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Globalldentification of Electrical and Mechanical
Parameters in PMSM Drive based on Dynamic
Self-LearningPSO

Zhao-Hua Liu, Member, IEEE, Hua-Liang Wei, Kan Liu, Member, IEEE, and Qing-Chang Zhong, FEHH#v, |

Abstract: A global parameter estimation method ®PMSM drive system is proposed, where the electrical parameters,
mechanical parameters and voltage-source-inverter (VSI) nonlinearity ardeges a whole and parameter estimation is
formulated asa single parameter optimization modél dynamic learning estimator is proposed for tracking the electrical
parameters, mechanical parameters and VSI of PMSM drive by using dynalmieasning particle swarm optimization
(DSLPSO). In DSLPSO, a novel movement modification equation with dynareimm@ar learning strategy is designed
ensure its diversity and achieve a reasonable tradeoff between th&a@mpleand exploration during the search process
Moreover, a nonlinear multi-scale based interactive learning operator is intofdu@ecelerating the convergence speed of the
Pbest particles; meanwhiledynamic opposition-based learning (QBitrategy is designed to facilitate the gBest particle to
explore a potentially better region. The proposed algorithm is applied to parastatextion for a PMSM drive system. The
results show that the proposed method has better performance ingrdek variation of electrical parameters, and estimating

the immeasurable mechanical parameters and the VSI disturbance voltage simujtaneous

Index Terms. particle swarm optimization (PSO), dynamic self learning, interactive learning, parameter estimation,
electrical parameters, mechanical parameters, voltage-source-inverter (VSl), permanent magnet synchronous machines

(PMSMs).

I. INTRODUCTION?
RECENTLY, permanent magnet synchronous machines (PMSMs) areywisted in high-performance applications due to its

high efficiency, high power density, and good dynamical performftig@]. The parameter accuracy of both the electrical and

mechanical modelss of great importance for condition monitoring and fault detection, spegalation, and control system
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coefficientadjustment in a PMSM system [4]7].It is known that electrical parameters, such as winding resistdge@xis
inductances, and rotor PM flux linkage usually need to be krfowithe current loop controller design and system behavior
evaluation A high-performance controller is highly dependent on the accurate knowdéetgrtromagnetic parameters [6]. For
example the value of rotor PM flux linkage in PMSM drives is needed fogue control during a normal operation [9], the
winding resistance andiraxis inductances are essential for the design of current loop contfb0&ta addition, any change of
electrical parameters also considered as an indicator for the change of system operatian Batwexample, the inter-turn
short circuit can result in an abrupt changedgraxis inductance and winding resistance [4], the demagnetization cétrinesu
sudden decrease in the amplitudddf flux linkage [7]. At the same time, the mechanical parametersagiofioment of inertia
and viscous friction coefficients are critical to the design of dynamic performgpeed-loop controllers [11]. Therefore,
obtaining accurate values of motor parameters can help improve confarhyzerce of the whole PMSM system. In reality,
these electrical and mechanical parameters are usually unknown to the\oserate estimation of these motor parameters are
sometime quite difficult due to the fact that they may change during dpperation ashe PMSM drive is a nonlinear
time-varying system, whose parameters are sensitive to the chanmgérohmental conditions such as temperature, mechanical
loads, etc12]. For example, the winding resistance can easily change along withrihgon of temperature, and the rotor flux
linkage of a PMSM varies with the change of temperaturaagnetic density [[6 The moment of inertia usually varies with the
shape and the dimensions of mechanical loads.

Therefore, in order to obtain reliable electrical and mechanical parameters of RMSilthble parameter estimation method
is needed. Many parameter estimation methods have been propose auxiliary equipment may be required in most of the
existing parameter estimation methods to assist machine parameter identificatioas external sensors, function generator,
and spectrum analyzer [13]-[15]. However, the estimation accurasycdf a solution (i.e. with auxiliary equipment) relies on
the accuracy of the measurement equipment used. Additionally, theamsadhparameters of a PMSM system are usually
immeasurable. In practical engineering, ideally system identification nmtgydis used to directly estimate the needed
parameters based on regular system input/output signal instead oadditignal measurement instruments [16].In the literature,
commonly used parameter estimation algorithms include extended Kalrear{EKF) [17], model reference adaptive system
(MRAS) [18] [19], recursive least-squaréBLS) [20][21], observerbased method22]-[25], and artificial neural networks
(ANN) [26]. However, with the increasing complexity of operation cond#jdchese methods may not always work well. For
example, in [2] it was proposed to use self-commissioning techniqustineaee PMSM parameters under standstill before the
start of machine. However, this method cannot estimate the permanent magnéhe machine is not running. EKF is usually
used for the estimation of motor parameters including the windingtaese and rotor flux linkage [17]; this method, however,

may be difficult for real applications due to the sensitivity to nomskeragHy computational burden in practical operation.16][



and [19] a MRAS estimator was proposed to estimate some machine parayefizing the rest parameter to their nominal
values. However, the resulting parameter estimates given by MRA®ehiaed as the PMSM parameters are varying
nonlinearly, thus the nominal value is usually mismatching thealp@rameter valuesand it may converge to incorrect
parameter values. Thus, the MRAS estimators cannot simultaneously estimataraibkferameters in the circuit model af
PMSM. In comparison with other algorithms, RLS possesses a gopdrpyr of rapid convergence rate, but the algorithm may
suffer from detenration of accuracy since it requires model reduction and approximatioinéar parameterizatiof20].
Recently, observer-based parameter estimation approaches, including distolissreer , slidig-mode observer and adaptive
observer are attracting widespread interest and employed to estimate the paramBtd&Vbidue to their simplicity to
implement [11], [21]-[24]. For example, a state observer formadiing motor disturbance and mechanical parameters is
presented in [22]. In [23], an adaptive observer combined with a tegladncy signal injection technique was investigated to
estimate the stator resistance and the rotor PM flux linkage in PMSM .driviggl], a sliding-mode flux observeras used for

flux estimation and another improved sliding-mode observer is proposed for thea@istinof the mechanical parameters of
PMSM in [11]. Although the observer based methods in [P1}-[24] can achieve good performance and are able to estimate
the machine parameters accurately, they are not robust enough edtieg evith the uncertainties in machine parameters. ANN
based iterative computations were also proposed for parameter estimation for PM38J; it was demonstrated through
numerical experiments that such an approach could get stuck in localanginmwer fitting if the tuning criteria were improperly
conduced[26].

