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Land provides a range of critical services for humanity

(including the provision of food, water and energy). It also

provides many services that are often socially valuable but may

not have a market value. Demand projections for land-based

services, accounting for the significant requirement for

negative emissions needed to meet a 1.5 �C pathway, may

exceed what can be sustainably supplied. It is therefore critical

to explore how to optimise land use (and if necessary, limit

demand), so societies can continue to benefit from all services

into the future. Unlike the energy or the transport sectors,

however, there is limited understanding or consensus over

what ‘optimal’ land use might look like (from a science

perspective), or how to bring it about (from a governance

perspective).
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Introduction: land is finite, demand
may not be
Land provides a range of important ecosystem services

vital for human health and wellbeing: food; energy; water;

carbon storage; habitats for biodiversity; space for recrea-

tion, amenity and living; and cultural services. Currently,

4.9bn ha of global land is used for agriculture (about 38%
Current Opinion in Environmental Sustainability 2018, 31:88–95 
of total land area)4; a further 4.0bn ha (31%) is forested, of

which 290 m ha is planted (FAOSTAT, 2017).5

Whilst the amount of land is largely fixed, demand for the

services from land is projected to rise under business-as-

usual scenarios, driven by economic and population

growth:

� Marketed energy is projected to increase by 48%

between 2012 and 2040 [1];

� Water demand is projected to increase by 100% by

2100, this on top of current consumption levels of

�2000 km�3 yr�1 of water and despite the fact that

4bn people today experience some degree of annual

water scarcity [2,3];

� Food supply may need to increase by 60% by 2050,

according to FAO projections [4]. As crop yields are not

currently growing at the same pace as demand [5] this

implies an expansion of agricultural land area [6��].
Although estimates vary, depending on assumptions

made and modelling frameworks, most models agree

cropland is likely to expand by 10–26% [7]. In the

extreme, without further innovation beyond current

yield trends, to meet currently projected demand,

cropland would increase by 42% and pasture by 15%

[6��].

At the same time as demand is growing for services from

land, agricultural land is being lost to urban and infra-

structural expansion and to sea-level rise. In Europe

alone, between 70 and 75 kha of ‘land-take’ occurred

between 1990 and 2006 [8]. On a global basis, by 2030,

urban expansion may have taken land that, in 2000,

produced 3–4% of global crop yields [9]. Furthermore,

rising sea levels risk both a reduction in available agricul-

tural land in coastal areas and a consequent increase in

competition for resources inland as coastal populations are

forced to migrate [10�].

On top of this, meeting climate goals — and in particular

limiting global warming to 1.5 �C by 2100 — will inten-

sify demand on land for energy and carbon storage. The

1.5 �C target implies a very tight carbon budget that is
www.sciencedirect.com
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likely to be exhausted in the next few years, necessitating

deployment of negative emissions technologies (NETs)

at scale to offset excess emissions [11��]. The IEA’s

2016 World Energy Outlook [12] indicates that, if net-

zero emissions are not reached until 2060, a 1.5 �C degree

pathway may require up to 800 Mha of land for bioenergy

with carbon capture and storage (BECCS) (see Fig.

8.16 in [10�]). This is equivalent to 56% of the world’s

arable land area.6 Even for a 2 �C pathway, BECCs will

likely require in the range of 380–700 Mha of land; an

alternative NET strategy of afforestation and reforesta-

tion would require a comparably large area [11��].

In sum, the accumulated demands on land, as currently

projected by the different sectors, may be incompatible.

Although there is good knowledge of today’s land use,

there has been insufficient cross-sectoral analysis of how

finite land resources can and should be apportioned

between multiple services, either now or in the future.

Existing projections of land demand are often mono-

sectoral and lacking in nuance. For example, discussion

of the potential cultivation of ‘underutilised land’ often

fails to recognise that this land may already be populated,

managed, and providing a range of less monetised ser-

vices [13]; there is little ‘spare land’ [14�].

