
This is a repository copy of Learning from Ordinal Data with Inductive Logic Programming
in Description Logic.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/126849/

Version: Accepted Version

Proceedings Paper:
Qomariyah, Nunung Nurul and Kazakov, Dimitar Lubomirov orcid.org/0000-0002-0637-
8106 (2017) Learning from Ordinal Data with Inductive Logic Programming in Description
Logic. In: Online proceedings of the 27th conference on Inductive Logic Programming.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Learning from Ordinal Data with Inductive

Logic Programming in Description Logic

Nunung Nurul Qomariyah and Dimitar Kazakov

Artificial Intelligence Group
Computer Science, University of York, UK
{nq516,dimitar.kazakov}@york.ac.uk

Abstract. Here we describe a Description Logic (DL) based Inductive
Logic Programming (ILP) algorithm for learning relations of order. We
test our algorithm on the task of learning user preferences from pairwise
comparisons. The results have implications for the development of cus-
tomised recommender systems for e-commerce, and more broadly, wher-
ever DL-based representations of knowledge, such as OWL ontologies,
are used. The use of DL makes for easy integration with such data, and
produces hypotheses that are easy to interpret by novice users. The pro-
posed algorithm outperforms SVM, Decision Trees and Aleph on data
from two domains.

Keywords: Inductive logic programming, pairwise comparisons, pref-
erence learning, machine learning, description logics

1 Introduction

ILP is now a well-established research area where machine learning meets logic
programming [1], which has shown the potential to address many real world
problems [2]. Description Logics (DL) are a family of languages representing
domain knowledge as concept descriptions. DL can be considered as fragments
of First Order Logic (FOL). Because of their well-defined semantics and pow-
erful inference tools, DL have been the representation of choice for ontologies,
including applications, such as the Semantic Web. ILP algorithms using DL rep-
resentation have the potential to be applied to large volumes of linked open data
and to benefit from the tools available for such data, e.g. IDEs such as Protégé,
triplestores providing efficient storage and retrieval, and reasoners, which can test
the data for consistency and infer additional knowledge. The chosen application
area of Preference Learning (PL) aims to induce predictive preference models
from empirical data. The automation of PL has now become essential in many
e-commerce applications following the current call for customer personalisation.

We build on previous work combining ILP and DL: DL-Learner [9] aims to
find a correct class description in a specific ontology from a set of positive and
negative examples of individuals. It builds a hypothesis in form of class descrip-
tion, which can contain conjunction, disjunction and existential quantification.

2 Nunung Nurul Qomariyah and Dimitar Kazakov

DL-Learner itself develops previous work on systems, such as YinYang [10] and
DL-FOIL [11]. Kietz’s [12] and Konstantopoulos’s [13] work is also relevant in
this context.

While DL-Learner can only learn class definitions, we aim to learn definitions
of object properties. Here we focus on the binary relation of order, which is
transitive and anti-reflexive. We evaluate our algorithm on two datasets, one
on car preferences [3] and the second on sushi preferences [4]. Both datasets
provide pairwise preference choices of multiple users. Our aim is to learn each
user’s individual preferences using a DL-based representation, and an algorithm
inspired by the Progol/Aleph family of ILP tools.

2 Problem Representation

To learn from examples of transitive anti-symmetric relations, we use the ex-
amples provided by the user, along with their transitive closure, in their correct
order (e.g. “car A is better than car B”) as positive examples, and the same
examples in reverse order as negative examples. All attributes of either item in
the pair (e.g. car A has type Sedan) are available as background knowledge. This
will be expressed in a class hierarchy in DL (e.g. car A is a member of subclass
Sedan of class Car). The specific relation we want to learn, an object property
reflecting a type of order, needs to be specified in the hypothesis language. A
simple example using the Progol [5]/Aleph [6] convention appears below:

:- modeh(1,betterthan(+car,+car)).

:- modeb(1,hasbodytype(+car,#bodytype)).

3 The Proposed Algorithm

We implement our algorithm in Java using the OWL API [7] library to handle
DL. We follow the four basic steps used in the Progol/Aleph greedy learning
approach:

1. Select a positive example. Each instance of the relation can be seen as a
pair of object IDs.

2. Build the bottom clause. The bottom clause is the conjunction of all
non-disjoint class memberships for each object in the pair.

3. Search. This step uses greedy best-first search to find a clause consistent
with the data.

4. Remove covered positive examples. Our algorithm is greedy, removing
all covered examples once each highest-scoring clause is added to the current
theory.