Bio-inspired search and optimization methods provide an ideal and automiatiothsto parameter estimation for PMSM
systems using regulgr measued data and properly defined objective functidparticularly, the particle swarm optimization
(PSO) algorithm is a nature-inspired algorithm with several advantagesassohple implementation, fast convergence speed,
and parallel search in a solution space, and is powerful in dealingnuitivariate parameter optimization problems. The PSO
algorithm has been employed in parameter estimation for electrical machif31[R&or example, in [28] an improved PSO
method, combined with a new crossover operation, was proposehlefastimation of the unknown composite load model
parameters. In [29], a novel application of the improved PSO wasgeddor parameter estimation of an induction machine by
investigating new movement equation and desigaingw coefficient adjustment strategy PSGbased estimator was proposed
in [31] and [32], which is effective in estimating the stator resistance and trefltot linkage, or the d-axis inductances and
g-axis inductances but the method cannot satisfactorily estimate all maahangegers simultaneously, since the basic PSO used
is easy to get trapped in local minima when dealing with time-varying multiplempser optimization problem. In [33], a
collaborative evolutionary $O, combined with an artificial immune system (AIS), was developed toowepthe estimation

performance of multiple PMSM system parameters. However, the computdtiadadf this method is heavy though it obtains



good accuracyTo speed up the search process of swarparallel co-evolutionary immune PSO algorithm was proposed for
parameter estimation and temperature monitoring of a PMSM [34]; the exectittaney of the method was greatly improved
by taking advantage of massive parallelism in graphics processihg GPU). Most recently, a dynamic particle swarm
optimization with learning strategy (DPSO-LS) was proposed for key péeanestimation for PMSM, where the VSI
nonlinearities combined machine parameters were estimated simultanecbklyWNertheless, the existing PSO-based
parameter estimators of PMSM are dedicated to estimate electrical paratitiéeestention has been paid for estimating all
electrical parameter and mechanical parameters simultanebusiyg the existing literatures, we can conclude that little work
has been done for estimating all electrical parameter and mechanical parametersesinaiftaRor example, [27] proposed to
estimate combined moment of inertia and viscous friction coefficients wéttaith of the estimated rotor PM flux linkage.
However, the estimation of rotor PM flux linkage did not take into awicother cases e.g. by fixing nominal value of other
machine parameters such as winding resistance and the inductancesy wibtthe influence of voltage-source inverter (VSI)
nonlinearity. Therefore, the estimation accuracy of rotor PM flux ggkaan suffer from the variation of other machine
parameters and the unconsidered VSI nonlinearity. Consequently, the atgooliestimated electrical parameters would in turn
affect the accuracy of the estimation of mechanical parameters. Gignththparameters of the system inherently impact
each other, it is a big challenge to obtain reliable parameter estimates using coaV@atiameter estimation methods. Thus,
the development of a high performance learning estimator for the idembih of PMSM electrical and mechanical parameters,
together with the VSI nonlinearity, is still highly demanded.

For high-performance control system design and safe operationretwengive modeling efforts is always required, i.e., the
electrica] mechanical and VSI parameters have to be precisely identified. This papgetoaschieve better performance in
parameters estimation for PMSM systems. A new global parameter identificagithhodnis proposed for the estimation of
electrical and mechanical parameters @fPMSM drive where the electrical parameters, mechanical parameters, and
voltage-source-inverter (VSI) nonlinearity are regarded as a whole amdngtar estimation is formulated as a single
optimization problem. To obtain global parameter estimateslynamic learning estimator is introduced for tracking the
electrical and mechanical parameters of PMSM drive by using dynamic self lepamiitde swarm optimization (DSLPSO). In
DSLPSO, a novel movement modification equation with dynamic exemplairigastnategy is designeo ensure its diversity
and meanwhile effectively manage the exploitation and exploration dhergetrch process. Moreover, a nonlinear multi-scale
based learning operator is defined for accelerating the convergence speedPbést particles, arddynamic opposition-based
learning (OBI) strategy is designed to facilitate the gBest particle to explore a potentially better fidggmroposed method is
applied to estimate the parameters of a PMSM drive. The results show thabpbsegr method has better performance in

tracking the variation of electrical parameters and estimating the immeasurabbnitacharameters and the VSI disturbance



voltage simultaneously.

The remainder of this paper is organized as follows. In sedfipm brief introduction of PMSM model is provided and the
estimation of parameterfor PMSM is analyzed. In section III, a dynamic learning estimator is presented for tracking the
electrical and mechanical parameters of PMSM drive by using dynamic self lepaniitde swarm optimization (DSLPSO) is
proposed, where the principle, mathematical model and implementatioedpre of the algorithm are illustratdgkperimental

results and analysis are given in section IV. Finally, conclusionfutum@ work are presented in section V.

II. PMSM MODEL AND DESIGN OF PARAMETER ESTIMATION M ODEL

A. PMSM Model

In this section, the modeling of VSI nonlinearity in synchronatating reference frame will be discussed. Assuming that the
PMSM is of negligible saturation and losses inside cores and magneM®igl can be partitioned into two subsystems,
namely, the electrical system and the mechanical system [36]. The electricakahdnical equations of PMSM in dg-axis

reference frame are usually expressed as

: diy .
uy = Riy + L, — — L Pai (1a)
dt
. di _
u, = Ri, + LqE+LdPa)|d+y/mPa) (1b)
T, =15 i+ Ly-L) i (1c)
do
JE:TE—B[U—Tm (1d)

where P is pole pairsp is mechanical angular speed,, wy, iq and j are dg-axis stator voltage and current, ang i
electromagnetic torque. The elements of the electrical parameter, 38, {R, and lg} represent the motor winding resistance,
PM flux linkage, d-axis and g-axis inductances, respectively; tineegls of the mechanical parameter set{ B, J agdiie the
viscous friction coefficient ,moment of inertia and load torque , respectitediould be noted that boBhand J are generally
time invariant for the same operation condition of a PMSM control systigme)drtrical parameters are always time varying.

