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Abstract 32 

Rice is the most important food crop in the developing world. For rice production systems 33 

to address the challenges of increasing demand and climate change, potential and on-farm 34 

yield increases must be increased. Breeding is one of the main strategies toward such aim. 35 

Here, we hypothesise that climatic and atmospheric changes for the upland rice growing 36 

period in central Brazil are likely to alter environment groupings and drought stress patterns 37 

by 2050, leading to changing breeding targets during the 21st century. As a result of 38 

changes in drought stress frequency and intensity, we found reductions in productivity in 39 

the range of 200-600 kg ha-1 (up to 20 %) and reductions in yield stability throughout 40 

virtually the entire upland rice growing area (except for the south-east). In the face of these 41 

changes, our crop simulation analysis suggests that the current strategy of the breeding 42 

program, which aims at achieving wide adaptation, should be adjusted. Based on results for 43 

current and future climates, a weighted selection strategy for the three environmental 44 

groups that characterise the region is suggested. For the highly favourable environment 45 

(HFE, 36–41 % growing area, depending on RCP), selection should be done under both 46 

stress-free and terminal stress conditions; for the favourable environment (FE, 27–40 %), 47 

selection should aim at testing under reproductive and terminal stress; and for the least 48 

favourable environment (LFE, 23–27 %), selection should be conducted for response to 49 

reproductive stress only and for the joint occurrence of reproductive and terminal stress. 50 

Even though there are differences in timing, it is noteworthy that stress levels are similar 51 

across environments, with 40–60 % of crop water demand unsatisfied. Efficient crop 52 

improvement targeted toward adaptive traits for drought tolerance will enhance upland rice 53 

crop system resilience under climate change. 54 

 55 

Keywords: breeding, adaptation, simulation modelling, drought stress, environment groups 56 

  57 
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Introduction 58 

Rice is the second most important staple crop globally, contributes to ca. 15 % of daily per 59 

capita calorie intake, and is the most important food crop across the developing world 60 

(Cassman, 1999; Khoury et al., 2014). In Latin America and the Caribbean (LAC), where 61 

dependence on rice as a staple food crop is substantial, annual rice consumption ranges 62 

between 6 and 57 kg person-1 (Fitzgerald & Resurreccion, 2009; Kearney, 2010). Tropical 63 

LAC countries, in particular, have the largest rice consumption rates (Kearney, 2010). In 64 

addition to rice’s current importance, global demand for rice is expected to increase as a 65 

result of population growth and economic development (FAO, 2010; Tilman & Clark, 66 

2014). A recent global analysis showed that rice’s dietary importance across the developing 67 

world has increased by 21 % in the last 30 years (Khoury et al., 2014). 68 

 69 

Particularly for rainfed rice systems, which occupy large production areas in Asia and most 70 

of the production areas in Africa and Latin America (Hijmans & Serraj, 2008), concerns 71 

have been raised with regard to how rice production systems will be able to sustainably 72 

satisfy increasing demand in a context of stagnating potential and on-farm yield, increasing 73 

yield gaps and climate change-induced yield reductions (Challinor et al., 2014; Zhao et al., 74 

2016). More specifically, the latest IPCC report showed that, in the absence of adaptation, 75 

tropical rice productivity is likely to decrease at a rate between 1.3 % and 3.5 % per degree 76 

of warming (Porter et al., 2014). Furthermore, increased temperatures can lead to heat 77 

stress-threshold exceedance and substantially lower yield (Li et al., 2015; Zhao et al., 78 

2016). There is thus an increasing need for better adapted cultivars combining improved 79 

yield potential and lower drought sensitivity (Lafitte et al., 2006). 80 

 81 

While there may be several potential avenues to increase rice yield, crop breeding is 82 

arguably one of the most promising strategies toward such aim (Dingkuhn et al., 2015; 83 

Ramirez-Villegas et al., 2015). Higher rice productivity has been attained in irrigated 84 

environments by improving yield potential while reducing crop duration, whereas less 85 

success has been achieved in drought-prone environments such as upland and rainfed 86 

cropping systems (Kamoshita et al., 2008; Serraj & Atlin, 2008). Under climate change, 87 

breeding targets may vary depending on how different abiotic stresses act during the 88 
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growing season, as a result of increased temperature and geographically varying 89 

precipitation changes. For instance, a recent study for Australian wheat suggested shifted 90 

breeding focus under future climate due to increased prevalence of heat stress during 91 

flowering and a concomitant reduction in the importance of drought (Lobell et al., 2015). 92 

Similarly, Harrison et al., (2014) reported increased frequency of severe drought stress for 93 

maize in Europe. For upland rice in Brazil, where drought is a key limiting factor [30-40 % 94 

probability of occurrence, with up to 30 % yield reduction, Heinemann et al. (2008), 95 

Rabello et al. (2008)], a recent study by Heinemann et al., (2015) suggested that breeding 96 

should take account of drought stress patterns under current climate at early stages of 97 

breeding to improve yield under water-limiting conditions. Shifting stress patterns and their 98 

breeding implications for rice under future climate, however, are yet to be investigated. 99 

 100 

Here, we assess changes in the prevalence and intensity of drought stress that result from 101 

climate change for upland rice in central Brazil (states of Goiás, Rondônia, Mato Grosso 102 

and Tocantins), the main upland rice growing area of Brazil and globally, and one of the 103 

largest rainfed rice growing area in Latin America. We hypothesise that the complex 104 

interplay between changing precipitation and increasing temperature during the rice 105 

growing period in central Brazil (November through to January) (Collins et al., 2013) and 106 

growth stimulation at elevated CO2 concentrations (Krishnan et al., 2007; Kimball, 2016), 107 

is likely to alter the frequency of environment groupings and drought stress patterns by 108 

2050. We discuss breeding implications of these changes and suggest potential future 109 

breeding directions for upland rice in Brazil. 110 

 111 

Materials and methods 112 

Overview 113 

We used observed historical (1981-2005) weather from 51 weather stations in central Brazil 114 

