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Two-dimensional flow is considered in a fluid bead located in the gap between a pair of

contra-rotating cylinders and bounded by two curved menisci. The stability of such bead

flows with two inlet films, and hence no contact line, are analysed as the roll speed ratio

S is increased. One of the inlet films can be regarded as an ‘input flux’ whilst the other

is a ‘returning film’ whose thickness is specified as a fraction ζ of the outlet film on that

roll. The flow is modelled via lubrication theory and for Ca ≪ 1, where Ca represents the

capillary number, boundary conditions are formally developed that account for S � 1 and

the non-constant gap. It is shown that there is a qualitative difference in the results between

the single and double inlet film models unless small correction terms to the pressure drops

at the interfaces are taken into account. Futhermore, it is shown that the inclusion of these

small terms produces an O(1) effect on the prediction of the critical value of S at which bead

break occurs. When the limits of the returning film fraction are examined it is found that as

ζ → 0 results are in good agreement with those for the single inlet film. Further it is shown

for a fixed input flux that as ζ → 1 a transition from bead break to upstream flooding of the

nip can occur and multiple two-dimensionally stable solutions exist. For a varying input flux

and fixed and ‘sufficiently large’ values of ζ there is a critical input flux λ(ζ) such that as S is

increased from zero:

(i) bead break occurs for λ < λ;

(ii) upstream flooding occurs for λ > λ;

(iii) when λ = λ the flow becomes neutrally stable at a specific value of S beyond which there

exist two steady solutions (two-dimensionally stable) leading to bead break and upstream

flooding, respectively.

1 Introduction

Part I of the investigation into flow in a Double-Film-Fed (DFF) fluid bead between

contra-rotating rolls was concerned with the wide range of flow structures that arise and

evolve as the control parameters are varied. A typical 3-roll coater, shown in figure 1

of part 1, illustrates the two distinct ‘feed arrangements’. The lower gap is said to be

double-film-fed since it is supplied by two inlet films. The upper gap, supplied by only

one inlet film, is said to be Single-Film-Fed (SFF).
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The aim of this paper is to explore the limits of operation of the DFF fluid bead

imposed by the emergence of the bead break instability and by ‘flooding’ of the inlet.

Bead break in a SFF fluid bead was investigated by Malone [9] and Kapur [6] by keeping

the lower roll speed constant and gradually increasing, from rest, the speed of the upper

roll. The upstream meniscus was observed to move inwards and through the nip (where

the gap width is minimum) with the two-dimensional flow remaining stable. At a critical

speed ratio the upstream meniscus becomes unstable and accelerates downstream; the

bead rapidly contracts and bead break arises when the two menisci collide.

Kapur et al. [7] used lubrication theory to model the flow in the SFF bead and identified

the presence of multiple solutions and a limit point for the existence of two-dimensional

solutions. At this limit the flow becomes two-dimensionally unstable and marks the onset

of the bead break instability. Three-dimensional perturbations to the two-dimensional

bead flow were considered by Daniels [4] over a wide range of capillary numbers. In

the meniscus coating regime, characterised by starved inlets and small capillary numbers

(Ca ≪ 1), his results showed there to be no three-dimensional instabilities; graphs of

growth rate against wavenumber confirm that the most unstable waves are long waves –

of zero wavenumber – on the upstream meniscus.

Rabaud et al. [13] observed DFF bead flow in the narrow gap between two non-

concentric rotating cylinders when the total volume of fluid remains constant. The stability

of both the upstream and downstream interfaces were investigated experimentally by

Michelland [10] and Michelland et al. [11]. They showed the presence of the ribbing

instability on the downstream meniscus – when the total volume of fluid is large –

and a three-dimensional instability on the upstream when the volume of fluid is small.

Reinelt [14] modelled the flow in this ‘journal bearing’ configuration and analysed its

stability to small amplitude, three-dimensional perturbations. Of particular interest is

the determination of the outgoing film thicknesses and the pressure jumps across each

meniscus, which follows the work of Landau & Levich [8], Bretherton [3] and Park &

Homsy [12], and includes corrections due to the varying gap width, unequal roll speed

and the presence of thin films attached to the rolls. This analysis is put on a more rigorous

basis in Appendix A.

In contrast to bead break, flooding occurs when the flux between the rolls becomes

too large and there is a build up of fluid at the upstream interface. The flux through a

moderately starved/flooded inlet has been studied experimentally [2] and the flooding of

a DFF bead has also been investigated [1].

