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Showers of γ rays and positrons are produced when a high-energy electron beam collides with a superintense

laser pulse. We present scaling laws for the electron-beam energy loss, the γ -ray spectrum, and the positron yield

and energy that are valid in the nonlinear, radiation-reaction-dominated regime. As an application we demonstrate

that by employing the collision of a > GeV electron beam with a laser pulse of intensity >5 × 1021 W cm−2,

today’s high-intensity laser facilities are capable of producing O(104) positrons per shot via light-by-light

scattering.

DOI: 10.1103/PhysRevA.96.022128

I. INTRODUCTION

Electron-positron pair creation by the interaction of light

with light is one of the simplest processes in quantum

electrodynamics (QED). Thus far, however, the two-photon

process has not been detected in experiment [1–3], and

the observation of multiphoton pair creation could only be

accomplished by colliding the high-energy electron beam of

the SLAC facility and an intense laser pulse [4–6]. It is ex-

pected that the next generation of high-intensity lasers [7–10]

will create electromagnetic fields of sufficient magnitude

such that the nonlinear analog of the Breit-Wheeler process

becomes dominant [11] (see also [12,13]). As such fields are

only otherwise found in extreme astrophysical environments

[14–17], the prospect of studying plasma dynamics under these

conditions in the laboratory has attracted considerable interest

[18–20].

High-power laser facilities are already used to gener-

ate positrons via the Bethe-Heitler process, which converts

bremsstrahlung photons produced by the deceleration of elec-

trons in high-Z material. The energetic electrons themselves

are generated via direct illumination of the solid target [21–23]

or by laser-wake-field acceleration [24–26]. In the case that the

target electromagnetic field should be provided purely by light,

Bell and Kirk [27] proposed an advantageous setup of electrons

accelerated by counterpropagating, circularly polarized lasers,

which is anticipated to create critical-density pair plasmas

for laser intensities >7 × 1023 W cm−2 [28–32]. High-energy

positrons may also be generated by the irradiation of a solid

[33] or near-critical target [34,35] with a laser of similar

intensity.

Even though the highest intensity reached by currently

available laser systems (1 × 1022 W cm−2 [36]) does not reach

this level, it is still possible to explore nonlinear Breit-Wheeler

pair creation in these facilities by employing the head-on

collision of a high-energy electron beam and an intense laser

pulse. This is because, in the rest frame of the electrons, the

laser electric field amplitude is boosted by a factor γ ≫ 1.

As the electron propagates through the laser pulse, it loses

energy by the emission of photons, which themselves interact

*tom.blackburn@chalmers.se

with the laser fields to produce pairs [37,38], as shown in

Fig. 1. The experimental setup can be made entirely optical

if the necessary ultrarelativistic electron beam is obtained by

laser-wake-field acceleration [39–41]. Such a configuration

has already been used to generate MeV γ rays via nonlinear

Thomson scattering [42,43] and has been studied as a probe

of quantum radiation reaction [44–47].

Here we consider the collision of a GeV electron beam

with a laser pulse of intensity >1 × 1021 W cm−2 and present

a set of analytical scaling laws for the electron energy loss,

the photon spectrum, and the number and energy of positrons

produced. This investigation complements the existing liter-

ature as it bridges the gap between analytic calculations in

QED [48–55] and the use of large-scale particle-in-cell (PIC)

simulations [56,57] that include QED processes by Monte

Carlo sampling of rates evaluated in the locally constant field

approximation [58,59].

The paper is organized as follows. First we derive an

approximation for the pair-creation probability of a single

high-energy photon colliding with an intense laser pulse in

Sec. II. Then we consider producing these γ rays via the

inverse Compton scattering of an electron beam. We show in

Sec. III A that high-energy photon production is maximized in

the leading edge of the pulse near a point we call the “effective

center”; identifying this region lets us estimate the electron

energy loss in Sec. III B and derive an expression for the

photon spectrum that accounts for radiation reaction in Sec.

III C. We present scaling laws for the number and mean energy

of the positrons arising from pair creation of these photons in

Secs. IV A and IV B, respectively. Finally, we show how the

colliding beams’ finite sizes and offset affect the positron yield.

Natural units h̄ = c = 1 are used throughout.

II. PAIR-CREATION PROBABILITY

FOR A SINGLE PHOTON

The importance of QED effects when photons and electrons

interact with a strong electromagnetic field is governed by the

quantum nonlinearity parameter [60–62]

χ =
e
√

−(Fp)2

m3
. (1)
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FIG. 1. Ultrarelativistic electrons (blue) collide with a counter-

propagating laser pulse (magenta, green) and lose energy by emitting

photons (yellow). Positrons (red) are created when photons undergo

the nonlinear Breit-Wheeler process.

Here e and m are the electron charge and mass, F is the electro-

magnetic field tensor, and p the particle four-momentum. (χ is

used to refer to electrons only; χγ and χ+ are used for photons

and positrons, respectively.) χ compares the magnitude of the

electric field in the electron rest frame to that of the critical

field of QED: Ecrit = m2/e = 1.326 × 1018 V m−1 [63]. Even

though the equivalent intensity, 3 × 1029 W cm−2, is beyond

our present capability, it is possible to reach χ ∼ 1 by colliding

ultrarelativistic particles with weaker fields.

