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ABSTRACT 67 

The search for effective materials for environmental cleanup is a scientific and technological 68 

issue of paramount importance. Among various materials, carbon nanotubes (CNTs) possess 69 

unique physicochemical, electrical, and mechanical properties that make them suitable for 70 

potential applications as environmental adsorbents, sensors, membranes, and catalysts. 71 

Depending on the intended application and the chemical nature of the target contaminants, 72 

CNTs can be designed through specific functionalization or modification processes. Designer 73 

CNTs can remarkably enhance contaminant removal efficiency and facilitate nanomaterial 74 

recovery and regeneration. An increasing number of CNT-based materials have been used to 75 

treat diverse organic, inorganic, and biological contaminants. These success stories 76 

demonstrate their strong potential in practical applications, including wastewater purification 77 

and desalination. However, CNT-based technologies have not been broadly accepted for 78 

commercial use due to their prohibitive cost and the complex interactions of CNTs with other 79 

abiotic and biotic environmental components. This paper presents a critical review of the 80 

existing literature on the interaction of various contaminants with CNTs in water and soil 81 

environments. The preparation methods of various designer CNTs (surface functionalized 82 

and/or modified) and the functional relationships between their physicochemical 83 

characteristics and environmental uses are discussed. This review will also help to identify the 84 

research gaps that must be addressed for enhancing the commercial acceptance of CNTs in the 85 

environmental remediation industry. 86 

 87 

Keywords: Carbon nanotubes; Surface functionalization/modification; Contaminants; 88 

Environmental remediation; Soil remediation; Desalination 89 

  90 
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1. Introduction 91 

The earth is continuously being contaminated with numerous toxic substances from both 92 

natural and anthropogenic sources. Rapid population growth and increasing industrial 93 

development have caused the discharge of various toxic elements, compounds, and/or materials 94 

into the environment. Many new chemicals have been introduced for use without proper 95 

assessment of their environmental risks and human health impacts. The discharge of untreated 96 

industrial effluent into water and soil, the indiscriminate use of pesticides and fertilizers in 97 

agriculture, the unregulated use of harmful chemicals in consumer products, the lack of proper 98 

public sanitation systems in developing countries, the combustion of fossil fuels, the 99 

weathering of toxic elements from rocks and minerals, and the over-extraction of ground water 100 

are some of the primary causes of contamination of water, soil, and air. This environmental 101 

issue is worsening day by day as modern society faces ever increasing cases of deaths due to 102 

diseases, such as cancer. Although industrial and agricultural growth and the use of new 103 

chemicals are necessary to maintain human civilization, the scientific community has a huge 104 

responsibility to develop effective technologies for cleaning up the environment. 105 

The search for effective and low-cost materials that can eliminate present and future harmful 106 

contaminants and treat hazardous wastes in the environment is a scientific and technological 107 

issue of paramount importance. Scientists around the world have been searching for various 108 

materials - either of natural or synthetic origin - to fit into the purpose of environmental 109 

remediation. However, conventional materials (e.g., zeolite, clay minerals, and agricultural/ 110 

industrial waste-based adsorbents) often experience drawbacks in practical applications, 111 

including (i) poor contaminant removal capacity, (ii) lack of contaminant interaction 112 

specificity, and (iii) environmental instability (Sud et al., 2008; Bhatnagar and Sillanpää, 2010; 113 

Bhatnagar et al., 2011; Sarkar et al., 2012; Perego et al., 2013). Some adsorbents prepared from 114 

industrial and municipal waste materials may also pose risks of secondary pollution (Bhatnagar 115 
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and Sillanpää, 2010). In this context, carbon materials, such as activated carbon and biochar, 116 

occupy a unique position in the hierarchy of adsorbent materials for eliminating toxic 117 

substances in air, water, and soil (Mohan et al., 2014; Ok et al., 2015). Activated carbon and 118 

biochar may also encounter a number of problems when applied under the field conditions, 119 

such as poor adsorption specificity and biofouling. In addition, over the last decade, carbon 120 

nanotubes (CNTs) and graphene-based materials have seen an extensive use for environmental 121 

remediation (Mauter and Elimelech, 2008; Apul and Karanfil, 2015; Perreault et al., 2015). 122 

In recent decades, CNTs have attracted the attention of scholars worldwide. These 123 

nanomaterials possess distinctive mechanical, electrical, thermal, and other properties that 124 

qualify them for applications in electronics, light sources, lightweight but high-strength 125 

polymer composites, sensors, nanoprobes in high-resolution imaging, nanoelectrodes, and 126 

hydrogen reservoirs (Baughman et al., 2002; De Volder et al., 2013).  127 

This tiny crystalline form of active carbon also holds enormous potential in the field of 128 

environmental remediation, which has so far been less explored compared with other methods 129 

(Upadhyayula et al., 2009; Ren et al., 2011; Schnorr and Swager, 2011; Ersan et al., 2016). 130 

CNTs are emerging as one of the most promising remediation materials because of their large 131 

specific surface area, high porosity, light weight, and desirable interactions with a diverse range 132 

of contaminants (Ren et al., 2011; Gupta et al., 2013; Yu et al., 2014; Apul and Karanfil, 2015; 133 

Patiño et al., 2015). CNTs could outperform activated carbon in terms of practical applications 134 

in water treatment because of the nanoparticles’ excellent self-assembling ability on supporting 135 

materials via chemical vapor deposition (Karwa et al., 2006), as well as their immobilization 136 

ability in membranes and filters (Hylton et al., 2008; Mishra and Ramaprabhu, 2010). On the 137 

other hand, CNTs may impose some unwanted impacts on environmental receptors (Cañas et 138 

al., 2008; Boncel et al., 2015; Chen et al., 2015; Vithanage et al., 2017).  139 
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The current paper presents a critical review of existing literature on the interactions of 140 

various contaminants with CNTs in water and soil environments. Some recent reviews focused 141 

on CNT-based adsorption against specific types of contaminants in aqueous solutions (Gupta 142 

et al., 2013; Yu et al., 2014; Apul and Karanfil, 2015; Patiño et al., 2015; Lee et al., 2016; 143 

Santhosh et al., 2016). However, information regarding the functional relationship between 144 

CNT modification/functionalization and environmental application of the designer products is 145 

still limited. Therefore, this review aims to highlight the preparation methods of various 146 

designer CNTs (surface functionalized and/or modified) and to assess the relationships between 147 

their physicochemical characteristics and environmental uses in a holistic approach.  148 

 149 

2. CNT structure and types 150 

CNTs are composed of enrolled cylindrical graphitic sheets (known as graphene sheets) in 151 

which carbon atoms are arranged in sp2 hybridization at the corners of hexagons (Thostenson 152 

et al., 2001) (Fig. 1). The seamless cylinders give rise to an outer diameter from about 1ௗto 153 

γ0ௗnm (Aqel et al., 2012). CNTs have nanometer-sized diameters but micrometer-sized lengths, 154 

which should yield a length-to-diameter ratio greater than 1,000 (Popov, 2004; Aqel et al., 155 

2012). Previous studies have investigated the structural properties of CHTs (e.g., diameter, 156 

length, purity, defect, porosity, chirality, multi-wall vs. single-wall, straight vs. helical tubes, 157 

and individual vs. bundled structure) (Iijima and Ichihashi, 1993; Ajayan, 1999; Charlier, 2002; 158 

Wepasnick et al., 2010; Moradi et al., 2012). Two commercially available forms of CNTs, 159 

namely single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube 160 

(MWCNT), are commonly used as environmental adsorbents (Collins et al., 2000; Penza et al., 161 

2004; 2007). Rolling of a single graphene layer into a cylindrical shape gives the SWCNT, 162 

while rolling of many concentric SWCNTs into a tubular shape produces the MWCNT (Iijima 163 

and Ichihashi, 1993). The interlayer distance in MWCNTs is nearly 0.33 nm, which is 164 
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approximately the same as the distance between graphene layers in graphite (Aqel et al., 2012). 165 

Other CNT-related structures, which are less known for environmental applications, include 166 

nanobud (fullerene combined with CNT), graphenated CNT (graphitic foliates along the side 167 

wall of MWCNT), peapod (fullerene trapped inside CNT), torus (doughnut-shaped CNT), and 168 

cup-stacked CNT (stacked microstructure of graphene layers) (Ren et al., 2013). 169 

 170 

Fig. 1. Formation of CNT from graphene sheet (Aqel et al., 2012) 171 

 172 

A number of techniques, including chemical vapor deposition (CVD), laser ablation, and 173 

arc discharge have been employed for CNT synthesis (Prasek et al., 2011). One of the most 174 

common routes of CNT synthesis is CVD through vapor deposition of the desired carbon 175 

precursor on a suitable catalyst surface (Endo et al., 2006; Prasek et al., 2011). CVD is 176 

attractive because it allows tailored control on the CNT architecture for a highly advanced field 177 

of electronics and optoelectronics while being easily scalable (Terranova et al., 2006). 178 

Transition metal nanoparticles, especially iron, cobalt, nickel, and yttrium, either alone or 179 

grafted on suitable supporting materials (e.g., silica, alumina, zeolite, and other metal oxides), 180 

are favorably selected for the nucleation and growth of CNTs (Harutyunyan et al., 2009). The 181 

role of CNTs in applications lies in the variables, such as architecture, carbon precursor, carbon 182 

feeding gas, temperature, pressure, density, and chemical environment (Terranova et al., 2006).  183 

 184 

3.  CNTs for various environmental applications 185 
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A range of physico-chemical properties of CNTs can be explored to employ the materials 186 

in environmental applications (e.g., adsorbent, membranes/filter, catalyst, oil spill sponge, and 187 

sensors) (Fig. 2).  188 

 189 

Fig. 2. Diverse classes of environmental applications of functionalized CNTs. 190 

 191 

3.1. Adsorbents 192 

The basic properties of CNTs (e.g., large specific surface areas and high chemical/thermal 193 

stabilities) make such materials attractive for adsorbing contaminants from water and 194 

wastewater. The adsorption properties of CNTs have been investigated against a series of toxic 195 

agents in water and wastewater, such as Pb, Cd, and 1,2-dichlorobenzene. For example, 196 

Hadavifar et al. (2014) reported the adsorption of Hg(II) from wastewater by amino- and thiol-197 

functionalized MWCNTs. The above functional groups were introduced onto the CNT 198 

sidewalls by sequential reactions with ethylenediamine, cyanuric chloride, and sodium 2-199 

mercaptoethanol. Adsorption isotherm and kinetic data were fitted by Langmuir and pseudo-200 
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CNTs for 
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second-order models, respectively. The thiol-functionalized MWCNTs generally removed 201 

Hg(II) more efficiently than amino-functionalized MWCTS from wastewater (Hadavifar et al., 202 

2014). 203 

 204 

 205 

 206 

Fig. 3. (a, b) TEM images of (a) MWCNTs and (b) magnetic MWCNTs, and (c) adsorption 207 

isotherm of Cr(VI) for magnetic MWCNTs (Huang and Chen, 2014). 208 

 209 

The removal of Cr(VI) by magnetic MWCNTs from wastewater was also investigated 210 

(Huang and Chen, 2014) (Figs. 3 a and b). An increase in the initial adsorbate concentration 211 

and prolonged contact time increased the Cr(VI) adsorption capacity of the magnetic 212 

MWCNTs. However, the adsorption capacity decreased with increasing adsorbent dosage. The 213 

(c) 
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pseudo-second-order model best explained the kinetic behavior of the adsorption process. The 214 

calculated value of the Gibbs free energy demonstrated a thermodynamically spontaneous, and 215 

endothermic adsorption process with an enthalpy deviation of 3.835 kJ mol−1. Many studies 216 

have been conducted to confirm whether CNTs are highly effective adsorbents for eliminating 217 

various harmful substances in water and wastewater (section 4).  218 

 219 

3.2. Membranes  220 

High stability, considerable flexibility in use and large surface area enable the development 221 

of CNT membrane filters as highly effective treatment media for chemical and biological 222 

contaminants in water and wastewater (Jame Sadia and Zhou, 2016). For example, Liu et al. 223 