PMSM is usually fed by a voltage source inverter (VSI). The refereritages, used for the parameter estimator and measured
from the output voltage of the current controllers in a PMSM vector dosystem, are denoted laads uq*. The PMSM

dgraxis voltage equations with the consideration of the VSI nonlinearity are expasssed
- di .
Uy = R|d+LdE—Lanmq—Dd(k)\/deac (2a)
* . dlq .
u, = Ri,+ an+ LyPad 4+ Po—DaK )V 4o, (2D)

whereDy and D, are periodical functions of the rotor position and can be expressed as [37]:
B.
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The variable Meadis the distorted voltage caused by the VSI nonlinearity, and can be represented

Vdead= M—}F;wa.(\/ de—V satV )|+ @c (5)

whereTdead, Ton, Toff ,Vdc,Vsat and Vd are the dead-time period, turn-on ,turn-off times of the switchingéelethe actual and
measured real-time dc bus voltages, the saturation voltage drop of thesaétole and the forward voltage drop of the free
wheeling diode, respectively. In (5), the VSI nonlinearity introducesdibktorted voltage termsg¥gead @nd D.Vyead into the
voltage equation of PMSM. Note thageMis difficult to measur@sthe dead-time period, switching times and voltage drops of
switching device vary with the operating conditiotisVueadis ignored,it may introduce an error into the parameter estimation of

the machine and affect motor parameter identification results. The steady-statediguations of (2) are

Uy = Riy — LPwi ,—Dd(k)Vdead (6a)

uq* = Ri, + LyPai 4+ P —Dq(k)V (6b)

deac

The electrical parameters {Rvm, La, Lq} and VSI distorted voltagefdq) need to be identified from experimental data. As
shown in (6), there are five machine parameters, but the rankenurhBMSM voltage equation (6) is two, so the rank of (6) is
unequal to the number of parameters, thus, it is impossible to estivat@afameters in the circuit model of PMSM,
simultaneously.

Under the condition of no load, i.en ¥ 0, and with §=0 , (1d) can be simplified as

do .
Jd—=1.5pl//m|q— Bw (7)
t

The mechanical parameters £} need to be identified, however, it is impossible to estimate two paramethrthigisingle
motion equation.

B PMSM Electrical and Mechanical Parameters Estimator Design Considering VSI Nonlinearity

A total of seven parameters (i.e,, IR, Lq ,wm, Vdead, B, J) Need to be estimated, therefore seven equations need to be designed

for system identifiability; it needs five voltage equations for the estimaticlectrical parameters and VSI distorted voltage



Vuead ,together with two motion equation for the estimation of mechanical paramet&rschematic diagram of the estimation

and mathematical model is shown in Fig.1.
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Fig .1. A schematic diagram of estimation and matktecal model

(a) Electrical Parameters Estimator Design with Considering VS| Nonlinearity
The estimation of electrical parameters combined wisth distorted voltage can be achieved by designing a full rank reference
identification model using d-ax& current injection methad=quation (6) will be used to solve the rank deficient identification
problem by considering two conditiongs0 and i#0.If iq is set to be zero (i.e4=0) for decoupling the flux and torque control,
it is ready to get (8a) and (8b) in below. A very short periodegfative current (i.eq<0) is then injected to obtain two state
equations given by (8c) and (8d). It should be noted that whenyasre&ll amount of current is injected into the motor and
stopped in a very short time, the variation in the distorted voltaggisvhot significant and its assumed to be constant. At the
same time, the variation of the d-axis current does not affect thes gwaxent, and the rotor speed can be assumed to be constant

for a surface-mounted PMSM when a short period cuisénjected into machinghat is ig=iq, ®o= wi.From this analysis, an

additional equationAug can be obtained as (8e) by subtracting the g-axis equatiddofrém that of 8b). The symbols
denoted with “0” or “1” in their subscripts indicate that the d axis is injected with the current=0or i0, respectively (see Fig. 1).
The full rank reference model of electromagnetic parameters is given as

Ugo" (K) = — L, @0(K)i o (k) — Dao(k W eac (8a)
Uyg' (K) = Rizg (K) + 1 @0(K) — Dao K)Veead (8b)
Ugy” (K) = Rigy (K) — Log@n(K)i (k) — Dao(k W seas (8¢)



Uy (K) = Rigg (K) + Ly@n(K)i 3, (K) +y 1K) ~ De(k Weeas (8dl)

At (K) - Uy (K) = U (K = Lyeon(K)igy(K) -

(8e)
Vaead D a(K) — D o(K))

(b) Mechanical Parameters Estimator Design
The estimation of mechanical parameters can be achieved by designing artadientimodel using steady state condition and

start-up accelerations condition.

The steady state estimation of B, V\%ﬁ- =0, (1d) can be simplified as
t
1.5Py iy = Bo 9)

d . . . , . d
Note that whend—w =0, theJ term does not appear in this equatimnorder to obtain the term J and ach|e»ag)— #0, the
t t

motor is required to operate at constant accelerations for a period of tist@rtnp testand (7) can be discretized as foltow

5 ok +T9) ~ (k)

. =15y, k)— Bo (k) (10)

whereTsis a sampling time

C. Objective Function Design

The parameter identification can be addressed as an optimization problem whestetineragponse to a known input is used t
find the unknown parameter values of a model. The main idea of anzgitim-based approach is to search the best parameters,
which minimize a cost function between the measurement samplesaaiedl entputs. In this study, the seven fitness functions

are generated from equation (8)-(10), and defined as follows.
(g ,\ideau):%élpd;«)m ok sl g€ (1)
f o(R, 17 Veead) = % él|uqo* (K)+ D @KV deas-Ug (k)| (12)
fa(R, Ly Maead) = %él|u o () +Dd (K Vaead—Gi (k)| (13)

A 1nh, . A
fa(Ro7, L, ,Vaeam)=ﬁk§1|uql (<) +D alk V seasti (<) (14)

R A (15)
Nk=1 Vdea((D d,(k) -D @(k))
fo.B) == 2o (0-00] = = £’ () -5 16)
£, B) = % i (0~ fa(k)
(17)

2 w(k+Ts)-w(k) &0 k
(- 32+ Bo(k)
1.5p7 |

where n is the number of samples under stable state in machine, e nsirtiber of samples under acceleration state in

1 m
==3
Mk=1

machinef;, Usand AQ, indicate the estimated voltages di-axis computed by the measured currents and the estimated



parameters
Let 0= (R L,,La, VaeasB J ), then all the needed parameters can be identified simultaneously by minithizifajlowing
objective function

f(0) = _glaifi (18)
where a@’s are weighting coefficients. Note that the dels_igned objective function (18) ieddtathe actual PMSM drive system
which is highly nonlinear, time varying and immeasurable ewith, many local minimum points; all these make the parameter

estimation process even more challenging. So, it is important to develoficeeneflobal parameter estimator for tracking the

PMSM electrical and mechanical parameters combined VSI nonlinearity

III. ESTIMATOR PARAMETER OPTIMIZATION WITH DSL PSO

A biological inspired PSO, combined with a learning mechanism, can beyadgtm approximate all the parameters of PMSM
drive, since biological heuristic has the intrinsic ability to automatically trackythantic objectivedetails of which are given
below.