(states of Goiás, Rondônia, Mato Grosso and Tocantins, Fig. 1) and bias-corrected 115 

projections (2041-2065) of an ensemble of 12 General Circulation Models (GCMs) with 116 

data for the four Representative Concentrations Pathways (RCPs, 2.6, 4.5, 6.0, 8.5) to 117 

simulate growth and development of upland rice. For all locations, we ran simulations with 118 

the ORYZA2000 crop model for a range of management scenarios and 7 soil types 119 
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prevalent in the region. We employed clustering analysis on simulated yield to determine 120 

environment groups, and then for each group used the same classification method on the 121 

seasonal pattern of the actual-to-potential evapotranspiration ratio (PCEW) to determine the 122 

main drought stress patterns. Using the historical and future clustering results we finally 123 

assessed changes in the frequency of the environment groups and in the frequency and 124 

intensity of the drought stress patterns. We used these results to suggest potential avenues 125 

for future breeding. 126 

 127 

Current and future weather data 128 

Observed historical 1981-2005 weather data from 51 weather stations within the study 129 

region, hereafter referred to as the upland rice TPE (Target Population of Environments), 130 

were gathered from a previous study (Heinemann et al., 2015). Briefly, this dataset consists 131 

of daily observations of temperature, precipitation and solar radiation originally gathered 132 

from the Brazilian Meteorological Institute (INMET, http://www.inmet.gov.br), and 133 

thoroughly checked for gaps and errors. For all these weather stations, except the one 134 

corresponding to Santo Antônio de Goiás (49º 16’ 48” S, 16º 28’ 12” W, Fig. 1), daily solar 135 

radiation was estimated according to Richardson & Wright (1984).  136 

 137 

For the three stations located in the state of Tocantins, which missed data from 1981-1989, 138 

were supplemented with other existing databases. More specifically, we gathered data from 139 

two databases: ANA (Agência Nacional de Águas, Brazil) and the CPC (Climate Prediction 140 

Center). We used ANA data to the maximum extent possible and used CPC data only for 141 

filling missing ANA entries. For minimum and maximum temperature and solar radiation 142 

we used the WATCH Forcing Dataset – ERA Interim (WFDEI) dataset (GPCC version) 143 

(Weedon et al., 2011). Following Hawkins et al. (2013) we `nudged` the means and 144 

variability of the WFDEI data for each variable for the period 1980-1989 (10 years), based 145 

on correction factors derived from the 10 years following 1989 (i.e. 1990-1999) before 146 

merging it with the observed time series 1990-2005. Visual checks of the final time series 147 

1981-2005 helped ensuring there were no obvious errors or implausible changes in the 148 

behaviour of the time series. 149 

 150 

http://www.inmet.gov.br/
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 151 

Figure 1 Upland rice study area in central Brazil. The area, also referred to as a Target Population 152 

of Environments (TPE), is formed by the states of Rondônia (RO), Mato Grosso (MT), Goiás (GO), 153 

and Tocantins (TO). The distribution of weather stations (red dots), their respective sub-regions 154 

(blue polygons), and the distribution of soil data used to construct the 7 soil types (light grey dots) 155 

are also shown. 156 

Future climate data used here are from the CMIP5 ensemble (Taylor et al., 2012) for the all 157 

four RCPs and for the four variables needed for simulating rice growth, namely, daily 158 

precipitation, solar radiation, maximum and minimum temperatures. We restricted our 159 

analyses to the 12 GCMs that presented data for all variables and RCPs (Table S1). This 160 

was preferred to using different GCMs for each RCP, or to using fewer RCPs. Since GCM 161 

data at daily scale have inherent errors, bias correction (BC) was necessary before the 162 

future data was used into the crop model (Ramirez-Villegas et al., 2013). We bias-corrected 163 

the data using two different methods: (a) the delta method (DEL, hereafter), which applies a 164 

correction on the means, and (b) and the change factor method (CF, hereafter), which 165 

corrects both the means and the variability of the GCM output (Hawkins et al., 2013). The 166 

use of two bias correction methods allowed quantifying uncertainty from the choice of bias 167 

correction method, an often-neglected source of uncertainty in crop modelling studies [but 168 

see Koehler et al., (2013); Ramirez-Villegas and Challinor (2016)]. A combination of 12 169 
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[GCMs] x 4 [RCPs] x 2 [BC methods] for a total of 96 different climate scenarios for the 170 

period 2041-2065 were used. 171 

 172 

Soil and management information 173 

We used soil data from the study of Heinemann et al., (2015), who derived soil properties 174 

by applying pedotransfer functions to existing field measurements (Benedetti et al., 2008). 175 

A total of seven soil types of differing texture were finally selected for all simulations. 176 

Management information herein concerns the choice of cultivar, sowing dates, fertiliser 177 

use, and maximum rooting depth, all of which are necessary inputs to the crop model. We 178 

used a typical short-cycle cultivar named BRS Primavera (Primavera, hereafter), which is a 179 

common check cultivar in the upland rice breeding trials and thus representative of 180 

materials that breeders are currently selecting. Our choice of sowing dates is based on the 181 

Brazilian Government risk zoning for the upland rice TPE (Heinemann et al., 2015; 182 

http://www.agricultura.gov.br). We sampled the entire sowing calendar (from 1st November 183 

to 10th January) for upland rice at 10-day intervals (n=8), which allowed us to simulate 184 

typical farmer behaviour. Since the focus of this work is to quantify the seasonal behaviour 185 

of water stress and its impact, we assumed optimum nitrogen supply. Maximum rooting 186 

depth was set to 50 cm, based on field observations within the study region (Heinemann et 187 

al., 2015).  188 

 189 

Crop model simulations 190 

To perform spatially explicit crop simulations, we divided the study area into 51 sub-areas 191 

using the Thiessen polygons method (Heinemann et al., 2002), based on the weather 192 

stations locations (Fig. 1). For each sub-area, rice growth and development was simulated 193 

with the ORYZA2000 crop model (Bouman et al., 2001). ORYZA2000 is a process-based 194 

simulation model developed for field-scale simulation of rice productivity that simulates 195 

growth and development of rice under optimal, water-limited and nitrogen-limited 196 

situations. The model integrates modules for phenology, assimilation and biomass growth, 197 

leaf area dynamics, evapotranspiration, nitrogen dynamics, and soil water balance to 198 

produce crop simulations at a daily time step (Li et al., 2013). Here, we ran ORYZA2000 199 

for rainfed conditions using the PADDY module, which is a one-dimensional water balance 200 
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model developed to simulate a wide range of situations. For a more comprehensive 201 

description of ORYZA2000 the reader is referred to Bouman et al., (2001). 202 

 203 

Simulation of CO2 response was necessary under future climate. In ORYZA2000, CO2 204 

response acts to increase both initial and maximum assimilation rates following an 205 

exponential curve with CO2 concentrations as the independent variable [Eq. 1-2].  206 

ܨܨܧʹܱܥ 207  ൌ ଵି௘షೖభ಴ೀమכሾ಴ೀమሿ೑షೖమ಴ೀమଵି௘షೖభ಴ೀమכሾ಴ೀమሿೝషೖమ಴ೀమ       [Eq. 1] 208 

ʹܱܥݔܽ݉ܣ 209  ൌ ஺௠௔௫ଵ஼ைଶ஺௠௔௫ଶ஼ைଶ ൤ͳ െ ݁షಲ೘ೌೣయ಴ೀమכሺሾ಴ೀమሿషಲ೘ೌೣర಴ೀమሻಲ೘ೌೣభ಴ೀమ ൨    [Eq. 2] 210 

 211 

where CO2EFF and AmaxCO2 are the initial and maximum rates of assimilation, 212 

respectively, [CO2] refers to the concentration of CO2 in the atmosphere, with sub-indices 213 

indicating future (f, here defined by the mean concentration 2041-2065 for each RCP) and 214 

reference (r, the mean concentration during 1981-2005). The parameters k1CO2 (Eq. 1) and 215 

