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Highlights 38 

 39 

 Biochar addition reduced metal toxicity to microorganisms in contaminated soils  40 

 It improved microbial activity, biomass, and microbial carbon use efficiency Biochar 41 

shifted soil microbial community as evidenced by PLFA biomarkers 42 

 Overall, biochar enhanced microbial ability in immobilization soil carbon under 43 

contaminated soils  44 



Abstract:  45 

Soil organic carbon is essential to improve soil fertility and ecosystem functioning. Soil 46 

microorganisms contribute significantly to the carbon transformation and immobilisation 47 

processes. However, microorganisms are sensitive to environmental stresses such as heavy 48 

metals. Applying amendments, such as biochar, to contaminated soils can alleviate the metal 49 

toxicity and add carbon inputs. In this study, Cd and Pb spiked soils treated with macadamia 50 

nutshell biochar (5% w/w) were monitored during a 49 days incubation period. Microbial 51 

phospholipid fatty acids (PLFAs) were extracted and analysed as biomarkers in order to 52 

identify the microbial community composition. Soil properties, metal bioavailability, 53 

microbial respiration, and microbial biomass carbon were measured after the incubation 54 

period. Microbial carbon use efficiency (CUE) was calculated from the ratio of carbon 55 

incorporated into microbial biomass to the carbon mineralised.  56 

Total PLFA concentration decreased to a greater extent in metal contaminated soils than 57 

uncontaminated soils. Microbial CUE also decreased due to metal toxicity. However, biochar 58 

addition alleviated the metal toxicity, and increased total PLFA concentration. Both microbial 59 

respiration and biomass carbon increased due to biochar application, and CUE was 60 

significantly (p<0.01) higher in biochar treated soils than untreated soils. Heavy metals 61 

reduced the microbial carbon sequestration in contaminated soils by negatively influencing 62 

the CUE. The improvement of CUE through biochar addition in the contaminated soils could 63 

be attributed to the decrease in metal bioavailability, thereby mitigating the biotoxicity to soil 64 

microorganisms.  65 

 66 
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1. Introduction 70 

Biochar has been acknowledged as an effective material to sequester terrestrial carbon, while 71 

at the same time improving microbial habitat in soil (Lehmann et al., 2011; Quilliam et al., 72 

2013). Biochar can play an important role in the biogeochemical cycling of carbon and other 73 

elements in soils (Kuzyakov et al., 2009; Bolan et al., 2012). In addition to improving soil 74 

fertility and water holding capacity (Paetsch et al., 2017), applications of biochar have 75 

attracted a rising attention due to the possibility of the remediation of heavy metal 76 

contaminated soils (Rees et al., 2014). Dominance of oxygen-containing functional groups in 77 

the highly porous structure of biochar makes the material suitable for the adsorption of a 78 

range of contaminants including heavy metals (Bolan et al., 2014; Mandal et al., 2017).  79 

Heavy metal(loid)s are among the most toxic and widespread contaminants in our 80 

environment because of their persistent nature and high bioaccumulation potential. Some 81 

metal elements (e.g., Fe, Zn, Cu, Mn) are involved in many biochemical reactions, but metals 82 

like Cd, Pb and Ag have no biological role. They are rather potentially toxic to micro- and 83 

macroorganisms (Bruins et al., 2000). The key mechanism of metal toxicity to 84 

microorganisms evolves due to the displacement or substitution of essential elements by toxic 85 

elements either in the extracellular enzymes or even in nuclear proteins, which consequently 86 

may lead to enzyme synthesis inhibition and metabolic process dysfunction (Tchounwou et 87 

al., 2012; Baumann et al., 2013). Additionally, when present at a high concentration, even the 88 

essential metal elements may lead to adverse consequences (e.g., damage to cell membranes 89 

and DNA structure and oxidative stress) (Kachur et al., 1998; Tchounwou et al., 2012). 90 

Therefore, toxic levels of heavy metal(loid)s may give rise to the deterioration of soil 91 

microbial populations and their metabolic activities through denaturing the protein structure 92 

and impairing cell membrane functions (Jiang et al., 2010).  93 



Soil microorganisms have important roles in developing soil structure, maintaining its 94 

stability, and also in carbon and other nutrient cycling processes (Lehmann et al., 2011). A 95 

high microbial community diversity is critical to maintain various soil functions. 96 

Microorganisms are also a central part of the soil contaminant remediation strategies through 97 

the global biogeochemical cycling of different elements. However, variations in soil 98 

environments (e.g., pH, redox potential, toxic elements, etc.) may affect the microbial 99 

populations and their activities, and thus may alter the state of soil remediation and/or carbon 100 

sequestration (Pan et al., 2016). The sensitive responses of microorganisms to soil 101 

environmental changes may serve as the indicators of any restoration progress in a 102 

contaminated site and its risk assessment.  103 

Biochar is reported to recover microbial activities in metal contaminated soils (Yang et al., 104 

2016). Such improvement in microbial activities could be attributed to: (i) improvement of 105 

soil physiochemical properties (increase of soil aeration, moisture content and pH), (ii ) 106 

immediate supplement of soil carbon pools, especially the recalcitrant pool, (iii ) supply of 107 

nutrients, and (iv) modification of microbial habitat and ecological niche (Jones et al., 2011). 108 

Soil microbiota and their carbon utilisation preferences could be significantly altered by 109 

biochar amendments (Farrell et al., 2013; 2015). However, due to the complexity of soil and 110 

ecosystem diversity, there is a lack of understanding about biochar modulated microbial 111 

responses in metal polluted environments (Pan et al., 2016). Microbial carbon use efficiency 112 

(CUE) is defined as the conversion of the organic carbon assimilated into the microbial 113 

biomass in the net carbon sequestration process (Rousk and Bååth, 2011). Different 114 

approaches of microbial CUE measurement and interpretation of results may involve some 115 

discrepant assumptions (Frey et al., 2001), but it can be used as a reference for the microbial 116 

carbon utility preference in soils (Sinsabaugh et al., 2013; Blagodatskaya et al., 2014). Some 117 

microbial species, especially fungi often positively respond to biochar addition (Warnock et 118 



al., 2007; O’Neill et al., 2009). However, metabolic features of the assimilated carbon in 119 

fungi and bacteria are different, which can potentially distinguish between the preferences of 120 

soil organic carbon decomposition patterns, and also the specific functional roles of 121 

respective microorganisms. The phospholipid fatty acid (PLFA) profiles of microorganisms 122 

can be a useful chemotaxonomic biomarker to interpret the microbial community 123 

composition and carbon utilisation differences in response to biochar addition to soils under 124 

metal stress (Birk et al., 2009).  125 

To our knowledge, limited information is available in the literature on how soil microbial 126 

parameters, especially microbial population react to metal pollution in the presence of 127 

biochar (Ahmad et al., 2016). The current study not only quantified microbial carbon use 128 

patterns (as measured by the percentage of microbial biomass formation over substrate 129 

carbon uptake), but also coupled those information with microbial community compositions. 130 

We hypothesised that the microbial properties and CUE will be benefited by the metal 131 

remediation ability of biochar in contaminated soils. The objective of this research is to 132 

assess the magnitude to which biochar could modulate the soil microbiota underpinning 133 

terrestrial carbon sequestration under metal stress conditions. By using microbial community 134 

abundance and composition approaches, this study will help to better understand the 135 

mechanisms of carbon sequestration through biochar addition in metal contaminated soils.  136 