Furthermore, in the absence of well-evidenced indicators

of the limits to sustainable production and how these vary

between places, it is difficult to understand the potential

upper limits of intensification, either at the level of

planetary [15��] or local boundaries. Surpassing such

limits would have wider implications: failure to manage

soils sustainability will, for example, increase competition

for land [16] if it leads to lower yields and land abandon-

ment [17�].

A key need is for greater attention to be paid to investi-

gating how best to manage land, sustainably, in order to

derive the mix of services that societies globally, and

locally, require.

Are our land resources enough to meet our
demand?
Despite the obvious constraints on the extent and capac-

ity of global land, there is an implicit assumption that our

‘land bank’ can — and will continue to — meet our

demands for services. When expected demand across

services is aggregated, however, it may far exceed what

is ‘in the bank’, especially under a 1.5 �C pathway that

depends on significant land-resources for NETS.

This raises three major questions.

1) To what extent can technology increase the service
delivery capacity of land? There is significant optimism
6 Based on 2014 data.
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that development and deployment of new technolo-

gies, and wider adoption of existing technologies, will

improve yields of services (per unit area). However,

the extent to which technologically-driven productiv-

ity growth is realisable is less clear, as are its limitations

and social acceptability.

2) How can we make optimal use of our land? Assuming

there are finite limits to the service-delivery capacity

of a parcel of land, it will be necessary to identify or

create decision-support tools that help us make the

most of the land available.

3) Will land services fall short of demand? Through the

process of land use optimisation, which service

demands will not be met? How will the shortfall in

capacity differ between geographies and among

actors? How could demand, therefore, be modified?

Of these three questions, the first has been the focus of

significant attention over the years (and we address it

briefly below). The third, is increasingly a focus of atten-

tion, especially in the light of planetary boundaries’ dis-

cussions (and we return to it later). The second question

deserves more attention, and is the focus of this paper.

Can technology deliver greater service
provision?
The role of technology in improving outputs whilst

reducing the environmental costs of production has been

examined and discussed extensively in the food security

arena as ‘sustainable intensification’ [18�,19]. Whilst there

is clear agreement that agricultural productivity growth

has arisen from innovation, it has led to extensive external

costs in terms of environmental degradation, emissions,

waste generation and healthcare costs.

Whilst production and efficiency gains are certainly pos-

sible for services like food [20], water use and energy

production and may improve some aspects of external

environmental costs, the degree to which agricultural

yields can grow sustainably remains contested [19,21].

For example, efficiency gains may spill-over to greater

productivity and increase environmental impact [22] or

farming technologies may improve yields, but higher

yields may require more inputs with environmental con-

sequences, and may also come with reduced nutritional

benefits [23]. There is growing recognition that techno-

logical ‘silver bullets’ often have complex unintended

consequences, and are unlikely to offer the sole solution

to grand challenges [24,25�]. Therefore, in addition to

productivity growth from each parcel of land, it will be

necessary to get smarter about how we use land to

optimise service provision.

The challenging science of optimising
land-use
Leaving aside the governance challenges of how a 1.5 �C
pathway might be implemented, the science based
Current Opinion in Environmental Sustainability 2018, 31:88–95
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challenge is this: is it possible to ‘design’ a sustainable

land use strategy that, within the constraints of maintain-

ing an appropriate, place-based mix of services, meets the

global challenges embodied in the Paris agreement and

the UN’s Sustainable Development Goals? In order to do

this, we would need to project service delivery from the

land, under different scenarios of land use, in order to

weigh-up the limits and sustainability of provision, and

how it might map onto demand.

However, developing a comprehensive, data-based,

approach to optimizing land use is problematic for a

number of reasons. We highlight three broad challenges

below.

Firstly, optimizing land use to balance competing service

demands sustainably is technically a ‘wicked problem’:

one for which there is no straightforward solution [26].