In the case of a SFF fluid bead, the higher order correction terms have no significant

effect due to the difference in the O(1) pressure terms being sufficiently large at the two

interfaces. In the case of a DFF fluid bead, however, inclusion of such terms is found to

be essential in order to model accurately the onset of bead break and inlet flooding.

§ 2 outlines the lubrication model employed in Part 1, but this is shown to be inadequate

at the onset of bead break and model refinements, derived in Appendix A, are introduced.

In § 3, results are presented for the limits ζ → 0 and ζ → 1.

2 Mathematical model

The DFF bead, with incoming/outgoing films of thickness H1 and H2 / H3 and H4

respectively, is shown in Figure 1. The rolls each have radius R and the fluid has viscosity
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Figure 1. Double film fed bead between two adjacent rolls of a multiroll coater.

µ and surface tension σ. The mathematical model is similar to that in Part 1, with

the system being described by several non-dimensional parameters: the roll speed ratio

S = U1/U2; the capillary number Ca = µU2/σ; the geometry ratio δ =
√

B0/2R; the

returning film fraction ζ = H2/H4; and the input flux λ = Qi/2B0U2, where Qi is the

incoming flux on the lower roll. The value of ζ is a function of the size and operating

conditions of all the subsequent rolls in the multiple roll system, and as such can vary

between zero and unity. As this work is concerned with a single roll pair within a multi-roll

system, ζ can be treated as an independent parameter.

The downstream meniscus position, xd, and the flux, q, are determined in Part 1 via

the Landau Levich relationship and a simple flux balance, whereas to find the upstream

meniscus position, xu, it is necessary to solve for the flow field. Since δ ≪ 1, the

lubrication approximation is valid and this, along with no slip boundary conditions on

the roll surfaces, leads to the Reynolds equation

dp

dx
=

3

2b3
[(1 + S)b − 2q], (2.1)

where p is the fluid pressure and b = 1 + x2 +O(δ2) is the gap width. This is a first order

differential equation with two associated boundary conditions:

p(xu) = −∆Pu(xu) = − δ

b(xu)Ca
, p(xd) = −∆Pd(xd) = − δ

b(xd)Ca
, (2.2 a,b)

where ∆Pi = pa − p(xi), i = u, d, represent the pressure drops across the upstream

and downstream interfaces, respectively, the radius of curvature at each meniscus is

approximated by the associated semi-gap width and pa is the ambient pressure, taken

here to be zero. The problem is not over prescribed as (2.2 a) enables xu to be found by

forming the function f(x):

f(x) = p(x) + ∆Pu(x), (2.3)

where xu simply satisfies f(xu) = 0. f is given explicitly by

f =
3

4
(1 + S)

[

θ − θd +
1

2
sin 2θ − 1

2
sin 2θd

]

− 3

4
q

[

3

2
θ − 3

2
θd +

sin 2θ − sin 2θd +
1

8
sin 4θ − 1

8
sin 4θd

]

+ ∆Pu(x) − ∆Pd(xd),

(2.4)

where x = tan θ. The reader will note that xd is also a root of f with the ∆P ’s defined by

(2.2).
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Figure 2. Mensicus positions against S for the DFF bead.
Ca = 10−3, δ = 5 × 10−3, λ = 0.05, ζ = 0.5.

Figure 3. Meniscus positions against S for the SFF bead.
Ca = 10−3, δ = 5 × 10−3, λ = 0.05, ζ = 0.5.

A typical plot of upstream and downstream menisci position against S is shown in

Figure 2, and it is interesting to compare this with the situation in the SFF case in

Figure 3, analysed by Kapur et al., where h2 is replaced by a contact line. The differences

are clear:
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• for a given value of S , the SFF model has two values of the upstream meniscus location

– both distinct from xd – with one being stable (i.e. seen in practice) and the other

unstable. In the DFF model there are two roots x1
u and x2

u, one of which is coincident

with xd (and hence non-physical).

• In the SFF case the variation of xu with S exhibits a smooth turning point yet in the

DFF case the xu and xd solution curves appear to meet in a corner. This apparent

meeting of the menisci is a non-physical phenomenon, and furthermore, lubrication

theory is no longer strictly valid in this regime as the X and Y lengthscales associated

with the bead become comparable.

These differences could not easily be explained and led to a re-examination of the

expressions employed for both the pressure drops and the outgoing film thicknesses.