 137 

2. Materials and methods 138 

2.1. Soil sampling and preparation 139 

A natural surface soil (0-10 cm) sample was collected from the Barossa Valley region, South 140 

Australia (138°57’37’’E, 34°27’48’’S). The region is characterised by Mediterranean 141 

climate, with an average summer temperature range of 26-29°C (daytime) and 12-14°C(night 142 

time), and winter range of 12-16°C (daytime) and 3-6°C (night time). The Barossa region 143 



receives an average annual rainfall of 437 mm and the soil pattern is extremely variable with 144 

the chief soils are Sodosol (Australia soil taxonomy). The soil was classified as silty loam 145 

(USDA textural classification).  146 

After sampling, the soil was homogenised and sieved (<2 mm). Fine roots and other plant 147 

debris were carefully removed during the processing steps. Prior to the experiment, the soil 148 

moisture content was adjusted to 50% (weight basis) of the water holding capacity (WHC), 149 

and pre-incubated at 25°C, 28% relative humidity for 7 days in order to recover the microbial 150 

activity. The biochar sample used in this study was prepared from macadamia nutshell by 151 

pyrolysing the feedstock slowly at 465°C under O2-limited environment, as described by 152 

Khan et al. (2014).  153 

 154 

2.2. Soil and biochar characterisation 155 

Soil and biochar pH values in 1:5 (w/v) suspensions in deionised water following 156 

equilibration on an end-over-end shaker for 2 h were determined by a pH/conductivity meter 157 

(smartCHEM-LAB Laboratory Analyser, VWR International Pty Ltd., Australia). Soil texture 158 

was determined by the micro-pipette method (Miller and Miller, 1987). The cation exchange 159 

capacity (CEC) of the soil was determined by first saturating the exchange sites (positive 160 

charges) with NH4+, then extracting and analysing the exchanged NH4
+ on a Continuous Flow 161 

Analyser (San ++, Skalar Analytical B.V., The Netherlands). For the total elemental analysis, 162 

soil and biochar samples were mixed with 5 mL of aqua-regia (HNO3:HCl at 1:3 v/v), and 163 

digested in a micro-wave digestion oven (MARSXpress, CEM Corporation, USA). The 164 

digested samples were decanted and filtered before analysing elements on an Inductively 165 

Coupled Plasma-Optical Emission Spectrometer (ICP-OES, Agilent 7900, Agilent 166 

Technologies Ltd., USA). Total nitrogen (TN) and total organic carbon (TOC) in soil and 167 

biochar samples were determined by dry combustion technique using a Leco C/N Analyser 168 



(Leco TruMac® CNS/NS Analyser, LECO Corporation). Soil samples (0.2 g) were weighed 169 

and combusted at 1300°C with an O2 flow for 5 sec. The instrument was calibrated at every 170 

10 samples by analysing standard weights of Leco EDTA reference material (containing 95.7 171 

g N kg−1 and 410 g C kg−1). Soil and biochar physico-chemical characteristics are presented 172 

in Table 1.  173 

In addition, the specific surface area and pore size of the biochar sample were measured by 174 

conducting N2 adsorption-desorption experiments by BET method on a NOVA 1000e 175 

Analyser (Quantachrome Instruments, USA). Functional groups in the biochar sample were 176 

studied through Fourier Transform Infrared (FTIR) spectroscopy on a Cary 660 FTIR 177 

Analyser (Agilent Technologies Ltd., USA). Morphological features and pore structures of 178 

the biochar sample were examined by a Quanta 450 FEG environmental scanning electron 179 

microscope (SEM) (FEI Company, USA). The elemental composition of the biochar was 180 

determined by an energy dispersive X-ray (EDX) spectrometer attached with the SEM 181 

equipment.  182 

 183 

2.3. Soil spiking, biochar amendment and incubation experiment 184 

The experiment approach, including experiment design and quantification of microbial 185 

response were detailed in SI. 1. In the present study, the experimental soil was spiked with 50 186 

and 5000 mg kg-1 of Cd2+ and Pb2+, respectively. These concentrations were chosen to reflect 187 

a contamination level above the sensitivity threshold of the respective metals in order to 188 

detect responses of microbial carbon use patterns under metal stresses in the soil (Sobolev 189 

and Begonia 2008; Smolders et al., 2009).Two concentrations of Cd(NO3) and Pb(NO3) were 190 

mixed with the soil separately, and also in combination (Table 1). Briefly, metal solutions 191 

were sprinkled evenly on the soil spread on a polyethylene sheet. To achieve homogenisation, 192 

soils were then stirred and mixed thoroughly on an end-over-end shaker. Soils were then air-193 



dried, and passed through a 2 mm-sieve again. The final concentrations of metals in the 194 

spiked soils and abbreviations for each treatment are listed in Table 2.  195 

Biochar was added at 5% w/w into 200 g soils. The 5% addition is equivalent to 12.75 tons 196 

ha−1 biochar addition in the field (based on 2.5 cm depth incorporation with a bulk density of 197 

around 1020 kg m−3). The reduction of available metal concentration due to biochar addition 198 

(dilution effect) ranged from 1-10% (Houben et al., 2013). Glucose (100 g L−1 in H2O) was 199 

applied to a separate set of samples to achieve the same total carbon content (3.71%) as of the 200 

added biochar. A separate treatment without any amendment was prepared as control. Metal-201 

spiked and biochar/glucose treated soils were transferred into plastic containers, and 202 

incubated at 25°C and 28% room humidity for 49 days. The moisture content of the soil was 203 

maintained at 60% of the WHC throughout the incubation experiment. All experiments were 204 

conducted in triplicate.  205 

 206 

2.4. Bioavailability of heavy metals 207 

Bioavailable heavy metal concentrations were measured by extracting the biochar/glucose-208 

amended and unamended soils with 0. 01 M CaCl2 solution (1:10 w/v) for 60 min reaction 209 

time (Sparks et al., 1996). The extracts were filtered through 0.45 µm syringe filter before 210 

analysing the metal elements on an ICP-MS instrument (ICP-MS, Agilent 7900, Agilent 211 

Technologies Ltd., USA).  212 

 213 

2.5. Microbial properties  214 

2.5.1. Microbial activity 215 

The microbial activity of soils was monitored by measuring the rate of CO2 evolution from 216 

the samples. Sealed soil microcosms (10 g) in Schott bottles having different treatments as 217 

stated above were incubated for 49 days in dark at 25°C and 60% WHC.  Three blank Schott 218 



bottles without any soil were set as controls. A 20 mL open-top vial containing 10 mL of 0.05 219 

M NaOH solution was used to trap the evolved CO2 within the sealed Schott bottles. 220 

Periodically, the alkali was decanted into an Erlenmeyer flask and rinsed with deionised 221 

water three times. The small vial was replaced with 10 mL of fresh alkali every time. The 222 

collected alkaline aliquot was then titrated against 0.03 M HCl in the presence of 223 

phenolphthalein indicator following the addition of 5 mL of 0.5 M BaCl2. The amount of 224 

evolved CO2 was thus measured, and the microbial respiration was calculated using (Eq. 1):  225 