(2015) investigated electrochemically active CNT filters for eliminating organic pollutants 224 

from wastewater using a point-of-use treatment technology (Fig. 4). Since H2O2 alone could 225 

not remove phenolic species effectively from the system, H2O2 was activated anodically to 226 

generate radical species. With an average oxidation rate of 0.059 ± 0.001 mol h−1 m−2, the 227 

removal efficiency of phenol was stable at 87.0 ± 1.8% continuously over 4 h. Such removal 228 

was influenced by the combined effects of several variables (e.g., electrode material, cathode 229 

potential, pH, flow rate, and dissolved oxygen) (Liu et al., 2015). This work demonstrated the 230 

potential of developing inexpensive filtration technology using CNTs to meet the ever-231 

increasing demand of adequate clean water. 232 

 233 
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 234 

Fig. 4. Schematic of CNT-filter based electrochemical wastewater treatment system having in 235 

situ H2O2 generation assembly (Liu et al., 2015). 236 

 237 

3.3. Catalysts  238 

Among all options, the use of CNTs as a catalyst is also promising, especially for wastewater 239 

treatment. This potential is due to their mesoporous nature, exceptional mechanical strength, 240 

graphitic structure enabled support of specific metals, large surface area, and 241 

electrical/chemical/thermal characteristics. For example, Garcia et al. (2006) used different 242 

ruthenium (Ru) precursors and impregnation methods to prepare ruthenium/MWCNT 243 

catalysts. The MWCNT surface was subsequently treated with high strength aniline in 244 

wastewater using wet air oxidation. The Ru/MWCNT-COOH catalyst synthesized from 1,5-245 

cyclooctadiene and 1,3,5-cyclooctatriene precursors yielded 100% conversion of aniline in 246 

about 45 min reaction time (Garcia et al., 2006). Stability of the catalyst was found to be 247 

directly linked with Ru loading and the strength of Ru-CNT interaction (Garcia et al., 2006). 248 

Recently, Jamie et al. (2016) reported the immobilization of a lipase enzyme (extracted from 249 

Candidia rugose) on modified MWCNTs and application of the CNT-biocatalyst for oily 250 

wastewater treatment. Surface oxidation level of MWCNTs, type of cross-linkers and their 251 

concentrations dominantly controlled the loading and subsequent catalytic activity of the 252 
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MWCNT-supported enzyme. The CNT-immobilized enzyme yielded approximately 93 times 253 

higher catalytic activity than the free enzyme (Jamie et al., 2016). 254 

 255 

3.4. Sensors 256 

Desirable properties of CNTs, including  non-metallic nature, electronic transport, minute 257 

size per amount of material, and thermopower (voltages between junctions caused by 258 

interjunction temperature differences) can be exploited for environmental sensing applications 259 

(Jijun et al., 2002; Chakrapani et al., 2003; Penza et al., 2004; Kazachkin et al., 2008). As such, 260 

their applications have been validated from diverse fields or modes, including resistive sensors, 261 

capacitive sensors, chemical field effect transistors, gas ionization sensors, thermoelectric 262 

response, and CNT-aided optical (or acoustic) sensors. For example, Karimi-Maleh et al. 263 

(2014) prepared a highly sensitive electrochemical sensor using a ZnO/CNT nanocomposite to 264 

detect hydrazine in wastewater in the presence of phenol. The authors achieved simultaneous 265 

detection of hydrazine and phenol in wastewater at as low as 8.0 nmol L−1 concentrations using 266 

square wave voltammetry (SWV) technique (γı) (Karimi-Maleh et al., 2014).  267 

A selective Hg(II) sensor was developed by adsorbing cold mercury vapor on SWCNTs in 268 

industrial wastewater (Safavi et al., 2010). Various levels of Hg(II) adsorption on SWCNTs 269 

yielded differential impedances in the adsorbent material, and monitoring of these impedance 270 

values allowed to sense as low as 0.64 ȝg mL−1 Hg(II) in different types of wastewater samples 271 

(Safavi et al., 2010). Recently, de Oliveira et al. (2015) investigated CNTs based on voltametric 272 

sensors to detect anthraquinone hair dyes in wastewater. Glassy carbon electrodes modified 273 

with MWCNTs (activated in the presence of sulfuric acid) performed the detection of 274 

anthraquinone in water samples at ultra-low concentration (2.7 × 10−9 mol L−1) (de Oliveira et 275 

al., 2015). Likewise, a carbon paste electrode was prepared by modifying ZnO-CNT composite 276 

with 8,9-dihydroxy-7-methyl-12H-benzothiazolo[2,3-b]quinazolin for detecting 277 
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hydroxylamine in water the presence of phenol and sulfite (Gupta et al., 2015). In water and 278 

wastewater samples, the nanocomposite showed 0.04, 0.1 and 0.3 µM detection limits for 279 

hydroxylamine, phenol and sulfite, respectively (Gupta et al., 2015). Overall, CNT-based 280 

sensors have exhibited good analytical performance, good sensitivity, and excellent stability 281 

for real world applications. Thus, the use of CNT-based sensors can be further extended to 282 

direct/real world applications in water and wastewater samples. 283 

 284 

3.5. Oil spill sponges 285 

The practical application of CNT-based materials in oil spill cleanup in sea water has been 286 

demonstrated in several studies. The management of oil spill in the sea can be more challenging 287 

than that of a land spill because oil spreads quickly over a large area with sea waves and wind. 288 

Owing to their rapid oil adsorption capacity, CNTs are considered an efficient material to 289 

control oil spills under oceanic conditions (Gui et al., 2010; Lee et al., 2011; Gui et al., 2013; 290 

Ge et al., 2016; Gupta and Tai, 2016; Kayvani Fard et al., 2016). Due to many advantageous 291 

properties (e.g., large surface area and porosity, super-hydrophobicity, high selectivity, 292 

chemical inertness, and easy recyclability), the suitability of CNTs for oil spill removal has 293 

been demonstrated successfully (Ge et al., 2016; Gupta and Tai, 2016). CNTs have thus been 294 

applied for oil spill removal as sponges (Gui et al., 2010), magnetic sponges (Ge et al., 2013; 295 

Gui et al., 2013; Nagappan and Ha, 2015), vertically aligned on solid support (e.g., steel) (Lee 296 

et al., 2011), and foam (Liu et al., 2013). The incorporation of magnetic attributes to CNTs or 297 

aligning them on solid surfaces has been proven effective in recovering spent materials by 298 

following spill cleanup. After recovering, the spent materials can be easily regenerated by heat 299 

treatment or solvent washing. However, a complete desorption of all adsorbed oil may not be 300 

possible because of the tight interaction between a portion of oils and the microporous network 301 

of CNTs. 302 
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 303 

4. Functionalization/modification of CNTs for environmental applications 304 

Depending on the intended application and the chemical nature of the target contaminants, 305 

various functional groups can be generated or introduced on CNT surfaces (at tips and 306 

sidewalls) to effectively remove environmental contaminants. Non-polar organic contaminants 307 

show high affinity to CNTs due to the interactions of aromatic rings with the CNTs (Long and 308 

Yang, 2001). However, the CNT surfaces may require functionalization or modification to 309 

improve the affinity of CNTs towards hydrophilic ions or molecules. For example, CNTs can 310 

be functionalized through chemical oxidation by incorporating oxygen-containing functional 311 

groups (e.g., –OH, –COOH and –C=O) (Zhang et al., 2003; 2009), which is supposed to 312 

improve the material’s affinity to heavy metal cations (Rao et al., 2007). A more complex 313 

modification of CNT surfaces is achievable by grafting guest molecules, which have high 314 

affinity toward a particular contaminant. For example, ȕ-cyclodextrin grafted MWCNTs 315 

significantly improved the adsorption of Pb (Hu et al., 2010). Furthermore, polyaniline grafted 316 

MWCNTs demonstrated better removal of aniline and phenol (Shao et al., 2010), and alumina 317 

coated MWCNTs showed higher affinity toward heavy metal cations (Gupta et al., 2011b). 318 

 319 

4.1. Oxidation 320 

Surface oxidation has been the most common and easiest technique to create oxygen-321 

containing –OH, –COOH and –C=O groups on CNT structures. Oxidation is typically 322 

performed under a refluxing condition in the presence of a single or a mixture of inorganic 323 

acids (e.g., HNO3 and H2SO4) and an oxidizing agent (e.g., H2O2, KMnO4, and NaOCl). Acid 324 

treatment is often carried out just after CNT synthesis to eliminate metallic impurities (e.g., the 325 

catalysts used for CNT synthesis) from products. After acid treatment, CNTs are either ready 326 

for direct environmental applications or have surface reaction sites that facilitate the grafting 327 
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of guest moieties on the surface to incorporate additional functionalities (Chen et al., 2009c; 328 

Cho et al., 2010; Mishra et al., 2010; Fang and Chen, 2012; Wei et al., 2017). Gas-phase 329 

oxidation of CNT surfaces was also carried out through heat treatment (Nagasawa et al., 2000) 330 

or plasma treatment (Yu et al., 2011) under O2 gas. However, liquid-phase oxidation is more 331 

extensively used for both removing metal impurities and functionalizing products. Gas-phase 332 

oxidation may sometimes burn the thinner structure of SWCNTs (Nagasawa et al., 2000). CNT 333 

oxidation in an O2 or CO2 environment can etch away the tube caps causing a layer-by-layer 334 

peeling of the outer layers, which may dramatically increase the surface area of the oxidized 335 

materials (Ajayan et al., 1993; Tsang et al., 1993). Liquid- or gas-phase oxidation can also 336 

clean impure amorphous carbon from synthesized CNTs and increase the number of effective 337 

reaction sites (Datsyuk et al., 2008). 338 

Due to their intrinsic hydrophobic behavior, CNTs do no easily disperse in polar solvents 339 

such as water, making it difficult to use this material for cleaning up contaminants from 340 

wastewater. This issue can be solved by cutting the MWCNTs to a shorter length (several 341 

hundred nm) and/or creating hydrophilic functional groups on CNT surfaces through 342 

sonication in mixed acids (Saito et al., 2002; Avilés et al., 2009). In a comprehensive study, 343 

(Datsyuk et al., 2008) found that among two acidic treatments (HNO3 and H2SO4-H2O2 344 

mixture), nitric acid treatment under refluxing conditions achieved the highest degree of 345 

MWCNT functionalization (e.g., nanotube shortening and generation of additional defects in 346 

the graphitic network). On the other hand, basic oxidation in NH4OH/H2O2 yielded better 347 

structural integrity of MWCNTs by facilitating the maximum removal of impurities 348 

(amorphous carbon and metal oxides) (Datsyuk et al., 2008). Acid functionalization can be 349 

accelerated by microwave irradiation for 20 to 40 min (Kuo and Lin, 2009; Addo Ntim and 350 

Mitra, 2011, 2012). 351 

 352 
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4.2. Alkali activation 353 

One disadvantage of CNTs relative to activated carbon is their relatively low surface area, 354 

which may impose an adverse impact on contaminant adsorption. In addition, aggregation of 355 

nanoparticles may result in mesoporous structure of CNTs that contains interstices and grooves 356 

(Ma et al., 2012). This feature may induce strong affinitive interactions in CNTs and 357 

subsequently cause structural alterations (Ma et al., 2012). Activation of carbon materials, 358 

including CNTs, with alkali treatment can address this issue and effectively improve the 359 

surface area and pore volume (Foo and Hameed, 2011; Ma et al., 2012). The alkali activation 360 

of CNTs by Ma et al. (2012) involved heating a solid powdered mixture of MWCNTs and 361 

KOH at 750 °C for 1 h under an argon atmosphere in a horizontal tube furnace. After washing 362 

in concentrated HCl followed by deionized water, the dried powder successfully adsorbed dye 363 

compounds (both anionic and cationic) from aqueous solutions (Ma et al., 2012). Multiple 364 

interaction mechanisms, including hydrogen bonding, ʌ–ʌ electron-donor-acceptor interaction, 365 

electrostatic interaction, and mesopore-filling, resulted in effective dye adsorption on the 366 

alkali-activated MWCNTs (Ma et al., 2012). The alkali-activated CNTs were also successfully 367 

used to remove toluene, ethylbenzene, and m-xylene from aqueous solutions (Yu et al., 2012). 368 

