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Characterization of neural and hemodynamic biomarkers of epileptic activity that can be measured using non-

invasive techniques is fundamental to the accurate identification of the epileptogenic zone (EZ) in the clinical

setting. Recently, oscillations at gamma-band frequencies and above (N30 Hz) have been suggested to provide

valuable localizing information of the EZ and track cortical activation associatedwith epileptogenic processes. Al-

though a tight coupling between gamma-band activity and hemodynamic-based signals has been consistently

demonstrated in non-pathological conditions, very little is known about whether such a relationship is main-

tained in epilepsy and the laminar etiology of these signals. Confirmation of this relationship may elucidate the

underpinnings of perfusion-based signals in epilepsy and the potential value of localizing the EZ using hemody-

namic correlates of pathological rhythms. Here, we use concurrent multi-depth electrophysiology and 2-

dimensional optical imaging spectroscopy to examine the coupling between multi-band neural activity and

cerebral blood volume (CBV) during recurrent acute focal neocortical seizures in the urethane-anesthetized

rat. We show a powerful correlation between gamma-band power (25–90 Hz) and CBV across cortical laminae,

in particular layer 5, and a close association between gammameasures and multi-unit activity (MUA). Our find-

ings provide insights into the laminar electrophysiological basis of perfusion-based imaging signals in the epilep-

tic state and may have implications for further research using non-invasive multi-modal techniques to localize

epileptogenic tissue.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

Introduction

Understanding the effects of epilepsy on the neurovascular unit is

fundamental to elucidating the pathophysiology of the disease and for

predicting, identifying and localizing epileptic activity. In medically in-

tractable focal epilepsies, the surgical removal of epileptogenic tissue

remains the most promising form of treatment. However, successful

post-operative outcomes rely on an accurate delineation of the epilep-

togenic zone (EZ), defined as “the minimum amount of cortex that

must be resected (inactivated or completely disconnected) to produce

seizure freedom” (Luders et al., 2006). As a result, there has been a

great deal of interest in characterizing potential biomarkers of epi-

leptogenic networks, particularly those that may be measured using

non-invasive techniques in order for there to be an appreciable clinical

application. Recent research, due in part to the advent of powerful dig-

ital broad-band electroencephalogram (EEG) systems, has suggested

that pathological neural oscillations at gamma-frequencies and above

(N~30 Hz) are a valuable indicator of epileptogenic tissue in both neo-

cortical and mesiotemporal regions (Andrade-Valenca et al., 2011;

Bragin et al., 1999; Jirsch et al., 2006; Medvedev et al., 2011; Worrell

et al., 2004; Zijlmans et al., 2012). Furthermore, the clinical amenability

of blood-oxygenation level dependent (BOLD) functional magnetic res-

onance imaging (fMRI) has also led to it being combinedwith EEG to lo-

calize hemodynamic correlates of electrophysiological epileptic events

and aid identification of the EZ (Gotman et al., 2006; Salek-Haddadi

et al., 2006; Thornton et al., 2010). However, faithful interpretation of

fMRI data in terms of underlying neural activation relies on a detailed

understanding of neurovascular coupling, which can vary spatially

across laminae (Goense et al., 2012) and brain-regions (Devonshire

et al., 2012). A typical assumption that is made to facilitate analysis

and interpretation of neuroimaging data is that neurovascular coupling

is invariant across health and disease. Yet, since pathological brain states

such as epilepsymay be associated with altered neurovascular coupling

characteristics, the validity of this assumption has been the subject of

much investigation with varying methodologies and results (Hamandi
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et al., 2008; Harris et al., 2013; Ma et al., 2012; Mirsattari et al., 2006;

Stefanovic et al., 2005; Voges et al., 2012; Zhao et al., 2009). Further re-

search is therefore needed to elucidate the extent to which neuro-

vascular coupling characteristics are preserved in the epileptic state, in

order to improve interpretation of neuroimaging data in the disorder

and ensure the legitimacy of routine assumptions which make such

techniques more practicable. Under normal conditions, local field po-

tential (LFP) activity, and in particular the gamma-band component of

the LFP, is thought to be a more reliable predictor of perfusion-based

signals thanmulti-unit spiking activity (MUA), although theneurophys-

iological basis for this remains a topic of intense research (Goense and

Logothetis, 2008; Logothetis et al., 2001; Niessing et al., 2005; Nir

et al., 2007; Sumiyoshi et al., 2012). These reports underscore the poten-

tial value for non-invasive perfusion-based neuroimaging studies to

probe cognitive processes. However, while there are considerable re-

ports of pathological gamma activity in clinical (Doesburg et al., 2013;

Fisher et al., 1992; Herrmann and Demiralp, 2005; Wu et al., 2008)

and experimental (Köhling et al., 2000; Medvedev, 2002; Traub et al.,

2005) epilepsy, whether pathological gamma activity is preferentially

coupled with hemodynamic signals in the epileptic state is untested.

