width −2E

occurs which dominates for n>2 . This is discussed in Section 5.3.
However, as most fluids exhibit shear thinning properties, often n<1
and consequently this layer would be much smaller than the −nE layer.

5. Matching

5.1. Leading order

As two of the boundary conditions are applied in the region θ>0,
and the other two in the region θ<0, to get a complete solution we
must match the solutions over the boundary layer. We first consider the
case of n<2. The case of n>2 is considered in Section 5.3. The free
parameters of the outer solution (47) can be matched to the inner so-
lution to obtain a solution defined across the whole domain. As the
inner scaling can be derived from consideration of where the outer
shear rate loses its uniformity, this suggests that the zeroth and first
order terms in the outer series match to the lowest order in the inner
series. We now formally match the leading order inner solution to the
outer solutions. Considering the expansion for the outer solution (57)
and using the series approximation for large ϕ′′, we obtain

″ ″ + − ″ ″ + ⋯=
−

−ϕ ϕ n ϕ ϕ A χ1
2

.
n

n
p

1
3

(60)

We can construct the inverse series, by means of iteration, to find

Fig. 3. Sketch of boundary layer system for =α π
2
.

Fig. 4. Solution for ″+ ″ =
−

ϕ ϕ χ(1 )
n

2
1

2 given by the solid line with the inner, χ3, and
outer, +χ ,n2 1

behaviors given by the dotted and dashed lines, respectively, for the case of
=n 3

10
.
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∑″ = ∼ ∼ − −

+

=

∞
− −

−

{ }
( )

ϕ f χ β χ A χ A χ n
n

A χ

χ

( ) sgn( ) ( ) 1
2

( )

,

m
m n

m
n p p p n

n

0

1 2 1

3

n
1

O (61)

which integrates to give

∫ ∫= + + ″ ″ ′ ∼ + + + +
′

ϕ A Bχ f χ dχ dχ A Int B Int χ( ) ( ) ( )
χ χ

0 0 1 2

(62)

+ +
−

−

+ ⋯ → ∞

+
−

−χ n
n n

A A χ
χ n

n
A A χ

χ

sgn( )
( 1)(2 1)

sgn( )
sgn( )

2(2 1)
sgn( )

as ,

p p n p p
n

n
2

2 1
1

2 1n
1

(63)

where Int1, Int2 are the order 1 contributions which arise from the
contribution to the integral for χ not large. These are calculated nu-
merically by

∫= ′ − ′ ′ ′
∞ ( )Int f χ A χ A χ dχ( ) sgn( )( ) ,p p2 0

n
1

(64)

∫ ∫ ∑=
⎛

⎝
⎜⎜

″ ″ −
+ −

−
⎞

⎠
⎟⎟

′

∞ ′

=

+ − <
+ −

( )
Int f χ dχ

β
χ

Int dχ

( )
1

.

χ

m

n
m
n

m

n
m
n

n
m
n1 0 0

0

1 1 2 0

1 2
1 1 2

2

(65)

Via Van Dyke’s matching rule [20] if = − = −A Int B Int,1 2 and
= −−A A K α n nsgn( ) ( ) ( 2) ,p p 1

1n n n
1 1

2
1

2 or equivalently =Ap

−−K α K α n nsgn( ( )) ( ) ( 2 ) ,n
1 1

1
2

1
2 and as =θ χsgn( ) sgn( ), then the outer

limit of ϕ is given by

=
−

+ +

−
−

− + ⋯

−
+

− −( )

ϕ
n θ K α n n

n n
χ

θ n
n

K α n n χ

sgn( ) ( ) ( 2)
( 1)(2 1)

sgn( )
2(2 1)

( ) ( 2) ,

n

n

2
1

1
2 1

1
1 2 1

n n

n n

1
2

1
2

1
2

1
2

(66)

which matches exactly with the inner behavior of the inhomogeneous
terms in the outer solution obtained previously (47) and (48). Reverting
back to polar coordinates and introducing the scaling for r,Ω allows one
to incorporate the Newtonian effects to leading order from use of the
composite approximation to zeroth order with the expression