MR = {MWCO2(Vb−Vs)×M×1000}/(DW×T×2)                    Eq. 1 226 

where, MR is the microbial respiration (mg CO2-C kg−1 soil h−1), MWCO2 is the molecular 227 

weight of CO2, Vb is the volume of HCl for the blank titration, Vs is the volume of HCl for the 228 

sample titration, M is the concentration of HCl, DW is the dry weight of the soil, T is the time 229 

of incubation, and 2 is the factor that accounts for the fact that two OH− are consumed by one 230 

CO2.  231 

 232 

2.5.2. Microbial biomass carbon 233 

Microbial biomass carbon (MBC) was determined using the fumigation-extraction method 234 

(Vance et al., 1987). Soils (10 g, dry weight basis) were placed in 50 mL beakers within a 235 

vacuum desiccator containing 50 mL of ethanol free chloroform. The desiccator was tightly 236 

sealed and pumped until chloroform was vaporised. Soils were thus incubated in chloroform 237 

vapour for 48 h within the desiccator. Another set of un-fumigated soils were maintained 238 

simultaneously. After 48 h, both the fumigated and un-fumigated soils were mixed with 40 239 

mL of 0.5 M K2SO4, and shaken on an end-over-end shaker for 1 h. Samples were then 240 

centrifuged and filtered through Whatman #40 filter papers. Carbon content in the filtrates 241 

was analysed by a Total Organic Carbon (TOC) Analyser (TOC-LCSH, Shimadzu 242 

Corporation, Japan). MBC was calculated using Eq. 2: 243 



MBC = Ec/Kc        Eq. 2 244 

where, MBC stands for microbial biomass carbon (MBC, mg C kg−1 soil), Ec stands for the 245 

value = (carbon extracted from fumigated soils – carbon extracted from non-fumigated soils), 246 

and Kc stands for the conversion factor (0.45) from chloroform flush carbon values into MBC 247 

(Anderson and Domsch, 1989).  248 

The microbial carbon use efficiency (CUE) was estimated following Eq. 3.  249 

MC = ǻMBC/( ǻMBC + ϕCO2-C)      Eq. 3 250 

where, MC is microbial CUE measured as microbial biomass variation, ǻMBC is the change 251 

of microbial biomass carbon, گCO2-C is cumulative CO2-C as microbial respiration.  252 

 253 

2.5.3. Microbial community composition 254 

Phospholipid fatty acid (PLFA) patterns were used to estimate the relative abundance of 255 

bacteria, fungi and actinomycetes in the biochar/glucose-amended and unamended soils. 256 

Microbial PLFAs were extracted by standard methods (Frostegård et al., 1993; Bossio et al., 257 

1998).  258 

In brief, soil samples were first freeze dried at −45°C and at less than 1 millibar (0.8 mbar) 259 

pressure. Then, freeze dried soils (5 g) were extracted with one-phase extraction solvent. The 260 

one-phase solvent was a mixture of chloroform, methanol and citrate buffer (1:2:0.8, v/v/v), 261 

while the citrate buffer was made of citric acid and sodium citrate (3:1, v/v) with pH adjusted 262 

at 3.6 (Bligh and Dyer, 1959). After shaking on an end-over-end shaker, the mixture was 263 

centrifuged twice at 4500 rpm for 30 min. The supernatant was decanted into a non-264 

transparent vial, and vortexed before standing overnight. The upper layer of the standing 265 

liquid was removed, and the remaining bottom portion was dried under N2 flow at 32°C. 266 

Following drying, the thin solid phase left at the bottom of the vial was re-dissolved in 267 

chloroform (1 mL), and transferred into a solid phase extraction (SPE) column. To set up the 268 



column, 0.5 g of silica was packed, followed by conditioning with chloroform thrice (1+1+1 269 

mL). Then, the sample transfer in the SPE column included three steps: chloroform (2+1+1+1 270 

mL), acetone (2+1+1+1 mL) and methanol (2+1+1+1 mL). The final leaching solution was 271 

dried with continuous N2 flow at 32°C. To the pellet obtained, 0.5 mL of 1:1 (v/v) of 272 

methanol:toluene and 0.5 ml of 0.2 M methanolic KOH (by dissolving 0.28 g KOH in 25 mL 273 

of methanol) were added. The mixture was incubated at 37°C for 30 min, and then cooled to 274 

room temperature. The PLFAs were thus converted into fatty acid methyl esters (FAMEs) 275 

with mild alkaline methanolysis. Following incubation, 1 mL of deionised water, 0.15 mL of 276 

1 M acetic acid, and 1 mL of hexane were added to the mixture, vortexed for 30 sec, and 277 

centrifuged at 4500 rpm for 30 min to separate the solution into two layers. The upper layer 278 

was carefully transferred into a Gas Chromatography (GC) vial with a pipette. This 279 

separation procedure was repeated twice with the addition of fresh extractants. Finally, the 280 

extract was concentrated by continuous N2 flow, and stored at −20°C in total darkness before 281 

further analysis.  282 

An internal standard (methyl nonadecanoate, C19:0) (10 ng) was added to all samples as a 283 

quality control measure. The FAMEs were analysed by gas chromatography-mass 284 

spectrometry (GC-MS) (Model 7890B/5977B, Agilent Technologies Ltd., USA; AxION iQT 285 

with Cold EI Source, Perkin Elmer, USA). A RTX-5MS fused silica capillary column (60 m, 286 

250 µm × 0.25 µm film thickness) (Supelco, Sigma-Aldrich, Australia) was used. Sample (1 287 

µL) was injected in splitless mode with an injector temperature of 250°C, and helium carrier 288 

gas at a constant flow rate of 1.4 mL min-1. The temperature program was set as follows: 289 

column temperature initially at 60°C for 1 min, then increased to 180°C at a rate of 12°C 290 

min௅1, then increased to 300°C at a rate of 4°C min௅1 and kept at 300°C for 4 min. Electron 291 

energy in the detector was set 70 eV. Data was acquired in scan mode from 50 to 400Da at 3 292 

scans per second. Quantification was conducted against a Supelco 37 standard mixture 293 



(Supelco, Bellefonte, PA), and the C19:0 internal standard with a 6 point linearity curve 294 

analysed in triplicate (r2≥0.98 for each component). Each PLFA peak was identified by 295 

comparing the respective retention time and by their mass spectra. The isomers not included 296 

in the standard mix were quantified against the relative response factor for C16:0, and were 297 

individually identified by their mass spectra from a Cold EI TOF scanning analysis 298 

conducted on a Perkin Elmer AxION iQT instrument. The specific microbial species were 299 

identified by the signature PLFAs listed in SI. 2. 300 

 301 

2.6. Statistical analysis 302 

Significant differences among treatments were tested using one factor ANOVA followed by 303 

the post-hoc least significant difference (LSD) test. Duncan's multiple range test was used to 304 

compare the means of the treatments. Variability in the data was expressed as the standard 305 

deviation, and a p<0.05 was considered to be statistically significant. Microbial PLFA data 306 

were analysed with principal component analysis (PCA) to elucidate the major variation and 307 

covariation both for individual PLFA and microbial species using varimax rotation. All 308 

statistical analyses were performed using SPSS version 23.0 software packages (SPSS Inc., 309 