Model refinements

The aim of the analysis in Appendix A is to derive more accurate representations for

the film thicknesses and the pressure drops across the menisci. By including higher order

terms, the analysis builds on the work of Park & Homsy [12] and rigorously confirms the

results of Reinelt [14] to give the outgoing film thicknesses, scaled with B0, as:

h3 = 1.337bd(1 + 2xdδ)Ca2/3, (2.5)

h4 = 1.337bd(1 + 2xdδ)S2/3Ca2/3, (2.6)

and the pressure drops across each interface:

p(xd) = −∆Pu = − δ

bdCa

(

1 − 2xdδ + 1.94(1 + S2/3)Ca2/3

)

, (2.7 a)

p(xu) = −∆Pd = − δ

buCa

(

1 + 2xuδ +
λ

bu
A1

+
1.337ζbdS

2/3

2bu
A2Ca2/3

)

, (2.7 b)

where

Ai = Ai(Bi), B1 =
2λ

(3Ca)2/3bu
, B2 =

0.643bdζ

bu
.

The higher order terms can simply be thought of as corrections to the radii of curvature

of the interfaces, the O(δ) terms due to the non-constant gap width and the O(Ca2/3)

terms taking into account the presence of the thin films. xd and xu are solved for as before

with f remaining as defined in (2.3) and (2.4), the only difference being in the definitions

of the ∆P ’s.

Stability analysis

Daniels [4] demonstrated that for small capillary numbers in the case of the SFF bead,

the upstream interface could become two- rather than three-dimensionally unstable. These

results were supported by the experiments of Kapur [6], who demonstrated that when

the speed ratio S is increased from zero, a critical value is reached at which the bead
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collapses. The instability leading to the collapse is thought to be two-dimensional as no

three-dimensional disturbances (in the axial direction) were observed. Further verification

is provided by Kapur et al. [7], whose two-dimensional linear stability analysis of the

SFF bead demonstrated that, for sufficiently small Ca , the growth rate was directly

proportional to

−
(

dp

dx
|xu + ∆Pu(xu)

)

,

i.e. the bead is deemed to be stable if and only if

df

dx
|xu > 0. (2.8)

As this paper deals with the small capillary number limit, this is the criterion adopted

here to determine the stability or otherwise of the bead.

3 Results

3.1 Effect on meniscus locations and Sc

Figure 4 shows a typical plot of menisci positions against speed ratio S , and it allows

the effect of the small terms to be seen. The dashed line represents the Leading Order

Model (LOM) where the correction terms are neglected and the solid line represents the

refined Higher Order Model (HOM). As S is increased from zero, both models predict

that the menisci move towards each other, and in each case there is a maximum value

of S , Sc say, beyond which no two-dimensional steady state solutions exist. Sc represents

the point at which the two roots of f become one, hence the gradient of f is zero here.

Therefore, according to (2.8), the bead is neutrally stable at this point, and thus Sc is

associated with the critical speed ratio at which the bead collapses. The reader will note

that this result indicates that the LOM predicts a bead of infinitesimal width to be stable

which is clearly unphysical, and so provides further motivation for deriving the HOM.

It is clear that at relatively low values of S the correction terms play a minor role as

the differences between the predictions of the two models is minimal. However, as Sc
is approached the predictions begin to differ more substantially, culminating in a 20%

difference in the predicted value of Sc. Furthermore, for each S the HOM produces two

values of xu, each distinct from xd, and the corner is replaced by a smooth turning point.

Thus, the addition of the small terms produces results similar in form to the SFF model

and significantly alters the prediction of Sc, and hence the critical operating conditions.

This fundamental difference in the form of the solution given by the two models can be

understood by analysing the function f and introducing two new functions, fd and fu,

defined by:

fd = p + ∆Pd(x), (3.1)

fu = p + ∆Pu(x). (3.2)

The form of the ∆P ’s differ in each model; for the LOM they are defined by (2.2) and

for the HOM they are given by (2.7). It can be shown [5] that the gradient of the xu
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Figure 4. Menicus positions against S. Solid line: HOM; dashed line: LOM.
Ca = 10−3, δ = 5 × 10−3, λ = 0.05, ζ = 0.5.

solution curve is given by

dxu

dS
=

∂fd
∂x

|xd ∂xd
∂S

+ ∂∆Pd

∂S
|xu − ∂∆Pu

∂S
|xu

∂fu
∂x

|xu
. (3.3)

Note that for the LOM the ∆P ’s are equal and so the last two terms of the numerator

cancel. Moreover, for the LOM the f’s are equal and x2
u = xd, therefore at Sc (where

x1
u = x2

u and the gradient of f is zero) the gradient of the xu solution curve will remain

finite and proportional to ∂xd/∂S . However, for the HOM the introduction of the small

terms means that the ∆P ’s and f’s are no longer equal, thus unlike the denominator,

the numerator is not zero at Sc and the xu solution curve will have an infinite gradient

and hence a smooth turning point. This argument also explains why the small terms only

become important in the region of Sc as it is here where ∂f
∂x

|xu approaches zero (cf. (2.8)).