Search and refinement operator. We use a top down approach similar to
the one in Progol/Aleph. The algorithm proceeds by considering an increasing
number of properties constraining each of the two objects in the relation. As the

Learning from Ordinal Data with ILP in Description Logic 3

bottom clause contains the conjunction of n constraints (of type class member-
ship) on the Domain side, and same number of constraints again on the Range
side of the relation. This will produce n × n possible pairs on the first level of
generalisation. (We have chosen not to consider hypotheses only constraining
one of the arguments.) We evaluate all combinations of constraints, except the
ones that imply the same class membership of both arguments (i.e. X is better
than Y because they both share the same property/class membership) and those
that have already been considered. This is illustrated in Figure 1.

(Thing) betterthan (Thing)

(Manual) betterthan (LargeCar) (Manual) betterthan (NonHybrid . . .

(Manual ⊓ Nonhybrid) betterthan (LargeCar

⊓ Manual)
. . .

. . .

⊥

(Manual ⊓ NonHybrid ⊓ SmallCar ⊓ Sedan) betterthan ((LargeCar ⊓ Manual ⊓ NonHybrid ⊓ Suv)

Fig. 1: Refinement Operator

We use a common ILP scoring function, P × (P −N), where P is the number
of positive examples covered, and N – the number of negative examples covered.
In the case that the solution has the same score as another alternative, Aleph
will only return the first solution found. In our algorithm, we consider all the
non-redundant hypotheses that are consistent with the examples (i.e. covered
zero negative and more than 2 positive). The search will not stop until all the
possible combinations have been considered.

If we have not found yet a consistent hypothesis, we continue to refine the
one with the highest non-negative score, which means that we add a pair of
literals to constrain each of the two objects in the relation. We stop at 2 literals
each for Domain and Range (this is the same as Aleph’s default clause length
of 5). Similarly to Aleph, we also consider any examples where we cannot find a
consistent generalisation as exceptions. In this case, we add the bottom clause
as the consistent rule.

4 Algorithm complexity

We implement our algorithm in one of the DL family of languages, namely ALC

(attributive language with complement) [14], the basic DL language which has

4 Nunung Nurul Qomariyah and Dimitar Kazakov

the least expressivity. ALC allows one to construct complex concepts from sim-
pler ones using various language constructs. The capabilities include direct or
indirect expression, e.g. concept disjointness, domain and range of roles, includ-
ing the empty role.

The most expensive process is the membership checking part for every possi-
ble hypothesis. This is used for scoring the hypothesis. For every single hypoth-
esis the reasoner needs to check the coverage of each hypothesis. One possible
way to reduce the complexity is by minimising the search tree and checking the
redundancy without reducing the accuracy.

5 Evaluation

Dataset. We use two publicly available preference datasets [3] [4]. Both the
sushi and the car datasets have 10 items to rank which leads to 45 prefer-
ence pairs per user. We take 60 users from each dataset and perform 10-fold
cross validation for each user’s individual preferences. The car dataset has 4 at-
tributes: body type, transmission, fuel consumption and engine size, while the
sushi dataset has 7 attributes: style, major, minor, heaviness, how frequently
consumed by a user, price and how frequently sold. Despite the difference in the
number of attributes in the two datasets, we found that the maximum clause
length of 4 (in Aleph and in our algorithm) is sufficient to produce consistent
hypotheses.

Evaluation method. The goal of this evaluation is to assess the accuracy of the
predictive power of each algorithm to solve the preference learning problem. We
compare our algorithm with three other machine learning algorithms: SVM, the
Matlab CART Decision Tree (DT) learner, and Aleph. SVM is a very common
statistical classification algorithm that used in many domains. Similar work of
pairwise preference learning was performed by Qian et. al. [8] show that SVM
can also be used to learn in this domain. Both DT and Aleph can be included
in the evaluation since both of them are logic based learner, where the first is in
propositional logic and the latter is in First Order Logics.

We learn each individual preferences and test them using 10-fold cross vali-
dation. The result is shown in Table 1 and Figure 2a. According to the ANOVA
test, the result shows that there is a significant difference amongst the algorithms
with the p-value 2.0949× 10−21 for the car dataset and 7.3234× 10−36 for the
sushi dataset.

Table 1: Mean and standard deviation of 10-fold cross validation test
SVM DT Aleph Our algorithm

car dataset 0.8317±0.12 0.7470±0.10 0.7292± 0.08 0.8936±0.05
sushi dataset 0.7604±0.09 0.8094±0.06 0.7789±0.06 0.9302±0.03

Learning from Ordinal Data with ILP in Description Logic 5

	

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SVM Decision Tree Aleph Our algorithm

A
c
c
u

ra
c
y

10-fold cross validation accuracy

car dataset sushi dataset

(a) 10-cross validation accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

training examples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

Accuracy vs Number of Training Examples

SVM
Decision Tree
Aleph
Our algorithm

(b) Accuracy by varying number of training examples

Fig. 2: Evaluation results

We also perform several experiments with the algorithms by varying the
proportion of training examples and test it on 10% of examples. For a more
robust result, we validate each cycle with 10-fold cross validation. The result of
this experiments is shown in Figure 2b. We show that our algorithm still work
better even with the smaller number of training examples.