Confirmation of this relationship would suggest a common neural

driver of perfusion-related signals in health and epilepsy and, since

gamma-band neural measures are strongly co-localized to the EZ, high-

light the potential for EEG-neuroimaging paradigms to further delineate

the EZ through localization of hemodynamic correlates of pathological

gamma activity.

With the above in mind, we sought to examine the laminar electro-

physiological underpinnings of seizure-related hemodynamic signals

during recurrent ictal discharges in the urethane-anesthetized rat

using the well-established 4-aminopyridine (4-AP) acute model of

focal neocortical epilepsy. This model provides an ideal framework to

examine neurovascular coupling in epilepsy, since seizures recur spon-

taneously and evolve through similar stages as spontaneous events in

the human brain (Harris et al., 2013; Ma et al., 2012; Zhao et al.,

2009). Using simultaneous high resolution two-dimensional optical

imaging spectroscopy (2D-OIS), we show a powerful linear correlation

between cerebral blood volume (CBV) and gamma-band power across

all cortical laminae, which was most pronounced in layer 5. Further-

more we show that seizure-related gamma-band activity was most

closely coupled tomulti-unit activity in deeper laminae nearest the pre-

sumed EZ. Our findings provide insights into the laminar evolution of

neural measures during recurrent seizures and perfusion-based imag-

ing of seizure events for clinical purposes.

Materials and methods

All procedures described were approved by the UK Home Office

under the Animals (Scientific procedures) Act of 1986. Female hooded

Lister rats (total N = 8 weighing 260–400 g) were kept in a 12-hr

dark/light cycle environment at a temperature of 22 °C, with food and

water provided ad libitum. The animals were anesthetized with ure-

thane (1.25 g/kg) intraperitoneally, with atropine being administered

subcutaneously (0.4 mg/kg) to reduce mucous secretions during sur-

gery. Depth of anesthesia wasmonitored throughout and supplementa-

ry doses of urethane (0.1 ml) were administered if necessary. We chose

to use urethane anesthesia (ethyl carbamate) as it preserves excitatory/

inhibitory synaptic transmission, unlike many general anesthetics

(Sceniak and MacIver, 2006) and provides a persistent and steady

depth of surgical anesthesia, reminiscent of natural sleep (Pagliardini

et al., 2013). Moreover, neurovascular coupling is preserved under ure-

thane anesthesia, not only insofar that a singlewhisker deflection elicits a

hemodynamic response in the rat somatosensory cortex (Berwick et al.,

2008) but also during CO2 challenge (Kennerley et al., 2011), which has

led to it being a common choice in neuroimaging studies in rat and

neurovascular coupling characteristics to be well-documented during

both task-related events (e.g. Berwick et al., 2008; Devor et al., 2005;

Harris et al., 2013; Huttunen et al., 2008; Kennerley et al., 2011) and

resting-state fluctuations (Bruyns‐Haylett et al., 2013). It has also been

shown that neither the spatial–temporal pattern of the evoked hemody-

namic response (Devor et al., 2005), nor the relationship between neural

activity andBOLD fMRI responses (Huttunen et al., 2008), differs between

urethane and alpha-chloralose, another anesthetic routinely used in fMRI

studies and whose neurovascular coupling characteristics in turn are

comparable to a number of other agents (Franceschini et al., 2010).

A homoeothermic blanket (Harvard Apparatus) and rectal probe

were used to maintain core body temperature at 37 °C. The animals

were tracheotomized to allow artificial ventilation with pressurized

room air and monitoring of end-tidal CO2. Blood-gas and end-tidal

CO2 measurements were used to adjust ventilator parameters and

maintain the animalwithin normal physiological limits (average values:

pO2=92mmHg± 9.2, pCO2=31mmHg± 5.3). The left femoral ar-

tery and vein were cannulated to allow the measurement of arterial

blood pressure and phenylephrine infusion (0.13 to 0.26mg/h to main-

tain normotension between 100 and 110mmHg), respectively. The an-

imal was secured in a stereotaxic frame (throughout experimentation),

and the skull overlying coordinates 2 mm anterior to lambda to 2 mm

anterior of bregma, and from 1 to 6 mm from midline, was thinned to

translucency, in order to expose the somatosensory cortex. A circular

plastic ‘well’was located over the cranial window and filled with saline

to reduce optical specularities from the brain surface during imaging.

The potassium channel blocker 4-aminopyridine (4-AP, Sigma,

15 mM, 1 μl) was used to elicit focal seizure-like discharges (Ma et al.,

2012; Zhao et al., 2009) in the right vibrissal cortex (RVC). After a 30 s

baseline recording period, 4-AP was infused at a depth of 1500 μm

(i.e. layer 6) via a fluidic port on the multi-channel microelectrode

(Neuronexus Technologies, Ann Arbor, MI, USA) over a 5 minute period

(0.2 μl/min) using a 10 μl Hamilton syringe and syringe pump (World

Precision Instruments Inc., FL, USA). Recordings were made for 50 min

following regional injection of 4-AP.