The same intervention may lead to different outcomes in

different places, and, unlike most other dynamical sys-

tems, biological and ecological systems often respond

unpredictably to interventions [27]. Divergent outcomes

may also arise from differences in the way that ecosystem

services are interconnected across space; or from human

decision-making, an integral dimension of land manage-

ment often affected by multiple conflicting drivers [28].

Secondly, land management inevitably implies trade-offs

of some kind — between services, among actors, and

between short-term and long-term costs and benefits. A

given intervention may enhance one service at the

expense of another; for example, increasing the intensity

of farming to boost food outputs may impact negatively

on the availability or quality of water [29��]. Furthermore,

changing farming practice, for example, can often benefit

the biodiversity of certain species groups while harming

that of others [30].

Such trade-offs have implications for service delivery, and

clearly also affect land-use governance by impacting on

the differing actors that may value the services. For

example, boosting yields may create private goods for

the farmer, but decrease public goods that have monitized

value (e.g. water supply) or non-monitized value (e.g.

biodiversity) for the population as a whole. Trade-offs

necessitate that we optimise across services, rather than

maximise each one independently, to avoid one actor

creating benefit at the expense of others’ loss.

However, optimising across trade-offs creates other gov-

ernance challenges: for whose benefit is any optimisation

conducted? Who decides the weighting between, say,

food and clean air? Existing policy-based and market-

based solutions are often ill-equipped to manage this

complexity [31,32]. Many suggest the need for significant

institutional changes and reframing of land governance

based on new, inclusive, principles [33,34], recognising
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that stakeholders in the services produced by a parcel of

land may be global, national or local, as well as not yet

born.

Thirdly, the impact of a given land intervention is highly

context-dependent: impacts depend to a great extent on

the place in which an intervention is adopted and the

scale at which it is implemented. A range of factors can

affect the outcome — not only local soil quality, climate

and topography, but also the geographical and temporal

scale of the intervention’s implementation.

To illustrate this, in a recent analysis exploring the inter-

relationships between farming’s impact on yields and

other services [29��], 52 studies were found that measured

the association between soil carbon and agricultural yield.

On average, across the studies, yield was positively asso-

ciated with soil carbon (a correlation of +0.73). However,

individual studies showed the full range from perfect

positive to perfect negative relationships (+1.0 to

�1.0), with the middle 50% of all the studies ranging

from strongly negative to strongly positive associations

between soil carbon and yield (�0.65 to +1.0).

In addition to the place-dependence of a specific inter-

vention, further complexity arises from the fact that an

intervention’s impact is likely to change non-linearly as it

is implemented across time and space. An intervention

may have different impacts depending on what practice

neighbouring land-managers adopt, for example, either

through scale-dependent bio-physical [30] or social/mar-

ket effects [35,36]. 25 g m�2 of synthetic fertiliser applied

on a single square metre will have no noticeable ecologi-

cal impact, but the same rate of fertiliser use across a

whole landscape will impact significantly on soil, water,

air quality and biodiversity. Equally, frequency-depen-

dence means outcomes may change non-linearly with the

proportion of actors adopting a particular intervention

[37]. For example, in a large undisturbed area of natural

land, the first 1% of land converted may not have notice-

able impact on the services that land provides, but if 99%

of the land is already converted, converting the final 1%

will cause extinction of the remaining native biodiversity.

Thus, to define an optimal land-use strategy to deliver a

range of services is more complex than simply assigning a

landuse or land-management option to a parcel of land, as

outputs vary with space, time, scale, neighbourhood

composition; and trade-off locally, and in aggregate.

We need to better recognise the trade-offs of the services,

the nuances of spatial and temporal impacts, the detailed

context-dependencies of place. These then need to be

meshed with the interests of different constituencies of

stakeholders. In other words there are deep, often

unacknowledged, science and governance challenges

associated with the transformation of the land-economy,

perhaps much more complex than transforming the
www.sciencedirect.com
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energy sector. Furthermore, as the market works across

boundaries, changing land use in one place (such as

producing less food but a greater level of other services)

will send price signals to change outputs in other areas.