Furthermore, it has been shown [5] that if the size of the small terms is O(ǫ) say, then the

error in Sc is O(ǫ1/2), i.e. the difference in the predictions of Sc is always larger than the

terms neglected in the LOM.

It was found that as ζ → 1 the range of S for which stable solutions exist increases

dramatically and for certain values of S there are multiple stable solutions. As ζ → 0

the returning film thins and the comparison of these results with previous theoretical and

experimental investigations for a SFF bead is of interest. These two limits are explored

in detail below.
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Figure 5. Menisci positions against S for different values of ζ. Ca = 10−3, δ = 5 × 10−3, λ = 0.1.

3.2 The limit ζ → 1

Figures 5(a) to (f) show menisci position plots for values of ζ ranging from 0.99 to 1.0.

Figures 5(a) and (b), where ζ = 0.99 and 0.997 respectively, are similar to Figure 4, and

the turning point of the xu solution curve is identified with the onset of bead break. The
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Table 1. Values of q
(1+S)

. Ca = 10−3, δ = 5 × 10−3

λ ζ q
1+S

|Sf

0.1 1.0 0.695
0.09 1.0 0.693
0.08 1.0 0.691
0.1 0.999 0.691

dashed curves again represent the LOM and here the difference in predictions of Sc is in

the region of 25%. In Figure 5(c) the HOM predicts the xu curve to have three, rather

than one, turning points. According to (2.8), the sections of the curve below point 1 and

between points 2 and 3 will be two-dimensionally stable, and thus for a small range of

S there is no longer a unique two-dimensionally stable steady state. In addition, at point

1 the bead is neutrally stable, and if S is increased further then the bead could either

collapse or jump to the section of the solution curve between points 2 and 3. Increasing

ζ further leads to a dramatic increase in the ‘lobe’ between points 1 and 2, as Figure 5(d)

shows, and then incrementing ζ still further gives rise to a change in the form of the xu
solution curve, i.e. it is no longer continuous – see Figure 5(e). It appears that there is

a value of ζ at which the lobe ‘snaps’, and in Figure 5(e) the turning points analogous

to those in Figure 5(c) have been labelled. Tracing the xu solution curve from S = 0

in Figures 5(e) and (f) only temporarily results in bead contraction before it begins to

expand again, and then at some value of S , Sf say, the upstream meniscus moves rapidly

outwards – a feature which is identified as ‘upstream flooding’. Despite the fact that

three-dimensional instabilities cannot be ruled out in Figures 5(e) and (f) the plots do

mimic the experimental results of Benkreira [2] and Benjamin [1], who investigated the

flux through a DFF bead. Benjamin reported that for a DFF bead with Ca = 0.83 and

S = 1, when the flux q equalled 1.315 the upstream interface flooded and the flow became

three-dimensional. Benkreira measured the flux through a moderately starved DFF bead

(steady and 2D) over a wide range of capillary numbers (10−2 − 10), and found it to be

constant and equal to 0.651(1+S). These experimental results are similar to the theoretical

value of 2
3
(1 + S) for the flux through a fully flooded pair of rolls, and suggest that when

the flux through a DFF bead approaches this value then the inlet floods. Table 1 shows,

for various values of λ and ζ, the value of q/(1+S) for S = Sf(λ, ζ). The values are similar

to those obtained experimentally, and provide the rationale for associating Sf , where the

steady state solutions predict the upstream interface to move rapidly outwards, with the

point of transition from a starved to moderately starved inlet. In each of Figures 5(e)

and (f) there is a second branch of xu solutions and in both cases this branch contains

a section of two-dimensionally stable states, though it is only in the former that the

two-dimensionally stable sections of each branch coexist over a range of S .