 369 

4.3. Modification with magnetic particles 370 

CNTs used for removing environmental contaminants from aqueous media often undergo 371 

material regeneration and separation after remediation treatment. Filtration and/or high-speed 372 

centrifugation may be used to separate tiny nanoparticles from a solution, however, these 373 

techniques require a significant amount of energy and high cost. Thus, providing magnetic 374 

properties in a designer adsorbent to develop a cost-effective technology for separating spent 375 

adsorbents has gained increasing attention. 376 
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Simple homogeneous physical mixing of magnetic ferrite nanoparticles (NiFe2O4) prepared 377 

by sol-gel method with MWCNTs using an agate mortar was reported to provide the CNTs 378 

with magnetic properties (Abdel Salam et al., 2012). The composite mixture improved the 379 

adsorption of aniline from the solution and subsequently eased the separation of the spent 380 

adsorbent (Abdel Salam et al., 2012). However, such physical mixture of nanoparticles may 381 

result in unwanted nanoparticle mobility in the environment because the individual 382 

components are held together only by a weak attracting force. This operating problem can be 383 

addressed by grafting the magnetic component into the composite by using suitable reaction 384 

routes. 385 

Incorporation of the magnetic attribute to CNTs through grafting may involve a multi-step 386 

sol-gel chemical reaction, in which magnetite (Fe3O4) particles were first synthesized and then 387 

coated with a silica layer (Guan et al., 2010). A separate sol solution of functionalized 388 

MWCNTs (MWCNT-OH) was also prepared by using methyltrimethoxysilane as the sol-gel 389 

precursor, poly(methylhydrosiloxane) as the deactivation reagent, and trifluoroacetic acid as 390 

the stabilizing agent. The final adsorbent was prepared by mixing the above-mentioned 391 

components in a conditioning environment under a nitrogen atmosphere (Guan et al., 2010). In 392 

another study, magnetic iron oxide nanoparticles were incorporated on MWCNTs that were 393 

covalently grafted with soluble starch (Chang et al., 2011). The resulting material improved 394 

the product’s hydrophilicity and enhanced its affinity toward anionic dye compounds. 395 

The synthesis of magnetite (Fe3O4) nanoparticles on oxidized MWCNTs can be achieved 396 

through a simple alkali precipitation method (Chen et al., 2009a; 2009b; Gong et al., 2009; 397 

Daneshvar Tarigh and Shemirani, 2013). The synthesis protocol involved the dispersion of the 398 

nanoparticles in a solution of iron and then the drop-wise addition of an alkali until the pH of 399 

the mixture became >10. A slightly elevated temperature (70 – 80 °C) and reaction under an 400 

inert environment were reported to provide a better yield of the oxidized iron nanoparticles. 401 
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Post-synthesis aging and/or heat treatment (~100 °C) was also beneficial. A mixed solution of 402 

ferric and ferrous forms of iron was also used to synthesize magnetite nanoparticles (Gupta et 403 

al., 2011a). Magnetic iron nanoparticle-decorated CNTs were found to remove arsenic (Mishra 404 

and Ramaprabhu, 2010), dye compounds (Qu et al., 2008), atrazine (Tang et al., 2012), and 405 

heavy metals (Wang et al., 2011) from contaminated waters. 406 

 407 

4.4. Modification with nonmagnetic metal oxide 408 

To achieve superior affinity toward contaminants, CNTs can be modified with various metal 409 

oxides. Transition metals, such as Fe, Zr, Ag, Ti, Ce, and bimetallic Pd-Fe (Xu et al., 2012), 410 

were successfully used for preparing metal oxide-CNT hybrids that adsorbed toxic elements 411 

(e.g., As, F, Cu, Cd, and 2,4-dichlorophenol) from water (Peng et al., 2005; Woan et al., 2009; 412 

Mishra and Ramaprabhu, 2010; Addo Ntim and Mitra, 2011; 2012; Ramamurthy et al., 2011; 413 

Venkata Ramana et al., 2013). The modification method is simple and often involves oxidative 414 

functionalization of the CNTs followed by alkali precipitation of the target metal oxide on 415 

surfaces of the nanotubes. The pre-functionalized CNTs are dispersed in the aqueous solution 416 

of the metal, and a strong alkali solution (5–7 M) is slowly added. The amount of alkali should 417 

be greater than the equivalent stoichiometric amount of the metal (final pH ≥ 10) to ensure that 418 

the oxidation reaction is complete. The metal oxide formation was facilitated by mild heating 419 

(85 °C) of the reaction mixture openly or under microwave irradiation (Addo Ntim and Mitra, 420 

2011; 2012).  421 

In most cases, the decoration of CNTs with metal oxide nanoparticles requires pre-treatment 422 

or functionalization of the CNT surfaces. However, this pre-treatment can be avoided by 423 

performing nanoparticle synthesis reaction and deposition with the aid of supercritical ethanol 424 

(An et al., 2007). A photo-reactive titania-MWCNT was successfully synthesized by the 425 

hydrolysis of titanium isopropoxide in supercritical ethanol at 270 °C for 2 h (An et al., 2007). 426 
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High-temperature annealing was not necessary to achieve the photo-reactivity; the composite 427 

was only vacuum-fired at 60 °C for 6 h. Non-magnetic Fe2O3 nano-catalysts were also 428 

decorated on MWCNTs by a simple impregnation of the CNTs with an aqueous Fe(NO3)3 429 

solution followed by a 200 °C calcination for 4 h (Liao et al., 2009). The resulting catalysts 430 

were able to degrade phenolic contaminants (e.g., resorcinol and ortho-chlorophenol) in a 431 

H2O2-mediated Fenton reaction (Liao et al., 2009). The TiO2-decorated MWCNTs were also 432 

used for the photocatalytic degradation of organic contaminants, such as 2,6-dinitro-p-cresol 433 

and 2,4-dinitrophenol, under solar irradiation (Wang et al., 2009a; 2009b). 434 

 435 

4.5. Modification with zero-valent iron 436 

Among manufactured nanoparticles, zero-valent iron (nZVI) has already received 437 

widespread attention for practical environmental remediation (Crane and Scott, 2012; 438 

Stefaniuk et al., 2016; Zou et al., 2016). Very high in-situ reactivity in the material is achieved 439 

at only a small synthesis cost, and this material is also easy to use in practical applications for 440 

contaminated groundwater remediation. Therefore, nZVI has been the most widely studied 441 

nanomaterial used for environmental remediation (Elliott and Zhang, 2001; Crane and Scott, 442 

2012; Chekli et al., 2016). To prevent the oxidation and agglomeration of nZVI and prolong 443 

the material’s reactivity, it was supported on various micro- and nano-particle supporting 444 

materials, including biochar (Mandal et al., 2017), clay minerals (Üzüm et al., 2009; Shi et al., 445 

2011), and zeolite (Wang et al., 2010). Similarly, nZVI was also supported on CNTs and 446 

successfully used for removing hexavalent chromium (Lv et al., 2011), selenite (Sheng et al., 447 

2016), azo dyes (Reza Sohrabi et al., 2015), and nitrobenzene (Jiao et al., 2016) from 448 

wastewater. The presence of other anions (even at high concentrations) did not affect the 449 

chromate reduction ability of designer materials (Lv et al., 2011). The decoration of MWCNTs 450 
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with nZVI can significantly enhance the contaminant removal capacity of the material (Lv et 451 

al., 2011; Reza Sohrabi et al., 2015; Jiao et al., 2016; Sheng et al., 2016). 452 

 453 

4.6. Specific chemical derivatization or modification 454 

Several specific chemical derivatizations or modifications of CNTs were reported to 455 

improve the material’s affinity toward specific contaminant elements or compounds. Carboxyl-456 

functionalized SWCNTs (SWCNT-COOH) were derivatized with thiol functional groups by 457 

reacting with ethanol-dissolved cysteamine hydrochloride (Bandaru et al., 2013).  The reaction 458 

was conducted in the presence of N-hydroxysuccinimide and a coupling agent (e.g., 1-ethyl-459 

(3-3-dimethylaminopropyl) carbodiimide) (Bandaru et al., 2013). Such derivatization 460 

processes may improve the dispersibility of CNTs in aqueous solutions and its affinity toward 461 

heavy metal cations, including Hg. Bandaru et al. (2013) reported that thiol-derivatized 462 

SWCNTs adsorbed a three-fold and four-fold greater amount of Hg2+ than unmodified 463 

SWCNTs and activated carbon, respectively. Similarly, adsorption of actinide ions was 464 

achieved by modifying MWCNTs with a ligand, such as a diglycol amide derivative (Deb et 465 

al., 2012). The biodegradation or biocompatibility of the resulting CNT adsorbent was 466 

engineered by selecting an appropriate ligand. The spent material can be easily incinerated and 467 

disposed of due to the organic component in the adsorbent. Other chemical compounds, such 468 

as ȕ-cyclodextrin (Fuhrer et al., 2011), iodide/sulfur (Gupta et al., 2014), amino compounds 469 

(Vuković et al., β011; Ji et al., β01β; Hamdi et al., β015), tannic acid (Tong et al., 2011), and 470 

ethylenediamine (Vuković et al., β010), were also used to modify CNT surfaces. The 471 

cyclodextrin molecules were also grafted on CNTs along with magnetic nanoparticles with the 472 

aid of plasma technology (Hu et al., 2010; 2011a) or polyaniline (Shao et al., 2010; 2012). 473 

Tannic acid-modified MWCNTs were reported to be excellent adsorbents of rare earth 474 

elements (e.g., La, Tb, and Lu) (Tong et al., 2011).  475 
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 476 

4.7. Modification with polymers 477 

Various types of polymers are often used to modify CNTs and other adsorbents for 478 

improving their adsorption affinity toward a particular element or compound. For example, 479 

dendrimers are a unique class of polymers that successfully modify the surface of MWCNTs 480 

(Eskandarian et al., 2014). The adsorbent was prepared by reacting carboxyl-functionalized 481 

MWCNTs with poly(propyleneimine) dendrimer in aqueous media and the dendrimers were 482 

used to adsorb single- and multi-component organic dye solutions (Eskandarian et al., 2014). 483 

A plasma technique was also adopted for grafting methyl methacrylate on CNTs (Shao et 484 

al., 2011). Poly(methyl methacrylate) is known to adsorb organic contaminants, however it 485 

sediments rapidly in aqueous solutions, which may compromise its adsorption capacity. This 486 

issue was tackled by grafting poly(methyl methacrylate) molecules on CNT surfaces, thereby 487 

preventing the sedimentation of the active ingredient. Thus, the designer material successfully 488 

removed 4,4ƍ-dichlorinated biphenyl from the aqueous solutions (Shao et al., 2011). 489 

Natural biopolymers can also be used to enhance the hydrophilic nature and improve 490 

biocompatibility of CNTs in environmental applications. For example, Yan et al. (2012b) 491 

reported the covalent grafting of guar gum onto MWCNT surfaces. During an attempt to 492 

incorporate magnetic Fe3O4 nanoparticles into the designer material, it was found that the 493 

biopolymer facilitated a better dispersion of the Fe3O4 nanoparticles on the adsorbent surfaces 494 

through a supramolecular interaction between its hydroxyl groups and the metal ions; this 495 

significantly improved the adsorption of aqueous dye contaminants (Yan et al., 2012b). 496 

 497 

4.8. CNT immobilization 498 

CNTs are highly resistant to degradation and may impart toxicity to environmental 499 

organisms. Therefore, they should be removed from treated water. The limitation of the 500 
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techniques used to separate these small particles from water may obstruct their widespread use 501 

as adsorbents in environmental remediation. This can somehow be tackled by immobilizing 502 

CNTs in polymer-carrying electrospun fibrous membranes, in alginate composites or on large 503 

particles. For example, Dai et al. (2016) fabricated a laccase-carrying electrospun fibrous 504 

membrane by co-electrospinning a poly(D,L-lactide)/laccase/MWCNT mixture. The total 505 

removal (synergistic adsorption and degradation) of the target species (e.g., 2,4-506 

dichlorophenol, bisphenol A, and triclosan) by the fabricated material reached 92.6, 95.5, and 507 