Thus, optimising land use in a single place may create

sub-optimal land use in another. To address the global

goals requires global, as well as local, optimisation.

The sheer complexity of the challenge risks policy paral-

ysis, particularly where the risk of unintended conse-

quences is perceived to be too high — such as may be

the case for the widespread deployment of land for

NETS. Taking the case of NETS, the questions of what

kind of land could be used, where that land is found, and

what impacts its use might have on food availability,

price, water and biodiversity are just beginning to be

addressed [38].

Unlocking smarter land-use for a 1.5 �C
pathway: the science research agenda
The data revolution, particularly advances in remote

sensing, has made high-resolution data increasingly avail-

able across large areas [39]. Groups around the world have

been developing algorithms to utilise these data for

mapping multiple services (e.g. using distribution and

connectivity of vegetation communities as a proxy for

biodiversity) [39,40]. It is now feasible, at least in some

geographies, to develop ‘landscape simulators’ able to

model land-use at high resolution (<10 m) and the asso-

ciated multiple ecosystem services [41,42]. Such model-

ling, that integrates across services, can be used to assess

policy options, hence their name: integrated assessment

models or IAMs.

Whilst there have been many attempts to manage multi-

ple services from landscapes (e.g. [42]), trade-offs

between services (e.g. [43��,44]), or assess the land avail-

able for agriculture and other uses (e.g. [13]), most inte-

grated land-use assessments deal with the services arising

from land in a superficial way [45], ignoring the challenges

outlined above. In short, current modelling capabilities

are not sophisticated enough to meet the full range of

decision-makers’ needs.

Furthermore, projecting into the future requires assump-

tions about how the world, and the demand for multiple

services, may develop. Although important work exists on

emissions trajectories describing ‘Representative Con-

centration Pathways’ (RCPs) [46] and Shared Socioeco-

nomic Pathways (SSPs) that might drive them [47], a

number of variables critical to demand for land-based

services have received insufficient attention (including a

Paris-compliant RCP for 1.5 �C). Other factors include

the extent to which the increasingly burdensome health-

care costs associated with poor diet will trigger interven-

tions to shift dietary preferences, and in turn how

‘healthy, sustainable’ consumption patterns may radically
www.sciencedirect.com 
alter production systems and reduce systemic waste

[48,49]. Additionally, including scenarios that illustrate

how different demand trajectories affect competition for

land-based services could help policy-makers balance

supply-side and demand-side interventions.

A key challenge for decision-making in the context of

such complexity is the need to ensure simultaneous

modelling not only of different ecosystem services,

but of different scales in such a way that captures the

intimate connection between local actions and global

drivers (Figure 1). Market integration means local land

management decisions are often determined, at least in

part, by outputs and prices elsewhere. For example, a

national decision to mandate a ‘sustainable’ farming

practice (such as organic farming) could benefit certain

ecosystem services at local level but reduce national

yields [50]. In the absence of a reduction in national

demand, food imports would increase, driving the inten-

sification or extensification of agriculture, and degrada-

tion of ecosystem services, elsewhere [51]. Whether an

intervention is positive, and for whom, therefore

depends on the scale not just of the intervention but

also the analysis.

Consequently, an ‘uber’ integrated assessment modelling

approach (uIAM) is required; IAMs that allow for the

costs and benefits of an intervention at local scale to be

balanced with those across the global market [52]. Such an

approach could help policy-makers understand trade-offs

between land-based services at different scales; anticipate

and manage problematic outcomes; and quantify the scale

and nature of required demand-side interventions.

In some sense, all models are wrong, but complex systems

are beyond our cognitive ability to analyse without mod-

els, and complex models of complex systems are often

needed in order to simulate their future states [53]. With

climate models, the complexity (and realism) has

increased over time (and continues to, see e.g. [54]),

and an ensemble of models are used to reduce uncertainty

due to model construction. Such models are highly com-

plex, and highly useful, even with their limitations. The

land economy is so important to planetary function,

sustainable development and social well-being, that we

should not avoid trying to develop suites of complex

models in order to model its complexity.