A. Principle of the Basic PSO Algorithm
In a d-dimensional space, each particle i has two vectors, namngeletbcity vector Vand the position vector; Xthe
searching scheme can be expressed
Vgt +1) = v,y +c, *randy( Pbest( )t— X (0
+C,* rand,( gBesf( )t— X( 0

Xgt+1) =X, t)+Vy € +1) (20)
where ¢ is the inertia weight factor,@nd ¢ are the acceleration coefficients, raadd rand are two uniformly distributed

(19)

numbers within [0,1]The i-th particle has found best position so far is called Ptiestest position found among the entire
population is called gBest

B The Proposed Dynamic Self-Learning PSO Model

Dynamic opposition-based
learning (OBL) strategy

A nonlinear multi-scale
based learning strategy

Fig.2.An illustration of dynamic self-learniRgO

So far, most PSO algorithms use a single learning pattern for gdllggrwhich means that all particles in a swarm use the same

learning strategy, that is, the particle learning its self historical search atformand global search information. This monotonic



learning pattermacks diversity for particles and is unable to deal with dynamic timgngaproblem. In order to effectively solve
this problem, particles with dynamic self-learning ability is needed.
The proposed DSLPSO algorithm model is shown in Fig.2, which involekey strategies.

1) Firstly, a novel movement update equation witlyaamic exemplalearning pattern is designed for updating particles; this
enables each swarm to learn from its Pbest particle or neighbor Pbest histstigaidymation.

2) Secondly, a nonlinear multi-scale based interactive learning operator is gadoftu accelerating the convergence speed of
the Pbest particles araldynamic opposition-based learning (QBitrategy is designed to facilitate the gBest particle to
explore a potentially better region.

The general steps &SLPSO for PMSM parameter estimatiane stated as follows.
Algorithm: DSLPSO algorithm for PMSM paramet

estimation

Sepl: Initialize parameters, data sampling and recording
in Fig 1.
Sep2: Load data (Data0O, Datal and Data2 are as in Fig.1
are used to drive the estimator model.
Sep3: for i=1 to N //1<i<N, N is the number of particles
update particlevelocity (M) using the dynamic exemple
learning pattern as iequation (21)
update particleposition (X) as in equation(22) }
Evaluate the fitness value (Fit(Xi))of partigle
IF  Fit(Xi) < Fit(Pbes) then Update Pbe@®hest« Xi)
IF Fit(Pbes) < Fit(gBbest) Then Update ¢gBe
(gBest«— Phbes)
End for
Sep4: for i=1 to K //1<i<K, K is the number of Pbest
A multi-scale based interactive learning scheme
Pbestusing the equations (24)-(25).
Evaluate the fitness value (Fit(X))oNpBest (New
PBesf)
Update Pbes{Pbest « PbestUNPbeg;)
End for
Sep5: A dynamic OBL strategy for gBest particle by usi
the equations (26)-(29).
Until a terminate condition is met, or else, returns to step:

Sep6: Output optimal results (Rq, Lg ,wm, Vdead, B, J).




C. Dynamic Exemplar Learning Pattern for PSO

In this study, a novel movement update equation is designed fatingpdarticles by investigating a dynamic exemplar
learning pattern. This enables each swarm to learn from its historical optiorahation or neighbor optimal information, that is,
the velocity updating equatidndicates that all of exploitation particles’ historical best information is used to update a particle’s
velocity, the good searched information can be exchanged among all paificissmakes a balance between extensive
searching and accurate searching. The proposed dynamic PSO model is

Vi (t +1) = v,y +c, *rand,()( Pbes(},i)d( = X0+ (

c, * randy( gBesf( )t— X( 0
Xgt+1) =X, t)+V,t+1) (22)
where Pbegt[Pbest, Pbest,...Pbesi], pi means that thpi-th P.estprovides the best information, and the other particles should

21)

learn from it, which determined by the learning probabiligyis®given as

PG = 0.1+ 0'53157 23)

where Srepresents the ranking number of the ith particle in all particles accordiiitgess value (from small to largelf.

random>Pgithenpi « i , meaning that the i-th particle learns from itself Pbest; othervgse- (i +C* rang% N(N is the

number of population), where C is the range of a neighborhoodhimgethat the ith particle learns from the neighbor’s

historical best information.

D. A Multi-scale based I nteractive Learning Scheme for Pbests

Inspired by a common social learning behavéonnteractive learning strategy is proposed to em&tilest particleso learn
the good experience from each other and exchange their best searchtiofoamong the elite swarm during the search process.
This interactive learning strategy can maintain the diversity of the swadnboost fast convergence speed. A nonlinear

multi-scale based learning strategy for Pbest is given as

NPbes}, ( t+1) = Pbegt( )t-7( )t ( Pb%f&]()4 Phes)) (24)

Au

n(t)=€e " .cos@ru ).(1—% ) (25)

where T is the maximum evolution generation and t is the cugem@ration numbethe symboly is the randomly selected the
exploitation population ang = \_rand* KJ . n(t) is a nonlinear multi-scale mutation operator, the nonlinear variation

coefficientl is a formal parameter and is set to be 2, u is randomly generatad the initialization and in each generation,
respectively, which are both uniformly distributed in (0,Ndte that the definition of (25) is useful in the earlier evolution,
the large-scale mutation operators can be utilized to quickly locate the global optimal spee|aber tevolution, the
small-scale mutation operators can be used to implement the accuracy of the solution at theutade it the
increasing number of generatiorthe multi-scale based interactive learning scheme can therefore enable Pbest tparticles

jump out a local optimum and obtain an overall robust search performance.