Amax3CO2 (Eq. 2) act as scaling factors to the response curve, whereas k2CO2=0.222 (Eq. 216 

1), Amax1CO2=49.57 (Eq. 2), Amax2CO2=34.26 (Eq. 2), and Amax4CO2=60 (Eq. 2) are 217 

here assumed as prescribed constants. These response curves have been derived from 218 

observed Free-Air Carbon Enrichment (FACE) and Open Top Chamber (OTC) experiments 219 

with a limited number of rice cultivars by the ORYZA2000 development team, and have 220 

been built flexible to allow simulating other cultivars with stronger or weaker CO2 221 

fertilisation responses. ORYZA2000 thus simulates the expected response of assimilation, 222 

biomass and yield to increasing CO2 concentrations (Kimball, 2016), although no 223 

reductions in stomatal conductance and transpiration are simulated. 224 

 225 

Given that environment and drought stress pattern classifications and drought impact may 226 

vary depending on the extent of CO2 response, we conducted simulations with two sets of 227 

parameters that represented the uncertainty envelope in simulated CO2 response for rice. 228 

Specifically, we perturbed the scaling factors (k1CO2, Amax3CO2) in both response 229 

functions by increasing and decreasing their default values by 10 %. For k1CO2, the default 230 
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value was 0.00305, whereas for Amax3CO2 the default value was 0.208. Thus, our `low 231 

stimulation` parameterisation used k1CO2=0.003355 (higher than default) and 232 

Amax3CO2=0.1872 (lower than default), whereas the `high stimulation` parameterisation 233 

used k1CO2=0.002745 (lower than default) and Amax3CO2=0.2288 (higher than default). 234 

We chose to perturb the parameters within ± 10 % since the resulting uncertainty in 235 

assimilation response to CO2 was ≤ 20%, the typical range in observations of C3 crop 236 

response to carbon enrichment (Long et al., 2006). However, we note that this resulting 237 

uncertainty is lower than multi-model ensemble uncertainty estimates of CO2 response (Li 238 

et al., 2015). 239 

 240 

All simulations were conducted for cv. Primavera using parameter values from a previous 241 

study in which the model was thoroughly calibrated and evaluated for Brazilian conditions 242 

(Heinemann et al., 2015). In short, Heinemann et al., (2015) parameterised the 243 

ORYZA2000 model using data from 6 different field experiments (4 rainfed, 2 irrigated) 244 

conducted at Santo Antônio de Goiás (49º 16’ 48” S, 16º 28’ 12” W) and evaluated the 245 

model using data from 11 rainfed experiments conducted at the same location. 246 

ORYZA2000 simulated phenology in the evaluation data with less than 5 days of error, and 247 

yield with less than 350 kg ha-1 average error for a wide range of rainfed situations (see 248 

Heinemann et al., 2015), and is therefore deemed appropriate for this work. Here, for both 249 

historical and future climate conditions, we ran simulations for all soil (n=7) and sowing 250 

dates (n=8). Historical simulations used observed weather data from each of the 51 sub-251 

regions (each containing one weather station), whereas future simulations were conducted 252 

for the 96 individual future climate projections (12 GCMs x 4 RCPs x 2 BC methods) and 2 253 

CO2 parameterisations for the period 2041-2065 at each sub-region. Thus, for each of the 254 

51 sub-regions we conducted 7 (soils) x 8 (sowing dates) x 12 (GCMs) x 4 (RCPs) x 2 (BC 255 

methods) x 2 (CO2 parameterisations), for a total of 10,752 future simulations per weather 256 

station region, each of 25 years. This totalled ca. 13.7 million model runs for the entire 257 

upland rice TPE. 258 

 259 

Environment and drought stress pattern classification 260 
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We first determined environment groups within the upland rice TPE by clustering water- 261 

and radiation-limited (i.e. attainable) yield. Clustering was performed using the entire set of 262 

simulations (i.e. all planting dates, soils and sub-regions) but individually for each of the 263 

climate-by-CO2 scenarios (i.e. 1 historical, and 96 x 2 = 192 future projections). We 264 

employed an agglomerative hierarchical clustering method with the Euclidean distance as 265 

the dissimilarity measure and the incremental sum of squares as the fusion criterion (Ward, 266 

1963). For the historical period, the number of environmental groups (clusters) was defined 267 

by using the inertia gain [cf. Husson et al., (2011)], the within-group sum of squares and 268 

upland rice breeders knowledge of the production area. The latter was used mostly to verify 269 

that areas for each environmental group coincided with anecdotal knowledge of the region. 270 

For the future scenarios, the number of environmental groups determined in the historical 271 

period was kept. We then determined stress patterns for each environment group. To this 272 

aim, we first averaged weekly simulations of the actual-to-potential evapotranspiration ratio 273 

(PCEW), which acts in ORYZA2000 to reduce photosynthesis daily, and then clustered the 274 

phenological sequence patterns of PCEW using the same methods as for the environmental 275 

groups. Only simulated PCEW from 21-days after sowing (mid-vegetative stage) until 2 276 

weeks before physiological maturity were used as this avoided the bias that would 277 

otherwise have been introduced by low PCEW values during crop establishment or during 278 

senescence (Heinemann et al., 2015). All clustering analyses were performed using the 279 

FactoMineR package in the R statistical framework (R Core Team, 2016).  280 

 281 

Results 282 

Shifted climate conditions under future climate 283 

Projected changes in precipitation and temperature are shown in Fig. 2 for all RCPs for the 284 

period 2041-2065, relative to 1981-2005. Figures are specific to the rice growing period 285 

(November-March). Ensemble mean temperature increases are substantial, ranging from 286 

1.5 ºC (minimum for RCP 2.6) to 3.1 (maximum for RCP 8.5). The largest temperature 287 

increases are projected to occur in the state of Mato Grosso (MT), the largest state within 288 

the TPE, whereas the least temperature increases are projected for the state of Tocantins 289 

(TO, northeast). Particularly for the northern areas of the TPE, future seasonal mean 290 

minimum and maximum temperatures for all RCPs are projected to be above 22 ºC and 33 291 
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ºC (respectively), both of which are critical temperature limits for rice fertility (Peng et al., 292 

2004; Jagadish et al., 2007).  293 

 294 

Figure 2 Projected changes in seasonal mean temperature (left) and seasonal total precipitation (right) 295 

across the upland rice growing region, for the period 2041-2065, relative to 1981-2005, for the rice 296 
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growing season (November to January). Bold numbers in the precipitation plots indicate the 297 

percentage of GCM projections that agree in the direction of change. 298 

In contrast to temperature projections, expected precipitation changes were relatively small 299 