Conclusions
Meeting climate change goals, whether for temperature

stabilisation at 1.5 �C or 2 �C, will intensify competition

for land-based services; quite probably beyond what can

sustainably be delivered on current land in the absence of

changes in consumption. Developing Paris-compliant

land-use strategies will likely require balancing trade-offs

between services and interventions to reduce demand.

However, decision-making is hampered by problems of
Current Opinion in Environmental Sustainability 2018, 31:88–95
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Figure 1
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A conceptual illustration of what would be required of an all-encompassing integrated assessment model ‘uber IAM’. Global levels of ecosystem

services are calculated from a spatially explicit model based on fine scale information, with land-use contextually translated into a range of

ecosystem services. The multiple ecosystem services are represented by the dashboard of dials (with W: water, A: air quality, B: biodiversity, F:

food). The estimation of services would be depend on (a) local capacity and (b) scale-dependence and frequency-dependence. The totality of

ecosystem services at global and local levels would depend on technologies applied (e.g. yields, inputs, efficiencies = sustainable intensification),

depicted by the green arrow on the local dial, and the patterns of land use, depicted by alternative land use scenarios. The totality of services

required could be changed through demand-side interventions (e.g. systemic efficiency, behavioural changes in consumption patterns), depicted

by the red arrow. By changing the parameters (e.g. technological efficiencies) and land use, such models could explore global provisioning

capacities and whether they fit within local and planetary boundaries, and therefore aid local planning for optimal land use.
wickedness and scale-dependence that mean the out-

comes of any intervention — for different services and

different locations — are hard to predict.

In response, the academic community should prioritise

the development of scalable integrated assessment mod-

els and use them as the analytical basis for holistic impact

assessments capable of anticipating how different inter-

ventions may affect multiple services over space and

time. Detailed local-to-global models could be used to

delimit the maximum sustainable provision of all services,

based on local capacities and aggregated to landscape,

regional or global scales. The identification of these

maximum provision levels would provide an evidential

basis on which to counter the implicit assumption that

current and projected demand for services can and should
be met.

It is clear that land-use planning will require greater due

diligence than has previously been considered necessary.
Current Opinion in Environmental Sustainability 2018, 31:88–95 
uIAMs have the potential to act as valuable discussion-

support or decision-support tools, enabling the likely

costs and benefits of different strategies to be assessed

(as e.g. see [43��,55]), and allowing for land-use planning

to be optimised in much smarter ways than has been

possible to date.

A multi-modelling uIAM approach provides tools, but it

does not deliver solutions. The social challenges need

addressing — about how services are weighted in the

optimisation, who benefits, who loses, power relation-

ships, land tenure; collectively the governance challenge.

This challenge is one of great magnitude [56,57], and

increasing competition for land services means it will

become only more pressing. And, just as with climate

change, knowing what we should so, and doing it, are

completely different propositions. We do not underesti-

mate the challenges either of such a complex modelling

campaign, or the lessons we might learn from it, nor the

implementation of those lessons, but we need a more
www.sciencedirect.com
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strategic approach to using the land we have in a resource-

constrained world.

Finally, returning to the third question we posed above,

what if demand exceeds the ability to supply sustainably?

Would this mean we might have to constrain demand,

particularly for energy and food? Considerable systemic

inefficiencies exist within the food system. The conver-

sion ratios of calories and proteins into healthy diets is very

poor at a global level (between 28 and 58% efficient): a

third of global crop yields is fed to livestock [58]; a

significant proportion of food is consumed in excess of

caloric requirements, leading to an increasing global

epidemic of obesity [59]; and a third of total food pro-

duced is lost or wasted in its conversion ‘from farm to fork’

[60��,61]. Dietary change and waste reduction offer con-

siderable scope to address these systemic inefficiencies

and so reduce pressure on land [6��,62��,63], allowing

alternative uses and more sustainable land management.
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Erb K-H, Haberl H, Creutzig F, Seto KC: Future urban land
expansion and implications for global croplands. Proc Natl
Acad Sci 2017, 114:8939-8944.