E. A Dynamic OBL strategy for gBest

The gBest particles are usually used as the exemplars to lead the flying dicdaibparticles. If the global best particle does
not find a better position, it will then easily lead to othatticles“stuck in” a local optimum. It needs a reinforcement learning
mechanism to improve the gBest search performance. The oppdsited learning (OBL) is a machine learning method and
was firstly proposed by Tizhoosh [38]. The basic idea of OBLh& & search in the opposite direction is carried out
simultaneously when a solution is exploited in a direction, i.e.,

X=a+ b- X (26)

where x is a real number on the interval [a,b], aXé the opposite number of x. This definition is also valid for D-dirievas

space, where fornxo,....Xo € R and x=[aj,hb], the D-dimensional point is defined as

Xi=a+hb-X (27)

However, the exploration performance of deterministic OBL is limitedrdier to overcome the drawbacks of the original OBL

and enhance the gBest particle convergence speed, a dynamic OBL stsatggadaptive Gaussian distribution is designed as

ogBes}, = Gaussie(m:,o-z)( )t gt gBgs
ay (t) =min(gBes}), B (3= max(gBest)

(28)

where Gaussia(;u,az)is a random number of a Gaussian distribution with a zero mweent( a standard deviation)( In

order to obtain a better dynamic learning performance for gBest, itusadshat- decreases linearly, for which a good choice
may be given as

t

0 = Omin + (T max = min) (1 - ?) (29)
whereomax andomin are the upper and lower boundsspfhich specifies the learning scale to reach a new region (in practice,
could be bounded between 0 and 1). This strategy provides a distuabaBest, the jump out performance is enhanced by this
improved OBL with dynamic Gaussi distribution which is beneficial to guide global particles’ moving direction and enhance

convergence speed.

IV. EXPERIMENTAL RESULTS AND ANALY SIS

A. Hardware Control System and Software Platform

The control system and software platform is presented in Fig.3(a) @adgbciated parameter estimation system is displayed in
Fig.3(b), which is designed based on a prototype PMSM (a conventionat geatool system).The details of the PMSM are

given in Tablel . The waveforms of measureldraxis currents/voltages and mechanical angular speeds of PMSM (i.e., normal

temperature condition) are shown in Fig.4; In this statlyhe signals required for the machine parameter estimation are retyrded



a PC and no other additional signal measurement equipment is needed. Tém& signal is measured from the three-phase
current sensor (placed in the drive), the voltage signal is measoradHe Bus voltage sensor (placed in the drive), and the

position signal is measured from incremental encoder (placed in theantbcan be used for velocity calculation.

The sampling period is set 83:3, and this study uses 1000 measurements for parameter estifate datasets are collected :

1) the first dataset is for motor start and accelerated measurements (Datia®setjond dataset contains the®icontrol steady
state measurements (Datal), and 3) the third dataset (Data2) contains mexgisusr@n d-axis reference currents are injected
into the drive system after at steady state , as indicated in Fig.1afidregier estimation process is divided into two main stages:
the experimental data acquisition and data processing. The proposed gsathoe applied to estimate system parameters of a
PMSM basedarge equipment such as railway transportation and wind power genesgsi@m. For a large-scale engineering
application, there would ba large amount of operating condition data and control signals togwose it may need large
amount of computation and data storage, for such a case thesprgagfsparameter estimation can still be done in aWith

the development of high-performance computer, the work can bebyoecellaborative PC with inverter controller .The high
computational task and massive storage can be done by PC and theeagshb#issent to inverter controller for system controller
design and operating status judgment

For comparison, a series of hybrid PSOs are used, including HPSOM (hg®idvith mutation) [39], HGAPSO (hybrid PSO
with genetic algorithm) [40], HPSOWM (hybrid PSO with Wavelet Mutation) [€JPSO (comprehensive learning PSO) [42],
OPSO (An opposition-based learning for PS@§] [and APSO (adaptive Particle Swarm Optimization) [43]. To assess the
performance of parameter estimation, a statistical analysis is perfanrterdns of the mean results, standard deviation and the
t-test value. The basic settings of these PSOs are as follows: the maximum ite&@i@darid the number of runs is 10. With the

consideration of precision and time-consuming, the variable boundiidbe to set an appropriate width, not too wide, not too

narrow. The search bounds are to be specified &f0®.64)2, Ly and L€ (0,5.12)mH, ymE (0,100) MWD, Mead= (-1,0)V,
B<(0.0001,1) N.m/rad/s ,and€X0.00000001,0.1) Kg.fmFor fair comparison, llatest methods are operated on the same

platform with the same objective function, search variable bounds,umeéagata, and PMSM hardware. All experiments are

carried out on the same computer with AMD Athlon(tm) Il X4 558r{core processors, RAM 4.0GB.

TABLE 1.
DESIGN PARAMETERS AND SPECIFICATION OF PMSM
Rated speed 400rpm
Rated current 4A
DC link voltage 36V
Nominal terminal wire resistance 0.043
Nominal self inductance 2.91mH
Nominal mutual inductance -0.330mH
Nominal d-axis inductance 3.24mH
Nominal g-axis inductance 3.24mH
Nominal amplitude of flux induced by magne 77.6 mWb
Number of pole pairs 5
Nominal phase resistance (T=25) 0.3300

Inertia 8e-5Kg.n?
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(a)Photogah of the experimental system with prototyp&FM (b) The proposed parameter estimalystem

Fig. 3.The schematic diagram of identification hardveare software platform.
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B. Parameter Estimation under Normal Temperature Condition

Table II presents the parameter estimated value, mean fitness, standard deviatmss &nd time cost values measured with
each method using data measured from normal temperature envirofdimerdonvergences of different PSOs are shown in
Fig.5(a). All the parameter estimation results (including electrical parameterseghdnical parameters) are plotted in Fig6. It
is clear that the proposed DSLPSO shows the best performances in fammarofitness, standard deviations and t-values
among those seven methods. As we all known, the smaller meassfiand smaller standard deviation, the more stable of
algorithm ,from the results of the TablE, Table III and TablelV,we can see that the proposed DSLPSO achieved the smallest
mean and standard deviation , it proves that the DSLPSO has the best stabititythese peer algorithnfs can be seen from
Fig.5 (a), DSLPSO can converge to the optimum after about 150 genermaitiemslution while other hybrid PSOs shows
relative poor convergence performance. Furthermore, all the t-valubgyhee than 6, which imply that the proposed DSLPSO
has significantly better solution performance than other hybrid PSOso(tfidence level is 98%).