The two distinct phenomenon of bead break (figure 5(a)) and flooding (Figure 5(f))

are predicted by both the LOM and HOM and are supported by experiment. However,

the states represented by Figures 5(b)–(e) differ so little in their values of ζ it is doubtful

whether this intermediate behaviour could be demonstrated by experiment. In addition,
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Figure 6. Menisci locations against S for different values of λ. Ca = 10−3, δ = 5 × 10−3, ζ = 1.0.

the route taken between bead break and flooding differs qualitatively between the models

and it is unclear whether the effect of further terms would overide the significant changes

shown here in the HOM predictions due to slight changes in ζ. Despite this, Figures 5(b)–

(e) do serve to illustrate how the physical transition from bead break to flooding is

predicted according to the LOM and HOM, which represent successive refinements to

an asymptotic theory, and highlight the possibility of multiple stable states during this
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Figure 7. Menisci locations against S . Ca = 10−3, δ = 5 × 10−3, λ = 0.1, ζ = 0.01.

transition. It should be noted that the next refinement to the model (i.e. the O(Ca)

correction to the boundary conditions) would require a numerical solution to the flow

field and is beyond the scope of this paper.

Figures 6(a)–(c) are meniscus location plots for ζ = 1, each at a different values of λ.

Figure 6(a) is similar to Figures 5(e) and (f), there are two branches for xu, with the lower

one exhibiting upstream flooding behaviour. When λ is decreased to the critical value of

0.8323 the two branches join as in Figure 6(b). Here, as S is increased from zero, the bead

gradually contracts until point A is reached, beyond which there are three local choices for

xu, the upper and lower choices initially being two-dimensionally stable and eventually

leading to bead break and flooding, respectively. Clearly, a three-dimensional stability

analysis is needed to determine which path is taken as S is increased beyond point A. As

λ is decreased further there are again two branches, see Figure 6(c). In this case, increasing

S from zero leads to the upstream interface moving downstream, passing through the nip

and reaching the critical point B where the bead becomes two-dimensionally neutrally

stable and could either collapse or jump to the point C, whereby further increases in S

would lead to flooding.

3.3 The limit ζ → 0

Figure 7 shows a typical plot for a small value of ζ. All the menisci location plots

generated at low values of ζ have this form and the differences in the predicted value of

Sc between the HOM and the LOM was in the region of 35%. The interest here lies in

the comparisons with both the modelling and experiments for the SFF system.

The downstream meniscus location, xd, is determined by balancing incoming and

outgoing fluxes so that when ζ ≪ 1 the returning film plays a negligible role and the
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Table 2. Comparison with contact angle results

ζ Effective contact angle

0.025 2.98o

0.01 12.22o

0.001 30.57o

0.0001 57.37o

result would be very close to that of the SFF model. The upstream location, xu, is

determined by balancing capillary and hydrodynamic pressures and in the SFF model the

capillary pressure is a function of the imposed contact angle, so it is therefore possible to

vary this contact angle until the HOM and the SFF model give the same pressure drop

across the upstream interface and hence the same value of xu. Table 2 shows this ‘effective

contact angle’ for various small values of ζ.

When ζ = 0.025 the effective contact angle is small, as would be expected with the

presence of a returning film. However, as ζ is decreased the effective contact angle grows

significantly and when ζ = 10−4 it is 57.37o. During the experiments of Kapur [6], the

upper roll was scraped in an attempt to replicate a dry incoming surface, however the

scraping leaves behind a thin residual film whose thickness is less than 1% of the outgoing

film. In these experiments ‘apparent contact angles’ in the region of 50o were found, in

agreement with the effective contact angles described above. Thus, the HOM, with small

ζ, produces results in accord with the SFF model with realistic imposed contact angles,

and could therefore form the basis of a precursor film model for such systems, removing

the inherent difficulties associated with modelling the contact line.

The reason why the HOM, a model for the DFF bead, is capable of producing pressure

drops at the upstream meniscus similar to the SFF model is due to the form of the

constant A2 in (2.7). A2 becomes large and negative as ζ → 0 so the ‘small’ corrections

to ∆Pu become more significant in this limit and eventually the ordering of the series

breaks down and results are no longer obtainable.

4 Conclusions

It is clear that the correction terms, derived in Appendix A, are vital in accurately

predicting the critical operating conditions of a multi-roll coater, and in particular the

event of bead break. The inclusion of the small terms can lead to a difference of up to

35% in the prediction of Sc.

As ζ → 1 it is possible for the upstream interface position to move rapidly outwards as

S is increased, and this is associated with flooding. The precise values of ζ and λ dictate

whether the bead will collapse or flood as S is increased, and under certain conditions

a pair of solution branches exist, one exhibiting bead break behaviour and the other

flooding behaviour. Three-dimensional instabilities cannot be ruled out in this region of

parameter space, however the predictions of flooding agree qualitatively with experimental

results.