(mean regional changes between -2 and -5 %), geographically varied, and in some areas 300 

also highly uncertain (Fig. 2). Decreases in precipitation of up to 5 % are projected in the 301 

state of MT for all RCPs. Particularly in the northern part of MT, precipitation projections 302 

showed substantial (>70 %) agreement in the direction of the projected change. Elsewhere, 303 

however, uncertainty was large, with percentage agreement rarely reaching 60 %. For TO, 304 

climate change models indicated decreased precipitation. For Rondônia (RO), precipitation 305 

gains were projected mostly across the north-western areas. For Goiás (GO) projected 306 

precipitation changes differed across RCPs, with RCP 2.6 and RCP 8.5 showing 307 

precipitation gains in the south of the state, and RCP 4.5 and RCP 6.0 showing 308 

precipitation decreases across all the state. Goiás is also a state where GCM agreement is 309 

low (around 50 % in most weather station regions). Thus, future global emissions and 310 

climate sensitivity strongly condition future precipitation in the state.  311 

 312 

Yield reduction and yield stability loss induced by climate change 313 

Changes in seasonal mean temperature, total precipitation, solar radiation and CO2 314 

concentration interact to change historical mean yield and yield variability (Fig. 3). Current 315 

mean yield levels are in the range 500–4,500 kg ha-1. The ensemble of simulations 316 

conducted here indicated that mean yield is projected to reduce across a most of the western 317 

part of the upland rice TPE, and increase across the east and south-east, with some 318 

differences between RCPs (Fig. 4A, B, Supplementary Fig. S1A, B). Mean yield changes 319 

ranged from –600 to 600 kg ha-1, with the largest reductions (400 – 600 kg ha-1) projected 320 

the central part of MT, followed by north-western and south-western MT (between 200 and 321 

400 kg ha-1). In these areas, model agreement, measured as the percentage of model 322 

simulations out of the 384 simulations per soil and weather station combination (i.e. 8 323 

[sowing dates] x 12 [GCMs] x 2 [BC methods] x 2 [CO2 parameterisations]) that were in 324 

the same direction of the median yield change, was generally above 60% (i.e. roughly two-325 

thirds of the model simulations) for both RCPs, and, for RCP 8.5 specifically, also above 326 

80 %. Yield gains were projected across the south-eastern part of GO, as well as across 327 
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south-eastern and northern TO. Model agreement in these regions was, as in the areas of 328 

yield decline, above 60 % and sometimes above 80 % for both RCPs. Only in specific 329 

pockets within MT and RO (<10% of total area in the TPE) was model agreement close to 330 

50% (no agreement, Fig. 4C, D, Supplementary Fig. S1C, D). In these areas, median 331 

projected yield changes were small, likely because of uncertainty in the direction of yield 332 

changes across model projections. 333 

 334 

Figure 3 Historical mean yield (A) and coefficient of variation (B), as simulated with the 335 

ORYZA2000 model. 336 
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 337 

Importantly, yield stability is projected to decrease across virtually the entire TPE 338 

(Supplementary Fig. S2). Projections of yield coefficient of variation indicated increases in 339 

yield variability in all weather station and soil combinations within the TPE, except for 340 

south-eastern GO, where decreases in yield CV are projected. For central MT, eastern TO 341 

and northern RO, yield CV increases were above 10 percentage points and often above 20 342 

percentage points, with high agreement (>80 %) in model projections.  343 

 344 

 345 

Figure 4 Median projected change in mean yield by 2050s (A, B) and model agreement (C, D) for 346 

RCP 2.6 (A, C) and RCP 8.5 (B, D) expressed as difference (in kg ha-1) with respect to the historical 347 

mean yield. Model agreement (C, D) is calculated as the percentage of simulations out of the 384 348 

future scenario simulations (8 sowing dates x 12 GCMs x 2 BC methods x 2 CO2 parameterisations) 349 

that agree in the direction of the change with the median projected change that is shown in A and C. 350 

Results for RCP 4.5 and RCP 6.0 are in Supplementary Fig. S1. 351 

 352 
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Climate change increases the contrast between high and low yielding environments 353 

Yield variability projections already provide some insight on the changes within growing 354 

environments in the TPE, by suggesting that climate change could enhance the contrast 355 

between the high and low yielding environments found in the historical period. In the 356 

historical period, the upland rice TPE can be divided in three environments (Fig. 5A): a 357 

highly favourable environment (HFE), a favourable environment (FE), and a least 358 

favourable environment (LFE) [also see Heinemann et al. (2015)]. These environments 359 

showed different probabilities of occurrence spatio-temporally and different median yield 360 

in the historical period: HFE is associated with a probability of 19.4 % (median yield 3,023 361 

kg ha-1), FE with 44.6 % (2,184 kg ha-1) and LFE with 36.0 % (1,297 kg ha-1).  362 

 363 
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Figure 5 Current and future upland rice environment groups and their associated cumulative 364 

probability density function (CDF) and frequencies of occurrence in the historical period (A) and in 365 

2050 for RCP 2.6 (B) and RCP 8.5 (C). Shading indicates the interquartile range of the future 366 

scenario simulations. Vertical dashed lines indicate the position of the historical median relative to 367 

the future climate CDFs for each environment group. The horizontal black line indicates the median 368 

(50th percentile). Numbers on the bottom-right of panel (A) indicate the probability of occurrence of 369 

each environment group, and for panels (B, C) they indicate the median for the RCP, with the 370 

interquartile range shown in brackets. CDF plots for RCP 4.5 and RCP 6.0 are shown in 371 

Supplementary Fig. S3. 372 

 373 

A more detailed analysis of environment group probabilities of occurrence and yield under 374 

climate change showed reduction in the median yield for the three environments, 375 

particularly under RCP 8.5 (Fig. 5B, C, Supplementary Fig. S3). However, perhaps most 376 

importantly, we found a change in the probabilities of occurrence of the three environment 377 

groups, with significant dependence on the RCP trajectory chosen. Results indicate that, 378 

under RCP 2.6, the most likely environment remained to be FE, although with a reduction 379 

in its probability of occurrence (40.4 %). For the rest of the RCPs, however, the most likely 380 

environment became LFE: 36.6 % probability for RCP 4.5, 41.2 % for RCP 6.0 and 36.8 381 

for RCP 8.5. At the same time, HFE also became more likely for all RCPs. In all cases, 382 

these changes occurred at the expense of reducing the probability of having FE-type 383 

environments, implying increased contrast between high and low yielding upland rice 384 

environment groups. 385 

 386 

Homogenisation of drought stress within environments 387 

In setting up breeding priorities under climate change for upland rice, it is important to 388 

determine not only the TPE-level environment group composition, but also the within-389 

environment-group composition of drought stress patterns. Under historical conditions, 390 

three drought stress profiles were found for LFE and FE, and two for HFE. These profiles 391 

are typified depending on the intensity of the drought experienced by the crop, as measured 392 

by the PCEW (ratio of actual to potential evapotranspiration). Figure 6 and Supplementary 393 