We consider a linearly polarized electromagnetic wave with

Gaussian temporal profile as a simple model of a laser pulse,

with amplitude E = (mω0a0/e) sin φ exp(− ln(2)φ2/(2π2n2))

at phase φ. Here a0 is the usual dimensionless strength

parameter, ω0 = 1.24 eV/(λ/μm) is the wave frequency, and

n is the number of cycles corresponding to the pulse duration

τ , defined to be the full width at half maximum (FWHM) of

the intensity profile. For now we consider only collisions with

plane waves. We introduce a finite size for both the electron

beam and the laser pulse to reach our final result in Sec. IV C.

In electromagnetic fields with a0 ≫ 1, the formation length

of QED processes is much smaller than the characteristic

length scale of the external field, and we may use the

locally constant field approximation (LCFA) [61]. This permits

probabilities and rates to be calculated in an equivalent system

of constant fields that have the same local value of χ . It

underlies numerical studies of highly intense laser-plasma

interactions, where the electromagnetic fields have complex

spatial and temporal structure that make direct analysis from

strong-field QED unfeasible [58,59]. The field structure we

consider here is much simpler, so the LCFA is key to keeping

all our results analytical.

When a photon collides with an intense laser pulse,

the dominant QED process is nonlinear Breit-Wheeler pair

creation, which is first order in the fine-structure constant α

but all orders in the coupling a0 to the strong background

field. The probability per unit phase of electron-positron pair

creation for a photon with energy ω and nonlinearity parameter

χγ is

dP±

dφ
=

W±

2ω0

=
αm2χγ T (χγ )

2ω0ω
, (2)

where (see Appendix A for details) we follow Erber [60] and

adopt the approximation T (χγ ) ≃ 0.16
χγ

K2
1/3( 4

3χγ
), with Kν(x)

a modified Bessel function of the second kind. The probability

in Eq. (2) is strongly suppressed for χγ ≪ 1.

We determine the probability that a photon pair-creates

when colliding with an intense laser pulse, P±, in the following

way. Starting from Eq. (2) we integrate over φ and use a

saddle-point approximation to determine the contribution to

the pair-creation probability at each local maximum, calling

this Pi . Then given P± =
∑

i Pi we replace the sum over i

with an integral and evaluate it using another saddle-point

approximation.

Let φi be the phases at which the wave amplitude is (locally)

maximized and χi ≡ χγ (φi) the associated photon nonlinear-

ity parameter. Then the contribution to the probability from

phases near φi is, using Eq. (2),

Pi =
0.16

√
3παm2

√
8ω0ω

√

−χ ′′
i

[

χ2
i K5

1/3

(

4
3χi

)

K2/3

(

4
3χi

)

+ K4/3

(

4
3χi

)

]1/2

, (3)

where χ ′′
i ≡ χ ′′

γ (φi). In a monochromatic plane wave, or

a pulse with sufficiently slowly varying envelope, we have

φi = π/2 + iπ and χ ′′
i = −2a0ω0ω/m2. Provided that n, the

number of pulse cycles corresponding to FWHM duration,

satisfies n > 2, we can use these relations to determine Pi as

an analytical function of the index i. To evaluate the sum,

we replace
∑

i →
∫

di and perform the integration using the

Laplace method, noting that the dominant contribution arises

for i = −1/2, at the pulse center.

We find that the total probability for pair creation when

a photon with energy ω collides with a linearly polarized

laser pulse that has strength parameter a0, frequency ω0, and

(FWHM) number of cycles n is

P± ≃ αa0nR

(

2a0ω0ω

m2

)

, (4)

where we have introduced an auxiliary function R that is a

function only of the photon nonlinearity parameter. R may be

expressed analytically in terms of Airy functions, but as the

underlying rate is being treated approximately, we introduce

the following functional fit for compactness:

R(x) =
0.453K2

1/3

(

4
3x

)

1 + 0.145x1/4 ln(1 + 2.26x) + 0.330x
. (5)

This fit is accurate to the analytical expression to within 1%.

We compare the scaling law in Eq. (4) to the result

of numerical integration of Eq. (2) in Fig. 2. Agreement

is excellent across the full range of explored parameters:

we capture the superexponential rise with increasing laser

peak intensity and photon energy, that the pair yield scales

linearly with pulse length, and that it does not scale with

wavelength [provided that the wavelength is smaller than

the pulse FWHM—the drop in positron yield in Fig. 2(b)

for λ � 5 μm is an effect of the carrier phase]. This is

consistent with a complete calculation from strong-field QED

of the pair-creation probability by Meuren et al. [52], which

concluded that P± scales linearly with a0 at constant χ and

approximately linearly with n for a0 ≫ 1.