= − ++ + + −( )r g θ C θ θ r ϕ r θΩ ( ) sgn( ) ( ).n n n
comp 0 0

2 1 2 2
(67)

The composite expansion gives an expression that is uniformly valid
over the troublesome zero shear layer (Fig. 5), though it is important to
note that it does not resolve the loss of uniformity due to the radial
decrease in shear rate. The composite streamlines are plotted in Fig. 6
along with the power-law solution and complete numerical solution for
a Carreau fluid as with Fig. 2. One can see that the first order solution
correctly captures the behavior of the Carreau fluid for small r, al-
though the lost of uniformity is apparent as the radial distance grows.

5.2. Matching homogeneous terms: second internal boundary layer

To correctly apply the boundary conditions the constants
+ + + +A B C D, , , must be matched to the corresponding terms in the

lower domain, − − − −A B C D, , , . Using the aforementioned scaling leads
one to look for an inner solution of the form

= + +
+ + + +

∞
−

∞
− + +

− − + − + − +

ψ θ X θ Y X ϕsin( ) cos( )
Ψ Ψ Ψ Ψ ,

inner
n n n

A
n

B
n

C
n

D

(2 1) 2 2

2 ( 2) ( 3) (2 3)

E E

E E E E (68)

where ΨA, ΨB , ΨC , ΨD map to k1, k2, k3, k4, respectively. The details are

given in [18]. After matching to the outer solutions the inner shear-rate
is found to have inner behavior

= + +

+ + +

− + − + − + + −

− + + −

A X Y n
n

C X

D n n
n

X Y

Ψ
( 3)

( 1)(2 1)
.

YY
n

b
n n n

n n

(2 1) (1 ) ( 3)
2

2 1

(2 3)
2

1 1

E E

E

The leading order shear rate behaves as − + Y ,n(2 1)E whereas the homo-
geneous terms give rise to a shear rate − +n( 3)E . This results in a loss of
uniformity when ∼ −Y n 2E which arises because the point of zero shear
no longer occurs when =Y 0 as predicted by the pure power-law so-
lution. Instead, the point of zero shear has been shifted due to the
presence of the anti-symmetric flow term. Physically this is to be ex-
pected as one would not anticipate a Carreau fluid to have exactly the
same point of zero shear as a pure power-law fluid.

This leads us to propose a second inner scaling whereby = −Y ,n 2E Y

which can be written as = −y 2E Y in terms of the outer coordinates.
This scaling describes purely Newtonian behavior and does not change
so one can simply express (68) in terms of this scaling. The solution can
therefore be written as

= + + +

+ ⎛
⎝

+ + ⎞
⎠

+ + +

∞
− +

∞
− +

− + − +

− − +

ψ θ X A X θ B X
n

n
C X X

n n
n

X D

sin( ) ( cos( ) )
1

2
( 1)(2 1)

6
,

n n n

n n

inner
2 3 4 2

7 2 1 2 2 2 3

9
2

1 1 3

E Y E Y

E Y Y

E Y
(69)

which leads to a uniformly valid shear-rate. By considering the limit as
→ −Y 0 in conjunction with symmetry arguments leads to the matching

constraints = = − =+ − + − + −A A B B C C, , and = −+ −D D . We now have
a smooth uniform approximation, which completes the matching.

Fig. 5. The shear rate along the contour =r 1 for = =n α0.45, π
2
is plotted. The outer

power-law solution (solid line), the inner boundary solution (circular markers) and the
composite curve (dashed lines) are shown.

Fig. 6. The composite streamline (dashed lines) along with pure power-law solution
(solid lines) and the numerical computed streamlines (circular markers) are shown. The
line of zero shear is indicated by the dotted line.
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The effect of the inner boundary layers is shown in Fig. 7, where the
shear rate is plotted for fixed r. The effect of the second inner layer of
shifting the point of zero shear can be observed.