Two-dimensional optical imaging spectroscopy (2D-OIS) was

employed to produce 2D images over time of total hemoglobin concen-

tration (Hbt). Under the reasonable assumption of a constant hemato-

crit, Hbt can be further interpreted as cerebral blood volume (CBV)

and will therefore be referred to as the latter in ensuing text (with

the exception of when reporting micro-molar concentrations of Hbt).

This technique has been described in detail previously (Berwick et al.,

2008). Briefly, illumination of the cortex was conducted at four

different wavelengths (495 ± 31 nm, 559 ± 16 nm, 575 ± 14 nm and

587 ± 9 nm FWHM) using a Lamda DG-4 high speed filter changer

(Sutter Instrument Company, Novata, CA, USA). Image data were re-

corded using a Dalsa 1M30P camera (Billerica, MA, USA, each pixel

representing ~75 μm2), synchronized to the filter switching (effective

frame rate of 8 Hz/wavelength). These were then subjected to spectral

analysis consisting of a path length scaling algorithm (PLSA) employing

a modified Beer–Lambert law in conjunction with a path-length correc-

tion factor for each wavelength used, based onMonte Carlo simulations

of light transport through tissue. After each experiment, a ‘dark baseline’

image data-set was obtained, in which the cortex was not illuminated,

and later subtracted from 2D-OIS data in order to account for electrical

noise arising from the camera system.

In order to localize the region of the somatosensory ‘barrel’ cortex

and guide implantation of the multi-channel electrode into the said

area, a preparatory 2D-OIS experiment was conducted in each animal.

This technique has also been described in detail previously (Berwick

et al., 2008). Briefly, the left mystacial pad was electrically stimulated

using subcutaneous electrodes (30 trials, 2 s, 5 Hz, 1.2 mA intensity

and 0.3 ms pulse width) and recorded image data subjected to the

aforementioned spectral analysis. Spatiotemporal changes in Hbt were

analyzed using statistical parametric mapping (SPM) in which each

pixel's timeseries was regressed against a design matrix representing

a direct current (DC) offset, ramp, and ‘boxcar’ function of the same du-

ration as the stimulation. This produced a z-score activation map in
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which pixels within 50% of the maximum z-score were used to identify

the region contralateral vibrissal cortex activated by somatosensory

stimulation. A 16-channel electrode, coupled to a fluidic probe loaded

with 4-AP, was inserted into, and normal to, the RVC to a depth of

1500 μm (i.e. layer 6) using a micromanipulator and microscope

(example in a representative animal shown in Fig. 1A). Multi-channel

electrodes (16 channels with 100 μm spacing, site area 177 μm2, 1.5–

2.7 MΩ impedance, and 33 μm tip width; Neuronexus Technologies,

AnnArbor,MI, USA)were coupled to a preamplifier and data acquisition

device (Medusa BioAmp, TDT, Alachua, FL, USA).

16-channel neural data were recorded continuously throughout

each experiment on a floating breadboard fully enclosed by a Faraday

cage and sampled at 24 kHz. Raw electrophysiology data were band

pass filtered between 0.1 and 300 Hz and down-sampled to 1.2 kHz

to yield local field potential (LFP) data. Multi-unit activity (MUA)

measures were obtained by band-pass filtering raw electrophysiology

data using a 500th order finite impulse response (FIR) filter between

300 and 3000Hz and full-wave rectification. The threshold for spike de-

tection in each of the 16 channels was calculated as in Quiroga et al.,

2004, where x is the band-pass filtered signal:

4�median
abs xð Þ

0:6745

� �

Thismethodnot only accounts for spike classes of eitherpolarity but also

minimizes the influence of large amplitude spikes when computing the

spike detection threshold (Quiroga et al., 2004). In any pair of consecutive

spikes separated by b1 ms, the spike with the smallest amplitude was

disregarded so as to minimize the possibility of detection of false-positives

during a spike's refractory period. Finally, a sliding temporal window of

10 msmoving in 1 ms steps was used to determine the spike rate (MUA).

Power spectral density (PSD) measures over time were obtained

by applying a Gabor transformation to LFP data. This comprised of

a short-term Fourier transform and Gaussian window function of

length 500 ms and 250 ms overlap, in the frequency range 0.1–

250 Hz. PSD in seven distinct frequency bands were then summated:

0.5–4 Hz (δ-band) 4–7 Hz (θ-band), 7–13 Hz (α-band), 13–25 Hz (β-

band), 25–90 Hz (γ-band), 91–150 Hz (High-γ band) and 150–300 Hz

(High-Frequency, HF).