The positron yield predicted by Eq. (4) always increases

with the laser amplitude a0, the pulse length n, and the

photon energy ω. Of these three, it is the amplitude (or peak

intensity) that is the most important as there is a dependence

on a0 in the prefactor and within the nonlinearly increasing

function R(χγ ).

022128-2
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FIG. 2. Number of positrons, N+, produced in a collision between

a beam of Nγ photons with energy ω and a linearly polarized laser

pulse that has peak intensity I22 × 1022 W cm−2, wavelength λ, and

FWHM τ . Results from our scaling law in Eq. (4) (black) are

compared with numerical integration of the full pair-creation rate

(dashed yellow).

At the high laser intensities necessary to probe QED effects,

one method to explore positron generation which guarantees

overlap between the seed photons and the laser pulse is to use

the following two-stage process. First, a high-energy electron

beam is collided with the pulse in order to generate high-energy

photons (within the pulse) by nonlinear inverse Compton

scattering. The generated photons can then go on to create

pairs by interaction with the laser. In order to estimate the

number of positrons produced in this configuration, we now

discuss a scaling law for the spectrum of photons produced in

nonlinear Compton scattering.

III. γ -RAY PRODUCTION BY AN ELECTRON BEAM

A. The effective center of the laser pulse

As the electron propagates through the intense laser pulse it

loses energy through the emission of radiation. When χ � 0.1

this emission must be treated quantum mechanically, as then

the energy of a single photon can be a significant fraction of

the electron energy. The following quantum corrections must

be included for our results to be predictive: the reduction in the

average radiated power by a factor g(χ ) [64], the explicit form

of which is given below, and the stochasticity of the emission

process [28,65,66]. The former arises because classical theory

fails to preclude the emission of photons with more energy than

the electron; correcting the shape of the spectrum to guarantee

ω < γm alters the scaling of the radiated power from χ2 to

χ2g(χ ).

Here we consider typical behavior, in the sense that the

energy loss, γ spectra, and positron yields we predict always

implicitly refer to those quantities averaged over an ensemble

FIG. 3. φc, the phase at which χ is maximized, as given by

Eqs. (7) and (8) for electrons colliding with laser pulses that have

FWHM 30 fs, wavelength 800 nm (1.55 eV), and peak intensity

(a) 1 × 1023 W cm−2 (yellow) and (b) 1 × 1021 W cm−2 (blue). Solid

lines are calculated including g(χ ); dashed lines have been calculated

in the classical limit g(χ ) = 1.

of electrons with the same initial γ . Therefore, the most

important of the two corrections is the factor g(χ ), and

we adopt a semiclassical approach with a modified, but

deterministic, equation of motion. Furthermore, we neglect

energy gain from the laser fields, requiring γ ≫ a0, such

that the evolution of the electron γ (φ) is determined only

by radiative losses:

dγ

dφ
=

P

m
=

αmχ2g(χ )

3ω0

, (6)

where P is the power radiated per unit phase and g(χ ) ≃
[1 + 4.8(1 + χ ) ln(1 + 1.7χ ) + 2.44χ2]−2/3 [62].

As χ ∝ | sin φ|, Eq. (6) contains an overall fluctuating

factor sin2 φ. The most important phase dependence is the

envelope, so we average over this fast oscillation, introducing

an overall factor of 1
2

into Eq. (6). Hereafter, χ refers to the

envelope of the electron’s χ (φ) such that

χ =
2γ (φ)a0ω0

m
exp

(

−
ln(2)φ2

2π2n2

)

. (7)

Differentiating Eq. (7) with respect to φ lets us determine the

phase φc at which χ is maximized. This will prove particularly

significant, as it is where the radiated power is greatest and

where the highest-energy photons are emitted. Let χc ≡ χ (φc),

which satisfies the following closed relation:

[

χ2
c g(χc)

]2 =
72 ln(2)

π2α2

(γω0

nm

)2

ln

(

2γ a0ω0

mχc

)

. (8)

This defines φc through Eq. (7). It seems we have made little

progress though, as both χc and φc carry a dependence on

γ , the electron energy at φc, which we do not know a priori.

However, the presence of the correction factor g(χ ) means that

Eq. (8) has a remarkable property: to a good approximation,

it implies that χc scales linearly with γ and therefore that φc

is independent of γ . In other words, φc depends only upon the

laser pulse parameters.

In Fig. 3 we show the φc predicted by Eqs. (7) and (8)

for various γ and fixed laser pulses. It does appear that φc

is independent of the chosen γ to a good approximation. To
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FIG. 4. Top: Color scale, the probability density Pχ,φ that

a stochastically radiating electron reaches a maximum quantum

parameter χ at phase φ; solid blue curve, the χ of an electron that

loses no energy; dashed blue curve, the χ of an electron that loses

energy according to Eq. (6); and circle, the χc and φc given by Eqs. (7)

and (8). Observe that the region of maximum emission probability

is correctly identified by the predicted φc. Bottom: Color scale, the

probability density Pω,φ that a photon is emitted with energy ω at

phase φ and (vertical line) φc. (See text for collision parameters.)

demonstrate that the origin of this effect is the inclusion of

g(χ ), we also show φc for the classical condition g(χ ) = 1. In

this case, by contrast, φc increases with increasing γ . Let us

justify this phenomenon by differentiating Eq. (8) with respect

to γ to study the quantity ∂ ln χc/∂ ln γ . We find that
[

2

χc

+
∂ ln g(χc)

∂χc

]

∂χc

∂ ln γ
− 1 =

Aγ 2

2χ4
c g(χc)2

(

1 −
∂ ln χc

∂ ln γ

)

,

(9)

where A = 72 ln(2)ω2
0/(παnm)2 is the coefficient of γ 2 on the

right-hand side (RHS) of Eq. (8). The factor in square brackets

on the left-hand side (LHS) of the above relation bears study.