Fig. S4 show the yield probability distribution, whereas Figure 7 and Supplementary Fig. 394 

S5 show the seasonal variation in PCEW (top rows correspond to the historical period). For 395 
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LFE, three stress profiles exist, namely, reproductive stress (68 % probability of 396 

occurrence, SP1), reproductive-to-grain filling stress (17 %, SP2), and terminal stress (15 397 

%, SP3). For FE, three stress profiles exist: reproductive stress (41 %, SP1), terminal stress 398 

(40 %, SP2), and severe reproductive stress (19 %, SP3); and for HFE two stress profiles 399 

were found: stress-free (69 %, SP1) and terminal stress (31 %, SP2). In general, despite 400 

differences in the timing of the stress, the intensity of drought is similar across environment 401 

groups. Stress levels, measured as percentage of unsatisfied water demand (i.e. the PCEW), 402 

were typically in the range of 40–60 %. 403 

 404 

Figure 6 Cumulative probability density function (CDF) and frequencies of occurrence for upland 405 

rice stress profiles (SP) in the historical period (top row) and in 2050 for RCP 2.6 (middle row) and 406 

RCP 8.5 (bottom row) for all three environment groups: least favourable environment (LFE, left 407 

column), favourable environment (FE, middle column) and highly favourable environment (HFE, 408 

right column). Shading indicates the interquartile range of the future scenario simulations. Vertical 409 

dashed lines indicate the position of the historical median relative to the future climate CDFs for each 410 

environment group. Numbers on the bottom-right of the top row panels indicate the probability of 411 

occurrence of each profile in the environment group, and for the middle and bottom row panels they 412 
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indicate the median for the RCP, with the interquartile range shown in brackets. CDF plots for RCP 413 

4.5 and RCP 6.0 are shown in Supplementary Fig. S4. 414 

Under climate change, we found changes in the composition of each environment group as 415 

well as in the similarity between stress patterns across environment groups. For LFE, two 416 

key differences were observed in the future scenarios with respect to the historical period. 417 

First, there was a three- and two-fold increase in the probabilities of occurrence of SP2 418 

(reproductive-to-grain filling stress) and SP3 (terminal stress), respectively, and a halving 419 

in the probability of SP1 (reproductive stress), indicating a shift in the timing of drought 420 

(Fig. 6, first column). Secondly, SP2 and SP3 became increasingly similar between them, 421 

but more distant to SP1 both regarding yield impact and in the seasonal pattern of PCEW 422 

(Fig. 6-7, first column).  423 

 424 

Figure 7 Current and future upland rice stress patterns and frequencies of occurrence in the historical 425 

period (top row) and in 2050 for RCP 2.6 (middle row) and RCP 8.5 (bottom row) for all three 426 

environment groups: least favourable environment (LFE, left column), favourable environment (FE, 427 

middle column) and highly favourable environment (HFE, right column). Shading reflects the 428 
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interquartile range of the spatio-temporal variation of each stress profile. Numbers on the bottom-429 

right of the top row panels indicate the probability of occurrence of each profile in the environment 430 

group, and for the middle and bottom row panels they indicate the median for the RCP, with the 431 

interquartile range shown in brackets. Profile plots for RCP 4.5 and RCP 6.0 are shown in 432 

Supplementary Fig. S5. 433 

For FE, a similar behaviour was observed, whereby SP2 (terminal stress) and SP3 (severe 434 

reproductive stress) both became more likely and similar. In this case, the probability of 435 

occurrence of SP2 increased by roughly 20 %, whereas that of SP3 increased by roughly 15 436 

% (median across the crop-climate ensemble of simulations). In both LFE and FE, SP1 437 

(reproductive stress) either increases or maintains its yield levels under future climate 438 

scenarios, as a result of reduced stress levels at the beginning of the reproductive period; 439 

however, it becomes much less frequent than under historical conditions (ca. 70 % 440 

reduction for LFE and 40 % reduction for FE for all RCPs). For HFE, we found a 441 

systematic reduction in the probability of occurrence of stress-free conditions (SP1, Fig. 6-442 

7, right column) to the extent that it becomes almost as likely as the terminal stress profile 443 

(SP2). At the same time, SP2 becomes less severe. The latter resulted in increased yield for 444 

this stress profile. 445 

 446 

At the environment group-level for LFE and FE, therefore, while in the historical period 447 

there are three distinct drought stress profiles, results suggest that seasonal drought 448 

conditions are likely to become more uniform within these environments under climate 449 

change. 450 

 451 

Shifted growing conditions and breeding priorities for upland rice 452 

At the TPE level, the above results imply a substantial shift in growing conditions for 453 

upland rice, and thus of breeding priorities. In the historical period, there was a general 454 

trend for reproductive (52 % overall probability of occurrence) and terminal (29 %) stress 455 

to occur separately across the entire upland rice TPE, with only 13 % of probability of 456 

occurrence of stress-free conditions and 6 % probability for the crop to jointly experiencing 457 

reproductive and grain-filling stress during the season. Under future climate, the probability 458 

of occurrence of the joint reproductive and grain-filling stress (i.e. reproductive-to-grain-459 
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filling stress) ranged between 25–28 % (depending on the RCP chosen), thus becoming the 460 

most important stress after terminal stress (29–40 % overall probability). The probability of 461 

reproductive stress reduced to less than half (to 17–21 %, depending on the RCP), whereas 462 

the probability of stress-free conditions remained the lowest (12-13 %). 463 

 464 

Discussion 465 

Implications of projected changes in mean yield and yield stability 466 

For upland rice across the savannah region in Brazil, reductions in productivity are 467 

expected across most of the TPE, except for the easternmost area (see Fig. 4 and 468 

Supplementary Fig. S1). Expected reductions in rice crop yield in these areas have been 469 

reported by global studies. A previous global study where gridded simulations of multiple 470 

crop models were used reported rice yield declines between 5–10 % by 2100 (Rosenzweig 471 

et al., 2014). Another study based on statistical models also reported expected yield losses 472 

in the range 3–7 % by 2030 (Lobell et al., 2008). On the contrary, Muller et al. (2015), 473 

project little yield impact in Central Brazil. None of these studies, however, reported upland 474 

and irrigated rice production systems separately for Brazil, or for other countries or regions, 475 

none include or use the ORYZA2000 crop model, and the Lobell et al. (2008) study did not 476 

include CO2 response. Moreover, it is noteworthy that the study of Rosenzweig et al. 477 

(2014) reports large uncertainty as a result of the crop model used, with models that 478 

consider nitrogen stress showing large yield decreases [also see Webber et al. (2015)]. An 479 

earlier global study where the Decision Support System for Agrotechnology Transfer 480 

(DSSAT) model was used (Nelson et al., 2010) to perform gridded simulations at a 481 

relatively high resolution reported yield decreases between 5–25 % by 2050 in the Brazilian 482 

savannah region, though that study assumed cropping systems in the savannah are irrigated. 483 