99.7%, respectively, with 81.7, 90.5, and 85.6% contributions from the enzyme-catalyzed 508 

degradation of the respective contaminants (Dai et al., 2016). Li et al. (2010) immobilized 509 

CNTs by injecting a homogeneous dispersion of CNTs and sodium alginate into a solution of 510 

calcium chloride, with Ca2+ serving as the bridging agent. The authors successfully used the 511 

resulting material to remove Cu2+ from the water. Similarly, a composite fiber containing 512 

calcium alginate-MWCNT was obtained via wet spinning method, and the resulting material 513 

was used to remove dye compounds (both cationic and anionic) from aqueous media (Sui et 514 

al., 2012a). In a novel approach, MWCNTs were inserted into the cavities of diatomite and 515 

subsequently supported onto flexible polyurethane foams (Yu and Fugetsu, 2010). The 516 

composite material was able to effectively remove organic dye compounds from contaminated 517 

water (Yu and Fugetsu, 2010). In a similar approach, a sponge-like natural vermiculite-CNT 518 

hybrid was synthesized by intercalating CNTs into the exfoliated vermiculite for oil adsorption 519 

(Zhao et al., 2011). Several other clay minerals (e.g., smectite and palygorskite), which are 520 

naturally occurring, inexpensive, and non-toxic, have enormous potential to be developed as 521 

composite CNT adsorbents. The clay minerals themselves have well known environmental 522 

applications due to their high surface reactivity (Sarkar et al., 2012). Combining this feature 523 

with CNT composites is expected to promote the development of advanced environmental 524 
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adsorbents and simultaneously restrict the unwanted mobility of CNTs from the materials 525 

(Sarkar et al., 2015). 526 

 527 

4.9. Modification with other carbon based adsorbents 528 

Hybrid adsorbent materials containing CNTs as a major component have also been used to 529 

remove/treat environmental contaminants. A self-assembled graphene–CNT hybrid was 530 

prepared by autoclaving a mixed dispersion of pre-exfoliated graphene oxide and MWCNTs 531 

in ethanol/water (1:1 v/v) at 200 °C for 6 h (Ai and Jiang, 2012). Sui et al. (2012b) reported the 532 

synthesis of graphene–CNT hybrid aerogels in a green process, in which graphene oxide was 533 

reduced to graphene by Vitamin C in the presence of HCl. The authors (Sui et al., 2012b) 534 

synthesized hybrid aerogels by mixing graphene and MWCNTs under heat treatment and then 535 

drying the mixture with supercritical CO2. Free-standing adsorbent papers were prepared from 536 

a mixture of different types of CNTs and graphene. These materials were then used successfully 537 

to adsorb both metal cations and nonpolar organic compounds (Dichiara et al., 2014b; 2015b). 538 

The prepared nanocomposites thus demonstrated up to four fold and 50% greater adsorption of 539 

Cu2+ from aqueous solutions than those of activated carbon and CNTs alone, respectively 540 

(Dichiara et al., 2015b). A similar material prepared from SWCNTs and graphene nanoplatelets 541 

exhibited 25% improvement in adsorption of organic contaminants (e.g., 1-pyrenebutyric acid, 542 

2,4-dichlorophenoxyacetic acid, and diquat dibromide) in comparison with either component 543 

of the nanocomposites alone (Dichiara et al., 2014b). Similarly, CNT-biochar hybrid materials 544 

were prepared in two steps: (i) dip-coating of CNTs on a biochar feedstock in the presence or 545 

absence of a surfactant and (ii) slow pyrolysis of dip-coated dried feedstock (for 1 h at 600 °C) 546 

under an N2 environment (Inyang et al., 2014; 2015). The loading of CNTs in these composites 547 

was arbitrary. Future research may focus on optimizing the mixing ratio of individual 548 

components to achieve the best adsorption of a target contaminant. Care should also be taken 549 
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to restrict the unwanted mobility of CNTs. The carbon-CNT hybrid material can also be 550 

magnetized by incorporating iron oxides. While Vadahanambi et al. (2013) used such a 551 

magnetic graphene-CNT hybrid material for removing arsenic from water, Wang et al. (2014) 552 

used it for adsorbing cationic dyes (i.e., methylene blue). 553 

 554 

5. Contaminant treatment by CNTs 555 

The key strategies for treating contaminants by CNTs mainly include adsorption and 556 

degradation/detoxification. In both cases, the reactivity of CNTs is often improved by 557 

modification or functionalization of the material. Designer CNTs can be prepared to target a 558 

specific contaminant element or compound for remediation. Designing CNTs with certain 559 

surface engineering may also facilitate the separation of the materials following the 560 

contaminant treatment process. Fig. 5 depicts the potential avenues of CNT modification and 561 

their possible applications in environmental contaminant mitigation. The incorporation of a 562 

magnetic component into CNTs is one of the common approaches used for nanoparticle 563 

separation (Abdel Salam et al., 2012). With or without such modifications, CNTs have been 564 

reported to remediate several groups of contaminants, including emerging pollutants, 565 

phenolics, polycyclic aromatic hydrocarbons (PAHs), dyes, pesticides, chlorinated organics, 566 

and heavy metals. For example, Glomstad et al. (2016) reported that with decreasing oxygen-567 

containing functional groups and increasing surface areas, SWCNTs and MWCNTs adsorbed 568 

a greater amount of phenanthrene in the presence of aqueous natural organic matter while 569 

significantly reducing the toxicity of the contaminant to freshwater algae Pseudokirchneriella 570 

subcapitata.  571 

 572 
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 573 

Fig. 5. Schematic diagram representing different modification processes of CNTs for 574 

contaminant removal from water and wastewater (C: Carbon; CNT: Carbon nanotube; ENVT: 575 

Environmental; Hg: Mercury; KOH: Potassium hydroxide). 576 

 577 

5.1. Emerging contaminants 578 

Modern manufacturing processes and industrial effluents discharge more than 80,000 579 

synthetic chemicals into the environment every year (Naidu et al., 2016). Among the synthetic 580 

and naturally occurring chemicals, emerging contaminants are defined as those that have been 581 

newly observed in the environment. Tackling the issue of emerging contaminants is extremely 582 

challenging owing to the lack of (a) precise analytical methods for identifying contaminants, 583 

(b) certified reference materials for several of these chemicals, (c) information on their fate, 584 

toxicity, and behavior in the environment, (d) data of their environmental and human health 585 

limits, and (e) knowledge about their long-term (chronic) health impacts (Naidu and Wong, 586 
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2013; Naidu et al., 2016). Therefore, continuous efforts are needed to find effective materials 587 

for cleaning up these contaminants. 588 

Among emerging contaminants, pharmaceuticals and personal care products (PPCPs) are of 589 

widespread public concern because their fate and mobility in the environment are largely 590 

unknown (Yang et al., 2017). Some of the specific compounds in this group include ibuprofen 591 

(an anti-inflammatory drug) and triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol, a 592 

disinfectant). CNTs were successfully used to adsorb these compounds from aqueous media 593 

(Cho et al., 2011). Given their large specific surface areas, SWCNTs showed better adsorption 594 

of both ibuprofen and triclosan than MWCNTs. Oxidation of the CNT surface resulted in a 595 

reduction of PPCP adsorption (Cho et al., 2011). 596 

Many synthetic antibiotic compounds are considered to be emerging contaminants in the 597 

environment. They are often only partially eliminated from the effluents of drug manufacturing 598 

industries or public sewage systems. Therefore, a residual amount of these compounds can 599 

reach the surface or groundwater. Although they can be present at low concentrations, such 600 

small concentrations can also potentially develop resistance in soil and water microbial species. 601 

When compared with an activated carbon and a synthetic carbon xerogel, an MWCNT sample 602 

adsorbed almost the same amount of ciprofloxacin as activated carbon and about 40% less than 603 

a xerogel (Carabineiro et al., 2011). Following a strong oxidation treatment (7 M HNO3), the 604 

adsorption capacities of the activated carbon and xerogel were drastically reduced, whereas the 605 

adsorption by CNT was unaffected. However, a thermal treatment (900 °C) following the 606 

oxidation enhanced the ciprofloxacin absorption performance of the activated carbon and 607 

xerogel, but not that of the CNTs (Carabineiro et al., 2011). The combined oxidation and 608 

thermal treatment increased the surface basicity of the materials and thus enhanced the 609 

adsorption of the negatively charged antibiotic compound. Therefore, the removal of antibiotic 610 



29 

 

compounds by CNTs largely depends on the type of compounds themselves (cationic or 611 

anionic). 612 

The type of CNTs (whether single- or multi-walled) can significantly affect the material’s 613 

affinity for emerging contaminants. For example, the adsorption of perfluorooctane sulfonate 614 

(PFOS) was greater for SWCNTs than for MWCNTs (Chen et al., 2011b). PFOS and 615 

perfluorooctanoic acid (PFOA) are present in fire-extinguishing aqueous film-forming foam 616 

(AFFF), and in recent years, they have emerged as some of the most concerning contaminants 617 

because of their high concentration, wide global distribution, extremely high environmental 618 

persistence, and potential for bioaccumulation (Arias Espana et al., 2015). CNTs demonstrated 619 

a considerably fast adsorption equilibrium (as quick as 2 h) toward PFOS in comparison with 620 

biomass-derived chars (384 h) and ash (48 h) because of the greater number of available 621 

reaction sites in the cylindrical external surfaces of CNTs and the strong hydrophobic type 622 

interaction mechanism (Chen et al., 2011b). Deng et al. (2012b) found that hydrophobic 623 

interactions dominated the accumulation of perfluorinated compounds (PFCs) on CNTs. The 624 

adsorption affinity of PFCs increased with the compounds’ increasing C-F chain lengths, and 625 

the functionalization of CNTs with oxygen-containing groups caused a reduction in PFC 626 

adsorption (Deng et al., 2012b).  627 

Among emerging inorganic contaminants, perchlorate (ClO4
−) anions have received 628 

widespread attention because of their disruptive effect on iodine uptake by mammals, which 629 

leads to a number of diseases, such as thyroid disorder, neurological damage, and anemia 630 

(Dasgupta et al., 2008; Sijimol et al., 2015). CNTs, especially the double-walled ones 631 

(DWCNTs) with oxygen-containing functional groups, were found to remove perchlorate from 632 

aqueous media (Fang and Chen, 2012). Perchlorate removal by various CNTs was in the order: 633 

DWCNTs-oxidized > DWCNTs > SWCNTs > MWCNTs. Fang and Chen (2012) also 634 

proposed a combined electrostatic interaction and hydrogen bonding mechanism for the 635 
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adsorption. However, these mechanisms should be further examined by conducting adsorption 636 

tests under different pH values, ionic strengths, organic matter concentrations, and 637 

temperatures. 638 

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid) is an organoarsenic compound used to 639 

prevent and control parasites in poultry farming. The compound itself is not highly toxic, but 640 

following degradation (which is quite fast under ambient environmental conditions), it can 641 

produce extremely toxic inorganic arsenic species (Arai et al., 2003). Removal of roxarsone 642 

using MWCNTs was evaluated by Hu et al. (2012). The authors suggested the suitability of 643 

using MWCNTs for roxarsone remediation depending on both batch and static column test 644 

results. The adsorption capacity reached 13.5 mg g-1, which decreased markedly with rising 645 

ionic strength and pH of the contaminant solutions. A ʌ–ʌ electron–donor–acceptor (EDA) 646 

interaction was suggested to control the roxarsone adsorption reaction on the CNT surfaces 647 

(Hu et al., 2012). 648 

Magnetic particles decorated with surface-functionalized CNTs can also be used to 649 

retain/concentrate emerging contaminants from aqueous media. For example, Guan et al. 650 

(2010) used MWCNT functionalized magnetic particles to extract estrogen from solutions. 651 

Indiscriminate disposal of medications is the main source of estrogen into the household 652 

sewerage systems. As is apparent from the complex synthesis procedure of magnetic CNT 653 

adsorbents (Guan et al., 2010), these materials may be inappropriate for treating high volumes 654 

of contaminated wastewater owing to the high cost involved, but they can be efficient in 655 

developing an analytical separation technique (separating media) for emerging contaminants. 656 

A detection limit for diethylstilbestrol, estrone, and estriol estrogens as low as 0.2 ng mL−1 was 657 

achieved by using a magnetically modified CNT material (Guan et al., 2010). Table 1 658 

summarizes the examples of cases in which CNTs (with or without surface modification) were 659 

used for removing various emerging contaminants from the environment. 660 
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Table 1 661 

Removal of emerging contaminants by CNTs with or without surface modification. 662 

CNT type Modification Target contaminant Test method Removal capacity Remarks Reference 

SWCNTs 

and 

MWCNTs 

Reflux with 70% 

w/w HNO3 

Ibuprofen (IBU) and 

triclosan (TCS) 

Batch adsorption 

isotherm 

For SWCNT, IBU at pH 

7: 232 mg g-1; TCS at pH 

7: 558 mg g-1 

SWCNT adsorbed 

more IBU and TCS 

than MWCNT; IBU 

adsorption was 

greater at pH 4 

whereas TCS 

adsorption was 

greater at pH 7; CNT 

surface oxidation 

reduced the 

adsorption. 