Onset and offset times of seizures were computed by first summat-

ing PSD in the frequency range 0.1–100 Hz and identifying local maxi-

ma corresponding to each seizure using custom-written MatlabTM

code. Onset and offset time-points of individual ictal discharges were

subsequently defined as 20% of the peak signal power in each seizure

epoch. Accurate detection of seizure epochs was confirmed by eye

with reference to LFP recordings, with any seizure not beginning or

terminating at this signal level omitted from further analysis (e.g. if

encroached on by a temporally proximate preceding or ensuing

discharge).

Continuous neural measures were then fragmented into individual

seizure epochs according to ictal onset and offset timings. Data were

summated over each entire seizure epoch in each animal (∑PSDband,

∑|LFP| and∑MUA) and normalized such that∑PSDband;∑jLFPjand

∑MUA over all detected seizures across all channels was equal to

unity. This enabled the aggregation of data across subjects while main-

taining information of howneuralmetrics varied as a function of cortical

depth and seizure recurrence. Neural data from microelectrode chan-

nels located at depths corresponding to cortical layers 2/3, 4, 5 and 6,

were subsequently averaged, according to previously published ana-

tomical data by our laboratory in this species (Devonshire et al., 2007).

To quantify continuous hemodynamic data as a function of distance

from the 4-AP infusion site and time, we conducted concentric ring

analysis using annuli beginning at 0.25 mm from the injection center

and radiating outwardly in steps of 0.5 mm. We chose to disregard the

circular area of radius 0.25 mm nearest the center to avoid noise arti-

facts due to the electrode shank. Continuous hemodynamic time-

courses in each concentric ring were normalized to a 30 s pre-infusion

baseline which was subsequently set at 104 μmol/L (Kennerley et al.,

2009). Continuous hemodynamic datawere sub-divided into individual

epochs according to the onset and offset times of each seizure. SPM

analysis was conducted on each epoch in which the timeseries across

each pixel was compared to a design matrix representing a direct cur-

rent (DC) offset and ‘boxcar’ function of the same duration as the sei-

zure. This produced a z-score activation map where positive z-scores

indicated regional increases in CBV during ictal activity (example of rep-

resentative ictal SPMmap shown in Fig. 1B). The area of CBV activation

(CBVArea) was calculated from the number of positive pixels in each

seizure-SPM map with a z-score N 3. For each seizure epoch, hemody-

namic time-courses were obtained by averaging the time-series of all

pixels within 2.25 mm of the infusion center and normalizing to a 5 s

pre-seizure baseline. We then computed the maximum CBV amplitude

(CBVMax) during the entire epoch. As with neural metrics, all CBV mea-

sures were normalized such that CBVMax; and CBVArea over all detected

seizures in each animal was equal to unity.

Fig. 1. Cortical location of drug-infusion microelectrode and seizure-related SPM analysis. A) Digital photograph of right parietal cortex showing the location of the implanted microelec-

trode (gray arrow) in the right vibrissal cortex. R= Rostral, L= Lateral and C= Caudal. B) Representative example of ictal SPM analysis, with overlaid concentric rings radiating out from

0.25 mm around the center of microelectrode (gray arrow) in steps of 0.5 mm. Note large z-score values (hot colors) within ~2.25 mm of focus indicating robust increases in CBV. Con-

versely, negative z-score values (cold colors), indicate decreases in CBV surrounding the focal increase.
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A particular advantage to our methodology is that physiological

noise is robustly minimized. This is because the animal is secured in a

passive sphinx-like position by a stereotaxic frame, and the head re-

strained with ear and bite bars, with the anesthetic regime additionally

rendering the animal atonic and nonconvulsive during electrographic

seizure activity. Furthermore, our thinned cranial window technique

preserves a largely intact central nervous system (with the exception

of a small perforation in the dura due to the intra-cranial microelec-

trode) which, in sum, results in a highly stable preparation. As a result,

we, and indeed other laboratories who employ similar methodologies,

have not historically found it necessary to account for physiological

noise arising from cardiac, respiratory or movement artifacts (Berwick

et al., 2008; Bruyns‐Haylett et al., 2013; Harris et al., 2013; Kennerley

et al., 2011).