Sample solutions found. Our algorithm can produce more readable results
for a novice user compared to Aleph. An example of consistent hypothesis found
by our algorithm is shown below:
Automatic ⊓ Hybrid betterthan MediumCar ⊓ Suv

While Aleph produces rules, such as:
betterthan(A,B) :-hasfuelcons(B,nonhybrid), hasbodytype(B,suv).

6 Conclusion and Further Work

In this paper, we have shown that the implementation of ILP in DL can be
useful to learn a user’s preferences from pairwise comparisons. We are currently
working to address the following limitations of our algorithm:

– We only consider one level class hierarchy in the ontology for simplicity. In
the real world, the class hierarchy can be more complex.

– Currently, our algorithm uses the Closed World Assumption, which makes
it easier to find a consistent hypothesis. This is not in line with the fact that
most DL-based knowledge databases and their reasoners operate under the
Open World Assumption.

6 Nunung Nurul Qomariyah and Dimitar Kazakov

– In term of accuracy, we show that our algorithm outperformed the other
algorithms, but this is a time consuming process. In order to produce a
complete and consistent hypothesis, our algorithm takes much longer than
the three baseline algorithms. The algorithm optimisation method is quite
simple. We need to work on the improvement of this aspect without reducing
the accuracy performance.

References

1. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K. and Srini-
vasan, A.: ILP Turns 20. In: Machine Learning, vol. 86 no. 1, pp. 3–23. Springer,
Heidelberg (2012)

2. Gulwani, S., Hernandez-Orallo, J., Kitzelmann, E., Muggleton, S.H., Schmid, U.
and Zorn, B.: Inductive Programming Meets the Real World. In: Communications
of the ACM, vol. 58 no. 11, pp. 90–99. ACM, New York (2015)

3. Abbasnejad, E. and Sanner, S. and Bonilla, E. V. and Poupart, P.: Learning
Community-based Preferences via Dirichlet Process Mixtures of Gaussian Pro-
cesses. In: Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI) (2013)

4. Kamishima, T.: Nantonac Collaborative Filtering: Recommendation Based on Or-
der Responses. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 583–588. ACM, New York
(2003)

5. Muggleton, S.: Inverse Entailment and Progol. In: New Generation Computing,
vol. 13 no. 3-4, pp. 245–286 (1995)

6. Srinivasan, A.: The Aleph Manual. In: Technical Report. Computing Laboratory,
Oxford University (2000), http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/

7. Horridge, M. and Bechhofer, S.: The OWL API: A java api for owl ontologies. In:
Semantic Web, vol. 2 no. 1, pp. 11–21, (2011)

8. Qian, L., Gao, J. and Jagadish, H. V.: Learning User Preferences by Adaptive
Pairwise Comparison. In: Proceedings of the VLDB Endowment, vol. 8 no. 11,
pp. 1322–1333. VLDB Endowment (2015)

9. Lehmann, J.: DL-Learner: Learning Concepts in Description Logics. In: The Jour-
nal of Machine Learning Research, vol. 10, pp. 2639–2642. (2009)

10. Iannone, L., Palmisano, I., Fanizzi, N.: An Algorithm Based on Counterfactuals
for Concept Learning in The Semantic Web. In: Applied Intelligence, vol. 26 no. 2,
pp. 139–159. Springer, Heidelberg (2007)

11. Fanizzi, N., d’Amato, C., and Esposito, F.: DL-FOIL Concept Learning in Descrip-
tion Logics. In: Proceedings of Inductive Logic Programming, ser. LNCS, vol. 5194,
pp. 107–121. Springer, Heidelberg (2008)

12. Kietz, J.: Learnability of Description Logic Programs. In: Proceedings of Inductive
Logic Programming, ser. LNCS, vol. 2583, pp. 117–132. Springer, Heidelberg (2002)

13. Konstantopoulos, S. and Charalambidis, A.: Formulating Description Logic Learn-
ing as An Inductive Logic Programming Task. In: Proceedings of IEEE World
Congress on Computational Intelligence, pp. 1–7 (2010)

14. Schmidt-Schauß, M. and Smolka, G.: Attributive concept descriptions with com-
plements. In: Artificial Intelligence, vol. 48, no. 1, pp.1–26 (1991)