Classically (or, equivalently, in the limit χc ≪ 1) it becomes

2/χc; combining this with the fact that A ≪ 1 we find that

χc scales approximately as γ 1/2 for χc ≪ 1. However, for

χc � 0.1, it is very close to 1/χc and therefore χc ∝ γ , giving

dφc/dφ ≃ 0 as suggested in Fig. 3.

This linear scaling only holds for “reasonable” values of χc,

but we emphasize that because our results depend on the locally

constant field and rigid-beam approximations, we begin by

assuming γ ≫ a0 ≫ 1, and so for all realistic laser–electron-

beam collisions we have χ � 0.1. We may therefore replace

γ in Eqs. (7) and (8) with γ0, the Lorentz factor of the electron

before the collision. φc is still the phase where χ is maximized

and χc becomes the χ of an electron that has reached that phase

without losing energy. This is possible in the quantum radiation

reaction regime due to straggling (quenching) [65,66].

Figure 4 compares the predicted φc and χc to the results of

a single-particle Monte Carlo simulation of quantum radiation

reaction. The initial energy of the electron is 1 GeV and

the laser pulse has wavelength 0.8 μm, FWHM 30 fs, and

peak intensity 1 × 1022 W cm−2 (γ0 = 1957, ω0 = 1.55 eV,

n = 11.2, and a0 = 68.3). For each electron we track the

maximum χ experienced along its trajectory, as well as the

phase at which this occurred. The probability density Pχ,φ

that an electron reaches χ at phase φ is plotted in the upper

panel of Fig. 4; to aid the eye, the χ (φ) of a nonradiating and

semiclassically radiating electron are plotted as well. We see

that φc accurately captures the point at which the electron χ is

maximized, in both the semiclassical and the stochastic case.

Comparison with the probability density Pω,φ that a photon

is emitted with energy ω at phase φ, plotted in the lower

panel, shows that φc also characterizes the region where the

highest-energy photons are emitted.

B. Energy loss of the electron beam

We now derive a scaling law for the energy loss of an

electron in the quantum-radiation-reaction-dominated regime.

Of course, we could simply solve Eq. (6) given the pulse

parameters, but as g(χ ) has no simple analytical form, those

results would necessarily be numerical. Instead we use the

results of Sec. III A to guide us toward an approximate, but

analytical, scaling law. We expect that χ and the radiated power

are strongly peaked in the region around φ = φc, so we use

the Laplace method (i.e., the saddle-point approximation) to

estimate the radiated energy in the absence of recoil. Then we

employ the single-photon recoil correction � → �/(γm −
�) to obtain a recoil-corrected estimate of both χc and the

final electron energy.

The Laplace method for the integral
∫

P(φ) dφ effectively

replaces the integrand with a Gaussian with peak Pc and

variance σ 2 = −Pc/P
′′
c , these being evaluated at the point

φc where P ′ vanishes. Here primes denote differentiation with

respect to φ. Then the integral is [2πP3
c /(−P ′′

c )]1/2. We have

that

Pc =
αm2χ2

c g(χc)

6ω0

(10)

using the results of Sec. III A. The second derivative

P
′′
c = Pc

[

2

χc

+
∂ ln g(χc)

∂χc

]

χ ′′|φ=φc
, (11)

where

χ ′′|φ=φc
= −

ln(2)χc

π2n2

[

1 + 2 ln

(

2γ0a0ω0

mχc

)]

. (12)

Equation (11) contains the same factor in square brackets as

Eq. (9); as before, we replace it with 1/χc. Then we find that

the radiated energy (in the absence of recoil) is

� =
√

2πγ0m

[

2 ln
(

2γ0a0ω0

mχc

)

1 + 2 ln
(

2γ0a0ω0

mχc

)

]1/2

. (13)

The argument of the logarithms is always � 1; the equality

would correspond to φc = 0 and χc taking on its largest pos-

sible value at the pulse center. Therefore, 0 � � �
√

2πγ0m.

Let �rr be the total energy emitted in photons when we

do account for the electron recoil, i.e., radiation reaction.

Were we to assume that only one photon is emitted, the first-

order correction would give �rr = �/(1 + �/γ0m) [67,68].