Results

Overview of neural-hemodynamic responses following 4-AP seizure

induction

Infusion of 4-AP into the RVC generated seizure-like discharges as

previously described (Ma et al., 2012; Zhao et al., 2009). Shortly after

4-AP infusion onset, pronounced increases in LFP activity were first

observed in deeper laminae (associated with the presumed site of the

epileptic focus) and subsequently in overlying laminae, suggesting

propagation of epileptiform activity from deeper to more superficial

cortical depths (representative example of continuous LFP recordings

are shown in Fig. 2A). LFP activity consequently evolved into recurrent

distinct spontaneous ictal discharges ~10min post-infusion each lasting

50.4 ± 9.1 s (N= 180). LFP amplitudes during ictal events appeared to

remain approximately constant following seizure inductionwithin each

cortical lamina studied, but were comparatively augmented with in-

creasing cortical depth. Similarly, increases in MUA became observable

shortly after 4-AP infusion onset and broadly evolved into distinct and

progressively more robust seizure-related increases, most prominently

in deeper cortical laminae (Fig. 2B). In keeping with the above, spectral

power in the 0.1–100 Hz range intensified over time with seizure-

related increases becoming progressivelymore evident (Fig. 2C), partic-

ularly at deeper cortical depths. Finally, concurrent CBV (Hbt) measures

were also observed to augment over time, with seizure-associated peak

concentration and area of activation increasing as ictal discharges re-

curred (Fig. 2D).

Multi-band neural activity during recurrent seizure activity

Normalized multi-band neural data from 180 seizures (8 animals)

were collated according to seizure onset time following 4-AP infusion

in order to examine changes during recurrent seizure activity. In the

main, LFP bandmeasures shared similar dynamics during recurrent sei-

zure activity (Fig. 3). Specifically, seizure related band-power increased

shortly after 4-AP infusion onset and progressively intensified during

seizure recurrence, predominantly in middle layers and subsequently

in underlying laminae, whichmanifestedmore strongly with increasing

frequency-range. Seizure-related LFP activity exhibited a notable dif-

ference in that only modest increases were observed broadly in middle

to deeper layers with no clear laminar selectivity (Fig. 3). In contrast,

MUA during recurrent seizures initially increased most prominently

in deeper layers, with a gradual involvement of overlying laminae

(Fig. 3). Generally speaking, neural measures were significantly corre-

lated with seizure onset time across all laminae (Table 1) indicating

that recurrent seizure activity was associated with increases in

seizure-related multi-band neural activity. A notable exception to this

was that of delta-band measures which, contrastingly, exhibited only

a significant negative correlation (i.e. decrease) in layer 6with recurrent

seizures. Of the LFP bands studied, gamma-band measures displayed

the strongest correlation with seizure onset time across all layers,

although MUA was associated with the highest correlations of all

multi-band data in layers 5 and 6 (ρ = 0.97 and 0.94, respectively,

Table 1).

Further analysis also revealed that increases in MUA during recur-

rent seizures were most strongly correlated to gamma-band activity in

layers 4, 5 and 6, although robust correlations were observed for the

most part in middle to deeper laminae in all but the lowest frequency

bands studied (Table 2). Taken together, these observations indicate

that recurrent seizures produce intense increases in seizure-related

MUA which are in turn more closely allied to increases in gamma-

band activity.

Cerebral blood volume responses during recurrent seizure activity

We first investigated changes in baseline hemodynamics following

4-AP infusion in each animal, by extracting the average time-course of

all pixels within 0.25–2.25 mm of the injection center for the entire

recording period and selecting five time-points during the resultant

time-series. Firstly, a baselinemeasure taken 30 s prior to 4-AP infusion,

and 5 (i.e. on cessation of 4-AP infusion), 10, 25 and 35 min following

infusion onset. This demonstrated an average increase in Hbt concen-

tration from 104.4 ± 0.2 μM to 129.5 ± 11.4 μM (Fig. 4A, N = 8). We

next compared CBVArea and CBVMax to associated seizure-onset times

following 4-AP infusion using seizure-by-seizure analysis (Figs. 4B

and C, N = 180 discharges from 8 animals). This demonstrated a sig-

nificant linear relationship between both hemodynamic measures

and seizure onset time (Pearson's r = 0.76 and 0.77, respectively,

p b 0.001, in both cases). Taken together, these findings suggest that

seizure-related CBV responses are augmented as a function of seizure

recurrencewhich overlie increases in baseline CBV following 4-AP infu-

sion (see also Fig. 2D in a representative animal).

Neural-hemodynamic coupling during recurrent ictal discharges

In order to identify which of the neural measures examined most

faithfully reflected hemodynamic changes, we compared multi-band

neural data and peak CBV responses during recurrent seizures. Correla-

tion analysis (Table 3) revealed there to be, in themain, a strongpositive

relationship between most neural measures and hemodynamics (delta

band measures being a notable exception), albeit with the strongest

coupling being observed for gamma-band activity across all laminae.

Interestingly, seizure-related changes in MUA in middle to deeper

layers exhibited the next strongest correlations and were, overall,

most closely associated to hemodynamics than LFP measures. Since he-

modynamics were most strongly correlated to gamma-band measures,

we further examined the nature of the relationship between gamma ac-

tivity and seizure-related changes in peak CBV (CBVMax) responses

across laminae (N=178, Fig. 5). This showed there to be a highly signif-

icant relationship between gamma-power and CBVMax across all layers

which was well described by a linear model (L2/3, Pearson's r = 0.68;

L4, r = 0.76; L5, r = 0.79; L6, r = 0.77; p b 0.01 in all cases, Fig. 5).