Despite methodological differences, there is some agreement between existing and our 484 

estimates of climate change impacts on rice crop yield for the Brazilian savannah region. In 485 

addition, the substantial agreement across individual model projections in our analysis 486 

suggests our results are robust. 487 

 488 

Increase in yield variability was also projected to occur from climate change 489 

(Supplementary Fig. S2). Reduction in yield stability has been reported elsewhere as a 490 
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major limitation for cropping systems under climate change (Challinor et al., 2014; Porter 491 

et al., 2014). To the knowledge of the authors, however, studies specifically addressing 492 

climate change impacts on yield variability in rice for Latin America or Brazil, or even 493 

globally are scarce or do not exist. 494 

 495 

The implications of high upland rice yield variability and lower mean yield are substantial 496 

for both farmers, the national economy, as well as for the global food system (GFS UK, 497 

2015). High yield variability and lower mean yield can cause income instability and food 498 

insecurity in a region where farmers have limited access to resources and low technology 499 

adoption levels (Strauss, 1991; Marcolan et al., 2008). High yield variability under climate 500 

change, in particular, will also increase the already high risk of cultivating upland rice, 501 

which will likely accelerate the current trend towards reducing upland rice cropped areas 502 

(Pinheiro et al., 2006; Marcolan et al., 2008; Ferreira, 2010). Urban centres in Central 503 

Brazil can also be impacted due to instability in the flow of produce to the markets and in 504 

market prices (Nelson et al., 2010; Chen et al., 2012). Deeper investigation of these 505 

impacts is warranted in future studies. 506 

 507 

The area cultivated with upland rice in Central Brazil has been in continuous decline since 508 

the early 2000s (Marcolan et al., 2008; Ferreira, 2010). Farmers normally prefer soybean 509 

and maize, which are less sensitive to drought stress than rice and count with well-510 

established value chains in the region. The perspective of a less favourable climate only 511 

makes it more difficult for upland rice to reverse the trend of declining areas. On the other 512 

hand, upland rice is a good option of agronomic rotation with soybean and, in the absence 513 

of drought stress, allows similar profitability. Therefore, improving the drought tolerance of 514 

upland rice may be the only possibility of maintaining upland rice as a significant 515 

component of agricultural systems in Central Brazil. The biological limit of adaptation of 516 

this species to drought stress is still unknown. 517 

 518 

Projected changes in crop yield and loss in yield stability will thus bring numerous 519 

challenges for upland rice cropping in Brazil, highlighting the need for adaptation. 520 

Adaptation strategies for cropping systems are numerous, and range from short-term coping 521 
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strategies through to longer-term transformations (Rippke et al., 2016). Kim et al. (2013), 522 

for temperate rice, found that cultivar and planting date adaptation can counteract negative 523 

climate change impacts. For Central Brazil, Heinemann et al. (2015) suggest early planting 524 

dates can increase yield. Moreover, efficient breeding and delivery systems are needed 525 

under future climate so as to deliver novel varieties that are adapted to and respond well 526 

under the specific drought conditions found here (Silva et al., 2009; Breseghello et al., 527 

2011; Challinor et al., 2016). 528 

 529 

Breeding implications of changes in environment groups and stress profiles 530 

The current upland rice breeding strategy in Embrapa is composed of two separate breeding 531 

programs: (i) the conventional breeding program, focusing on increasing grain yield, 532 

stability and adaptability to the undivided TPE; and (ii) a drought tolerance breeding 533 

program created in 2004. The conventional breeding program uses two main breeding 534 

methods: modified pedigree and recurrent selection. In both methods, the first three 535 

generations are conducted in a single location under good environmental conditions (Santo 536 

Antonio de Goiás, GO). The fourth generation genotypes (F2:4 or S0:2) are tested in multi-537 

location trials of at least 5 sites. This implies in exposing the progenies to different local 538 

weather conditions, including drought stress. The best progenies, based on the results of 539 

these trials’ joint statistical analysis, are selected for single plant selection (modified 540 

pedigree) or recombination (recurrent selection). With time, the upland rice breeding 541 

program is improving its genetic stability while exploiting the GxE interactions through 542 

seeking wide adaptability. The same philosophy is applied from generation F6 to F10 of the 543 

pedigree method, as the homozygosity gets higher, the number of lines declines, tested in a 544 

growing number of sites. The network must represent the TPE, including the stresses that 545 

occur routinely (Heinemann et al., 2015). With the modified pedigree methodology and a 546 

very broad network represented by the multi-location trials (around 40 trials with F10 elite 547 

lines in the upland rice production area in Brazil), it is possible to evaluate and select lines 548 

with high stability in a wide range of environments. This strategy aims to select high 549 

yielding elite lines with the capacity to respond favourably to changes in the environment 550 

(i.e. with wide adaptation) and at the same time to have a highly predictable performance in 551 

different environmental conditions (Colombari Filho et al., 2013). Currently, the modified 552 
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pedigree method achieves a yield gain of 2.66 % per cycle (Martinez et al., 2014), but it has 553 

a tendency to reduce drought tolerance (Pinheiro et al., 2006; Silveira et al., 2015). 554 

 555 

A drought tolerance breeding program was created in 2004. In such program, the strategy is 556 

to select genotypes with high yield potential under optimal conditions that are able to 557 

maintain good productivity under drought. This program is conducted in the drought 558 

phenotyping site of Porangatu, state of Goiás, Brazil (Martinez et al., 2014). The program 559 

started in 2004 with the identification of drought tolerant donors and the cross of those with 560 

lines or varieties with a minimum level of drought tolerance. Nowadays, the progenies are 561 

in F2:4 generations, and the first releases are expected to occur within the next 10 years. All 562 

generations are subjected to SP1 and SP2 drought stress patterns. 563 

 564 

Under current climate, we found that unstressed conditions occur roughly 13 % of the time, 565 

whereas under future climate we find that this probability of occurrence either remains 566 

unchanged or reduces for all RCPs (12 % in RCP 8.5 to 13 % in RCP 2.6). The existing 567 

breeding strategy results in high-yielding cultivars with a medium tolerance under stressful 568 

conditions, and therefore still leave risks to farmers that adopt such varieties. It enhances 569 

wide adaptation and has led to improved genotypic stability, but selection weights equally 570 

all stresses, and there is no consideration of environmental co-variables (e.g. weather, soil 571 

water contents) in the statistical analysis. Due to the diversity of stresses found, a revised 572 

breeding strategy is suggested for upland rice in Brazil both under current and future 573 

climate. 574 

 575 

The results shown in this work will improve the breeding program to deal with climate 576 

changes aiming to deliver cultivars adapted to the new TPE. Foremost, the early evaluation 577 

should be done in sites of the multi-location network chosen based on our clustering 578 

analysis of historical and future yield (also see Heinemann et al. 2015), in which the upland 579 

area is classified in HFE, FE and LFE. Combining that with the weather data evaluation 580 

from each site, will make a detailed weighted selection possible. A better process of 581 

selection will help breeders to select the desired progenies, lines, cultivars adapted to the 582 

future. Another improvement in the breeding program could be the modification in the 583 
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drought stress protocol normally used in drought phenotyping site of Porangatu to apply the 584 

same type of stress predicted for 2050. 585 

 586 

Under current climate, a differentiated strategy that isolates drought stress profiles is 587 

recommended, since this would allow to control for GxE interactions (Heinemann et al., 588 