10.
�

Hauer ME: Migration induced by sea-level rise could reshape
the US population landscape. Nat Clim Change 2017, 7:321-325.

A recent paper indicating the extent to which rural migration, from the
coast, may reconfigure population structure in the US. Highlights how
significant this may be for land use.

11.
��

Smith P, Davis SJ, Creutzig F, Fuss S, Minx J, Gabrielle B, Kato E,
Jackson RB, Cowie A, Kriegler E et al.: Biophysical and
economic limits to negative CO2 emissions. Nat Clim Change
2016, 6:42-50.

The authors make the first serious estimate of the potential economic and
land-use requirement for negative emissions technologies to meet a
Paris-compliant pathway, indicating the significant extent of land which
would be required.

12. IEA: World Energy Outlook 2016. OECD/IEA; 2016.

13. Lambin EF, Gibbs HK, Ferreira L, Grau R, Mayaux P, Meyfroidt P,
Morton DC, Rudel TK, Gasparri I, Munger J: Estimating the
world’s potentially available cropland using a bottom-up
approach. Global Environ Change 2013, 23:892-901.

14.
�

Marianela F, Maria Cristina R, Joel C, Jampel DA, Paolo DO,
Jessica AG, Matti K, Nicholas M, Miina P, Christina P et al.: Past
and present biophysical redundancy of countries as a buffer to
changes in food supply. Environ Res Lett 2016, 11:055008.

A study looking at the issue of how much there is biophysical redun-
dancy — spare capacity — to feed a country from their land base.

15.
��

Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS III,
Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ et al.:
Planetary boundaries: exploring the safe operating space for
humanity. Ecol Soc 2009:14.

The classic paper highlighting the limits to sustainability, within which
there is a safe operating space for societies.

16. Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE,
Sparks DL: Soil and human security in the 21st century. Science
2015:348.

17.
�

Rickson RJ, Deeks LK, Graves A, Harris JAH, Kibblewhite MG,
Sakrabani R: Input constraints to food production: the impact
of soil degradation. Food Security 2015, 7:351-364.

An impact assessment of how soil degradation is impacting upon yields.

18.
�

Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG,
Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D et al.:
Sustainable intensification in agriculture: premises and
policies. Science 2013, 341:33-34.

A brief overview of the definition of the term sustainable intensification, its
potential and why the term is contested.

19. Benton TG: Sustainable intensification. In Routledge Handbook
of Food and Nutrition Security. Edited by Pritchard B, Ortiz R,
Shekar M. Taylor & Francis; 2016:95-109.

20. Nathaniel DM, Paul CW, James SG, Graham KM, Stephen P,
Jonathan AF: A tradeoff frontier for global nitrogen use and
cereal production. Environ Res Lett 2014, 9:054002.

21. Mahon N, Crute I, Simmons E, Islam MM: Sustainable
intensification — “oxymoron” or “third-way”? A systematic
review. Ecol Ind 2017, 74:73-97.

22. Hertel TW, Ramankutty N, Baldos ULC: Global market
integration increases likelihood that a future African Green
Revolution could increase crop land use and CO2 emissions.
Proc Natl Acad Sci 2014, 111:13799-13804.

23. Bara�nski M, �Srednicka-Tober D, Volakakis N, Seal C,
Sanderson R, Stewart GB, Benbrook C, Biavati B, Markellou E,
Giotis C et al.: Higher antioxidant and lower cadmium
concentrations and lower incidence of pesticide residues in
organically grown crops: a systematic literature review and
meta-analyses. Br J Nutr 2014, 112:794-811.