However, as the electron emits many photons, this is not a very

good approximation. We are guided instead by the fact that the

radiated energy should be approximately symmetric around
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the point φ = φc. This is exactly true for the Laplace method

because the fitted Gaussian is centered at φ = φc. It will still

be true after we account for recoil because φc is independent

of γ and must still mark the point of maximum radiated power.

We have, by our argument for the symmetry of the radiated

energy, that the electron loses �/2 during the interval φ > φc;

therefore, its Lorentz factor and recoil-corrected χ at φc satisfy

γc

γ0

=
χc,rr

χc

≃
(

1 +
�

2γ0m

)−1

. (14)

Repeating the process for the interval φ < φc, the electron final

Lorentz factor is then

γf ≃
2γ0m − �

2γ0m + �
γ0. (15)

This is positive only if � < 2γ0m; as we saw earlier, � is

bounded by
√

2πγ0m ≃ 2.51γ0m. Nevertheless, as we seek a

scaling law for the photon spectrum, it is more important that

both γc and χc,rr are correctly bounded by zero from below,

which they indeed are.

We can also estimate the electron Lorentz factor and χ as

a function of phase, using that the radiated power and χ as

functions of phase are approximately Gaussian in form:

γ (φ) ≃ γf +
γ0�

2γ0m + �

[

1 + erf

(

φ − φc√
2σ

)]

, (16)

χ (φ) ≃
χc

1 + �
2γ0m

exp

(

−
(φ − φc)2

2σ 2

)

, (17)

where

σ 2 =
π2n2

ln(2)

[

1 + 2 ln

(

2γ0a0ω0

mχc

)]−1

. (18)

Comparison between Eq. (17) and numerical solutions to

the equation of motion [Eq. (6)] are given in Fig. 5, for

experimental parameters corresponding to Gemini [Fig. 5(a)],

the Berkeley Lab Laser Accelerator (BELLA) [Fig. 5(b)],

SLAC [Fig. 5(c)], and ELI [Fig. 5(d)]. There is excellent

agreement with respect to the maximum χ , the phase at which

it is reached, and the distance over which it is sustained.

This demonstrates the importance of accounting for radiation

reaction, as without doing so we would overestimate χ .

C. Photon energy spectrum

Figure 4 confirms that the region near φc, where χ is

maximized, is the origin of the highest-energy photons. We

propose that the spectrum may be approximated by assuming

that the electron has χ as given by Eq. (17) and energy γ ≃ γ0

at this point; the latter is our way of accounting for straggling

(quenching). As we are interested in the high-energy tail of the

spectrum, we expand the double differential rate of emission

for χγ ∼ χ :

∂2Nγ

∂t∂χγ

≃
αm

2
√

πγ

exp
(

− 2χγ

3χ(χ−χγ )

)

√
χ − χγ

, (19)

which may be converted into an integral over phase and photon

energy using that φ = −2ω0t and ω/(γm) = χγ /χ . Then we

use the Laplace method again with Eqs. (12) and (17), with

FIG. 5. For a collision between an electron beam with energy

E0 and a linearly polarized laser pulse with peak intensity I21 ×
1021 W cm−2, wavelength λ, and FWHM τ , left, the electron quantum

nonlinearity parameter χ as a function of phase φ, as predicted

by Eq. (17) (dashed yellow curves), solution to equation of motion

[Eq. (6)], and in the absence of radiation reaction (dotted red curves);

right, energy spectra (normalized per electron) of the emitted photons,

as predicted by our scaling [Eq. (20), solid black curves] and Monte

Carlo simulation with stochastic radiation reaction (dashed yellow

curves) and no radiation reaction (dotted red curves).

the result that

dNγ

dω
≃

√
3παFhe√
2 ln(2)

a0n√
E0

χc,rr/χ0√
1 + 2 ln(χ0/χc)

×
exp

(

− 2ω
3χc,rr(E0−ω)

)

√

3χc,rr(E0 − ω) + 4ω
(20)

for E0 = γ0m, χ0 = 2γ0a0ω0/m, and χc,rr related to χc via

Eq. (14). Now, as not every emission qualifies as “high energy,”

this overestimates the number of hard photons. To account for

this we multiply Eq. (20) by a correction factor Fhe which is

the ratio of the number of photons emitted for φ > φc to the
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total number of photons:

Fhe =
1

2

[

1 − erf

(
√

2 ln(2)φc

2πn

)]

. (21)

This works because, as we showed in Sec. III B, the electron

loses most of its energy for φ ≃ φc; only for larger phases can

it be said still to be “high energy.”

We compare the predicted scalings with simulation data in

Fig. 5 (for consistency, pair creation and therefore secondary

photon emission were disabled). The logarithmic scaling of

the vertical axes admittedly flatters the comparison, but we

find good agreement between the stochastic data and our

simple scaling. It captures the shape of the high-energy tail, the

absolute number of photons, and the reduction in both caused

by radiation reaction.

IV. POSITRON PRODUCTION BY AN ELECTRON BEAM

A. Number of pairs

The number of positrons produced by a laser–electron-

beam collision may be determined by convolving the pair-

creation probability [Eq. (4)] with the photon spectrum

[Eq. (20)]. Strictly, this requires that the contribution to the

probability P± from the region φ > φc is negligible, as the

daughter photon beam is actually created within the laser pulse

near φ = φc.