(Cho et al., 

2011) 
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MWCNTs HNO3 (7 M) 

oxidation and heat 

treatment (350 – 

900 °C) under 

inert atmosphere 

(N2) 

Ciprofloxacin (CPX) Batch adsorption 

isotherm and 

kinetics 

About 150 mg g-1 CNT adsorbed more 

CPX than activated 

carbon and carbon 

xerogel, but the 

oxidation and heat 

treatment did not 

impact the adsorption 

capacity of CNT. 

(Carabineiro 

et al., 2011) 

SWCNTs 

and 

MWCNTs 

As received. Perfluorooctane 

sulfonate (PFOS) 

Batch adsorption 

kinetics 

SWCNT: 237 mg g-1 SWCNT adsorbed 

more PFOS than 

MWCNT. 

(Chen et al., 

2011b) 

SWCNTs 

and 

MWCNTs 

Functionalized by 

–OH and –COOH 

groups 

Perfluorinated 

compounds (PFCs) 

Batch adsorption 

isotherm 

For SWCNT, Freundlich 

constants (KF) for 

perfluorohexane acid, 

SWCNT adsorbed 

more PFCs than 

MWCNT; adsorption 

(Deng et al., 

2012b) 
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perfluorobutane acid, 

perfluorooctanoate, 

PFOS, perfluorobutane 

sulfonate and 

perfluorohexane 

sulfonate are 0.05, 0.07, 

0.26, 1.61, 5.89 and 157, 

respectively. 

increased with 

increasing C-F chain 

lengths; 

functionalization 

reduced adsorption. 

SWCNTs 

and 

MWCNTs 

Reflux with 65% 

HNO3 

Perchlorate (ClO4−) Batch adsorption 

isotherm 

As high as 3.55 mg g-1 DWCNTs adsorbed 

more ClO4
− than 

SWCNT and 

MWCNT; oxygen-

containing functional 

groups improved 

adsorption. 

(Fang and 

Chen, 2012) 
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MWCNTs As received. Roxarsone Batch 

equilibrium 

adsorption and 

column 

adsorption 

As high as 13.5 mg g-1 Adsorption markedly 

decreased with 

increasing pH and 

ionic strength.  

(Hu et al., 

2012) 

SWCNTs In the presence of 

natural organic 

matter (NOM) 

Bisphenol A (BPA) 

and 17ȕ-estradiol (E2) 

Batch adsorption 

and partition 

coefficient 

determination 

Presence of NOM: 8 mg 

L-1 

SWCNT: 10 mg L-1 

BPA and E2 

adsorption ranged 

from 7.3% to 95% 

depending upon the 

solution pH and the 

absence and presence 

of NOM and 

SWCNTs 

(Heo et al. 

2012)  
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MWCNTs Surface oxidized 

MWCNT 

containing 0.85, 

2.16 and 7.07% 

oxygen  

Atrazine [2-chloro-4-

ethylamino-6-

isopropylamino-s-

triazine] 

Adsorption 

kinetics, isotherm 

and 

thermodynamics  

Pseudo second order 

model; adsorption of 

atrazine MWCNTs-O 

(0.85%): 17.35, 

MWCNTs-O (2.16%): 

16.65 and MWCNTs-O 

(7.07%): 10.50 mg g-1 

Atrazine adsorption 

affinity decreased 

when the surface 

oxygen content 

increased 

(Chen et al., 

2009c) 

MWCNTs As prepared and 

oxidized  

Diuron (pesticide)  Adsorption 

studies  

Adsorption of diuron by 

As-prepared MWCNT: 

28.37, and oxidized 

MWCNT: 29.82 mg g-1 

Diuron adsorption 

was pH dependent 

and favorable under 

neutral and basic 

conditions  

(Deng et al., 

2012a) 
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SWCNTs 

and 

MWCNTs 

As received 

(presence of Cu2+)  

Tetracycline  Batch adsorption 

studies  

Freundlich coefficient 

for SWCNT: 1,150 and 

for MWCNT: 240 

mmol1−n Ln kg−1 

Tetracycline 

adsorption on 

MWCNTs (larger 

mesoporous 

interstices) was 

higher than SWCNT 

by the presence of 

Cu2+ 

(Ji et al., 

2010a) 

MWCNTs Coated with 

magnetic Fe3O4 

followed by amino 

functionalization 

Tetrabromobisphenol 

A 

Batch adsorption 

studies 

As high as 33.7 mg g-1 The composite also 

adsorbed Pb(II) (75 

mg g-1) 

(Ji et al., 

2012) 
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MWCNTs Carboxyl 

functionalization 

Mixture of four linear 

alkylbenzene 

sulfonates compounds 

Batch adsorption 

studies 

Up to 168 mg g-1 Hydrophobic 

interaction and 

hydrogen bond 

formation enabled 

the adsorption 

(Guan et al., 

2017) 

 663 
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5.2. Heavy metals, metalloids and radionuclides 664 

The affinity of CNTs towards heavy metals and metalloids was improved by oxidative 665 

modification (Cho et al., 2010; Yu et al., 2011), incorporation of magnetic iron oxides (Chen 666 

et al., 2009a; Addo Ntim and Mitra, 2011; Gupta et al., 2011a; Daneshvar Tarigh and 667 

Shemirani, 2013), coating with non-magnetic metal oxides (Zhao et al., 2010), thiol 668 

derivatization (Bandaru et al., 2013), and sulfur functionalization (Gupta et al., 2014). Among 669 

the synthetic iron oxides, a mixture of goethite (Į-FeO(OH)), hematite (Į-Fe2O3), maghemite 670 

(Ȗ-Fe2O3), and magnetite (Fe3O4) was capable of removing trace quantities of heavy metal from 671 

water (Addo Ntim and Mitra, 2011). The mechanism of heavy metal adsorption by CNT-based 672 

materials is dependent on the employed modification/functionalization treatments (Gupta et 673 

al., 2016; Ihsanullah et al., 2016). Generally, metal oxide-CNT composites adsorb heavy metals 674 

and metalloids through a synergistic effect of chemisorption and physisorption (Addo Ntim 675 

and Mitra, 2011). The adsorption affinity also highly depend on the ionic radius, hydration 676 

energy, and hydrolysis potential of the specific contaminant element (Hu et al., 2011b). For 677 

example, under similar experimental conditions, Pb(II) removal by iron oxide-coated 678 

MWCNTs was greater than Cu(II) (Hu et al., 2011b). The presence of organic co-contaminants 679 

also affected the adsorption of heavy metals by CNTs. For example, Cd(II) removal by 680 

oxidized MWCNTs was enhanced by the coexistence of 1-naphthol, but the removal of 1-681 

naphthol was independent of the coexistence of Cd(II) in the same system (Yang et al., 2012a). 682 

This result was mainly due to the difference in the adsorption mechanisms of the two 683 

contaminants on functionalized MWCNTs. While high pH conditions may favor inner-sphere 684 

complexation during metal adsorption, low pH may favor outer-sphere complexation and/or 685 

ion exchange (Yang et al., 2012a). The adsorption of organic contaminants such as 1-naphthol 686 

can take place through ʌ–ʌ bond formation between MWCNT structure and the contaminant’s 687 

aromatic rings (Yang et al., 2012a). 688 
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Similar to the mechanisms of heavy metal/metalloid removal, CNT-based materials were 689 

also reported to efficiently remediate various radionuclides. However, such studies are still 690 

rarely reported in the literature. Table 2 lists the studies in which CNTs were used for heavy 691 

metal, metalloid, and radionuclide removal following various modifications/functionalizations. 692 

Despite the significant potential of using these modified/functionalized materials, no consensus 693 

has been reached with regard to the obtained results. For example, for the same heavy metal 694 

cation, different authors reported different removal capacities by employing specific 695 

modification processes. This indicates that extensive research is required and large-scale 696 

experiments should be conducted to confirm the results. 697 

  698 
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Table 2 699 

Removal of heavy metals and radionuclides by CNTs with or without surface modification. 700 

CNT type Modification Target 

contaminant 

Test method Removal capacity Remarks Reference 

MWCNTs Coated with iron 

oxide (Fe-MWCNT) 

Trace level 

arsenic from 

drinking water  

Kinetics and 

adsorption 

isotherm  

As (III) and As (V) 

adsorption capacities 

of Fe-MWCNT were 

1723 and 189 µg g-1, 

respectively 

Negatively charged As 

species may adsorb onto 

positively charged modified 

MWCNT sites 

(Addo Ntim 

and Mitra, 

2012) 

SWCNTs Thiol-derivatized 

SWCNT (SWCNT-

SH) synthesized with 

HNO3 

Mercury, Hg (II) Adsorption 

and 

desorption 

studies  

Maximum Hg (II) 

adsorption with 

SWCNT-SH: 131 mg 

g-1
 

Strong chemisorption 

between Hg (II) and thiol 

groups on derivatized 

SWCNT surfaces  

(Bandaru et 

al., 2013) 
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MWCNTs Iron oxide magnetic 

composite  

Nickel [Ni(II)] 

and strontium 

[Sr(II)] 

Batch 

adsorption 

studies  

Ni(II) adsorption: 

~80% (pH 8) and 

Sr(II) adsorption: 

~95% (pH 10.4) 

Ni(II) and Sr (II) on MECNT-

iron oxide magnetic is highly 

dependent on pH. Ni(II) 

adsorption increased from 

10% (pH 3.5) to 80% (pH 8.0) 

(Chen et al., 

2009a) 

MWCNTs Oxidation using 

chemical vapor 

deposition  

Sr(II) and 

europium [Eu 

(III)] 

Adsorption 

experiment  

Sr(II) adsorption: 

~36% and Eu(III) 

adsorption: ~96% 

Increasing pH enhanced Sr(II) 

and Eu(III) adsorption, while  

increasing ionic strength 

decreased adsorption  

(Chen et al., 

2008) 

MWCNTs Diglycolamide 

functionalized 

MWCNT (DGA-

MWCNTs) 

Uranium from 

aqueous solution  

Adsorption 

studies  

Maximum Uranium 

adsorption by DGA-

MWCNTs: 133.74 mg 

g-1 

Adsorption is favored at 

higher adsorbent 

concentration and higher 

temperature  

(Deb et al., 

2012) 
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MWCNTs Oxidized with HNO3 Cesium [Cs(I)] 

from aqueous 

solution  

Batch method About 13 mg g-1 Low ionic strength, high pH 

and low  initial Cs(I) 

concentration favored 

adsorption 

(Yavari et 

al., 2011) 

MWCNTs Alumina coated CNT 

(Al 2O3-MWCNT) 

Lead ions from 

aqueous solution  

Adsorption 

experiment  

Al 2O3-MWCNT 

increased lead 

absorption from 20% 

to 99% compared to 

MWCNTs 

Lead adsorption increased 

when pH increased from 3 to 

7 

(Gupta et 

al., 2011b) 

MWCNTs Sulfur functionalized 

MWCNT with CS2 

Mercury [Hg(II)] 

from aqueous 

solution 

Batch method Maximum Hg(II) 

adsorption capacity by 

S-MWCNT: 151.5 mg 

g-1 

The material also effectively 

adsorbed Hg(0) vapor from 

CFL bulbs. 