Discussion

In summary, the key findings described in the current study are the

following: although a wide range of multi-band neural measures in-

creased during recurrent seizure activity, MUA increasedmost strongly,

particularly in layer 5. In turn, gamma-band power changes were more

closely associatedwithMUA of all band-limited LFPmeasures andmost

strongly correlated with cortical hemodynamic changes in layer 5.

These results suggest that gamma-band activity may provide a proxy

of population spiking activity during ictal discharges and that hemody-

namic correlates of seizure-related gamma-band activity may offer lo-

calizing information of epileptiform activity.

Our observation of increased gamma power during seizures in close

proximity to the 4-AP infusion site is consistent with previous reports
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suggesting that increases in gamma activity are highly localized to the

seizure onset zone (Andrade-Valenca et al., 2011; Fisher et al., 1992;

Medvedev et al., 2011; Worrell et al., 2004). There is considerable evi-

dence for abnormal gamma-band activity in clinical epilepsy syndromes

(Doesburg et al., 2013; Fisher et al., 1992; Herrmann and Demiralp,

2005; Wu et al., 2008) and in experimental epilepsy (Köhling et al.,

2000; Medvedev, 2002; Traub et al., 2005). Under normal conditions,

gamma oscillations are thought to be dependent on fast-spiking

parvalbumin-expressing inhibitory interneurons (Cardin et al., 2009).

These oscillations have been suggested to ‘bind’ distributed neuronal

Fig. 2. Evolution of neural and hemodynamic responses during and following 4-AP infusion in a representative animal. A) LFP time-courses following 4-AP infusion onset (Time= 0 s) in

layers 2/3, 4, 5 and 6. B)Multi-unit activity in layers 2/3, 4, 5 and 6. C) Power spectral density of LFP data shown in A. D) Spatiotemporal analysis of Hbt (CBV) recorded in the same animal.
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ensembles into functional networks, thereby playing an important role

in information processing and possibly representing a neural correlate

of cognition and perception (Engel and Singer, 2001). Conversely, ab-

normal increases in gamma activity in epilepsy may represent an

excessive-binding mechanism, which may underpin sensory hallucina-

tions in complex partial seizures and, through gamma induced changes

in synaptic transmission, underlie post-ictal cognitive dysfunction

(Medvedev, 2002).

We found LFP sink activity to be distributed approximately equally

across depths with little change during recurrent seizures, thus provid-

ing little information as to the localization and dynamics of epileptiform

activity while, contrastingly,MUA exhibited a preponderance of activity

at depths N400 μm, commensurate with layers 4–6. This spatial discor-

dancy between low-frequency sub-threshold, and high-frequency

supra-threshold neural measures, primarily arises due to the latter

being under the modulatory influence of feed-forward inhibition. It is

therefore an important considerationwhen using low-frequency neural

measures to localize regions of epileptiform activity as these may pro-

vide misleading assessment of the epileptogenic zone, compared with

the gold-standard metric, namely cells firing bursts of action potentials

(Schevon et al., 2012). As conventional EEG measurements in the

clinical setting are typically recorded at low-bandwidth (b100 Hz),

identifying a ‘low-frequency’proxy of population spiking activity during

epileptogenesis has received considerable research attention. In this re-

gard, we show gamma-band power to be more closely allied to MUA

during ictal discharges, consistent with previous studies showing a cor-

relation between spiking activity and LFP power at gamma frequency

ranges under normal conditions (Whittingstall and Logothetis, 2009).

Since the maintenance of elevated neuronal firing rates during

gamma oscillations has been recently associated with high oxygen con-

sumption and near-maximal mitochondrial oxidative metabolism

(Kann et al., 2011), these observations help to substantiate reports of

a close relationship between non-pathological gamma-band activity

and perfusion based signals (Goense and Logothetis, 2008; Niessing

et al., 2005; Nir et al., 2007; Sumiyoshi et al., 2012). Notwithstanding,

reports of coupling between gamma-activity and perfusion-based

signals in epilepsy are sparse, although notably a tight correlation be-

tween gamma-band activities and cortical glucose metabolism mea-

sured by interictal 2-deoxy-2-[18F] fluoro-D-glucose (FDG) positron

emission tomography (PET) has been demonstrated (Nishida et al.,

2008). Indeed, whether, to what extent, and under which conditions,

neurovascular coupling characteristics are altered in the epileptic state

are topics of ongoing research (Hamandi et al., 2008; Harris et al.,

2013; Ma et al., 2012; Mirsattari et al., 2006; Stefanovic et al., 2005;

Voges et al., 2012; Zhao et al., 2009) and are important to realizing the

diagnostic potential of perfusion-based neuroimaging signals in the dis-

order. To our knowledge, our study is the first to show a preferential

correlation between gamma-band power and cerebral perfusion during

recurrent acute focal neocortical seizures. While this study has not ex-

plicitly examinedwhether neurovascular coupling in epilepsy is altered

compared to normal conditions, our findings suggest the presence of a

common neural driver of perfusion-based signals in normal and epilep-

tic brain states.