In the limit ζ → 0, the small terms play an important role in modelling the pressure



Flow in a double-film-fed bead – Part 2 425

Figure A 1. Regions and axes at downstream meniscus.

jump at the upstream interface. The calculated effective contact angles are in agreement

with observed apparent contact angles.

Appendix A

To find the pressure drops across the interfaces and the outgoing film thicknesses, the flow

in the vicinity of the menisci needs to be considered. This is achieved at each interface in

turn by analysing a Capillary Statics Region (CSR), where capillary forces are dominant,

and a Transition Region (TR), where capillary forces balance the viscous forces which

dominate in the thin films far from the bead, and then matching the solutions of the two

regions. These regions at the downstream meniscus are illustrated in Figure A 1.

Suitable scalings in the region of the downstream meniscus are:

X ∼ BD , Y ∼ BD , u ∼ U2, B (X) ∼ BD , P ∼ σ/BD ,

where u is the velocity field and BD = B(XD) = R + B0 −
√

R2 − X2
D , and hence the

solution in this region is dependent upon XD .

After shifting the origin to the tip of the downstream meniscus and rescaling the

variables the continuity equation and equation of motion in the vicinity of this interface

are

∇̂.û = 0, ∇̂p̂ = Ca∇̂2û, (A 1)

and the normal stress balance is

p̂a − p̂ = ∆P̂ =
−ĥx̂x̂

(1 + ĥ2
x̂)

3
2

+ O(Ca) on ŷ = ĥ. (A 2)

p̂a is the atmospheric pressure and ĥ(x̂) represents the free surface profile. Variables in

this region, that have been non-dimensionalised as above, will be denoted by a ‘hat’. (A 1)

states that viscous forces are negligible in this region and thus only the pressure and

free surface profile are solved for, leaving the flow field unknown. Equation (A 2) is a

differential equation for ĥ containing an unknown constant, ∆P̂ . As ĥ(x̂) is double valued

we will split it into ‘lower’ and ‘upper’ branches, ĥ1(x̂) and ĥ2(x̂) associated with the lower

and upper rolls, respectively. The formulation of the problem in this region is completed
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by imposing the following boundary conditions:

ĥ1(x̂ = 0) = ĥ2(x̂ = 0) = r̂, (A 3)

ĥ1x̂ (x̂ = 0) = −ĥ2x̂ (x̂ = 0) = −∞, (A 4)

where (A 3) allows the solution to be asymmetric via the unknown constant r̂ and (A 4)

implicitly defines the origin of the CSR as the ‘turing point’ of the meniscus.

In the TR the fluid is drawn from the meniscus into thin films on each roll surface,

and thus here it is natural to adopt a curvilinear coordinate system (x, y) as shown in

Figure A 1 for the lower roll. A similar coordinate system associated with the upper roll

exists, the analysis below holds for both rolls. Following previous workers the scales in

this region, derived by balancing capillary and viscous stresses, are

P ∼ σ/BD , U ∼ U2, V ∼ Ca1/3U1, Y , H ∼ Ca2/3BD , X ∼ Ca1/3BD ,

and variables that have been non-dimensionalised with these scales are denoted by a ‘bar’.

In the following, (x, y) refer to the TR coordinates on either roll. Neglecting terms of

O(Ca2/3) the governing equations and boundary conditions become

∂p

∂x
=

∂
2u

∂y2
,

∂p

∂y
= 0, (A 5)

∂u

∂y
|y=hi

= 0, u|y=0 = κi, (A 6)

where i = 1 and i = 2 differentiate between the analysis of the lower and upper rolls,

respectively, therefore κ1 = 1 and κ2 = S .

The two regions are linked by matching the perpendicular distance between the roll

surface and the interface. In the TR this quantity is simply given by hi whereas in the

CSR, where it is denoted by ĥ⊥i
, it is given by

ĥ⊥i
(x̂) = (b̂(x̂) − (−1)iĥi(x̂))(1 + x̂2

dδ
2( 1

2
− 2x̂)) + O(δ3). (A 7)

The semi-gap width relative to the CSR coordinates is b̂(x̂) = 1 + 2x̂xdδ + x2b2
dδ

2. To

facilitate the matching process it is useful to write ĥ⊥i
in terms of an arclength coordinate

χ, shown in Figure A 1, and given by

χ = x̂(1 − 2x̂2
dδ

2x̂) + O(δ3). (A 8)

This allows Van Dyke’s matching rule to be used, resulting in

lim
χ→l̂i

ĥ⊥i
= lim

x→−∞
Ca2/3hi, (A 9)

where x̂ = l̂i is the origin of the TR. This matching condition is utilised by first expanding

ĥi about χ = l̂i, secondly rewriting the expansion in terms of x, and finally, by expanding

the resultant expression about l̂00
i .