Chicago, USA) with significant differences as stated in specific cases. 310 

 311 

3. Results and discussion 312 

3.1. Influence of biochar on heavy metal availability 313 

3.1.1. Influence of biochar-induced pH increase on heavy metal availability 314 

The soil used in this study was slightly acidic in reaction (pH = 6.26). The pH of the 315 

macadamia nutshell biochar was 10.29 (Table 1). The pH of the biochar-amended and 316 

unamended soils was analysed 7 and 49 days after incubation. The pH value was found to be 317 

increased significantly (p<0.01) throughout the incubation period as a result of biochar 318 



addition (Fig. 1). For example, the pH increased by 0.3 and 0.1 units after 7 days of 319 

incubation in soils spiked with Cd and Pb, respectively, while it increased by 0.3 units in soils 320 

spiked with both metals. The soil pH did not show any significant drop at the end of 49 days 321 

of experimental period. Acidic soils lead to a higher metal biotoxicity risk and subsequent 322 

carbon depletion than alkaline soils (Bolan et al., 2014; Sheng et al., 2016; Dai et al., 2017). 323 

Soil pH is also critical in determining the various forms of Cd and their toxicities to certain 324 

microorganisms (Bolan et al., 2014). The naturally-released Pb in mining deposits are less 325 

mobile, but they may become more soluble and mobile if soils are moderately acidic (John 326 

and Leventhal, 1995). The increase in pH values in this study, although small but potentially 327 

significant, was brought about by biochar addition, and we speculate this may reduce the 328 

mobility and availability of metals to soil microorganisms (Rees et al., 2014). Liang et al. 329 

(2014) also noticed a rise in soil pH value due to biochar addition, and they suggested that the 330 

pH variation could cause a shift in the soil microbial population, such as bacteria and fungi. 331 

The alkaline feature of formed metal oxides, hydroxides and carbonates admixed with the 332 

biochar during the pyrolysis process might have increased the soil pH (Novak et al., 2009).  333 

 334 

3.1.2. Heavy metal immobilisation by biochar 335 

Bioavailability is critical in the determination of accessibility and toxicity of metals to soil 336 

microorganisms (Wang et al., 2007). In this study, both Cd and Pb bioavailabilities were 337 

significantly (p<0.01) reduced due to the biochar amendment, but not in the glucose-amended 338 

soils (Fig. 2a and b). Metal remediation ability of biochar based on the elevated soil pH 339 

theory may be envisaged through the following two mechanisms: (i) elevated pH may 340 

contribute to metal (co-)precipitation with carbonates, and (ii ) it may increase the net 341 

negative charges that favour the formation of metal-organic complexes. In the current study, 342 

the elevation of soil pH due to biochar addition was up to 0.3 units, which might have 343 



imparted only a small effect on metal immobilisation. The SEM images and elemental 344 

analysis clearly showed that heavy metal ions clustered or spread on the surface and pores of 345 

the biochar (SI. 3a, b and c). Additionally, a highly porous structure of the biochar sample 346 

was observed as a result of the pyrolysis process. The porous structure of biochar could 347 

reduce the metal mobility and bioavailability (Puga et al., 2015). However, Han et al. (2013) 348 

pointed out that the metal adsorption was not solely ascribed to biochar pore structure. The 349 

adsorption of metal ions by biochar through its surface hydroxyl, carboxyl, and phenolic 350 

functional groups (−OH, −COOH or C−OH) (SI. 4) might have imparted a more prominent 351 

effect. The FTIR spectra show a variety of oxygen-containing functional groups which were 352 

negatively charged. Strong bands at 1400 cm−1 and 875 cm−1 presented C=O and aromatic 353 

C=C groups, respectively (Wang and Griffiths, 1985; Abdel-Fattah et al., 2015). Although 354 

the functional groups composition could be affected by the parent feedstock and pyrolysis 355 

temperature during biochar production (Hossain et al., 2011), the spectral features correlated 356 

well with the elemental analysis of the material (SI. 3c), showing a relatively high carbon 357 

content originating from the organic parent material (macadamia nutshell) (Chia et al., 2012).  358 

The aging effect of metal immobilisation was also observed in the present study. In 359 

comparison to the initial 7 days of incubation, both bioavailable Cd and Pb concentrations 360 

were decreased at the end of incubation (49 days) (Fig. 2a and b). At that stage, 361 

bioavailabilities of Cd were 1.83 and 2.55 mg kg−1 dry soil in glucose-amended Cd-spiked 362 

soil (CG) and glucose-amended Cd-Pb-spiked soil (CPG), respectively, while these values 363 

were significantly (p<0.01) lower in respective biochar-amended soils (1.40 and 2.08 mg kg−1 364 

dry soil in biochar-amended Cd-spiked soil (CB) and biochar-amended Cd-Pb-spiked soil 365 

(CPB), respectively). The bioavailable concentrations of Pb were 83.05 and 97.86 mg kg−1 366 

dry soil in glucose-amended Pb-spiked (PG) and glucose-amended Cd-Pb-spiked soil (CPG), 367 

respectively, while these values were reduced to 32.46 and 37.78 mg kg−1 dry soil in the 368 



respective biochar-amended soils (PB and CPB). The bioavailable metal concentrations were 369 

decreased remarkably, indicating that biochar application reduced the metal mobility. 370 

Investigations have shown that the specific morphology and chemical features may support 371 

the metal sorption potential of biochar (Igalavithana et al., 2017). In addition, a discrepancy 372 

was observed in Cd and Pb bioavailability decline patterns due to biochar application. 373 

Bioavailability of Cd was decreased by 49% and 59% in CB and CPB, respectively (Fig. 2a), 374 

while that of Pb was decreased by 23% and 13% in PB and CPB, respectively (Fig. 2b). The 375 

decrease of Cd bioavailability was larger than Pb, which interestingly was consistent with the 376 

slightly greater pH rise in Cd-spiked soil than the Pb-spiked soil. The rapid adsorption of 377 

metals to biochar functional groups during the incubation period might have attributed to 378 

their decreased mobilities in biochar-amended soils (Houben et al., 2013). The incubation 379 

duration (ageing) was essential for the formation of effective adsorption bonds between 380 

biochar surfaces and metal ions. In addition, soil type and clay content could often play an 381 

important role in metal immobilisation by biochar. For example, Shen et al. (2016) suggested 382 

that the biochar-amended clayey soils was not satisfactory for adsorption of Pb. Therefore, 383 

the effect might become more prominent in a light-textured soil as used in the present study.  384 

The specific surface area of the biochar sample was 202.49 m2 g-1 (Table 1). This feature of 385 

biochar along with its highly porous structure (SI. 3a and b) supported the existence of large 386 

quantity of organic functional groups on the surface (SI. 3c and SI. 4), and consequently 387 

their electrostatic as well as specific interactions with metal cations (SI. 4). The metal 388 

adsorption ability can vary depending upon the properties of biochar as affected by the 389 

pyrolysis conditions and feedstock sources (Park et al., 2011; Uchimiya et al., 2011). Results 390 

of the current study also showed that the bioavailability of metals were slightly higher 391 

(p>0.05) when Cd and Pb coexisted in the system than the single metal-spiked soil. The 392 

bioavailability of Cd was 1.40 mg kg−1 dry soil in CB against 2.08 mg kg−1 dry soil in CPB 393 



(0.68 mg kg−1 difference), while the bioavailability of Pb was 32.46 mg kg−1 dry soil in PB 394 

and 37.78 mg kg−1 dry soil in CPB (5.32 mg kg−1 difference). This might be due to the 395 

competition among metal cations for the adsorption sites on biochar surfaces. Moreover, Rees 396 

et al. (2014) demonstrated that the metal adsorption to organic materials may be partially 397 

irreversible with multiple and element-dependent mechanisms, which could imply that 398 

biochar might play a more prominent role in a long-term soil remediation approach.  399 