24. Brooks S, Leach M, Millstone E, Lucas H: Silver bullets, grand
challenges and the new philanthropy. 2009.

25.
�

Nally D: Against food security: on forms of care and fields of
violence. Global Soc 2016:1-25.
Current Opinion in Environmental Sustainability 2018, 31:88–95

http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0320
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0320
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0325
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0325
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0330
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0330
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0330
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0335
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0335
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0340
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0340
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0340
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0345
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0345
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0345
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0350
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0350
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0350
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0350
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0355
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0355
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0355
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0355
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0360
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0360
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0360
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0360
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0365
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0365
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0370
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0370
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0370
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0370
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0375
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0380
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0380
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0380
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0380
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0385
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0385
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0385
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0385
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0390
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0390
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0390
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0390
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0395
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0395
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0395
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0400
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0400
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0400
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0405
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0405
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0405
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0405
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0410
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0410
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0410
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0415
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0415
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0415
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0420
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0420
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0420
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0425
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0425
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0425
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0425
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0430
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0430
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0430
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0430
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0430
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0430
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0435
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0435
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0440
http://refhub.elsevier.com/S1877-3435(17)30106-9/sbref0440


94 Sustainability governance and transformation
An interesting paper about how framing food security in terms of the
production agenda is unjust.

26. Rittel HW, Webber MM: Dilemmas in a general theory of
planning. Policy Sci 1973, 4:155-169.

27. Bj›rnstad ON, Grenfell BT: Noisy clockwork: time series analysis
of population fluctuations in animals. Science 2001, 293:
638-643.

28. Edwards-Jones G: Modelling farmer decision-making:
concepts, progress and challenges. Anim Sci 2007, 82:783-790.

29.
��

German RN, Thompson CE, Benton TG: Relationships among
multiple aspects of agriculture’s environmental impact and
productivity: a meta-analysis to guide sustainable agriculture.
Biol Rev 2017, 92:716-738.

A recent systematic review and meta-analysis of the way that agriculture
impacts on many environmental and output variables.

30. Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE,
Benton TG: Scale matters: the impact of organic farming on
biodiversity at different spatial scales. Ecol Lett 2010, 13:
858-869.

31. Lambin EF, Meyfroidt P, Rueda X, Blackman A, Börner J,
Cerutti PO, Dietsch T, Jungmann L, Lamarque P, Lister J et al.:
Effectiveness and synergies of policy instruments for land use
governance in tropical regions. Global Environ Change 2014,
28:129-140.

32. Marsden T: From post-productionism to reflexive governance:
contested transitions in securing more sustainable food
futures. J Rural Studies 2013, 29:123-134.

33. Sikor T, Auld G, Bebbington AJ, Benjaminsen TA, Gentry BS,
Hunsberger C, Izac A-M, Margulis ME, Plieninger T, Schroeder H
et al.: Global land governance: from territory to flow? Curr Opin
Environ Sustain 2013, 5:522-527.

34. Verburg PH, Mertz O, Erb K-H, Haberl H, Wu W: Land system
change and food security: towards multi-scale land system
solutions. Curr Opin Environ Sustain 2013, 5:494-502.

35. Gabriel D, Carver SJ, Durham H, Kunin WE, Palmer RC, Sait SM,
Stagl S, Benton TG: The spatial aggregation of organic farming
in England and its underlying environmental correlates. J Appl
Ecol 2009, 46:323-333.

36. Sutherland LA, Gabriel D, Hathaway-Jenkins L, Pascual U,
Schmutz U, Rigby D, Godwin R, Sait SM, Sakrabani R, Kunin WE
et al.: The ‘Neighbourhood Effect’: a multidisciplinary
assessment of the case for farmer co-ordination in agri-
environmental programmes. Land Use Policy 2012, 29:502-512.

37. Faber A, Frenken K: Models in evolutionary economics and
environmental policy: towards an evolutionary environmental
economics. Technol Forecast Social Change 2009, 76:462-470.
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