2015, 2016). The best strategy under current conditions would be: for HFE, specific 589 

adaptation to stress-free conditions (i.e. selection for yield potential); for FE, wide 590 

adaptation to drought, or selection for yield under drought, weighted by the probability of 591 

different drought profile conditions; and for LFE, specific adaptation to reproductive 592 

drought stress, or a weighted selection strategy as in FE.  593 

 594 

Results presented here indicated that the selection strategy can be adjusted. For HFE, a 595 

weighted selection strategy whereby genotypes are tested both under stress-free and 596 

terminal stress conditions may be needed, since these two stress profiles each have ~50 % 597 

probability of occurrence. For FE, selection should aim at testing under reproductive 598 

(probability of occurrence 62–70 %) and terminal stress (ca. 30–38 %) and then weighting 599 

genotype performance according to these probabilities. For LFE, breeders could also adopt 600 

a weighted selection strategy, but trials should be conducted for response to reproductive 601 

stress (20–25 % probability) and for the joint occurrence of reproductive and terminal stress 602 

(75–80 %). As demonstrated by previous studies (though on a different cereal crop), 603 

weighted selection can help isolating the environmental components of observed drought 604 

impacts from the genotypic component, thus allowing for quicker breeding gains under 605 

stressful environments (Chenu et al., 2011). Stress levels were similar across environments, 606 

with the percentage of unsatisfied water demand being typically in the range of 40–60 %.  607 

 608 

It is noteworthy that we have focused only on one genotype (Primavera), whereas 609 

environment groups and stress patterns may depend on the type of cultivars grown by the 610 

farmers (i.e. GxE interaction). While Primavera is currently used as a check cultivar in the 611 

conventional breeding program and is hence representative of genotypes released to the 612 

public, clearly, as a result of the breeding process at Embrapa, changes have occurred and 613 

will continue to occur in the characteristics of the germplasm released and grown by 614 
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farmers in the last 30-40 years, leading to changes in the environments and stress patterns. 615 

In particular, during 1980s and 1990s a major shift from releasing landraces (e.g. cv. 616 

Douradão) to releasing modern cultivars (e.g. cv. Primavera) occurred in the breeding 617 

program, whereas in late 1990s wide hybridizations were carried out, introducing indica 618 

genes into a predominant japonica background with significant increase of yield potential 619 

especially under highly favorable conditions (Martinez et al., 2014). These activities have 620 

resulted in cultivars with longer growing cycle, and lower root length density, but generally 621 

less drought tolerance (Pinheiro et al., 2006; Breseghello et al., 2011). In fact, cv. 622 

Primavera has been reported to be more drought sensitive than its predecessors (Pinheiro et 623 

al., 2006; Heinemann et al., 2011; Silveira et al., 2015). Further changes will likely 624 

continue to occur as upland rice breeding continues in Brazil, especially as genotypes 625 

developed by the drought-tolerant breeding program created in 2004 are released and 626 

adopted. Therefore, while we argue that the current production situation in central Brazil is 627 

well represented by cv. Primavera, continuous updating of environmental groups and stress 628 

patterns will be required in the next decades. Future studies that include a wider variety of 629 

varieties, with different levels of drought tolerance and different growing cycles can help in 630 

analysing the genotypic dependencies of the environmental and stress types identified here. 631 

These will further help the breeding program in designing selection trials and defining the 632 

selection strategy. 633 

 634 

The costs of conducting breeding and selection trials for a wide range of drought conditions 635 

to be able to weight genotype selection across the entire TPE could, however, constrain its 636 

applicability. This is particularly true for publicly funded breeding programs. In such 637 

situations, a viable option for each environment type or even for the undivided TPE would 638 

be to develop genotypes with wide adaptation to drought. Drought tolerance in upland rice 639 

can be achieved by selecting for high grain yield in stress environments, or by using 640 

marker-assisted selection on less complex traits (Bernier et al., 2008). An example of this 641 

strategy comes from the upland rice in Brazil. The last variety released, BRS Esmeralda, is 642 

the first variety from Embrapa’s breeding program with drought tolerance. BRS Esmeralda 643 

was directly selected under a variety of weather conditions, including drought stress. Its 644 

high stability is shown by Colombari (Colombari Filho et al., 2013). Additionally, success 645 
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in other publicly-funded breeding programs such as those of maize in Africa and common 646 

beans in Central America and Africa provides evidence of the potential for breeding 647 

drought-tolerant materials for adaptation to climate variability and change (Beebe et al., 648 

2011; Cairns et al., 2013). 649 

 650 

Identifying the key physio-morphological traits that confer drought tolerance is also critical 651 

for the efficient selection of genetic material in breeding trials. Although more research will 652 

be required for a complete understanding of which traits are desirable for a specific 653 

environment and drought pattern, existing research suggests that improved root 654 

characteristics, shorter cycles (i.e. drought escape), osmotic adjustment, as well as quicker 655 

and larger assimilate translocation from stems to panicles would likely be desirable traits to 656 

improve drought responses (Fukai & Cooper, 1995; Dingkuhn et al., 2015). 657 

 658 

Uncertainty and decision making in breeding programs 659 

Model projections of climate change impacts can help guide decisions on adaptation 660 

(Ranger & Garbett-Shiels, 2011), and, in this case, help establishing clear targets for the 661 

upland rice breeding program in Brazil. Large uncertainty in model projections, however, 662 

can preclude these decisions (Vermeulen et al., 2013). Hence, further to what has been 663 

discussed above on the representativeness of cv. Primavera, limitations arise in our 664 

analysis, most notably, because future climate projections are inherently uncertain, and 665 

because, as in any model-based analysis, the crop model used does not capture crop 666 

response perfectly (e.g. limitations in simulating CO2 response, heat stress, or site-specific 667 

farmer management). Here, we accounted for a range of uncertainty sources, namely, 668 

emissions pathways (RCPs), simulated climate sensitivity (using multiple GCMs), bias 669 

correction methods, and rice crop response to enhanced CO2 concentrations. Importantly, 670 

our study is one of the first crop simulation studies that explicitly quantifies the response of 671 

the crop CO2 concentrations and of different bias correction methods [also see Ramirez-672 