 400 

3.2. Influence of biochar on soil microbiota under metal stress 401 

3.2.1. Microbial activity  402 

In all cases, the microbial activity was gradually decreased after the peak value on day 1 (Fig. 403 

3a). Despite the patterns of respiration were similar irrespective of the treatments, the 404 

cumulative respiration dropped significantly (p<0.01) in metal spiked soils in comparison to 405 

un-spiked soils (Fig. 3b). This demonstrated that the metal toxicity caused a reduction of the 406 

soil microbial activity. Compared to the control soil, microbial respiration rate was 407 

significantly (p<0.01) stimulated immediately after biochar addition (Fig. 3a). The 408 

respiration rates in uncontaminated soils with biochar amendment were 1.78 µg CO2-C g−1 409 

dry soil h−1 on day 1, and 1.11 µg CO2-C g−1 dry soil h−1 on day 3. These values were greater 410 

than the control soil (uncontaminated and without biochar) on the respective days (1.27 µg 411 

CO2-C g−1 dry soil h−1 on day 1, and 0.65 µg CO2-C g−1 dry soil h−1 on day 3). Afterwards, 412 

the respiration rate decreased likely because of the depletion of readily available organic 413 

carbon supply. The respiration rate in the control soil was slightly higher than biochar-414 

amended soils on day 25 (p>0.05), and this trend continued until the end of incubation. The 415 

cumulative microbially respired CO2-C values at the end of incubation were 351.41 and 416 

379.56 µg CO2-C g−1 dry soil in the control and biochar-amended soils, respectively (Fig. 417 

3b). The difference in cumulative CO2-C release between them (28.15 µg CO2-C g−1 dry soil) 418 



is consistent with most of the previous reports that biochar addition could increase the 419 

microbial activity and CO2-C liberation from soils (Jones et al., 2011). The stimulation of soil 420 

microbial activity resulted from biochar in uncontaminated soils could be attributed to the 421 

higher organic carbon content and supplement of base nutrient elements (primarily Ca, Mg, K 422 

and Na) (Novak et al., 2009; Houben et al., 2013).  423 

The least microbial cumulative respiration was observed in Cd and Pb co-contaminated soils 424 

(Fig. 3b). Compared to either Cd or Pb spiked soils, the cumulative microbial respiration was 425 

reduced significantly (p<0.01) in the co-contaminated soils, but the effect did not differ 426 

significantly (p>0.05) between Cd and Pb. Nwuche and Ugoji (2008) also noticed that the 427 

combination of Zn and Cu amplified the negative influence on soil microbial activity. As 428 

expected, biochar addition was found beneficial to improve the microbial activity. Soil 429 

respiration was increased by 26% (from 152.21 to 204.58 µg CO2-C g−1 dry soil) due to 430 

biochar application compared to un-spiked control soil. The CO2-C amount due to biochar 431 

addition increased by 21% and 23% in Cd and Pb spiked soils, respectively (18.66 and 33.65 432 

µg CO2-C g−1 dry soil with glucose and biochar amendment, respectively). There were 433 

similar patterns of microbial activities in the Cd and Pb singly spiked soils, meaning the 434 

different metal types did not significantly affect microbial respiration rate in this study. The 435 

respiration values were slightly higher in Pb-spiked soils than Cd-spiked soils, but not 436 

significantly (p>0.05). Some previous reports, however, indicated that the level of biotoxicity 437 

of Cd was larger than that of Pb to soil microorganisms at an equal molar concentration 438 

because Cd was more bioaccessible than Pb owing to dissimilar solubilities of the respective 439 

metal salts (Neethu et al., 2015). Microbially respired CO2-C values in the contaminated soils 440 

were increased by 8 and 10% in glucose and biochar treatments, respectively. It was 441 

noteworthy that the biochar-amended contaminated soils respired a higher amount of CO2-C 442 

than the glucose-amended contaminated soils despite the fact that both the treatment groups 443 



received an equal amount of carbon at the beginning of the experiment and carbon in glucose 444 

was more easily mineralisable than that in biochar. This again confirmed that biochar 445 

imparted a metal remediation effect on microorganisms in the contaminated soils. This study 446 

thus demonstrated that the improvement of microbial activity was not only due to the organic 447 

carbon supplied by biochar, but also due to its metal remediation ability. 448 

 449 

3.2.2. Microbial biomass carbon 450 

Compared to the control sample, MBC values were significantly (p<0.01) increased in 451 

biochar-amended uncontaminated soils (Fig. 4). The values were 243.86 and 421.77 mg C 452 

kg−1 dry soil in the control and biochar-amended soils, respectively, indicating a 42% 453 

increase. The MBC values in the metal-spiked soils were significantly (p<0.01) lower than 454 

the control soil due to the possible metal toxicity. A reduced MBC value due to heavy metal 455 

toxicity of soils was also observed in numerous previous studies (Abaye et al., 2005; Li et al., 456 

2008). 457 

The MBC values were 124.60, 101.55 and 68.02 mg C kg−1 dry soil in glucose amended Cd, 458 

Pb and Cd + Pb spiked soils, respectively. These values in biochar-amended contaminated 459 

soils were significantly (p<0.01) increased (37, 50 and 56% in Cd, Pb and Cd + Pb spiked 460 

soils), demonstrating that the metal toxicity inhibited the microbial respiration as well as 461 

MBC formation. However, the MBC value did not show any significant (p>0.05) difference 462 

between the metal types. Nwuche and Ugoji (2008) noticed that the combination of Cu and 463 

Zn pollution had a lower MBC content than the individual metal. However, the current study 464 

did not indicate any significant difference in MBC due to the metal types, or in single or 465 

metal co-contaminated situations.  466 

 467 

3.2.3. Microbial community composition   468 



Total microbial PLFA was decreased due to metal biotoxicity, while it was increased with 469 

biochar application (Table 3). The toxicity of heavy metals had significant (p<0.01) negative 470 

influence on the PLFA abundance. Total PLFA contents were decreased by 27%, 21% and 471 

34% in unamended Cd, Pb and Cd + Pb spiked soils, respectively. Similar results were 472 

reported earlier (Oliveira and Pampulha, 2006). Total PLFAs increased from 101.75 nmol g−1 473 

dry soil in the control soil to 122.22 nmol g−1 dry soil with uncontaminated biochar-amended 474 

soil. The increased PLFA concentration due to biochar amendments could be attributed to the 475 

increased carbon and nutrient availabilities as well as the alleviation of metal toxicity. The 476 

highly porous structure of biochar could also provide a congenial habitat niche for soil 477 

microorganisms (Quilliam et al. 2013; Dai et al., 2017).  478 

The microbial community composition varied among the treatments (Fig. 5). A detailed 479 

microbial marker concentration presented as individual PLFA data was presented in SI. 5. 480 

The bacterial:fungal (B/F) ratio in uncontaminated soil was 1.28 without biochar addition, 481 

and 1.53 with biochar addition (Table 3). Compared to the uncontaminated soil amended 482 

with biochar, bacterial:fungal ratio was significantly higher (p<0.01) in metal-contaminated 483 

soils, indicating that heavy metal toxicity could result in the variation of different microbial 484 

species. Generally, fungi are more sensitive to environmental stress than bacteria (Lu et al., 485 