Moreover,as shown in Tabldl, the running time for HPSOM, HGAPS®IPSOWM, CLPSO ,OPSO and APSO are

145.24s, 91.94s, 147.51s, 7X50463.51s and 7.50s, respectively .However, the computation time Id? X3 is only &8 s,
which is smaller than all the comparative PSO methods. Similar resultsecaipserved iable III andTable IV . All this
demonstrates that the proposed DSLPSO has a quick search speedsandtdncrease time complexity in comparison with the
basic PSO.

As demonstrated in Tabld, the estimated winding resistan@372Q) by DSLPSO is very close to the measured value
(0.373(Q2), which is nominally 0.33Q (phase resistance), together with 0.043Q (terminal wire resistance)) under normal
temperature. In addition, the estimated flux linkage(78.07mWb) by DSLPSO is quite close to its nominal value (77.6mWb),
the estimated d-axis inductance (3.138mH) and g-axis inductanc8ri88&lso agree well with the nominal value on manual.
The slight difference between the estimated and nominal values of machime{gssamay be caused by nonlinearity relating to

the working condition. Fig. 11 shows the estimated moment of inert@tafand the viscous friction coefficient, from which it



is obvious that the estimated moment of inertia of PMSM r¢i86x10° kg.n?) is quite close to its nominal value
(8x10%kgn).

As shown in Fig.7(a), the value of VSI disturbance voltageds®an be estimated simultaneously with other machine
parameters based on the proposed estimator model. Furthermore, the VSI ngnlioegpensation can be simultaneously
obtained by computing Ddg¥sand adding the value of Dqiito the output ofig-axis PI regulators. The obtained:Mvalues
can be fed back to the control system of PMSM. For example, the compersa@.qdslowly increases untVgeagapproaches
zero, and this can help reduce its influence on system stability.

It can be observed from Table Il and Fig. 5 that the proposed DSIi®8Dhigh precision for estimating the electrical
parameters and estimating the immeasurable mechanical parameters, along WiSi tlisturbance voltage simultaneously
There are some reasons behind these observations that the pregtosatbr has global convergence performance .Firstly, a
dynamic learning estimator is proposed for tracking the electrical parametechanical parameters and VSI of PMSM drive by
using a dynamic self-learning particle swarm optimization. Secondly, a nmxdment modification equation with dynamic
exemplar learning strategy is desigrniecensure its diversity and the balance between exploitation and expladatiog the
search process. Thirdly, a nonlinear multi-scale based learning operistoodsiced for accelerating the convergence speed of
the Pbest particles, arddynamic opposition-based learning (QRltrategy is designed to facilitate the gBest particle to explore

a potentially better region.

TABLE 1I.
RESULT COMPARISONS AMONG SEVEN PSOS ON PMSM PARAMETER IDEHNICATION WITH NORMAL TEMPERATURE
Estimated Parameter HPSOM HGAPSO HPSOWM CLPSO OPSO APSO DSLPSO

R(@) 0.309 0.328 0.359 0317 0302 0357 0372
Wm(mWb) 80.05 80.39 78.75 79.32 80.26  80.64  78.07
La(mH) 3.14 3.107 3.405 3327 2724 3140 3138
Lq(mH) 3.85 4.118 3.806 3692 4137 3918 3683
Vdead V) -0.294 -0.088 -0.352 -0.204 -0.0695 -0.149  -0.065
B(N.m/rad/s) 0.064 0.064 0.063 0.063 0.065 0.065  0.062
J(Kg.n?) 8.09e-5 5.28¢-5  7.13e-5 8.8le-5 6.58e-5 5.42e-5 7.36e5
Mean 1.595 1.641 1.699 3.134 1.851 3.194 1.25
Fitness _ Std.dev  0.155 0.295 0.122 0665 0.225 0.932 0012
tvalue  12.85 8.79 19.36 19.77  16.98  14.65 0

Time 145.24 91.94 147.51 72.04 163.51 7.50 6.58
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B. Parameter Estimation under Temperature Variation Condition
It is well known that the parameters of PMSM change with the variatiopeshting conditions: temperature, frequency, and the

saturation level of the machine. In order to validate the performanteegbroposed method for tracking the variation of
parameters under operation condition with varying temperature, in thdy s&xperiments on some varying temperature
conditions are carried out. The experiments on temperature variation are dhitided steps.

a. Continuously heating the PMSM for 20 minutes and recordimerimental data ,then estimating all the electrical
parameters ,mechanical parameters and VSI distort voltage (time=20 minutes).

b. After the removal of the heater at time=20 minutes, and cooling @tesinthen estimating all the electrical
parameters ,mechanical parameters and VSI distort voltage (time=29 minutes).

The estimated PMSM parameters and VSI distort voltage using different PSOs footkecabe (a) (i.e., continugy heating

20 minutes) are depicted in Table III, Fig.5 (b), Fig.7 (b) and Fig.8, whereas the results for case (b) (i.e. continuously heating

20 minutes and then cooling 9 minutes) are depicted in Table IV, Fig.5(c) , Fig.7(c) and Fig.9. From Table III, Table IV, and
Fig.7(b)-(c), it is clear that the DSLPSO outperforms other hybrid PS@srits of mean, standard deviation and t-test values
when estimating the electrical parameters, mechanical parameters and VSI ditége wf PMSM drive under varying
temperature conditions.

The results show that the estimated winding resistance R, d-axiddnde (k), g-axis inductance ¢ and rotor flux linkage
(wm) vary with the changing temperature. For example, the estimated wirgtiistance value increases from 0.3YR{o 0.435

(@) with heating 20 minutes in high temperature, and then it decrea8ekliti ) after 9 minutes cooling. The stator winding
resistance value increases gradually when the temperature rises graddakyurns to normal value when temperature returns
to normal, due to the effects of the thermal metal. In retima,estimated winding resistance can be used for temperature

monitoring of machine as the estimated winding resistance is linear variginthe changes of temperature. The estimated rotor



flux linkage decreases from 78.07 (mWb) to 77.36 (mWb)eretlis an abrupt drop in the estimated rotor flux linkage after 20
minute heating , and then it increases to 77.9 (mWhb) after 9 reinatding ,which can be explained by the fact that the residual
flux density and intrinsic coercivity of the PM varies with the chamgihtemperature , that is, it reduces when the temperature
of NdFeB magnets increases and it returns to normal value if the tempariNOFeB magnets return to normal within critical
temperature. The estimated &nd Ly also change when temperature varies (but d-axis and g-axis incket@me not affected
significantly by machine temperature), the reason is that the vallgsanfl Ly are mainly influenced by the flux density which
may change during the data measurement.