While the pair-creation probability is always (nonlinearly)

increasing with increasing photon energy, the photon number

is always decreasing because of the exponential factor in

Eq. (20). Therefore, the probability spectrum P±
dNγ

dω
is peaked

for some ωc < γ0m. (If one considers the ensemble of

positrons emerging from the laser-beam collision and looks

at the energy distribution of their parent photons, ωc will

be most probable.) Let us consider the threshold regime for

pair creation, which is currently accessible, where the yield is

dominated by the conversion of the highest-energy photons.

Then we may expect the combination of our scaling laws for

the photon spectrum and pair probability to be predictive.

First we derive a relation for ωc. Let S(ω) be the last factor

in Eq. (20), the only part that depends on the photon energy.

Then the product P±
dNγ

dω
is maximized for ω = ωc satisfying

R′(χγ )

R(χγ )

∂χγ

∂ω
=

|S ′(ωc)|
S(ωc)

, (22)

where χγ = 2a0ω0ωc/m2 and R was introduced in Eq. (5).

We expect ωc to be near E0, so we take only the leading-

order term in (γ0m − ω) from the RHS. The LHS depends on

the properties of R but we find that for χγ � 10, R′/R ≃
2.75/χ2

γ . Therefore, we have

ωc ≃ γ0m

√

2χc,rrm

a0γ0ω0

1 +
√

2χc,rrm

a0γ0ω0

. (23)

We use this point as the origin of a saddle-point approxi-

mation to the integral
∫

P±
dNγ

dω
dω, which gives us the positron

yield arising from a high-energy electron beam. We take only

the leading-order term in (γ0m − ωc) as before. Leaving out

the details, we find that the number of positrons produced per

FIG. 6. Number of positrons, N+, produced in a collision between

a beam of Ne electrons with energy E0 and a linearly polarized

laser pulse that has peak intensity I21 × 1021 W cm−2, wavelength λ,

and FWHM τ . Results from our scaling law [Eq. (24), solid black

curve] and simulations using the full pair-creation rate (dashed yellow

curve).

electron is

N+ ≃
3
√

πP±(ωc)χc,rr√
2

(γ0m − ωc)2

γ0m

dNγ

dω

∣

∣

∣

∣

ω=ωc

(24)

using the recoil-corrected χc,rr from Eq. (14), P± from Eq. (4),

and the photon spectrum from Eq. (20).

The results of this calculation are compared with the yield

obtained from Monte Carlo simulation in Fig. 6, for collision

parameters that are within the scope of present-day laser

facilities. We find that it is accurate to within a factor of 2

to 3 across the range of explored parameters, with a tendency

to underestimate the yield. This is because the approximate

spectrum in Eq. (20), while accurate for the high-energy tail,

underestimates the number of low- to mid-energy photons.

At lower intensities, positron production is dominated by the

high-energy tail of the spectrum so our prediction is accurate.

As χγ exceeds 1, pair creation is possible for photons across a

wider energy range, and our prediction will undershoot.

Increasing γ and a0 for fixed pulse length n always increases

the positron yield. However, for fixed γ0 and a0, we see from

Fig. 6(a) that there is a laser pulse length where the positron

yield is maximized. This may be understood by considering

the competing factors of P± and χc,rr in Eq. (24). The former

favors increasing pulse length as photon decay becomes more

probable. The latter accounts for the sensitivity of the yield

to the pulse rise time (which increases with n), as increased

energy loss of the electron beam in the rising edge suppresses

growth of χ and consequently hard photon emission. This

is why our scaling underestimates the yield for τ � 40 fs:

the photon spectrum in this region is dominated by low- to
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mid-energy photons which the scaling in Eq. (20) does not

capture.

B. Mean positron energy

Now we consider the effect of secondary photon emission

on the positron energy. To produce large numbers of pairs we

need χγ � 1, implying a positron initial χ+ � 0.5 which lies

within the quantum radiation reaction regime. We assume that

the positron (equivalently, the electron) is created at φ = 0

with half the energy of the parent photon. We take this to

be the most probable parent photon energy ωc, as given by

Eq. (23). The procedure to determine the final energy of the

positron is similar to that outlined in Sec. III B. Both χ+ and

the radiated power are maximized at φ = 0 and decrease with

decreasing φ. Given this, we integrate the radiated power from

φ = −∞ to φ = 0 using the Laplace method to determine

radiated energy without recoil, then apply the single-photon

correction. We find that the postcollision Lorentz factor of the

positron is

γ+ ≃
ωc

2m

[

1 +
π3/2α

3
√

2 ln(2)

na2
0ω0ωc

m2
g
(a0ω0ωc

m2

)

]−1

. (25)