Our data also indicate layer 5 to be a key protagonist in the develop-

ment of epileptiform activity and coupling to hemodynamic signals.

This is consistent with previous in-vitro studies showing 4-AP induced

epileptiform activity to be linked to excitatory circuits in middle to

deep laminae, in particular layer 5, which possesses rich inter- and

intra-laminar connectivity and numerous intrinsic bursting neurons

(Borbély et al., 2006; Hoffman and Prince, 1995). In addition to being

a key site in the initiation of epileptiform discharges, layer 5 has also

been implicated to play an important role in the subsequent horizontal

spread of epileptiform activity (Telfeian and Connors, 1998). That

seizure-related CBV (which is a spatial average over depth) was most

strongly correlated to gamma-band activity in layer 5 suggests that

perfusion-based signals have the potential to localize the putative

major signal source of epileptiform activity. However, it is important

to note that significant correlations were observed across all laminae

with gamma-band activity not clearly localized to a specific cortical

layer, suggesting the possibility of volume conduction effects in which

band-limited LFPs spread beyond the primary locus of generation

(Kajikawa and Schroeder, 2011). The emergence of high-field human

Fig. 3.Multi-band power properties during recurrent seizure activity. Spatiotemporal properties of summed delta, theta, alpha, beta, gamma, hi-gamma and high-frequency (HF) band

power, and LFP and MUA, as a function of cortical laminae and seizure recurrence (N = 180, from 8 subjects).

Table 1

Coefficients of correlation (Spearman's ρ) between each seizure-related multi-band neu-

ral measure (∑PSDband, ∑|LFP| and ∑MUA) and associated seizure onset-time follow-

ing 4AP infusion across cortical laminae (N = 180).

δ-Band θ-Band α-Band β-Band γ-Band Hi-γ HF LFP MUA

L2/3 −0.19 0.26a 0.34a 0.48a 0.63a 0.61a 0.16a 0.39a 0.41a

L4 0.02 0.55a 0.71a 0.88a 0.92a 0.83a 0.81a 0.74a 0.92a

L5 0.02 0.59a 0.8a 0.93a 0.93a 0.64a 0.81a 0.74a 0.97a

L6 −0.46a 0.05aa 0.63a 0.83a 0.84a 0.5a 0.72a 0.43a 0.94a

a Denotes correlation is significant at the 99% level (i.e. p ≤ 0.01, 2-tailed).

Table 2

Coefficients of correlation (Spearman's ρ) between seizure-related multi-band neural

measures (∑PSDband and ∑|LFP|) and seizure-related ∑MUA across cortical laminae

(N = 180).

δ-Band θ-Band α-Band β-Band γ-Band Hi-γ HF LFP

L2/3 0.01 0.19 0.22a 0.31a 0.53a 0.83a 0.24a 0.35a

L4 0.13 0.68a 0.78a 0.89a 0.91a 0.83a 0.86a 0.79a

L5 −0.01 0.6a 0.79a 0.89a 0.9a 0.66a 0.87a 0.75a

L6 −0.34a 0.19 0.71a 0.89a 0.91a 0.67a 0.87a 0.55a

a Denotes correlation is significant at the 99% level (i.e. p ≤ 0.01, 2-tailed).
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fMRI systems with the ability to examine laminar differences in

neurovascular coupling, together with increasingly advanced time-

frequency analyses of electrographic data, may further elucidate the

laminar nature of gamma-hemodynamic coupling in clinical epilepsy

syndromes. This may lead to improved localization of epileptogenic

foci using non-invasive multi-modal techniques and guide future abla-

tive therapies involving laminar-specific transections (Nguyen et al.,

2011).

A further novel observation was that of the progressive increase in

CBV measures during seizure recurrence. Consistent with this, we

have previously reported increases in CBV in the epileptogenic focus

during singular 4-AP induced ictal discharges, which arise due to robust

functional hyperemia associatedwith seizure-related hypermetabolism

(Ma et al., 2012; Zhao et al., 2009). Notwithstanding, if considering the

non-linear relationship between CBV and cerebral blood flow (CBF),

commonly known as Grubb's power law, our results are at variance

with an earlier study demonstrating CBF to be attenuated in later dis-

charges, compared to those occurring earlier, during recurrent seizure

activity (Kreisman et al., 1991). Differences in methodology (sodium

pentobarbitol anesthesia and d-tubocurarine paralysis), epilepsy

model (pentylenetetrazol injected intravenously) and inter-seizure in-

terval (of the order of minutes compared to seconds here) may explain

the disparity in observations.