A solution in the form of a double expansion in the small parameters Ca1/3 and δ is

now sought:

p = p00 + Ca1/3p10 + δp01 + Ca1/3δp11 + Ca2/3p20 + . . . , (A 10)

h = h00 + Ca1/3h10 + δh01 + Ca1/3δh11 + Ca2/3h20 + . . . . (A 11)
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In the capillary statics region the flow field is not solved for, therefore asymmetries

due to S � 1 only enter the problem via the transition region. However, the transition

region enters the matching process at O(Ca2/3) so until then the capillary statics solution

must be symmetric and in particular r̂00 = 0. Furthermore, the effect of the non-constant

gap width enters at O(δ) so at O(1) and O(Ca1/3) the capillary statics region problem is

exactly analogous to the Hele–Shaw cell problem discussed by Park & Homsy [12], who

found that ∆P̂ 00 = 1, l̂00
i = 1 and the surface profile at leading order to be

ĥ00
i = (−1)i(1 − (1 − x̂)2)

1
2 . (A 12)

They also found that ∆P̂ 10 = 0, implying that ĥ10
i ≡ 0. The normal stress balance at

O(Ca2/3) is

∆P̂ 20 = (−1)i+1

[

ĥ20
ix̂

(1 + ĥ002

ix̂
)3/2

]

x̂

, (A 13)

with solution

ĥ20
i = (−1)i+1 x̂∆P̂ 20

(1 − (1 − x̂)2)
1
2

+ r̂20, (A 14)

and ∆P̂ 20 and r̂20 are found from matching with the leading order solution from the TR

derived below.

Equation (A 5) can be solved, subject to (A 6), to produce the familiar Landau Levich

equation

h
00

ixxx
= 3κi

t
00
i − h

00

i

h
00

i

3
, (A 15)

where ti is the final film thickness. Making the transformation

X = −(3κi)
1/3 x + si

t
00
i

, H i =
h

00

i

t
00
i

, (A 16)

leads to

H
00
iXXX

=
H

00
i − 1

H
00
i

3
, (A 17)

which has no dependency on S , thus H1 ≡ H2 and the subscripts are dropped hereafter.

Imposing H
00 → ∞ as X → ∞ and H

00 → 1 as X → −∞, leads to

H
00 ∼ 1

2
C0X

2
+ C1X + C2 as X → ∞,

H
00 ∼ 1 + AeX as X → −∞.

(A 18)

si is chosen such that C1 is zero whilst A, C0 and C2 are determined by numerical

integration of (A 17), and their values are 0.862, 0.643 and 2.895, respectively.
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The CSR solution first enters the matching process at O(Ca2/3):

(−1)i(
x2

2
ĥ00
ix̂x̂

(l̂00
i )+xl̂10

i ĥ00
ix̂x̂

+
1

2
l̂102

i ĥ00
ix̂x̂

(l̂00
i ) + ĥ20

i (l̂00
i ))

= (3κi)
2/3 C0

2t
00
i

x2 + (3κi)
2/3C0

t
00
i

xsi + C2t
00
i + (3κi)

2/3 C0

2t
00
i

s2i .
(A 19)

Note the fact that ĥix̂ (l̂
00
i ) = 0 has been used. The x2 terms give t

00
i = (3κi)

2/3C0 and

the x terms lead to l̂10
i = si. Since l̂10 represents a correction to the origin of the TR, this

implies that the solution is independent of si. The results of the remaining constant terms

are

∆P̂ 20 = C0C2
32/3

2
(1 + S2/3), (A 20)

r̂20 = C0C2
32/3

2
(1 − S2/3). (A 21)

Substituting (A 20) and (A 21) into (A 14) gives the leading order asymmetrical contribu-

tion to the CSR free surface profile.

The non-constant gap width corrections which enter the problem at O(δ) are now

calculated. The O(δ) solution is similar in form to (A 14), the O(Ca2/3) solution. Now the

O(δ) matching condition is

2xd − (−1)iĥ01
i (l̂00

i ) − (−1)i l̂01ĥ00
ix̂ (l̂00) = 0, (A 22)

the first term coming from the b̂ contribution to ĥ⊥i
. This condition gives us ∆P̂ 01 = −2xd

and r̂01 = 0. Thus, the correction due to the non-constant gap is simply proportional to

the gradient of the gap where the meniscus forms and the solution is symmetric at this

order.