5.3. Strong shear thickening fluids.

In the case of n>2, the previous matching is no longer valid. This
can be explained by considering the expression for the shear rate taking
the first order terms in the outer series,

= + ⎛
⎝

− − + ⎞
⎠

− + − + −γ C Rθ R C θ n
n

θ˙ 1
2

(1) .n nouter 0
2 3 1 1 1

n
1

E O
(70)

The first term in the brackets arises from k3 in the homogeneous solu-
tion (44), with the constant +C derived from the boundary conditions,
and the second from the inhomogeneous term. For n>2, as → +θ 0 , we
see that the contribution from the homogeneous term is larger than that
of the inhomogeneous term and the solution loses its uniformity before
∼ −y nE . From analysis of the ratio of the two terms we propose an

inner scaling of the form = −y Y ,2E ∼ − −ψ Ψ4 n
2

E . This new scaling is
required as the innermost boundary layer (of thickness −2E ) is now
larger than the previous outer layer (of thickness −nE ). Upon using this
scaling and keeping only the first order terms, the momentum equation
reduces to

=((Ψ ) ) 0.YY
n

YY
 (71)

Integrating Eq. (71) gives

= + ∼
⎧
⎨
⎩

+ → ∞

+ →

− − −

− −
C Y D

C Y n D C Y Y

D n D C Y Y
Ψ ( )

as ,

as 0,
YY p

n
p

p p p
n

p p p
n

1 1 1

1 1
n

n n

n n

1
1 1

1 1


(72)

where CP and Dp can be functions of X. We can immediately see that the
zero shear rate no longer occurs at =Y 0. We now set

= −− − +( )C K α n n X( ) ( 2)p 1
1 1n n n

1
2

1
2

1
and = − + −D nC C Xp p

n 1 2 n
1
and match the

other homogeneous solutions and the inhomogeneous term. Thus, we
seek a solution of the form

= + + + +

+ +

∞
−

∞
− − − −

− − − +

ψ θ X θ Ysin( ) cos( ) Ψ Ψ Ψ

Ψ Ψ ,

n A B

n D n I

inner
2 4 2 2 4

6 2 6 2

E E E E

E E

  

  (73)

where Ψ , Ψ ,A B  and ΨD match to k1, k2 and k4. We again set = +A XΨA
3

and = +B X YΨB
2 and note that ΨC is excluded as k3 has already been

matched in (72). The introduction of ΨI is required to match to the
inhomogeneous term. The equations for ΨD and ΨI are given by

⎡
⎣

+ − + ⎤
⎦

=− −n
Ψ Ψ

( 1)
2

Ψ (1 2Ψ Ψ ) 0,YY
n

I YY YY
n

YY I YY
YY

1 2    
(74)

=−[Ψ Ψ ] 0.YY
n

D YY YY
1  (75)

The additional + 1 term for ΨI results from expanding the term in the
constitutive equation for viscosity, + ≈ +γ ψ1 ˙ 1 ( )YY

2 2 2
inner

2E E . For ΨI

the cross term is (1),O hence the inclusion of the+ 1 term in (74). If we
again consider the limit as Y→∞, ∼ C YΨ ,YY p n

1 and Eq. (74) can be
written as

⎡⎣ ⎤⎦
= ⎡
⎣
⎢−

− ⎤
⎦
⎥

− −Y n
nC

YΨ
( 1)

2
.n I YY

YY p
n

YY

1 1 1 2
(76)

The inhomogeneous term gives rise to a particular solution

= −
−

−− − + −( )n
n

K n n X YΨ
(2 1)

( 2) ,I n n n n1
1

2
1

2 1 1 2 1
(77)

which correctly maps to the outer solution. To obtain the inner solution

behavior of (74), we note that ∼ DΨYY pn
1 as Y→ 0, and thus

= ⎡
⎣
− − ⎤

⎦
n

n
D[Ψ ]