An important consideration when interpreting power measures of

high-frequency LFP bands is whether spectral energy truly reflects the

amount of oscillatory activity within the frequency range of interest or

arises due to themethods employed to obtain them. This is particularly

true for recordings containing fast transients, for example responses

to stimuli and epileptic discharges, whose spectral power are distribut-

ed across large frequency ranges (i.e. broadband). Subjecting fast tran-

sients to classical time-frequency and filtering methods can therefore

result in an output signal with oscillatory behavior despite a non-

oscillating input, i.e. a spurious signal with ‘ringing’ artifacts, mathemat-

ically known as the Gibbs' phenomenon. Thus, LFPs containing fast

transients in the absence of oscillations may exhibit high frequency

spectral power leading to an erroneous presumption of high frequency

oscillatory activity. It has recently been shown that neuronal spiking is

associatedwith sharp broadband transients in the LFP signal that causes

spectral ‘leakage’ into frequencies as low as ~50 Hz (i.e. gamma-band),

leading to the suggestion that high-frequency activity in LFPs may be a

surrogate measure of MUA (Ray and Maunsell, 2011). However, as in a

number of previous reports, we have not sought to disassociate the con-

tribution of band-limited oscillatory activity but rather to characterize

whether, and to what extent, broadband power changes of LFP signals

are related to cortical hemodynamics and track spiking activity during

recurrent seizures. Further research is needed to elucidate the function-

al significance and neurophysiological mechanisms underlying LFP

band activity, in particular those at the gamma range and above, given

their proposed role in cognitive processes.

In the current study we generated recurrent focal neocortical sei-

zures through local injection of 4-AP in the urethane-anesthetized rat.

Though this method remains a model of epilepsy, it has found wide-

spread use in the study of neurovascular coupling in partial onset epi-

lepsy due to it being the only acute model capable of reliably inducing

stereotypical focal neocortical ictal-like discharges in the anesthetized

rodent (Ma et al., 2012; Zhao et al., 2009). An important caveat, howev-

er, is that since this model acutely induces seizure-like discharges in the

normal cortex, further research is needed to confirm our findings in the

chronic epilepsy condition.We do not consider the possible action of 4-

AP on voltage-gated potassium channels expressed on vascular smooth

Fig. 4. Cerebral blood volume properties during seizure recurrence. A)AveragedHbtmicromolar concentration (i.e. CBV) atfive time-points during the recording session (Base= Baseline,

5, 10, 25 and 35min after infusion onset) indicating a progressive increase over time (N=8). Errors bars are SEM. B) Comparison of seizure-related CBV area (CBVArea) and seizure-onset

time following 4-AP infusion, indicating a significant linear correlation (Pearson's r = 0.76, p b 0.001, N = 180). C) Comparison of seizure-related peak CBV amplitude (CBVMax) and

seizure-onset time following 4-AP infusion, also indicating a significant correlation (Pearson's r = 0.77, p b 0.001, N = 180). Linear models fitted using robust least squares linear

regression.

Table 3

Coefficients of correlation (Spearman's ρ) between each seizure-related multi-band neu-

ral measure (∑PSDband, ∑|LFP| and∑MUA) and associated CBVMax (N = 178).

δ-Band θ-Band α-Band β-Band γ-Band Hi-γ HF LFP MUA

L2/3 −0.09 0.25a 0.37a 0.56a 0.66a 0.53a 0.15 0.39a 0.32a

L4 0.06 0.46a 0.58a 0.71a 0.74a 0.65a 0.65a 0.6a 0.72a

L5 0.07 0.35a 0.53a 0.7a 0.77a 0.56a 0.7a 0.52a 0.76a

L6 −0.4a −0.07a 0.36a 0.65a 0.75a 0.45a 0.64a 0.32a 0.73a

a Denotes correlation is significant at the 99% level (i.e. p ≤ 0.01, 2-tailed).

Fig. 5. Relationship between seizure-related summedgammapower and peak CBV (CBVMax)

across laminae. Significant linear correlations between seizure-related summed gamma

power and CBVMax in layers 2/3, 4, 5 and 6 (Pearson's r= 0.68, 0.76, 0.79 and 0.77, respec-

tively, p b 0.01 in all cases, N = 178). Linear models fitted using robust (bisquare) linear

least squares regression.
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muscle cells to be confounding, since the expected outcome of this

would be that of vasoconstriction (and thus a reduction in CBV) in arte-

rioles originating from themiddle cerebral artery (Horiuchi et al., 2001).

Conclusion

In conclusion, we suggest gamma-band activity during ictal dis-

charges to be the most faithful band-limited LFP indicator of epilepto-

genic activity and most closely associated to cerebral hemodynamics.

Our findings may have important implications for the understanding

of the electrophysiological basis of seizure-associated hemodynamic re-

sponses and be relevant during the localization of epileptogenic foci

using multi-modal non-invasive techniques.
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