Furthermore, fronTable II, Table III and Table IV, it can be seen that the estimated VSI disturbance voltage VyeagVaries from
-0.065 (v) to -0.096(v) after 20 minute heating, and it charige-0.102 (v) after 9 minute cooling. This phenomenon can be
explained by the fact that the VSI nonlinearity is also influenced by theetabare variation. This observation can be explained
that the parameters of the PMSM may deviate from its nominal value when it’s operating condition changes.

Theoretically, the electrical parameters vary with the change of operation temperetereas the mechanical parameters
viscous friction coefficient (B) and moment of inertia (J) change little vatiation of operation temperature. This phenomenon
indicates that the electrical parameters are sensitive to the operating conditieregsathe mechanical paramet@randJ are
not sensitive to the variation of temperature conditions. This is betaiseechanical parameters are mainly affected by the
shape and the dimensions of mechanical loads.

These results show that the proposed parameter esticai@imultaneously track the PMSM parameters and the VSI
disturbance voltage very well without requiring a priori knowledge atiomparameters and switching device parameters, it only
uses electrical measurements taken at machine terminals. Especiatiyhe/toperation condition changes, the proposed method

can simultaneously estimate tblectrical parameters, the mechanical parameters and VSI distorted voltage withqoadyac

TABLE III.
RESULT COMPARISONS AMONG SEVEN PSOS ON PMSM PARAMETERENDTIFICATION UNDER TEMPERATURE VARIATION WITH
HEATING 20MINUTES

Estimated Parameter HPSOM HGAPSO HPSOWM CLPSO OPSO APSO DSLPSO
R(Q) 0.463 0.467 0.424 0460 0466 0420 0435
) 77.04 76.72 77.87 7872 76,72 7544 7136
La(mH) 3.052 3.229 3.232 3111 2982 3136 3268
Lo(mH) 3.792 3.649 3.855 4005 3573 3361 3619
Vdead V) -0.364 _ -0.098 -0.322 -0.263 -0.059 -0.129 _ -0.09
B(N.m/rad/s) 0.062 0.062 0.063 0063 0062 _0.066 __ 0063
J(Kg.m) 6.21e-5__ 569e5 6.44e-5__ 7.58e-5_5094e5 46le5  7.77e5
Mean 1612 1.667 1.438 3556 1598 3.776 1301
Fitness _ Std.dev  0.189 0.412 0.229 0621 0397 1134 0052
tvalue  7.43 5.49 2.99 2410 459 15013 0
Time  146.71 _ 94.54 14681 7255 16991 7.71 6.87
TABLE IV.

RESULT COMPARISONS AMONG SEVEN PSOS ON PMSM PARAMETERENDIFICATION UNDER TEMPERATURE VARIATION WITH
HEATING 20MINUTES AND AFTER COOLING 9 MINUTES

Estimated Parameter HPSOM  HGAPSO HPSOWM CLPSO OPSO APSO DSLPSO
R(Q) 0.429 0.383 0.419 0.429 0.393 0.403 0.417
Wm(mWh) 78.03 78.73 78.07 77.56 78.09 78.68 77.90
La(mH) 3.227 3.095 3.418 3.727 2.516 3.061 3.417




Lo(mH) 3.798 3.828 3.856 4295 3879 3766 3939

VdeadV) -0.37 -0.088 -0.321 -0.163 -0.078 -0.0857 -0.102
B(N.m/rad/s) 0.063 0.064 0.063 0.063 0062 _ 0.064 _ 0.063

J(Kg.nf) 7.56e-5 _ 5.393e-5 752e-5 _ 6.86e-5_6.57e5 3.20e-5 8835
mean 1.65 1.69 1.471 298 184 309 1424

Fitness _ Std.dev  0.203 0.399 0.176 0.760 0.167 1.876  0.024
tvalue  6.26 4.39 1.42 1419 1291 6.26 0

Time 14729 9237 148.93 7258 166.24 _ 7.68 6.99
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C. Verification of the Estimation Accuracy and the Variation Tracking Perfor mance

To further verify the parameter estimation accuracy and the parametendraekiormance, we employ the following apgebto

test the effectiveness of the proposed method: a) change theguviadistance value, and b) use the LCR bridge to measure the
winding resistance value. Details are described below.

a. Parameter Estimation by changing the Winding Resistance Value



A step change in winding resistance value is applied to verify teetigness of the proposed method. Three resistances

(Rp=0.414Q) are simultaneously connected with three-phase windimtjge machine. The estimated results are shown inlBig.
and TableVv, from which it is clear thathe estimated R0.782Q) with adding Ris quite close to the actual resistance (0787
(0.373Q +0.414Q)).The other estimated parametersalse quite close to the nominal parameters, for example the estimated rotor

flux linkage wm (7794 mWh) is quite close to its nominal value (77.6mWhb), the estimated drakistance (315mH) and
g-axis inductance (381mH) also agree well with the nominal values on manual. The reasdreaaxplained that the winding
resistance value is changed lmdiag additional resistance and the other machine parameters are not changedeundenah
temperature working condition.

From equations (8)-(18) other six parameters (i.eq,lLq ,wm, Vuead, B, J) can also be accurately estimated if the winding
resistance is accurately estimated ,as the total system parameters are simuftatesifild using the same parameter estimator
model. Therefore, the proposed parameter estimation model and parameter estilgatitim performs very well in identifying
the actual machine parameter and tracking the variation of parameter

TABLE V

COMPARISON OF ESTIMATED PARAMETERS WITHREFERENT WORKING CONDITION USING THE PROPOSED
DSLPSO-BASED PARAMETER ESTIMATION METHOD