2015). A more distinct drop of fungi abundance compared to bacteria was also observed in 486 

the current study. The uncontaminated soil applied with biochar had the largest fungi (45.33 487 

nmol g−1 dry soil) and Gram-positive bacteria (51.21 nmol g−1 dry soil) abundances. 488 

Therefore, fungal species were favoured by organic amendments such as biochar. The high 489 

carbon and nutrient contents of biochar could support the fungal species that usually have a 490 

relatively lower C:N ratio in their cell composition. Surprisingly, the largest Gram-negative 491 

bacterial abundance (27.73 nmol g−1 dry soil) was shown in Pb-spiked soil without biochar 492 



amendment. Certain Gram-negative bacterial species show resilience to metal stresses, and 493 

even exhibit capability of metal bioremediation in contaminated sites (Kang et al., 2016).  494 

Sheng et al. (2016) suggested that the ratio of Gram-positive and Gram-negative bacteria 495 

(G+/G-) is a promising indicator for predicting carbon sequestration in soils. A higher G+/G- 496 

ratio may lead to a positive soil carbon depletion (Sheng et al., 2016). In the current study, 497 

Gram-positive bacteria showed a higher tolerance to metal pollution than Gram-negative 498 

bacteria and fungi. An increased Gram-positive bacteria population with a decreased fungi 499 

population was also earlier reported with increasing metal concentrations (Aoyama and 500 

Tanaka, 2013). In addition, the G+/G- ratio was increased by biochar addition, meaning that 501 

biochar would favour the Gram-positive bacteria more than the Gram-negative bacteria to 502 

grow in a heavy metal contaminated soil. The fungal abundance was increased significantly 503 

(p<0.01) because of biochar addition, while it was negatively affected by metal toxicity. In 504 

spite of the fact that an elevated soil pH should support the bacterial population more than 505 

fungi, the carbon and nutrients supplied by biochar might favour fungi to grow better than 506 

bacteria (Liang et al., 2014). Biochar was reported to alter soil microbial community 507 

composition, and a fungi dominated soil might lead to a higher resistance and resilience when 508 

facing environmental stresses (Paz-Ferreiro et al., 2015). In this study, however, compared to 509 

the bacterial groups, metal toxicity induced much severe inhibition of the fungal populations. 510 

Such difference in microbial species was in consistence with earlier reports (Hinojosa et al., 511 

2005; Deng et al., 2015). Biochar in the present study had more prominent positive effect on 512 

fungi than bacteria. Chen et al. (2013) also noticed a microbial community composition shift 513 

after biochar addition to soils, and fungi communities were benefited more than bacteria.   514 

There was no consistent pattern of metal types that influenced the soil microbiota, but a 515 

slightly lower population of G+, G- bacteria, fungi and actinomycetes was noticed in Cd-516 

spiked soils than Pb-spiked soils. There were controversial reports on metal toxicity 517 



variations when the metals were present singly or in combination. The competition for 518 

adsorption sites by metal cations could modify the respective metal bioavailability to soil 519 

microorganisms (Bur et al., 2012).  520 

A change in the microbial PLFA pattern with metal toxicity and biochar-mediated 521 

remediation indicated a shift in the microbial community structure. This was shown by the 522 

PLFA patterns from different treatments through principal component analysis (PCA, Fig. 6). 523 

The first axis, which accounted for 80% of the variation in the PLFA data, separated different 524 

treatments. In a reasonable agreement with the hypothesis that biochar addition would 525 

modulate the soil microbial community under heavy metal stress, the community composition 526 

after biochar-mediated remediation showed a certain distance from those without biochar 527 

amendment, and the individual components remained close to each other. In addition, 528 

uncontaminated soils with biochar addition were separated to the far on the right in the PC 529 

analysis, and thus had a different PLFA pattern than the metal-spiked soils. The glucose- and 530 

biochar-amended uncontaminated soils were grouped together, indicating that they had 531 

similar PLFA patterns. It has been shown recently that the effect of biochar on the soil 532 

microbiome is modulated by time and site (Thies et al., 2015). Therefore, further 533 

investigations on biochar parameters and monitoring the duration effect are necessary for 534 

interpreting the microbial population variation. 535 

 536 

3.3. Influence of biochar on soil and microbial carbon 537 

3.3.1. Soil organic carbon and nutrient pool 538 

Soil TOC was measured at the end of 49 days incubation. Results showed that TOC value 539 

decreased in the control soil as the microbial mineralisation increased (Table 4). With the 540 

addition of biochar, soil organic carbon amount increased, contributing to heavy metal 541 

immobilisation. The formation of metal-organic complexes on biochar surfaces could 542 



contribute to the increased metal retention in biochar-amended soils (Bolan et al., 2014). 543 

Biochar addition significantly (p<0.05) increased the soil carbon stock by 7% compared to 544 

unamended control soil. However, SOC content was also high in glucose-amended soils even 545 

under metal contamination. Because of the metal induced inhibition of microbial activity, 546 

TOC content was slightly higher in the contaminated soils than uncontaminated soils. 547 

Although exactly similar quantity of carbon was added to soils in the form of glucose and 548 

biochar, SOC patterns in those soils after incubation were largely varied. With glucose 549 

addition, TOC was increased by 6, 6 and 14% in CG, PG and CPG, while with biochar 550 

addition it was increased by 17, 15 and 21% in CB, PB and CPB. This could be attributed to 551 

the dominance of microbially resistant OC in biochar as well as the metal remediation 552 

capability of the material following its application to soils.  553 

Total nitrogen (TN) was the lowest in singly metal-spiked biochar amended soils, indicating 554 

an acceleration of native N depletion. New organic carbon addition might have caused soil 555 

microbial populations to deplete the native N, which is also known as the ‘mining theory’ 556 

(Tian et al., 2016). As a consequence, the C:N ratio was significantly (p<0.05) higher in 557 

singly metal-spiked biochar amended soils than unamended soils (Table 4). There was also a 558 

discrepancy in C:N ratios among glucose and biochar treatments, ranging from 25.8 to 29.1 559 

in glucose treatments, while 30.67 to 31.03 in biochar treatments.  560 

 561 

3.3.2. Microbial carbon use efficiency in soil 562 

Microbial CUE represents the ratio of carbon assimilated in microbial biomass over uptake, 563 

which is an indicator of net carbon sequestration by soil microorganisms. In this study, both 564 

microbial respiration and biomass carbon were significantly (p<0.01) reduced in heavy metal 565 

contaminated soils. The microbial CUE was also reduced in a similar manner (Table 5). 566 

Microbial CUE values in metal contaminated soils were 0.35, 0.29 and 0.31 in Cd, Pb and Cd 567 



+ Pb spiked soils, respectively, while it was 0.41 in uncontaminated soils. The inhibition of 568 

microbial activity and proliferation due to metal biotoxicity was reported in many studies 569 

(Liao et al., 2005; Sobolev and Begonia, 2008). Biochar addition however was able to 570 

increase both microbial respiration and biomass carbon in soils even under heavy metal 571 

stress. Due to biochar application, microbial CUE was increased by 0.05, 0.09 and 0.12 units 572 

in Cd, Pb and Cd + Pb spiked soils, respectively. This indicated that a higher portion of 573 

assimilated carbon was incorporated into the microorganisms rather than it was released as 574 