Comparison with Monte Carlo simulation, shown in Fig. 7,

shows that this scaling law accurately predicts the mean

positron final energy. Nevertheless, we see it breaking down for

γ0m larger than a GeV, as the initial positron spectrum for χγ >

1, while still symmetric around mγ+ = ωc/2, is much broader

and stochastic effects are more pronounced. The positron

FIG. 7. Color scale, energy spectra of positrons emerging from a

collision between an electron beam with energy E0 and a laser pulse

with peak intensity I21 × 1021 W cm−2, wavelength λ, and FWHM τ ;

black lines, the characteristic energy predicted by Eqs. (23) and (25);

and black circles, the mean energy of the simulated spectra.

spectrum is unchanged as the wavelength increases until

n = cτ/λ � 2, at which point carrier-phase effects become

significant. The laser pulse we consider has phase dependence

sin φ, so this means the pair creation is switched off as the pulse

FWHM shrinks. In general the width of positron spectrum

increases with increasing electron-beam energy and decreases

with increasing pulse intensity and duration.

C. Prospects for experimental observation

We have seen that the optimal pulse length for pair creation

from GeV electron beams and laser pulses with intensity in the

high 1 × 1021 W cm−2 is approximately 30 fs, which is close

to the characteristic duration of current high-intensity lasers.

Therefore, we show in Fig. 8 the number and characteristic

energy of positrons produced in such a collision, taking the

wavelength of the light to be 1 μm and the FWHM of the

pulse to be 30 fs. The positron yield increases substantially

with both increasing electron-beam energy and laser intensity.

Laser wake fields typically accelerate bunches of charge 100

pC, implying that to produce more than 100 positrons in a

single shot requires a laser intensity I0 and beam energy E0

that satisfy

(

I0

1 × 1021 W cm−2

)(

E0

2 GeV

)2

� 1. (26)

This condition can be met in present-day high-intensity

laser facilities, where we expect measurable quantities of

>100 MeV positrons to be produced. However, to be confident

that this is the case, we extend our results to account for the

fact that both laser and electron beam have finite size.

Consider a beam of Ne,b electrons with spherically symmet-

ric Gaussian charge density (size R), offset from the laser axis

by a distance �. Without loss of generality we may choose that

offset to be in the x direction. The peak laser intensity each

electron encounters depends upon that electron’s spatial and

temporal offset from the laser focus. Let (x,y) be the position

at which an individual electron encounters the peak of the

laser pulse. Then the effective a0 of the pulse for that electron

becomes

a ≃ a0 exp

(

−
x2 + y2

w2
0

)

, (27)

where w0 is the laser waist. The number of electrons that

encounter the pulse peak at (x,y), experiencing an effective a0

given by Eq. (27), is

dNe =
Ne,b

πR2
exp

(

−
(x − �)2 + y2

R2

)

dx dy. (28)

The total number of positrons produced by a beam is N+,b =
∫

N+(x,y) dNe, where N+(x,y) is obtained by replacing the

a0 in Eq. (24) with a as given by Eq. (27).

We take as an example the collision between a 2-GeV

electron beam (total charge 100 pC, spherically symmetric

FWHM 10 μm, R = 6 μm) and laser pulse with peak intensity

5 × 1021 W cm−2, wavelength 0.8 μm, FWHM 30 fs, and waist

2 μm and compare our predictions to the result of full-scale

three-dimensional (3D) PIC simulation (see Appendix B for

details). Were we to take this as a plane-wave interaction, we
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FIG. 8. Left: log10-scaled yield (per electron). Right: Typical energy in MeV of positrons produced in the collision of an electron beam

with energy E0 and a laser pulse with peak intensity I0, wavelength 1 μm, and FWHM 30 fs, as predicted by Eq. (24).

would predict a positron yield of 6.9 × 105 using Eq. (24). Ac-

counting for beams’ finite sizes by integrating
∫

N+(x,y) dNe

numerically using Eqs. (24) and (27), we find N+,b ≃ 10 500.

This is in good agreement with N+,b ≃ 10 000 from simulation

and should be assessed in light of the nonperturbative growth in

the pair-creation probability shown in Fig. 8. We find also that

the final energy of the positron beam predicted by Eqs. (25)

and (23), 320 MeV, is consistent with the spectrum shown

in Fig. 9. With the addition of a perpendicular offset of 5

μm between the beams, numerical evaluation predicts that the

positron yield should be reduced to 5300; we find N+,b = 4700

in PIC simulation.