(Gupta et 

al., 2014) 
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MWCNTs Magnetic nano-iron 

oxide coated 

MWCNT  

Chromium 

[Cr(III)] from 

aqueous solution 

Batch and 

fixed bed 

reactor 

>90% Cr(III) removed 

from a 20 mg L-1 

solution with 50 mg 

adsorbent at pH 6 

In fixed bed mode, Cr(III) 

removal capacity increased 

with decreasing flow rate; the 

composite material performed 

better than activated carbon 

(Gupta et 

al., 2011a) 

MWCNTs Magnetic iron oxide 

coated MWCNT  

Lead [Pb(II)] and 

copper [Cu(II)] 

from wastewater 

Batch method Adsorption capacity 

of Pb(II): 10 – 31 mg 

g-1; and Cu(II): 3 – 9 

mg g-1 

Adsorption of metals 

depended on the ionic radius, 

hydration energies and 

hydrolysis of their hydroxides 

(Hu et al., 

2011b) 

MWCNTs Titanium dioxide 

(TiO2) incorporated 

MWCNT 

Lead [Pb(II)] 

from aqueous 

solution 

Batch method As high as 137 mg g-1 Very fast and spontaneous 

adsorption 

(Zhao et al., 

2010) 
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MWCNTs O2-plasma-oxidized 

MWCNT 

Lead [Pb(II)] 

from aqueous 

solution 

Batch method 54 mg g-1 Adsorption capacity was 

comparable to that of 

activated carbon 

(Yu et al., 

2011) 

MWCNTs Silver nanoparticles 

deposited MWCNT 

Copper [Cu(II)] 

and cadmium 

[Cd(II)] from 

aqueous solution 

Batch method Cu(II): 58 mg g−1 

Cd(II): 55 mg g−1 

Optimum adsorption of Cu(II) 

and Cd(II) was observed at pH 

6 and 7, respectively 

(Venkata 

Ramana et 

al., 2013) 

MWCNTs As received Chromium 

[Cr(III)] 

Batch method 2.07 mmol g-1 Cr(III) is bound by surface 

carboxyl groups 

(Manilo et 

al., 2017) 

701 
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5.3. Organic dyes 702 

Organic dye compounds are discharged into the environment from many industries (e.g., 703 

textile, cosmetics, and paper manufacturing processes). The wide occurrence of dyes in bodies 704 

of water raises concerns over their adverse effects on the ecosystem and human health. 705 

Compared with traditional adsorptive materials, CNTs exhibit remarkable affinity for organic 706 

dyes. Various CNT-based materials may be adopted for dye removal without further treatment 707 

(Table 3). 708 

 709 
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Table 3 710 

Treatment performance for the removal of selected dyes using different CNTs. 711 

Dye contaminants Adsorbent Modification method  Surface area 

(m2 g-1) 

Capacity 

(qm
a)/removal 

efficiency 

References 

Reactive blue 4; Acid red 

183 

MWCNTs Untreated 217 69; 45 (Wang et al., 2012) 

Acid blue 161 MWCNTs Untreated 233 91.68% (Geyikçi, 2013) 

Acid red 18 MWCNTs Untreated 270 166.67 (Shirmardi et al., 

2012) 

Alizarin red S; morin MWCNTs Untreated NA b 161.29; 26.247 (Ghaedi et al., 

2011) 
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Reactive blue 29 SWCNTs Untreated 700 496  (Jahangiri-Rad et 

al., 2013) 

Methyl orange MWCNTs  Oxidized and microwave method NA 306  (Mahmoodian et 

al., 2015) 

Congo red  MWCNTs Untreated 40 352.11  (Zare et al., 2015b) 

Amido black 10B MWCNTs Functionalized by cysteamine 

composite (MWCNT-COOH-

Cysteamine) 

NA 131 (Sadegh et al., 

2016) 

Maxilon blue  MWCNTs Untreated NA 260.7  (Alkaim et al., 

2015) 

Methylene blue and neutral 

red  

MWCNTs Fe2O3 nanoparticles  114 MB: 42.3 and NR: 

77.5  

(Qu et al., 2008) 
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Congo red  MWCNTs Impregnation with chitosan hydrogel 

beads  

237.76 450.4 (Ruiz-Hitzky et al., 

2011) 

Direct red 23 (DR 23) MWCNTs Magnetic MWCNT Fe3-C 

nanocomposites  

38.7 85.5 (Yang et al., 2016) 

Methylene blue  and neutral 

red  

MWCNTs Grafted with guar gum (GG) and iron 

oxide nanoparticles  

NA MB: 61.92 

NR: 89.85 

(Yan et al., 2012b) 

Reactive Red M-2BE MWCNTs Untreated  180.9 335.7 (Machado et al., 

2011) 

Acid blue 161 (AB 161) MWCNTs Untreated   233 458.33 (Ruiz-Garcia et al., 

2013) 

Reactive blue 4 (RB4) and 

acid red 183 (AR183) 

MWCNTs Untreated  217 RB4: 58.8 

AR183: 45.3 

(Wang et al., 2012) 
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Basic Red 46 (BR 46) SWCNTs Pristine and oxidized  ~400 SWCNTs: 38.35  

Oxidized: 49.45 

(Moradi, 2013) 

Reactive Red 120 (RR 120) SWCNTs Untreated  426.49 700ޓ (Walker et al., 

2004) 

Reactive blue 29 (RB 29) SWCNTs  Untreated  700 496 (Dawson et al., 

1998) 

Malachite green  MWCNTs  Untreated  270 142.85 (Shirmardi et al., 

2013) 

Methylene blue, neutral red 

and brilliant cresyl blue 

MWCNTs Magnetic CNT-iron oxide composite 61.7 MB: 11.86 

NR: 9.77 

BCB: 6.28 

(Gong et al., 2009) 
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Methyl orange and 

methylene blue 

MWCNTs Soluble starch coated magnetic iron 

oxide nanocomposite 

132.6 MO: 135.6 

MB: 93.7 

(Chang et al., 

2011) 

Methylene blue MWCNTs Graphene-coated CNT hybrid using 

graphene oxide   

78.9 87.97 (Ai and Jiang, 

2012) 

 712 

a qm = maximum adsorption capacity (mg g-1). 713 

b NA = not available 714 

 715 
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Functionalization of CNTs can enhance adsorption ability of organic dyes (Zare et al., 716 

2015a). Among the various modification methods, oxidized MWCNTs are the most effective 717 

in removing methylene orange and methylene blue from water matrixes (Ghaedi et al., 2012; 718 

Mahmoodian et al., 2015). A new magnetic MWCNT-ț-carrageenan-Fe3O4 nanocomposite 719 

was successfully prepared to effectively remove crystal violet (Duman et al., 2016). The new 720 

nanocomposite can also be used in CNT modification to increase the adsorption capacity of 721 

cationic dyes. Sadegh et al. (2016) showed that an adsorbent synthesized by CNT modification, 722 

namely, MWCNT-COOH-cysteamine, could significantly enhance the removal of Amido 723 

black 10B (AB 10B). The adsorption capacity of AB 10B using MWCNT-COOH and 724 

MWCNT-COOH-cysteamine improved from 50.1 mg g-1 to 90 mg g-1 (80% increase) and 131 725 

mg g-1 (162% increase), respectively. In addition, having large surface area, SWCNTs 726 

demonstrated good adsorption properties. An excellent adsorption capacity of 496 mg g-1 was 727 

obtained for the removal of Blue 29 (RB 29) (Jahangiri-Rad et al., 2013).  728 

 729 

5.4. Pesticides 730 

The widespread application of pesticides in agriculture has alarmingly contaminated our soil 731 

and water resources. CNTs showed potential for effective removal of several types of pesticides 732 

(Table 4). Deng et al. (2012a) reported that the adsorptive removal of diuron by as-prepared 733 

and oxidized MWCNTs was most favored at pH ≥ 7.0. An oxidative modification of CNTs 734 

increased the product’s surface area and pore volume, which resulted in higher diuron removal 735 

performance. The uptake of pesticides (chlordane and p,pƍ- dichlorodiphenyldichloroethylene) 736 

in roots and shoots of lettuce crop was reduced by 88% and 78%, respectively, with the use of 737 

non-functionalized CNTs, while the same were reduced by 57% and 23%, respectively, with 738 

the use of amino-functionalized CNTs (Hamdi et al., 2015). Therefore, CNTs and their types 739 

may significantly influence pesticide availability to plants. Investigations into electronically 740 
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sorted (i.e., semiconducting or metallic types) SWCNTs for the removal of 1-pyrenebutyric 741 

acid, diquat dibromide and 2,4-dichlorophenoxyacetic acid from aqueous media revealed that 742 

the semiconducting SWCNTs were capable of adsorbing up to 70.6% greater pesticides than 743 

the metallic SWCNTs (Rocha et al., 2017). The lack of electron density around the 744 

semiconducting SWCNTs would have favored high pesticide adsorption (Rocha et al., 2017). 745 

By contrast, the adsorption of pesticides by CNTs is mostly restricted in batch systems, and 746 

only a few studies have tested these materials in continuous flow experiments (Dichiara et al., 747 

2015a). The uptake of diquat dibromide in a fixed bed system by SWCNTs and MWCNTs was 748 

not as high as in a batch system, but the former allowed the complete removal of the 749 

contaminant over time (Dichiara et al., 2015a). Multiple mechanisms (i.e., hydrophobic 750 

interaction, ʌ–ʌ binding, and micropore filling) were identified for the adsorption of diquat 751 

dibromide by CNTs (Dichiara et al., 2015a). Thus far, information on pesticide removal with 752 

the application of CNTs is not as extensive as the data on other organic contaminants. 753 

 754 

6. CNT-based water treatment technologies 755 

6.1. Drinking water purification 756 

Compared with many conventional adsorbents commonly used in advanced water treatment 757 

processes, CNTs have larger specific surface area. Generally SWCNTs hold a larger surface 758 

area than MWCNTs. Surface oxygen content, which is another parameter that influences the 759 

contaminant removal performance of CNTs, may be increased through oxidation process. The 760 

adsorption capacity can also be increased up to 70% at an appropriate pH value. Enhanced 761 

performance is also achieved with neutral PPCP molecules (e.g., triclosan and ibuprofen) than 762 

their ionized forms (Wang et al., 2015). The presence of NOM and inorganic salts in the 763 

influent may affect the adsorption process (Upadhyayula et al., 2009; Jung et al., 2015). In-764 

depth studies about detailed adsorption mechanisms of multi-pollutants, pilot or full-scale 765 
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operation of CNT processes, and commercial application of CNTs for drinking water 766 

purification processes are still rare. Information on endocrine-disrupting compounds (EDCs) 767 

and PPCPs adsorption using CNTs are inadequate as well (Ren et al., 2011). Table 4 768 

summarizes the treatment performance of selected EDCs and PPCPs in either synthetic water 769 

or water treatment plant effluent using different types of CNTs from recent studies. CNT 770 

properties (e.g., surface area, charge, and functional groups) and operating parameters (e.g., 771 

pH, contact time, initial concentration, and temperature) play a vital role in determining the 772 

treatment capacity of EDCs and PPCPs in CNT-based adsorption systems (Agnihotri et al., 773 

2006; Shi et al., 2010; Ahmed et al., 2012; Wang et al., 2015). Adsorption rate and capacity 774 

were related to the physicochemical properties of organic pollutants (e.g., molecular size, 775 

shape, hydrophobicity, and charge properties) (Cho et al., 2011; Joseph et al., 2011a; Ncibi and 776 

Sillanpää, 2015). Wang et al. (2015) reported that SWCNTs and MWCNTs can effectively 777 

remove triclosan, acetaminophen, and ibuprofen. However, in their study, the performance 778 

ranged from approximately 10% to 95% owing to various factors. The removal efficiency 779 

increased with increasing aromatic ring numbers in the compounds (e.g., ibuprofen < triclosan). 780 
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Table 4 781 

Treatment performance for the removal of selected EDCs and PPCPs using different CNTs. 782 

EDC and PPCP contaminants Adsorbent Surface 

area (m2 g-

1) 