( 1)
2

,I YY YY p
YY

n
1

(78)

hence the inner behavior of ∼ − − D YΨI
n

n p
1

4
2n

1 . The analysis for ΨD fol-
lows in a similar manner. Thus we obtain the inner solution

= + + +

+ − −

+ + +

∞
− +

∞
− +

− − − +

− − − +

ψ θ X A X θ Y B X

D Y n
n

D Y

n n
n

X D Y

sin( ) ( cos( ) )
1
2

1
4

( 1)(2 1)
6

.

inner

n p n p

n n

2 3 4 3

4 2 2 6 2 2

6 2
2

1 1 3

n n
1 1

E E Y

E E

E
(79)

The above expression is uniformly valid, and the same matching con-
ditions as before for ⋯+ − −A A D, , , still apply. So what has happened to
the layer of order −nE ? In fact, it has been shifted to where

+ =C Y D 0p
n

p . The breakdown can be seen to occur here as ∼ YΨ ,YY n
1

and ∼ −YΨI n
1
where = +Y Y D C/p p

n. This breakdown can be fixed in
the same way as before.

6. Decaying effects

6.1. Newtonian case

In the far-field approximation, we found that the Carreau effects
decayed like −r ,1 (as r→∞) but a key question is whether or not this
will be the dominant correction? The problem can be seen by noting
that expression (15) is not the only solution to the biharmonic equation
that satisfies the boundary conditions. In fact, there are infinitely many
solutions that can be written in the form ∼ + ∑ψ ψ r f θ( ),λ

λ
0 where λ is

an eigen-value which, for a corner of angle α, satisfies
− ± − =λ α λ αsin(( 1) ) ( 1)sin( ) 0, (80)

where ± is positive for an even mode and negative for an odd mode
[2]. As we require finite behavior in the far field we have the condition
ℜ(λ)< 0. These extra degrees of freedom come from the fact that the
behavior near to the corner is not specified.

The eigen-modes decay slower than the leading order Carreau ef-
fects if < −λ( ) 1R . We can find the eigen-values by numerically solving
(80). The leading order negative eigen-value is shown in Figs. 8 and 9.
Thus, the far field Carreau analysis is applicable for α<2.2 rad and
further deviation shown in Fig. 2(a) cannot be explained by the ex-
citation of a slowly decaying eigen-mode.

6.2. Non-Newtonian case

For the near-corner power-law system, it is also important to in-
vestigate whether Carreau fluid effects would be masked by the decay
of far field disturbances. We thus search for a stream-function in the
form

= + + + …ψ rg θ r g θ r g θ( ) ( ) ( ) ,λ
λ

λ
λ0 1 1

2
2 (81)

Fig. 7. The shear rate for the power-law fluid along =r 1, =n 0.45 is indicated by the line
with the square markers. The solid line denotes the zeroth order composite solution and
the dashed line represents the inclusion of the second inner layer.

S.T. Chaffin, J.M. Rees Journal of Non-Newtonian Fluid Mechanics 253 (2018) 16–26

23



where < < < …λ λ1 1 2 and g0 is the solution to Eq. (32). The additional
terms are the modes that are excited from behavior far from the corner
region. As we are only interested in the slowest decaying mode λ1, for
ease of notation we let =λ λ ,1 and as shear thinning fluids are much
more prevalently found in nature, we present the eigen-value problem
only for n<1. Substituting (81) into (7) and (8) and taking leading
order in r as r→ 0 gives rise to the eigen-value problem

⎧
⎨⎩
− ∂
∂

+ + − − − ⎫
⎬⎭

⎛
⎝

− − ″ − − ⎞
⎠

− − − ⎡
⎣

− − ′⎤
⎦

′
=

∞
−

∞
−

θ
λ n λ n

n n n θ θ g λ λ g

λ n λ n n θ θ g

( 1 )( 1 )

sin( (2 ) ( )) ( ( 2) )

4( )( 1) sin( (2 ) ( )) 0.

