

This is a repository copy of *The iron paleoredox proxies:* A guide to the pitfalls, problems and proper practice.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/126859/

Version: Accepted Version

Article:

Raiswell, R, Hardisty, DS, Lyons, TW et al. (5 more authors) (2018) The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. American Journal of Science, 318 (5). pp. 491-526. ISSN 0002-9599

https://doi.org/10.2475/05.2018.03

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

TABLE 1. Commonly used extractions and the main minerals extracted (for methodology see *Poulton and Canfield*, 2005).

Extraction	Main Minerals Extracted
Na acetate, pH 4.5, 24 hr	Carbonate Fe, including siderite and ankerite
Na dithionite, pH 4.8, 2 hr	Ferrihydrite, lepidocrocite, goethite, hematite
NH ₄ oxalate, pH 3.2, 6 hr	Magnetite
Boiling 12 N HCl, 2 mins	All Fe (oxyhydr)oxides, carbonate Fe and
	some silicate iron

TABLE 2. Modern sediment proxy values (data from Anderson and Raiswell, 2004; Raiswell and Canfield, 1998).

Sediment	Fe _{HR} /Fe _T	Fe _{py} /Fe _{HR}
Black Sea	0.70±0.19	0.88±0.02
Cariaco Basin	0.51±0.03	0.89±0.02
Dysoxic or Fluctuating	0.28±0.10	0.63±0.27
Continental Margin + Deep Sea	0.26±0.08	0.10±0.17

TABLE 3. Best practice thresholds for the iron proxies.

	Best Practice Thresholds				
Environment	DOP*	Fe _T /Al**	Fehr/Fet+	Fepy/FeHR ⁺⁺	
Oxic, Dysoxic	< 0.45	0.55±0.11	<0.22 or 0.38	<1.0	
Anoxic, Ferruginous	< 0.75	>0.66	0.22(0.38) to >0.7	0.22(0.38)-0.7	
Euxinic	>0.75	>0.66	>0.7	>0.7	

^{*} See DOP section; consider constraints 1-5

^{**}See Fe_T/Al section; consider local thresholds and dilution effects. Hydrothermal inputs possible for $Fe_T/Al > 2$.

⁺See Fe_{HR}/Fe_T section; consider compositional constraints (Fe_T >0.5%, organic C >0.5%). Modern sediment values in brackets.

^{*}See Fe_{py}/Fe_{HR} section; consider in conjunction with Fe_T/Al and Fe_{HR}/Fe_T. Modern sediment values in brackets.