Source 

water 

Capacity/removal efficiency/comment References 

Wide-spectrum antibiotics 

Ciprofloxacin SWCNTs 576.7 Synthetic 

water  

724 a (Ncibi and 

Sillanpää, 

2015) 

Oxytetracycline SWCNTs 576.7 Synthetic 

water  

554 a  (Ncibi and 

Sillanpää, 

2015) 
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Sulfadimethoxine MWCNTs 174 Synthetic 

water  

1300-1500 b (Xia et al., 

2013) 

Sulfamethoxazole MWCNTs 300 Synthetic 

water  

102-103 b (Ji et al., 

2009) 

Tylosin MWCNTs 157-422 Synthetic 

water  

11,300-33,900 b (Ji et al., 

2010b) 

Ofloxacin MWCNTs 117-228 Synthetic 

solution  

80% adsorption  (Peng et al., 

2012) 

Norfloxacin MWCNTs 160 Aqueous 

solution  

84.7 c (Yang et al., 

2012b) 

Sulfadimethoxine (SDM), 

sulfamethizole (SMZ), 

MWCNTs 179 Aqueous 

solution 

SDM: 9.68 d 

SMZ: 6.98 d 

(Wei et al., 

2017) 
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sulfamethazine (SMT) and 

sulfamethoxazole (SMX) 

SMT: 1.25 d 

SMX: 1.53 d 

Hormones 

17-ȕ-estradiol (E2) SWCNTs NA e Synthetic 

water  

115 c (Zaib et al., 

2012) 

17Į-ethinyl estradiol SWCNTs 407 Synthetic 

water  

35.6-35.7 c (Joseph et al., 

2011b) 

Bisphenol A (BPA) and 17ȕ-

estradiol (E2) 

SWCNTs NA Synthetic 

water  

BPA: 122 c; E2: 162 c (Heo et al., 

2012) 

Bisphenol A (BPA) SWCNTs and 

MWCNTs 

338-467 Synthetic 

wastewater  

SWCNT: 55.5 c 

MWCNT: 19.4 c 

(Renshaw et 

al., 2011) 

NSAIDs f 
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Diclofenac MWCNTs 162 WTP 

effluent 

22.3 c (Sotelo et al., 

2012) 

Ibuprofen SWCNTs and 

MWCNTs 

1020,283 WTP 

effluent 

10-95% removal (Wang et al., 

2015) 

Bactericide/disinfectant 

Triclosan (TCS)  SWCNTs and 

MWCNTs 

1020,283 WTP 

effluent 

10-95% removal (Wang et al., 

2015) 

Triclosan  MWCNTs 281 NA 157.7 c (Navarro et 

al., 2008) 

Triclosan 

 

SWCNT NA NA Triclosan interacts via chemical process 

with semiconductor (8,0) SWCNT, and 

via physical process with both 

(Castro et al., 

2017) 
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semiconductor (8,0) and metallic (5,5) 

SWCNTs 

Pesticides/herbicides 

Isoproturon MWCNTs 162 WTP 

effluent 

8.1 c (Sotelo et al., 

2012) 

Atrazine SWCNTs 407 Synthetic 

water  

4.97 c (Jung et al., 

2015) 

Diuron  MWCNTs 258.6 to 

427.5 

Aqueous 

solution  

As prepared: 42.6 c 

Oxidized: 49.2 c 

(Deng et al., 

2012a) 

Dicholbenil  MWCNTs 83-558 Synthetic 

solution  

17.5 c (Chen et al., 

2011a) 
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Phenoxy acid herbicide (4-chloro-

2-methylphenoxyacetic acid) 

SWCNTs  94-541 Synthetic 

solution  

25.7 c (Boularbah et 

al., 2006) 

2,4-D Regenerated 

SWCNT-

graphene 

composite 

NA Aqueous 

solution 

124 c (Dichiara et 

al., 2014a) 

Diquat dibromide MWCNTs 

SWCNTs 

SWCNT-OH 

233 

407 

407 

Aqueous 

solution 

83-87% g 

85-87% g 

57-61% g 

(Dichiara et 

al., 2015a) 

 
783 

a Adsorption capacity from Brouers–Sotolongo model 784 

b Distribution coefficient (L kg-1) calculated from Freundlich model 785 

c qm = maximum adsorption capacity calculated from Langmuir model (mg g-1) 786 

d KF = Capacity factor (mg g-1)/(m3 mg-1) for Freundlich model 787 

javascript:popupOBO('CHEBI:24527','C2RA00038E','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=24527')
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e NA = not available 788 

f NSAIDs = Nonsteroidal anti-inflammatory drugs 789 

g Utilization efficiency of the adsorbent in a fixed bed process790 
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Biological contaminants are one of the major contaminants present in surface water and in 791 

water treatment plants (Upadhyayula et al., 2009; Smith and Rodrigues, 2015). The structural 792 

and functional properties of CNTs impart their highly affinitive interactions with biological 793 

contaminants. Compared with conventional adsorbents, CNTs possess superior bacterial 794 

inactivation efficiency and viral/bacterial spore adsorption capacity due to their larger surface 795 

areas (Lu and Su, 2007; Brady-Estévez et al., 2008). CNTs demonstrate immense potential in 796 

antimicrobial applications, particularly in drinking water purification (Table 5).  797 

  798 
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Table 5 799 

Treatment performance for the removal of biological contaminants using different CNTs. 800 

Biological contaminants  Adsorbent Surface area (m2 g-1) Capacity/removal 

efficiency/comment 

References 

NOM 

DOC and AOC SWCNTs 507 22–26 a (Lu and Su, 2007) 

Humic acid CNTs NA b 81-96 a (Skandari et al., 2016) 

Colloidal NOM and humic substances SWCNTs 407 80-100% (Ajmani et al., 2014) 

Humic acid, Nordic lake fulvic acid, 

Waskish peat fulvic acid 

MWCNTs NA 10-40% (Neiva et al., 2014) 

Standard Suwannee River NOM (SR-

NOM) 

MWCNTs NA NOM  adsorbed 0.033-0.104 

mg C mg-1 

(Hyung et al., 2007) 
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Tannic acid (TA) SWNCTs and 

MWCNTs 

58-541 Adsorption of TA increased 

with decreasing CNT diameter  

(Lin and Xing, 2008) 

Trihalomethane (THM), 

dihaloacetonitrile (DHAN) and total N-

nitrosamine (TONO) precursor 

SWCNTs and 

MWCNTs 

92-837 Adsorption varied with CNT 

type and dose, with TONO 

precursors having the highest 

percent removals (up to 97%) 

(Needham et al., 2016) 

Bacteria 

E. coli  SWCNTs 407 3.18 x 1012 CFU mL-1 (Brady-Estévez et al., 

2008) 

E. coli and B. subtilis  PVK- SWCNTs NA >90% inactivation (Ahmed et al., 2012) 

E. coli DH5Į MWCNTs-Ag NA 96% inactivation (Su et al., 2013) 

E. coli K12 SWCNTs 407 (79±9)% inactivation  (Brady-Estévez et al., 

2008) 
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Streptococcus mutants MWCNTs 

(surface 

modified) 

250 Viable cells reduced by 7.5 log (Bai et al., 2011) 

Agrobacterium  MECNTs 88 Biodegradation efficiencies is 

54.2%  

(Xia et al., 2010) 

Escherichia coli (E.coli) K12 

and Staphylococcus aureus (S.aureus) 

SH 1000 

SWCNTs NA CNT aggregation: 6.54×10-9 

and 8.98×10-9 (E. Coli); 

1.00×10-7 and 1.66×10-7 cm2 s-1 

(Upadhyayula et al., 

2008) 

Viruses 

MS2 bacteriophage SWCNTs 407 107-108 PFU mL-1 (Brady-Estévez et al., 

2008) 

Influenza virus (H3N2) CNTs NA detective limitation> 3.4 PFU 

mL-1 

(Ahmed et al., 2016) 
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MS2 bacteriophage SWNCTs 407 106-107 PFU mL-1 (Brady-Estévez et al., 

2010) 

MS2 bacteriophage (ATCC 15597-B1) 

along with host E. Coli 

MWCNTs NA 5.8 to 7.4 log inactivation  (Rahaman et al., 2012) 

MS2 bacteriophage  SWCNTs NA 9.3 and 9.8 PFU mL-1 limit 

detection  

(Prieto-Simón et al., 

2015) 

Swine influenza virus (SIV) H1N1 SWCNTs NA Virus detection limit: 180 

TCID50 mL-1  

(Lottermoser, 2015) 

Biological toxins 

Microcystin-LR MWCNTs NA detective limitation 0.05-β0 ȝg 

L-1 

(Han et al., 2013) 

 801 

a qm = Maximum adsorption capacity (mg g-1) 802 

b NA = Not available  803 
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6.2. Water desalination 804 

As a result of urban climate warming, the salinity levels of both land and sea water are 805 

constantly increasing. Therefore, appropriate water desalination technologies should be 806 

developed. CNTs, which feature low energy consumption and antimicrobial functions, have 807 

been introduced for this application. In addition, CNTs can attract polar water molecules and 808 

reject salts and pollutants (Goh et al., 2013). Table 6 summarizes some successful cases of 809 

membrane desalination processes employing CNTs.   810 
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Table 6 811 

Desalination performance of different CNT membrane types (modified from Daer et al. (2015)). 812 

CNT membrane type Feed water Operation conditions Removal capacity References 

CNTs (forward osmosis) 0.58 M aqueous NaCl 

solution (feed), 1.74 M 

aqueous NaCl solution 

300 K and 1 atm 100% salt rejection (Jia et al., 

2010) 

MWCNT-COOH/ polyvinylidene 

fluoride 

3.4% aqueous NaCl 

solution 

 

24 mL min-1 feed flow, 1 

L min-1 dry air in SGMD 

arrangement, 60–90 °C 

99% salt rejection (Bhadra et al., 

2013) 

Polyaniline polymer/SWCNT for 

capacitive deionization electrodes 

100 ȝS cm-1 aqueous 

NaCl solution 

20 mL min-1 feed flow 

rate, 1.2 V voltage 

78.4% salt removal 

efficiency, 100% 

regeneration 

rate 

(Yan et al., 

2012a) 
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0.1% MWCNT/polyamide polymer Aqueous NaCl solution 2000 mg L-1, pH 7, 25 

°C, transmembrane 

pressure 16 bar 

28.05 L m2 h water flux and 

N 90% salt rejection 

(Zhao et al., 

2014) 

Polyethersulfone/0.045% MWCNT 200 mg L-1 each of 

Na2SO4, MgSO4, and 

NaCl 

4 bar, pH (7.0 ± 0.1), 25 

± 1 °C 

Rejection of Na2SO4  

(65%), MgSO4 (45%), and 

NaCl (20%) 

(Vatanpour et 

al., 2014) 

MWCNT/polyethyleneimine-poly 

(amide–imide) hollow fiber forward 

osmosis 

Deionized water (feed 

water) 

0.5 M MgCl2 solution 

(draw solution), 1 bar 

87.8% MgCl2 rejection (Goh et al., 

2013) 

MWCNT/aromatic polyamide 

(PA) (15 mg MW-CNT/g PA) 

Aqueous NaCl solution (4000 ppm and 20 °C) 

3.9 MPa 

76% salt rejection (Shawky et al., 

2011) 
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MWCNT/carbonized nanofibrous 

membranes  

Monochloroacetic acid 

(feed volume: 15 mL of 

80 mg L-1) 

Voltage: 14 to 18 kV and 

solution flow rate: 0.6 

and 1.2 mL h-1 

Removal efficiency: 85%, 

rejection coefficient: 9% 

(Asensio et al., 

2013b) 

Zwitterion functionalized 

CNT/polyamide nanocomposite 

membrane  

1000 mg L-1 of Na+ (or 

~2500 mg L-1 NaCl or 

43.5 mM) 

Water and ion flux 

pressure drop: 3.65 MPa 

(530 psi) 

The rejection ratio is 20% for 

CNTs having five carboxylic 

acid groups 

(Asensio et al., 

2013a) 

CNT-Bucky-papers/vacuum filtration in 

99.8% pure propane-2-ol 

Synthetic seawater (35 

g L-1 NaCl solutions) 

Hydrophobic membrane 

(contact angle 11γ˚), 

highly porous (90%), 

thermal conductivity of 

2.7 kW m-2 h 

99% salt rejection and a flux 

rate of 12׽ kg m-2 h 

(Aciego Pietri 

and Brookes, 

2009) 

Polyvinyl chloride/MWCNT-co-copper 

nanolayer composite nanoparticles  

0.5M NaCl solution  Flux: 6.10 (mol m-2 S) 

105 and electrical 

resistance: 19 ȍ cm2 

Ionic permeability and flux 

increased from 0.5 to 8 wt% 

in prepared membrane  

(Sanderson et 

al., 2015) 
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Vertically aligned-CNT (VA-CNT) Colloidal silica, 

dextran, NaCl and 

Na2SO4 

Pure water permeability 

for the VA-CNT 400 L 

m-2 h bar 

The ratios of irreversible 

fouling to total resistance for 

VA-CNT: 68.8% 

(Naidu, 2013) 

CNT-film synthesized on macroporous 

surface of Į-alumina support by chemical 

vapor deposition (CVD) of cyclohexanol 

and ferrocene 

10,000, 20,000 and 

30,000 mg L-1 of NaCl 

Oxidized CNT 

membrane by HNO3 and 

H2SO4 was very 

effective for salty water 

desalination 

Maximum separation% was 

obtained at the highest feed 

concentration, temperature 

and flow rate (30,000 mg L-

1, 45 °C, and 500 L h-1, 

respectively) 

(Zanuzzi et al., 

2009) 

Honeycomb-CNT membrane (HC-CNT) 500 mM NaCl CNT diameter had a 

marginal effect on the 

desalination of this new 

technology. 