n
λ λ

n
λ

2

2

1 1

1 1

(82)

Classically such eigen-value problems are solved numerically by using a
shooting method. However, one can see that locally, around = ∞θ θ , the
non-differentiable functions cause difficulties with ODE solvers. We
thus decided to solve the problem using a Frobenius series approach. To
simplify the problem we assumed that − − ∞n n θ θsin( (2 ) ( )) is well
approximated by − − ∞n n θ θ(2 ) ( ). Under this assumption the gen-
eral solutions can be found analytically with the eigen-value problem
being expressed as a root-solving problem. The root-solving is per-
formed using a Newton–Raphson method and the initial value is found
by iterating from the Newtonian solution. The effect of n on the New-
tonian even and odd modes is shown in Fig. 10, although it should be
noted that for n≠ 1 the eigen-functions are no-longer strictly even or
odd. This is to be expected as, due to non-linearity, the eigen-functions
couple to the leading order behavior, which does not have such a
symmetry. One can see from Fig. 10 that for n<0.76, ℜ(λ)< 3.

7. Conclusions and discussion

We find that for a Carreau fluid in a wall driven corner the radial
scale determines the dominant physics of the problem, therefore we
introduce the scaling that r is −( )1O E . Far from the corner ( → 0E ) the
solution can be readily calculated and that the result correctly predicts
the overshoot and undershoot of streamlines for shear thinning/thick-
ening behaviors, respectively, though the solution is no longer valid for
small r. However, the far from wall approximation will eventually
breakdown due to the inertia terms becoming appreciably large. In the
limit of large ,E that is highly shear dependent behavior, we found that
the system can be modeled as a pure power-law solution in part of the
domain. However, this solution breaks down along the line of zero
shear and a novel boundary layer equation is required to overcome this
problem. The thickness of the region in which the solution breaks down
is found to be of the order − ,nE with another change in behavior at −2E .
This suggests that the stresses of shear thinning fluids with small power-
law index n near a region of low shear rates could vary greatly from
those predicted by a pure power-law fluid. The need to separate into
different length scales arises in the driven corner flow problem due to
the fact that the moving wall boundary condition forces the stream
function to behave as r, which precludes a self-similar solution as the
shear rate is radially dependent. However, if one considers the flow
caused by constant shear stress (Fig. 11), as performed by Moffatt [2] in
the Newtonian case, there is no radial dependence on the shear rate and
a global self-similar solution can be found. We seek a solution of the
form ∼ −ψ τ μ r f θ( )0 0

1 2 whereby the stress tensor components reduce to

= ′ = − = ″τ μf τ τ μf2 , ,rr θθ rθ (83)

with the shear rate as given by Eq. (9),

= ″ + ′−γ τ μ f f˙ ( 4 ) ,0 0
1 2 2

1
2 (84)

Fig. 8. Newtonian eigen-values plotted against α for an odd eigen-function (symmetric
flow) excitation. The shaded region indicates where the Carreau correction is applicable.

Fig. 9. Newtonian eigen-values plotted against α for an even eigen-function
(anti-symmetric flow) excitation. The shaded region indicates where the
Carreau correction is applicable.

Fig. 10. The real part of the eigen-value for the non-Newtonian problem (Eq. (82)) at an
angle of =α π

2
.
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whence the viscosity simplifies to

= + ″ + ′−
−

μ μ τ μ f f(1 (Γ ) ( 4 )) .0 0 0
1 2 2 2

n 1
2 (85)

The momentum Eq. (7), after introducing a similar scaling approach as
used in (4) to remove intertia, reduces to the non-linear ODE

+ ″ + ′ ″ + + ″ + ′ ′ =
− −{ } { }d

dθ
f f f d

dθ
f f f(1 ( 4 )) 4 (1 ( 4 )) 0.