CO2 (Lehmann et al., 2011; Chen et al., 2017).  575 

In spite of the same carbon amount added to soil with biochar and glucose, CUE ratios of 576 

biochar:glucose in Cd, Pb and Cd-Pb-spiked soils were all larger than 1 (1.15, 1.32 and 1.40, 577 

respectively) (Table 5). Compared to labile carbon source, such as glucose, a higher carbon 578 

sequestration by microbiota was noticed in biochar-amended soils. Unlike biochar, glucose 579 

induced a larger microbial respiration, but smaller carbon sequestration. The CUE ratios in 580 

biochar-amended contaminated and uncontaminated soils were all less than 1. It indicated 581 

that more CO2-C was released in the metal contaminated soils than the healthy soils by 582 

producing a similar amount of biomasses. The metal toxicity led to less carbon use efficiency 583 

by microorganisms, and consequently less carbon sequestration ability in polluted soils.   584 

Microbial CUE needs to take microbial community composition into account because the 585 

differentiation of microbial species may contribute to MBC or CO2 release, and also may 586 

slow down the population turnover rates of fungi (Six et al., 2006). The alteration of 587 

microbial community structure could modify the carbon dynamics, and consequently might 588 

lead to either depletion or sequestration of terrestrial carbon (Malcolm et al., 2009; Compant 589 

et al., 2010). In this study, the heavy metal toxicity had a more negative effect on fungi than 590 

bacteria, and bacteria tended to release more CO2 to form the same amount of biomass. Due 591 

to biochar application, the abundance of fungal species was increased by 2, 60, 62 and 67% 592 



in uncontaminated, Cd-spiked, Pb-spiked and Cd-Pb-spiked soils, respectively (Fig. 5). The 593 

assimilated carbon was likely incorporated into microbes and their secondary metabolites 594 

instead of being released as CO2, and consequently contributing to increased CUE. 595 

Modulation with biochar thus reduced the metal biotoxicity and altered the microbial 596 

community composition, and consequently improved the microbial CUE. The microbial 597 

community shift might have occurred as the results of biochar modulation (Cross and Sohi, 598 

2011).  599 

 600 

4. Conclusions 601 

The present study demonstrated that biochar contributed to soil pH increase, metal 602 

bioavailability reduction, and consequently heavy metal immobilisation. The SEM images, 603 

EDX elemental analysis and IR spectra suggested binding of metals by biochar and thereby 604 

potentially reducing their mobility in soils. However, there is a need to examine the long term 605 

stability of metal immobilisation in soils through biochar application and the underlying 606 

chemical interactions. This study also provided evidence that biochar improved the microbial 607 

CUE by modulating heavy metal stresses in contaminated soils. Biochar application increased 608 

the microbial activity, microbial biomass, and benefitted certain microbial populations, such 609 

as Gram-positive bacteria and fungi, which were otherwise repressed under heavy metal 610 

stresses. Microbial community populations were also shifted in response to metal stresses and 611 

biochar modulation. Biotoxicity from heavy metals affected the soil carbon metabolism by 612 

inhibiting the microbial activity. Biochar amendment increased both microbial respiration 613 

and biomass, but most importantly it imparted positive influences on microbial CUE, thereby 614 

improving microbial carbon assimilation rate. However, the biochar-modulated carbon 615 

sequestration in metal contaminated soils might lead to a native N mining phenomenon. 616 



Future research is needed to investigate the long-term shift of microbial populations under 617 

similar scenarios by monitoring the microorganisms’ carbon source preferences.  618 
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soils. Data are displayed as means, bars indicate SE (n=3), * indicates significant difference 850 
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Fig. 4. Microbial biomass carbon in different treatment soils. Data are displayed as means, bars 855 

indicate SE (n=3). S: control soil without any amendment; B: soil applied with biochar; CB: 856 

soil applied with Cd + biochar; CG: soil applied with Cd + glucose; PB: soil applied with Pb + 857 

biochar; PG: soil applied with Pb + glucose; CPB: soil applied with Cd + Pb + biochar; CPG: 858 

soil applied with Cd + Pb + glucose. 859 

Fig. 5. Proportion of fatty acids representing five microbial species (%). G+: Gram-positive 860 

bacteria; G-: Gram-negative bacteria; F: fungi; A: actinomycetes; S: control soil without any 861 



amendment; B: soil applied with biochar; CB: soil applied with Cd + biochar; CG: soil applied 862 

with Cd + glucose; PB: soil applied with Pb + biochar; PG: soil applied with Pb + glucose; 863 

CPB: soil applied with Cd + Pb + biochar; CPG: soil applied with Cd + Pb + glucose. 864 

Fig. 6. Score plot of principal component analysis (PCA) showing treatment variation based 865 

on phospholipid fatty acid (PLFA) patterns. S: control soil without any amendment; B: soil 866 

applied with biochar; CB: soil applied with Cd + biochar; CG: soil applied with Cd + glucose; 867 

PB: soil applied with Pb + biochar; PG: soil applied with Pb + glucose; CPB: soil applied with 868 

Cd + Pb + biochar; CPG: soil applied with Cd + Pb + glucose. 869 
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Table 1 924 

Selected properties of the soil and macadamia nutshell biochar samples 925 

Soil 

property 

pH EC(mS 

cm௅1) 

CEC (cmol 

(+) kg௅1) 

C (%) N 

(%) 

C:N Clay 

(Wt. %) 

Silt 

(Wt. %) 

Sand 

(Wt. %) 

   

6.26 27.53 32.71 2.29 0.14 16.36 25.73 41.56 20.17    

Ca (g 

kg௅1) 

Cu (mg 

kg௅1) 

Fe (g kg௅1) K (g 

kg௅1) 

Mg 

(g 

kg௅1) 

Mn 

(mg 

kg௅1) 

P (g kg௅

1) 

Zn (mg 

kg௅1) 

Na (g 

kg௅1) 

S (g 

kg௅1) 

  

1.39 8.90 1.42 0.59 0.46 28.50 0.13 8.19 0.23 0.37   

             

Biochar pH EC (mS 

cm−1) 

Pyrolysis 

temperature 

(0C) 

C (%) N 

(%) 

P (%) K (%) S (%) C:N DOC 

(g 

Kg−1) 

Specific 

surface area 

(m2 g−1) 

Pore 

volume 

(ml g−1) 

 10.29 0.17 465 74.72 0.66 0.09 1.02 0.05 113.21 0.55 202.49 0.0085 

 926 

 927 

 928 

 929 

 930 
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Table 2  931 

Soil spiking rate and final metal concentrations. Mean ± SE, n=3  932 

Sample Cd (mg 

kg−1 soil) 

Pb (mg 

kg−1 soil) 

Biochar 

(%) 

Glucose 

(%) 

Cd concertation 

(mg kg−1 soil) 

Pb concentration 

(mg kg−1 soil) 

Cd recovery 

rate (%) 

Pb recovery 

rate (%) 

Control soil - - - - - - - - 

Cd + Biochar 50 - 5 - 41.65 - 83.3%±7.5% - 

Cd + Glucose 50 - - 16 41.65 - 83.3%±7.5% - 

Pb + Biochar - 5000 5 - - 4605 - 92.1%±1.8% 

Pb + Glucose - 5000 - 16 - 4605 - 92.1%±1.8% 

Cd + Pb + 

Biochar 

50 5000 5 - 43.85 4687.5 87.7%±4.6% 93.75%±2.5% 

Cd + Pb 

+Glucose 

50 5000 - 16 43.85 4687.5 87.7%±4.6% 93.75%±2.5% 

Soil + Biochar - - 5 - - - - - 

 933 

 934 

 935 

 936 

 937 

 938 

 939 



 