To provide an approximate analytical scaling for the number

of positrons produced by an electron beam of finite size, we

evaluate the integral
∫

N+(x,y) dNe with the Laplace method,

assuming that R ≫ w0 and that the dominant contribution is

FIG. 9. The energy spectra of photons (solid blue curve),

positrons (dashed yellow curve), and beam electrons (dotted green

curve) emerging from a collision between an electron beam with

energy 2 GeV and a laser pulse with peak intensity 5 × 1021 W cm−2

(see Sec. IV C for details). The positron energy predicted by Eqs. (25)

and (23) is indicated by a yellow arrow.

that of the region near x = y = 0 where the field amplitude

is largest. The fastest dependence on a (and therefore x,y) in

Eq. (24) is that of the auxiliary functionR, so we keep all other

factors constant when evaluating the Hessian of N+(x,y). We

find the number of positrons produced by an R-radius beam

of Ne,b electrons colliding with a laser pulse of waist w0 with

perpendicular offset � to be

N+,b ≃
0.727a0ω0ωc

m2

w2
0e

−�2/R2

R2
N+Ne,b (29)

for w0 < R and N+ given by Eq. (24). The leading factor

may be taken to be roughly 0.25, because, to have substan-

tial pair creation at all, ωc must be sufficiently large that

2a0ω0ωc/m2 � 1. For the collision parameters given above,

Eq. (29) predicts N+,b ≃ 18 600 and 9300 for an offset of 0

and 5 μm respectively, accurate to within a factor of 2.

Equation (29) indicates that the accuracy of alignment

between the electron beam and the laser pulse must be about

the size of the electron beam itself. It suggests further that it

is advantageous to focus the laser pulse as tightly as possible,

increasing a0 at the expense of w0. The latter only enters the

scaling quadratically, whereas N+ grows much faster with a0

through its dependence on R [Eq. (5)]. Analytical work on

the effect of tight focusing has already begun [54,55], going

beyond the plane-wave approximation to explore the effect

of wave-front curvature on the positron yield. Nevertheless,

as near-term experiments are likely to focus the intense laser

with optics with f number closer to 2, the effects of finite size

and alignment errors are more significant.

V. SUMMARY

The collision of an intense laser pulse with a high-energy

electron beam is a promising experimental geometry for the

production of high-energy photons and positrons. We have

presented analytical expressions for the electron beam’s energy

loss, quantum nonlinearity parameter, and self-consistent
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emission spectrum. Our scaling law for the number of positrons

produced by the emitted γ rays demonstrates good agreement

with full-scale PIC simulation even when the finite sizes of

the colliding beams are accounted for. We have shown that

a near-term experiment employing the collision of a 2-GeV

electron beam and laser pulse of intensity 5 × 1021 W cm−2

will produce a positron beam with energy 300 MeV and

particle number 1 × 104. Experimental detection of this beam

will provide unambiguous evidence of pair creation via the

nonlinear Breit-Wheeler process.
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APPENDIX A: PAIR-CREATION RATE

The probability rate of pair creation, W±, for a photon

with energy ω and quantum nonlinearity parameter χγ =
e
√

−(Fk)2/m3 is conveniently expressed as

W± =
αm2χγ T (χγ )

ω
(A1)

using the auxiliary function [60,62]

T (χγ ) =
1

6
√

3πχγ

∫ ∞

1

8u + 1

u3/2
√

u − 1
K2/3

(

8u

3χγ

)

du. (A2)

(The integrand cannot be interpreted as a spectrum.) It has

limits

T (χγ ) ≃

⎧

⎨

⎩

3
√

3

16
√

2
exp

(

− 8
3χγ

)

, χγ ≪ 1

0.37961

χ
1/3
γ

, χγ ≫ 1,
(A3)

and the following approximation from Erber [60] works well

across the full range of χγ :

T (χγ ) ≃
0.16

χγ

K2
1/3

(

4

3χγ

)

. (A4)

APPENDIX B: SIMULATIONS

In Secs. III and IV A we compare our theoretical prediction

with the results of single-particle Monte Carlo simulations,

using the same code developed for and described in [45,69].

Each electron is followed along its trajectory through the

laser pulse and QED events are sampled at every time step

using the standard Monte Carlo approach [28]. The electron

momentum is updated at every time step assuming that the

external fields are constant and crossed, but the particle push

is simplified to ballistic propagation at the speed of light. This

requires γ ≫ a0 and restricts use of the code to collisions

with externally imposed electromagnetic waves, but these

approximations permit substantial speedup over conventional

PIC codes.

In Sec. IV C we compare our theoretical predictions

to the results of simulations performed with the 3D PIC

code EPOCH [70]. The first-order QED processes of photon

emission and pair creation are implemented via Monte Carlo

sampling of rates calculated in the locally constant field

approximation. The simulation domain is −10 < x/μm < 10,

−10 < y/μm < 10, and −10 < z/μm < 30, resolved with

(20,20,40) cells per micron in the x, y, and z directions,

respectively. The time step is set by the Courant-Friedrichs-

Lewy condition, as there are sufficient cells to ensure that

the probability of multiple QED events in a single time step

is negligible [58]. The electron beam is initialized with a

Gaussian charge density profile (FWHM 10 μm) centered at

x = �, y = 0, and z = 24μm (where � is an offset between

the beams) and represented with eight macroelectrons per cell

for a total of 9.9 × 108 particles. The laser pulse is represented

by a paraxial Gaussian beam (waist 2 μm, wavelength 0.8

μm), is polarized along x, propagates towards positive z with

Gaussian temporal profile (intensity FWHM 30 fs), and is

timed to reach focus when the electron beam center arrives at

z = 0. Final energy spectra for the collision parameters given

in Sec. IV C are shown in Fig. 9.
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