2

2
2 2 2 2

n n1
2

1
2

(86)

When Eq. (86) is solved subject to a constant shear stress being applied
at some angle α and a no-slip condition on the bottom wall it gives the
constraints

= = ′ = + ″ + ′ ″ =
−

f f α f f α f α f α(0) ( ) (0) 0, (1 ( ( ) 4 ( ) )) ( ) 1.2 2 n 1
2

(87)

As no analytic solution could be found we solved (87) using the
shooting method in conjunction with a Runge–Kutta 4 solver. The

results are presented in Fig. 12. One might have considered applying a
similar matching approach to that used for the driven corner problem to
this system. However, one can see from Eq. (84) that zero shear can
only occur when there is no curvature and gradient in f. From the graph
in Fig. 12, we can see that this scenario never occurs, thus no break-
down will occur.

The regions of applicability for both the near-field and far-field
analysis were found. The far-field Carreau correction is found to be of
greater importance than the eigen-modes for angles less than ≈ 2.2
rad. However, for larger angles, the decay from the near corner effects
are more prevalent. A similar study was performed for the near-region.
We concluded that, other than for weakly shear-thinning fluids, the far
field eigen-modes are more important except for in the boundary layer
region.
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Appendix A. Exact solution for power-law correction.

For the parameter choice =n 3 the general solution for the correction to the power-law Eq. (38) can be found in terms of tabulated functions. For
=n 3, the governing equation simplifies to

⎜ ⎟⎛
⎝

+ ⎞
⎠

+ ″ ″ − + + ″ =d
dθ

g g g g κ g g1 {3( ) ( 3 ) } 0.p
2

2 0 0
2

1 1 0 0 (A.1)

This can be solved by the same means as Eq. (35) which leads to the exact solution

= − + − + +∞ ∞g A θ θ B θ θ CI θ DI θsinh( 3 ( )) cosh( 3 ( )) ( ) ( ).1 1 2 (A.2)

The functions I1 and I2 are given by:

∫
∫

= − −

− − −

− −
∞ ∞

− −
∞ ∞

I θ e e θ θ θ θ dθ

e e θ θ θ θ dθ

( ) sinh ( 3 ( ))sin( )

sinh ( 3 ( ))sin( ) ,

θ θ

θ θ

1
3 3 2

3

3 3 2
3 (A.3)

∫
∫

= − −

− − −

− −
∞ ∞

− −
∞ ∞

I θ e e θ θ θ θ dθ

e e θ θ θ θ dθ

( ) sinh ( 3 ( ))cos( )

sinh ( 3 ( ))cos( ) .

θ θ

θ θ

2
3 3 2

3

3 3 2
3 (A.4)

Appendix B. Inner behavior of the outer solution

The solution to Eq. (38) was obtained by use of Frobenius series, and is required to give the additional terms needed to describe the behavior far
from =θ 0. However, the leading order terms could be computed in a more direct manner, and as the equation appears later in the matching process
we include it. If one considers the case where θ is small, then the second order derivatives dominate Eq. (38). Keeping the highest order derivatives
for the homogeneous and inhomogeneous parts one finds that

Fig. 11. Sketch of the shear driven flow problem.

Fig. 12. The function f for the shear-driven case. The results are shown, from bottom to
top, for =n 0.2, 0.5, 1, 2.
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+ ″ ″ + + ″ =− −d
dθ

n g g g κ g g{ } 0.n
p

n
2

2 0 0
1

1 0 0
2

(B.1)

Using only the first order term for ″ + =g g C θ ,0 0 0 n
1

Eq. (B.1) reduces to,

⎡⎣
″⎤⎦
″ = − ″− − −( )θ g

n
κ C θ1 ,n p n1 1

1 0
1 1 2

(B.2)

which appears ubiquitously throughout the matching process. We can integrate (B.2) to give

= + + + −
−

−+ + − −( )g A Bθ Cθ Dθ n
n

K α n n θ θ
2(2 1)

( ) ( 2 ) sgn( ) .n n n1
1 1 2 1

1
1 2 1

n n
1

2
1

2
(B.3)
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