47 

 

Table 3 940 

Comparison of Gram-positive bacteria (G+ bacteria), Gram negative bacteria (G- bacteria), fungi and actinomycetes as obtained through respective 941 

PLFA profile (nmol g−1 dry soil). Means ± SE (n=3) of total PLFA, PLFA diversity, ratio of Gram-positive and Gram-negative bacteria, ratio of 942 

bacteria and fungi. Mean values followed by different letters indicated significant difference (p<0.05) among treatments 943 

 Without 

glucose/biochar 

Glucose applied* Biochar applied 

 Uncontaminated 

soil 

Soil + Cd Soil + Pb Soil + Cd + 

Pb 

Uncontaminate

d soil 

Soil + Cd Soil + Pb Soil + Cd + Pb 

G+ bacteria 26.84±3.68a 35.05±2.21b 37.72±3.19c 32.49±2.26ab 51.21±1.79d 39.72±2.04c 43.28±1.73c 33.24±2.20b 

G- bacteria 20.56±1.90ab 26.44±2.09b 27.73±2.09b 23.77±2.10b 18.33±2.06a 22.41±2.25ab 21.52±2.08ab 22.15±2.28ab 

Fungi 36.97±1.03c 8.20±1.07a 8.48±0.90a 6.45±1.10a 45.33±0.97d 26.23±1.00b 27.78±1.06b 24.34±0.98a 

Actinomycetes 17.38±0.67d 1.01±0.22a 1.07±0.48a 1.24±0.78a 7.35±0.29c 1.29±0.33a 3.69±0.31b 0.54±0.33a 

Microbial 

species feature 

        

G+/G- ratio 1.31±0.19a 1.33±0.11a 1.43±0.15a 1.37±0.11a 2.79±0.09d 1.77±0.09b 2.01±0.08c 1.50±0.10a 

B/F ratio 1.28±0.54a 7.50±0.40b 7.95±0.59bc 8.72±0.40c 1.53±0.40a 2.37±0.47a 2.33±0.36a 2.28±0.48a 

Total PLFA 

(nmol g−1 dry 

soil) 

101.75±17.44bc 70.70±11.00ab 77.01±10.96ab 63.95±10.10a 122.22±17.46c 89.64±13.75a 96.28±11.47b 80.27±12.81ab 

 944 
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Table 4 945 

Comparison of total organic carbon (TOC), total nitrogen (TN), and ratio of C:N in soils after 49 days incubation. Means ± SE (n=3) 946 

 Without 

glucose/biochar 

Glucose applied* Biochar applied 

 Uncontaminated soil Soil + Cd Soil + Pb Soil + Cd + 

Pb 

Uncontaminated 

soil 

Soil + Cd Soil + Pb Soil + Cd + 

Pb 

TOC (g kg−1 

soil) 

27.68±0.68 29.42±0.98 29.36±1.24 32.12±1.88 33.22±0.92 33.51±0.91 32.71±1.04 34.96±1.12 

TN (g kg−1 

soil) 

1.18±0.05 1.14±0.08 1.01±0.04 1.15±0.08 0.91±0.03 1.08±0.06 1.01±0.02 1.14±0.10 

C:N 23.53±1.23 25.81±1.75 29.07±1.41 27.93±0.71 36.51±1.39 31.03±1.38 32.39±1.58 30.67±1.24 

*Glucose applied at the same carbon loading rate as biochar.  947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 
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Table 5 955 

Effect of heavy metal toxicity on microbial carbon use efficiency. Means ± SE (n=3) of total PLFA, PLFA diversity, ratio of Gram-positive and 956 

Gram-negative bacteria, ratio of bacteria and fungi. Mean values followed by the same letter are not significant among treatments according to 957 

ANOVA (p>0.05) 958 

 Without 

glucose/bioc

har 

Glucose applied* Biochar applied 

 Uncontamina

ted soil 

Soil + Cd Soil + Pb Soil + Cd + 

Pb 

Uncontaminate

d soil 

Soil + Cd Soil + Pb Soil + Cd + Pb 

Microbial CUE 0.41±0.02b 0.35±0.04b 0.29±0.02a 0.31±0.03a 0.53±0.01d 0.40±0.01b 0.38±0.02b 0.43±0.01c 

 Biochar applied: Glucose applied Heavy metal: Biochar 

 CB:CG PB:PG CPB:CPG CB:B PB:B CPB:B 

CUE ratio 1.15±0.06 1.32±0.05 1.40±0.01 0.77±0.12 0.73±0.10 0.82±0.04 

 959 

  960 
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SI. 2. 1037 

Phospholipid fatty acid (PLFA) biomarkers used to characterise microbial communities in the 1038 

experimental soils 1039 

Microbial group Biomarker PLFAs 

Gram-negative bacteria C16:1Ȧ7c 

Gram-positive bacteria i-C15:0, a-C15:0, C15:0, i-C16:0, iC-17:0, aC-17:0, C:170 

Actinobacteria 10MeC16:0, 10MeC17:0, 10MeC18:0 

Fungi C18:2Ȧ6c, C18:1Ȧ9c 
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presenting the elements composition information of tested biochar area of SI. 2. (b). 1056 

 1057 
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 1061 

 1062 
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 1066 
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 1068 

SI. 4. Fourier transformed infrared (FTIR) spectrum showed the functional group of the 1069 

macadamia nutshell biochar used in this research.  1070 

 1071 

  1072 



 

58 

 

SI. 5.  1073 

Detected microbial PLFA data under different treatments after 49 days of incubation (nmol g−1 1074 

soil) 1075 

PLFA Control CB CG PB PG CPB CPG B 

iC15:0 2.07 3.54 1.07 2.81 2.22 1.95 1.83 4.57 

aC15:0 0.93 1.59 0.50 1.81 0.95 1.25 0.83 1.79 

C15:0 0.17 0.32 0.25 0.34 0.26 0.26 0.25 0.40 

iC16:0 7.42 10.41 3.10 11.06 6.99 9.06 5.15 12.48 

iC17:0 12.87 19.02 28.72 22.69 24.17 16.73 22.17 25.18 

aC17:0 1.74 2.76 0.77 3.26 1.93 2.81 1.36 3.44 

C17:0 0.17 0.28 0.28 0.30 0.28 0.28 0.26 0.39 

C16:1Ȧ7c 20.56 22.41 26.44 21.52 27.73 22.15 23.77 18.33 

C18:2Ȧ6c 7.59 2.16 1.88 5.28 3.45 3.06 4.06 8.57 

C18:1Ȧ9c 29.38 24.07 6.32 22.49 5.03 21.28 2.40 36.76 

10MeC16:0 6.02 0.51 0.46 1.44 0.44 0.21 0.56 2.81 

10MeC17:0 3.68 0.23 0.21 0.74 0.23 0.11 0.24 1.51 

10MeC18:0 7.69 0.54 0.34 1.51 0.40 0.22 0.44 3.04 

Total  101.75 89.65 70.70 96.27 75.00 80.27 63.95 122.22 
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 1077 

 1078 