Estimated Values Estimated :
P Estimated Values under with Adding RPp Valueg(LCR Estlmated_ Values_ /(LCR Tes
arameters Normal Temperature under Normal Test Values )with Valueg with Heating _20M|n
P h . and Cooling 9Min
Temperature Heating 20Min
R(Q) 0.372 0.782 0.435/(0.45) 0.417/(0.41)
Wm (MWD) 78.07 77.94 77.36 77.90
La(mH) 3.138 3.115 3.268 3.417
Lg(mH) 3.683 3.281 3.619 3.939
VdeadV) -0.065 -0.0757 -0.096 -0.102
B (N.m/rad/s) 0.062 0.062 0.063 0.063
J(Kg.nf) 7.36e-5 7.51e-5 7.77e-5 8.83e-5

b. The use of LCR bridge for measuring the winding resistance value

L e
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s %: —»¢— The estiamted wind resistance(R)
< 05 ": = &= The estiamted wind resistance(R) with adding(Rp)
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Fig.10. Estimated winding resistance with addipg R
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Fig.11 Estimated parameters varying with temperatuiatian
A LCR bridge is used to test the value of winding resist&nth the power source being switched dfffe measured results are

shown in Tald V. The measured valub (0.45Q) is very close to the estimated value (0.235 Additionally, the measured
value of winding resistand®0.41Q ) is also very close to the estimated value(04 1By the LCR bridge after naturally cooling

9 minutes. The slight difference between the estimated and the egtasilue may be caused by measurement error. Again,
from equations (8)-(18pther six parameters (i.e.q,Lq ,iym, Viead, B, J) can be accurately estimatesthe winding resistance is
accurately estimated. So, the proposed parameter estimation model workeNéoy tracking the variation of parameters under
the variation temperature. Further, from Fgi.11 and Table VI, the wdlweginding resistance increases with the heating
temperature; on the contrary, the value of rotor flux linkage redses with the heating temperature within critical temperature

Thus, the change of the winding resistance and rotor fluadialcan be used for condition monitoring of PMSM.

D. TheInfluence of VSI Nonlinearity on Parameter Estimation
In this study, an experiment with and without considering VSI noniilyeare conducted to show that the estimation

performance can be improved by considering VSI nonlinearity. Here, “without considering VSI nonlinearity” means that the
VSiI-distorted voltage MadiS set to be zero during estimation.

TABLE VI
RESULT COMPARISONS ON PMSM PARAMETER IDENTIFICATION BETWEBNITH CONSIDERING VSI NONLINEARITY AND WITHOUT
CONSIDERING VSI NONLINEARITY UNDER NORMAL TEMPERATURE
with considering VS| without considering

Estimated Parameter

nonlinearity VSI nonlinearity
R(2) 0.372 0.390
wm(mWh) 78.07 77.6
Ld(mH) 3.138 3.211
Lg(mH) 3.683 3.716
B(N.m/Rad/s) 0.062 0.0618
J(Kg.n?) 7.36e-5 6.97e-5

Table VI presents all the estimated machine parameters including electrical and mechanical paraitietarsl without

considering the VShonlinearity. The estimated machine parameters without considering th@ovithhearity are 0.39@%),



77.6(mWhb), 3.211(mH), 3.716(mH), 0.0618(N.m/rad/s) and 6.9F%kgn¥) for the winding resistance, rotor flux linkage,
d-axis inductance , g-axis inductance, viscous friction coefficient andentoof inertia, respectively. It is obvious that there
exist differences between the estimated values with and without congidleeinVSl nonlinearity for the PMSM parameter
estimation. For example, the estimated resistance is 0QYy2vilen considering VSI nonlinearity at normal temperature
condition ,whereas the estimated winding resistance value without congit#SIimonlinearity is 0.390¢), which is larger
than the value of with considering VBbnlinearity (with an error 00.390-0.372)/0.3725%. Obviously, the estimated winding
resistance is much more accurate with respect to the nominal value by cagsiégrinonlinearity. The observations are the
same to other electrical parameter estimation such as rotor flux linkagierane inductance as in Tabl€l.This is mainly due

to the fact that the VSI nonlinear disturbance voltage (u&s®y and MeaaDq in (2a) and (2b)) can result in an increase in the
estimated winding resistance. From the experiment, the distort voltagés\about 0.1V, the two terms Dgeya(about 0.4V)
and Dd.Mead (@bout 0.2V) could introduce an error into the estimation of the PMSkiheders. So, after Clarke and Park
transforms, thedgaxis voltage will change because Dgafcan significantly affect the winding resistance and flux linkage
estimation It is noted that the estimates of mechanical parameters are similar to thatdasehef without considering the VSI
nonlinearity, as for this case the parameters are not independiuet W8 nonlinearity. The reason is that, the value electric
parameter will influence the accuracy of mechanical parameters estimatiom mec¢hanical parametesige calculated with the
electrical parameterd-or example, the value of electromagnetic torgueelated to the rotor PM flux linkage. Thus, the VSI

nonlinearity will affect greatly the accuracy of the estimated machine pararaatktse VSI nonlinearity cannot be negligible.

V.CONCLUSION

In this study, a global identification method was proposed for estign#étie PMSM electrical parameters and mechanical
parameters with the consideration of VSI nonlinearity. To sum upnéjer contributions of this study include:

1) A global identification method for estimating parameters of PMSM drivésmyincluding electrical parameters, mechanical
parameters and VSI disturbance voltage. In the parameter estimation model, then\ii®arity electrical and mechanical
sub-systems are treated as a whole system and parameter estimationletddrasia single optimization probleAll system
parameters can be estimated simultaneously by solving the optimizatiblemrwithout a priori knowledge of the inner
machine structure.

2) A new dynamic learning estimator for tracking the electrical anchamécal parameters of PMSM drive by using dynamic
self learning particle swarm optimization (DSLPSO). In DSLPSO, a novel movemaification equation with dynamic
exemplar learning strategy is desigrtedensure its diversity and better manage the exploitation and exploratioy dhein

search process. Moreover, a nonlinear multi-scale based learning operatarduced for accelerating the convergence speed



of the Pbest particles and dynamic opposition-based learning (QBitrategy is designed to facilitate the gBest particle to
explore a potentially better region.

In the proposed parameter estimation model the effect of cross-cougimgetic saturation was not considered. Thia is
limitation of the proposed method. In our future work, we willeistigate a new parameter estimation model for machine
parameter estimation including the consideration of nonlinearities as saturationcanc vigque not proportional to the speed.
Potentially, the parameter estimation method presented in this paper can beratedrimio a robust motor control system to
counteract parameter uncertainties, or fault diagnosis system where the vadbkiepgarameters can be used as a feature of
fault symptomsThe proposed method can be applied for system parameter estimatifRM$M-basedarge equipment such

asrailway transportation and wind power generation system.
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