Increased salt rejection 

(95%) by applying an 

electric field of 0.8 V nm− 1. 

(Castillejo and 

Castelló, 

2010) 
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Carbon nanotube immobilized membrane 

(CNIM) 

3.4 wt% NaCl solutions Permeate flux reached up 

to 19.2 kg m-2 h for 3.4% 

NaCl concentration 

More than 99% of the salt 

reduction was achieved, and 

the conductivity of the 

produced fresh water in the 

range of 1–2.5 ȝs cm-1 

(Abdelhafez et 

al., 2014) 

813 
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Corry (2008) reported the size difference effect of CNT-based membranes on the 814 

performance of water desalination and developed models of the transport behavior of water 815 

molecules. The results showed that membranes comprising sub-nanometer diameter CNTs 816 

achieved a higher performance of water desalination when CNTs were used in reverse osmosis 817 

(RO). The use of hollow CNTs in membrane desalination with high removal performance was 818 

also reported (Goh et al., 2013). Water molecules can travel through CNT-based membranes 819 

without much impedance, which makes the membranes applicable under high flux conditions. 820 

The increased hydrophobicity of MWCNTs (e.g., functionalized polyamide polymer) can 821 

enable frictionless water migration across the membranes made of the nanotubes (Shawky et 822 

al., 2011; Zhao et al., 2014). 823 

Modification of the CNT pores to selectively sense and reject contaminants can be achieved 824 

without even causing a significant damage to the inner surface characteristics of the nanotubes 825 

(Cohen-Tanugi and Grossman, 2012). A membrane developed by supporting oxidized CNTs 826 

on macroporous Į-alumina was able to retain salinity-causing ions even at high temperatures 827 

(Tofighy et al., 2011). This could be achieved through the combined effects of ion retention 828 

and unimpeded water permeation across the CNT-membrane. The concentration of ions in the 829 

feed water may significantly influence the desalination efficiency of the membrane (Corry, 830 

2011; Bhadra et al., 2013). However, owing to the easy water permeation property of the CNT-831 

membrane, the effect of ion concentration may be largely overcome (Daer et al., 2015). In 832 

addition, specially-aligned CNTs may generate desirable channels in the membrane enabling a 833 

highly efficient desalination performance, and can act as “gatekeepers” for a size controlled 834 

separation process (Das et al., 2014). In terms of energy consumption, CNT membranes are a 835 

more cost-effective desalination technology than RO and forward osmosis (FO) (Fritzmann et 836 

al., 2007; Jia et al., 2010; Elimelech and Phillip, 2011; Goh et al., 2013). Despite its relatively 837 
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short research history, CNT-based desalination technologies are developing at a fast pace, and 838 

have seen many pilot to full-scale deployments in water treatment plants worldwide. 839 

 840 

7. Interaction of CNTs with environmental colloids 841 

Numerous environmental remediation technologies frequently require the remediation 842 

materials to be directly introduced into the contaminated soil, air, or water. At the same time, 843 

the behaviors of nano-sized engineered remediation materials in the environment are not fully 844 

known, and these materials can be harmful to the native ecology of the application site. This 845 

has sparked a debate as to whether CNTs are risk-free for remediation purposes. One can 846 

logically assume that CNT mobility through porous media (e.g., soil) may be restricted if they 847 

are grafted on large micro-particles (e.g., clay minerals). The clay minerals themselves are inert 848 

and naturally abundant in the environment. 849 

Only a limited number of studies have investigated the role of environmental micro- 850 

nanoparticles such as clay minerals on the fate and availability of CNTs. The effect of clay 851 

minerals may largely depend on the type of surfactants used to obtain a stable suspension of 852 

CNTs. For example, MWCNT suspensions stabilized by cetyltrimethylammonium bromide 853 

were easily agglomerated by montmorillonite and kaolinite, whereas the same suspension 854 

stabilized by sodium dodecyl sulfate was unaffected by these clay minerals (Han et al., 2008). 855 

Two mechanisms were suggested to explain the effect of clay minerals on CNT agglomeration 856 

behaviors either when clay minerals removed the surfactants from the solution and the 857 

MWCNT surface or when surfactant molecules formed bridges between clay minerals and 858 

MWCNTs (Han et al., 2008). In a surfactant-free environment, the affinity of MWCNTs toward 859 

clay minerals followed the order of: smectite < kaolinite < shale under a given electrolyte 860 

concentration (Na+) (Zhang et al., 2012). As the negative surface charge of smectite was greater 861 

than that of kaolinite, the latter imparted a lower repulsive force to the negatively charged 862 
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MWCNTs and more efficiently agglomerated them as compared to kaolinite (Zhang et al., 863 

2012). By contrast, shale attracted CNTs through hydrophobic interactions due to the higher 864 

concentration of organic matter (Zhang et al., 2012). Environmental conditions (e.g., ionic 865 

strength) would significantly influence the above interactions. For example, a higher 866 

concentration of electrolytes or electrolytes with a higher valent cation would promote the rapid 867 

agglomeration of CNTs in the presence of any clay minerals (Saleh et al., 2008; Zhang et al., 868 

2012; Schwyzer et al., 2013). 869 

The interaction of CNTs with environmental macro or nanoparticles might also influence 870 

the former’s adsorption capacity towards contaminant species. For example, Chen et al. (2017) 871 

recently reported that SiO2 or Al2O3 nanoparticles inhibited the adsorption of sulfamethoxazole 872 

by MWCNTs. The increasing particle size of SiO2 nanoparticles significantly affected 873 

sulfamethoxazole adsorption capacity, whereas Al2O3 provided a reverse effect in terms of 874 

their particle sizes (Chen et al., 2017). These results were probably due to the variable hetero-875 

aggregation behavior of the nanoparticles with CNTs depending on their dissimilar surface 876 

change properties. Further research is needed to investigate the aggregation behavior of CNTs 877 

in the presence of different macro and nanoparticles in the environment so as to optimize their 878 

contaminant remediation ability.  879 

 880 

8.  Economic assessment 881 

Cost can be an important obstacle to the practical applications of CNT-based materials for 882 

environmental remediation. Hundreds of thousands of liters of wastewater are produced every 883 

year, and thousands of hectares of soils are contaminated in various countries. Remediating 884 

such a huge volume of contaminated water and soil requires a large amount of CNTs. Some 885 

industrial-scale productions of CNTs have recently started, but this technology remains 886 

inaccessible to many environmental cleanup companies. Generally, MWCNTs are cheaper than 887 
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SWCNTs (Apul and Karanfil, 2015; Jia and Wei, 2017). The price of commercial CNTs falls 888 

in the ranges of $0.6 to $25 per g of MWCNTs and $25 to $300 per g of SWCNTs depending 889 

on the purity level and tube diameter of the products, as well as on the type of functionalization 890 

undertaken in their preparation (www.cheaptubes.com; accessed on 07 May 2017). Thus, 891 

MWCNTs are more frequently used than SWCNTs in environmental applications. However, 892 

SWCNTs show better performance than MWCNTs in some environmental sensing 893 

applications. MWCNTs might offer additional indirect benefits because they are usually less 894 

toxic to non-target microorganisms in the environment than SWCNTs (Shrestha et al., 2013; 895 

2015). Nonetheless, the development of technologies for large-scale production of high quality 896 

CNTs (possibly from renewable carbon and catalyst precursors) (Gournis et al., 2002; 897 

Bakandritsos et al., 2005; Su, 2009) requires further research to make CNT-based 898 

environmental remediation technologies accessible. The cost of CNT-based water/wastewater 899 

treatment technologies also depends on (i) the cost/complexity of CNT functionalization, (ii) 900 

the type of water treatment (i.e., batch vs. continuous flow process), (iii) the need for 901 

solid/liquid separation (e.g., magnetic CNTs can be easily recovered), and (iv) the recycling 902 

cost and efficiency (i.e., CNTs typically exhibit higher regeneration capability). Contaminant 903 

concentration in effluents can be one of the most critical factors in determining whether to 904 

employ a batch or fixed bed treatment process to achieve an efficient and cost effective 905 

treatment (Dichiara et al., 2015c). Empirical models can be used to choose the most appropriate 906 

treatment process (either batch or fixed bed) that would minimize the adsorbent loading and 907 

ultimately achieve the targeted removal of contaminants (Dichiara et al., 2015c). Further 908 

research is needed to optimize the process parameters for cutting costs in CNT-based water 909 

treatment technologies. 910 

 911 

9. Conclusions and future research direction 912 

http://www.cheaptubes.com/
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CNTs exhibit excellent physicochemical, mechanical, thermal, and electrical properties that 913 

can be maximized for applications in environmental adsorbents, sensors, membranes, and 914 

catalysts. Designer CNTs, which are prepared through various functionalization or 915 

modification processes, demonstrate remarkable enhancement in contaminant removal 916 

efficiency and offer easy nanomaterial recovery and regeneration. CNTs can be 917 

functionalized/modified via oxidation, alkali activation, incorporation of magnetic properties, 918 

grafting of metal and metal oxide catalysts, hybridizing with other carbon nanomaterials, and 919 

derivatization with special chemical molecules. CNT-based materials can interact with diverse 920 

organic, inorganic, and biological contaminants, including heavy metals, radionuclides, 921 

pharmaceutical compounds, pesticides, dyes, hydrocarbons, and harmful microorganisms. The 922 

mechanism of contaminant removal through CNTs can be engineered in terms of their surface 923 

functionalization or modification type. In general, CNTs adsorb organic contaminants through 924 

hydrophobic interaction, ʌ–ʌ binding and micropore filling, and polar species through the 925 

formation of specific chemical bonds with the aid of surface functional groups and micropore 926 

filling. Some practical applications of CNTs in wastewater purification and desalination 927 

through membrane technology have been reported. However, the high cost of the materials, 928 

their complex interactions with environmental colloids and microorganisms, and the lack of 929 

pilot- and industrial-scale studies impede the widespread uptake of CNT-based water treatment 930 

technologies. The commercial acceptance of CNT in the environmental remediation industry 931 

might be improved by undertaking the following future research: 932 

 More pilot- and large-scale studies to test the remediation performance of various CNT-933 

based materials. 934 

 Optimization of various process parameters for the application of CNT materials under 935 

diverse environmental conditions. 936 

 Optimization of CNT modification and functionalization method. 937 
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 Development and testing of new CNT-based remediation technologies.  938 

 Cost-effective synthesis of CNTs from renewable resources. 939 
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