As for the TR, the order δ problem, after a transformation similar to (A 16), is

H
01
XXX =

3H
01 − 2H

00
H

01 − H
00
R

H
004 (A 23)

where R = t
01
i /t

00
i . The asymptotic behaviour of H

01
is

H
01
i ∼ 1

2
D0X

2
+ D1X + D2 as X → ∞,

H
01
i ∼ R + (B − RAX)eX as X → −∞.

As the O(1) solution is independent of si, it can be chosen so that D1 = 0. Thus there

are four unknown constants D0, D2, B and R and numerical integation of the third order

equation (A 23) gives

R = −1.556D0, B = −0.853D0, D2 = −2.04D0. (A 24)

Note that the behaviour for large negative X differs from that stated by Park & Homsy

[12] as they omitted the final term on the right-hand-side. The O(Ca1/3δ) matching

condition is

−(−1)i(ĥ11
i (l̂00

i ) + l̂10
i ĥ01

ix̂
(l̂00
i ) + l̂10

i l̂01
i ĥ00

ix̂x̂
(l̂00
i ) + xĥ01

ix̂
(l̂00
i ) + xl̂01ĥ00

ix̂x̂
(l̂00
i )) = 0, (A 25)

giving l̂01
i = 2xd, ∆P̂

11 = 0, r̂11
i = 0, and therefore ĥ11

i ≡ 0. Thus, there is no correction
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to the pressure jump at this order, but there is a correction to the location of the origin

of the TR due to the slope of the rollers. The x2 terms from the O(Ca2/3δ) matching

condition give

D0 = −2xdt
00
i /(3κi)

2/3 (A 26)

which in turn gives t
01
i = 2xdC0(3κi)

2/3. Park & Homsy [12] showed that t
10
i = 0.

Thus the downstream pressure jump and outgoing film thicknesses are of the following

form:

∆P̂d = 1 − 2xdδ + 1.94(1 + S2/3)Ca2/3 + O(Ca , δ2,Ca2/3δ), (A 27)

ti = 1.337κ
2/3
i (1 + 2xdδ) + O(Ca2/3, δ2,Ca1/3δ). (A 28)

The analysis for the upstream menisci is largely similar to that of the upstream. The

first difference is that xd needs to be replaced by −xu as this is the distance from the nip to

the upstream interface. The second difference enters via the no slip boundary conditions

on the roll surfaces used in the TR analysis, since at the downstream interface the thin

films are being pulled from the bead whereas at the upstream interface they are being

pushed into the bead. At leading order the equivalent equation to (A 15) is:

h
00

ixxx
= −3κi

t
00
i − h

00

i

h
003

i

. (A 29)

Making the transformation

X = (3κi)
1/3 x + si

ti
, H i =

hi

ti
, (A 30)

where ti now represents the thickness of the incoming films, results in (A 17). However,

this time we require the solution to decay as X → ∞ rather than as X → −∞, as was the

case at the downstream meniscus. This means that the asymptotic behaviour of H
00
i is

H
00
i ∼ 1

2
E0iX

2
+ E2i as X → −∞,

H
00
i ∼ 1 + e−X/2(Ii cos

√
3

2
X + Ji sin

√
3

2
X) as X → ∞.

Note that this is a third order equation with boundary conditions containing four un-

knowns, thus three of the unknowns can be found as functions of the fourth via numerical

integration of (A 17). Figure A 2 shows E2 as a function of E0.

The matching condition at O(Ca2/3), at the upstream interface, is similar to (A 19) with

the x2 terms producing:

E01
=

2λ

(3Ca)2/3bu
, E02

=
bd

bu
ζC0. (A 31)

The constant terms give:

∆P̂ 02
u =

λ

Ca2/3bu
E21

+
bdζ(3S)2/3C0

2bu
E22

, (A 32)

r̂20 =
λ

Ca2/3bu
E21

− bdζ(3S)2/3C0

2bu
E22

. (A 33)
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Figure A 2. E2 against E1.

Therefore, the pressure jump at the upstream interface is

∆P̂u = 1 + 2xuδ +
λ

bu
E21

+
bdζ(3S)2/3C0

2bu
E22

Ca2/3. (A 34)
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