Villegas and Challinor (2016)]. Agreement across model projections of yield and yield 673 

stability was found throughout most of the upland rice TPE (see Fig. 4C, D). Also, despite 674 

variability across crop-climate model projections for environment-specific yield 675 

distributions and drought profiles, differences between the medians were substantial, and 676 
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overlaps between uncertainty bounds were small, indicating our results are robust towards 677 

modelling uncertainties (Fig. 5-6). Recent studies have also shown that predictability can be 678 

achieved for certain crop processes (Challinor et al., 2016), at long timescales (Rippke et 679 

al., 2016), or for certain model outcomes [e.g. adaptation vs. no adaptation, Ramirez-680 

Villegas and Challinor (2016); Porter et al. (2014)]. The latter studies are particularly 681 

relevant to our analysis, since they specifically emphasise that while uncertainty is 682 

prevalent in model projections of crop yield, there is robustness as to the direction and 683 

impact of adaptation strategies. Nevertheless, we argue that, despite the uncertainties and 684 

limitations, the benefits of breeding drought-tolerant upland rice will be substantial during 685 

the 21st century. If the current level of drought tolerance is not improved, upland rice may 686 

be replaced by other, more drought tolerant, cash crops. 687 

 688 

Conclusions 689 

In this study, we assessed changes in the prevalence and intensity of drought stress due to 690 

climate change for upland rice in central Brazil, with a view on the implications that these 691 

changes have on the current breeding strategy for upland rice in Brazil. In the face of 692 

climate change-induced decreases in mean yield and losses in yield stability, our results 693 

suggest that the current strategy of the breeding program can be improved to minimize the 694 

impact of drought stress on new cultivars. 695 

 696 

Under climate change scenarios, based on our results and on those of a previous study that 697 

focused on historical climates (Heinemann et al., 2015), we recommend a weighted 698 

selection strategy for all the environment groups in the TPE. Although only economic ex-699 

ante and/or ex-post technology impact assessments will allow determining whether it is 700 

economically feasible to change the current breeding strategy to be modified, it is necessary 701 

to consider future projected climatic conditions in the breeding pipeline. Improving the 702 

adaptive traits of germplasm to respond better under drought stress will ultimately facilitate 703 

upland rice systems adaptation to climate change, improving food security and farmer 704 

livelihoods. 705 

 706 
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There are a variety of future research avenues that could be pursued based on the results 707 

presented here. Although the ORYZA2000 model already simulates heat stress, future 708 

studies could use available and/or new experimental data to evaluate heat stress response in 709 

the model, and then use it to quantify the occurrence of heat-stressed environments. Heat 710 

has been reported as being of major importance for rice globally (Teixeira et al., 2013; van 711 

Oort et al., 2015), and specifically also for the southern part of the upland rice TPE studied 712 

here (Teixeira et al., 2013). Future work could also involve the validation of the growing 713 

environments reported here with field trials, and the determination of potential parents and 714 

physio-morphological traits that are key for drought tolerance. Finally, clearly, the drought 715 

stress profiles and yield environments that we find can change as new cultivars become 716 

available and adopted, and future analyses will be required to determine if the breeding 717 

strategy is indeed on track, and yield progress is being made under the different drought 718 

types that exist in the target region. 719 
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Figure captions 937 

 938 

Figure 1 Upland rice study area in central Brazil. The area, also referred to as a Target 939 

Population of Environments (TPE), is formed by the states of Rondônia (RO), Mato Grosso 940 

(MT), Goiás (GO), and Tocantins (TO). The distribution of weather stations (red dots), 941 

their respective sub-regions (blue polygons), and the distribution of soil data used to 942 

construct the soil scenarios (light grey dots) are also shown. 943 

 944 

Figure 2 Projected changes in seasonal mean temperature (left) and seasonal total 945 

precipitation (right) across the upland rice growing region, for the period 2041-2065, relative 946 

to 1981-2005, for the rice growing season (November to January). Bold numbers in the 947 

precipitation plots indicate the percentage of GCM projections that agree in the direction of 948 

change. 949 

 950 

Figure 3 Historical mean yield (A) and coefficient of variation (B), as simulated with the 951 

ORYZA2000 model. 952 

 953 

Figure 4 Median projected change in mean yield by 2050s (A, B) and model agreement (C, 954 

D) for RCP 2.6 (A, C) and RCP 8.5 (B, D) expressed as difference (in kg ha-1) with respect 955 

to the historical mean yield. Model agreement (C, D) is calculated as the percentage of 956 

simulations out of the 384 future scenario simulations (8 sowing dates x 12 GCMs x 2 BC 957 

methods x 2 CO2 parameterisations) that agree in the direction of the change with the median 958 

projected change that is shown in A and C. Results for RCP 4.5 and RCP 6.0 are in 959 

Supplementary Fig. S1. 960 

 961 

Figure 5 Current and future upland rice environment groups and their associated cumulative 962 

probability density function (CDF) and frequencies of occurrence in the historical period (A) 963 

and in 2050 for RCP 2.6 (B) and RCP 8.5 (C). Shading indicates the interquartile range of 964 

the future scenario simulations. Vertical dashed lines indicate the position of the historical 965 

median relative to the future climate CDFs for each environment group. The horizontal black 966 

line indicates the median (50th percentile). Numbers on the bottom-right of panel (A) indicate 967 
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the probability of occurrence of each environment group, and for panels (B, C) they indicate 968 

the median for the RCP, with the interquartile range shown in brackets. CDF plots for RCP 969 

4.5 and RCP 6.0 are shown in Supplementary Fig. S3. 970 

 971 

Figure 6 Cumulative probability density function (CDF) and frequencies of occurrence for 972 

upland rice stress profiles (SP) in the historical period (top row) and in 2050 for RCP 2.6 973 

(middle row) and RCP 8.5 (bottom row) for all three environment groups: least favourable 974 

environment (LFE, left column), favourable environment (FE, middle column) and highly 975 

favourable environment (HFE, right column). Shading indicates the interquartile range of the 976 

future scenario simulations. Vertical dashed lines indicate the position of the historical 977 

median relative to the future climate CDFs for each environment group. Numbers on the 978 

bottom-right of the top row panels indicate the probability of occurrence of each profile in 979 

the environment group, and for the middle and bottom row panels they indicate the median 980 

for the RCP, with the interquartile range shown in brackets. CDF plots for RCP 4.5 and RCP 981 

6.0 are shown in Supplementary Fig. S4. 982 

 983 

Figure 7 Current and future upland rice stress patterns and frequencies of occurrence in the 984 

historical period (top row) and in 2050 for RCP 2.6 (middle row) and RCP 8.5 (bottom row) 985 

for all three environment groups: least favourable environment (LFE, left column), 986 

favourable environment (FE, middle column) and highly favourable environment (HFE, right 987 

column). Shading reflects the interquartile range of the spatio-temporal variation of each 988 

stress profile. Numbers on the bottom-right of the top row panels indicate the probability of 989 

occurrence of each profile in the environment group, and for the middle and bottom row 990 

panels they indicate the median for the RCP, with the interquartile range shown in brackets. 991 

Profile plots for RCP 4.5 and RCP 6.0 are shown in Supplementary Fig. S5. 992 
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