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Highlights 

Visual orienting to a novel stimulus is unaffected by amphetamine.  

Orienting to a repeated visual stimulus may decrease with amphetamine treatment. 

Air-righting and static righting are unaffected by amphetamine. 

Height-dependent modulation of air-righting is impaired by amphetamine.  

Collectively this suggests amphetamine suppresses collicular-dependent behaviours. 
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Abstract 

Distractibility can be defined as an attention deficit where orientation toward 

irrelevant targets cannot be inhibited. There is now mounting evidence that the 

superior colliculus is a key neural correlate of distractibility, with increased collicular-

activity resulting in heightened distractibility. Heightened distractibility is reduced by 

amphetamine, which acutely suppresses collicular responsiveness. However, when 

amphetamine is used to treat distractibility, it is given chronically, yet no data exist on 

whether chronic amphetamine treatment affects the colliculus. Here, the effect of 

chronic amphetamine treatment was assessed in healthy hooded lister rats on two 

collicular dependent behaviours following a twenty-eight day treatment period: i) 

orienting to visual stimuli, and ii) height-dependent modulation of air-righting. We 

found no significant impact of amphetamine treatment on visual orienting despite 

showing dose-dependent decreases in orienting to repeated stimuli. However, we did 

find that treatment with amphetamine significantly reduced the ability to modulate 

righting according to the height the animal is dropped from – a function known to be 

dependent on the colliculus. We suggest that the results are in line with previous 

research showing acute amphetamine suppresses collicular activity and we speculate 

that the psychostimulant may increase receptive field size, altering time-to-impact 

calculations carried out by the colliculus during air-righting. 
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1. Introduction 

Distractibility can be defined as an attention deficit where orientation toward 

irrelevant targets cannot be inhibited [1]. Heightened distractibility is associated with 

a variety of conditions, including Attention Deficit Hyperactivity Disorder (ADHD) 

[2, 3] and schizophrenia [4], as well as healthy ageing [1, 5]. The latter is thought to 

underpin a decline in various cognitive functions including speed of processing, 

selective attention, working memory, long term memory and problem solving, all of 

which can impact negatively on quality of life in healthy aging [6].  

 

Despite the prevalence of heightened distractibility, and its potential impact on quality 

of life, attempts to understand fully its neurobiological basis have been limited and 

focussed on the prefrontal cortex and associated cortical networks [7, 8]. However, 

converging evidence suggests that the superior colliculus (SC), which has intimate 

connections with the prefrontal cortex [1], is a key neural substrate for distractibility. 

The colliculus is responsible for orienting head and eye movements [9] and covert 

attention toward sensory stimuli [10]. It is highly conserved across species and work 

in a range of species shows that collicular lesions cause decreased distractibility [11-

13] while removal of prefrontal cortex inhibitory control of the colliculus, leading to 

heightened activity in the structure, results in increased distractibility in humans [1]. 

Additionally, there is evidence that the colliculus may play a role in ADHD, a core 

symptom of which is heightened distractibility [12, 14-21]. The ability of the 

colliculus to play a key role in distractibility arises because the SC is capable of 

specifying actions, which are thought to be processed by the brain in such a way that 

enhanced collicular activity puts in a stronger “bid” for behavioural selection into the 
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basal ganglia, the central device for action selection [22, 23]. In the case of the 

superficial layers of the SC, which process visual information, this can occur either 

via direct ascending projections to the thalamus and then forward to the neostriatum 

[24], or via a link in the deep layers of the SC [25], which also project to the thalamus 

[24]. A stronger bid for behavioural expression is more likely to win against 

competitors and therefore enhancing SC responses is likely to result in the probability 

of orienting eye and head movements (and covert attentional shifts) being increased, 

manifesting as ‘distraction’. Conversely, by depressing responses in the SC, the 

probability of orienting movements and attentional shifts would be reduced [26].  

 

Increased distractibility is not always treated, but amphetamine has been found to be 

effective in reducing distractibility in ADHD [27, 28] and in healthy subjects [29, 30]. 

Although the psychostimulant is efficacious, it is not clear how the relevant effect is 

achieved, but there is now mounting evidence that the colliculus could be a key site of 

action. For example, acute amphetamine has been shown to suppress activity in the 

visually responsive superficial layers of the SC in healthy animals [26, 31] and in 

rodent models of ADHD [32]. In addition, a role for dopaminergic projections in 

collicular visual orienting behaviour has been established [33], meaning that any drug 

altering dopamine transmission has the potential to impact on collicular dependent 

behaviours. However, pharmacotherapies for ADHD are administered chronically and 

despite evidence that acute amphetamine can influence the colliculus, to date no study 

has directly investigated the effects of chronic amphetamine on collicular-dependent 

behaviours. More specifically, no study to date has explored the possibility that 

chronic amphetamine administration may produce a lasting alteration in collicular 

function that could extend beyond the period of treatment, as has been shown for 
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other structures where changes have persisted weeks and months after amphetamine 

treatment [34-36]. Several behavioural tasks are known to be dependent on the SC 

and, therefore, provide a suitable assay for assessing the effects of amphetamine on 

this key structure. Firstly, orienting behaviour can be measured by examining initial 

responses and subsequent habituation of the response to a visual stimulus [20, 37, 38] 

within an arena. Secondly, the air-righting reflex, produced when falling supine in the 

air prior to landing is modulated depending on the height at which the rat falls from 

[39]. This modulation is dependent on visual input and, in particular, on the SC, with 

SC-lesioned rats being unable to modulate the height at which righting is initiated 

[40]. Rats with an intact SC will increase the latency of righting if dropped from a 

greater height, whilst those with a lesioned SC right immediately upon release, 

irrespective of height [39]. We hypothesized that chronic treatment with amphetamine 

would suppress collicular activity resulting in reduced orienting to visual stimuli and a 

reduced ability to modulate air-righting according the drop height.  
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2. Methods and Materials 

All experiments were approved by the Institutional Ethical Review Committee at the 

Open University, where work took place (The Animal Welfare and Ethics Board) in 

advance. Work was also conducted with the authority of the appropriate U.K. Home 

Office Licenses and adhered to guidelines set out in the Animals [Scientific 

Procedures] Act (1986), EU Directive 86/609/EEC, and the "Guide for the care and 

use of Laboratory Animals” (NIH publication, 8th ed, The National Academies Press, 

Washington, 2011).  

2.1 Subjects 

Male Hooded Lister rats, bred in-house as part of an on-going breeding colony, and 

aged six weeks at the start of experiments were used. In all cases, the individual rat 

was deemed the experimental unit. Female rats from within the colony are used for 

different research and, therefore, there was no animal wastage. Animals were housed 

with bedding and tubing in groups of 2 – 3, with standard lab chow (RM3 diet, 

Special Diet Services, Witham, UK) and water available ad libitum within the home 

cages. Cages were kept in scantainers held at a temperature of 21-23 °C, and humidity 

of approximately 50 %. The holding room was on a 12-hr reverse dark-light cycle 

with lights turning on at 8 pm. All procedures were carried out in the dark phase and, 

therefore, at the time when rats are most active. All behavioural testing took place 

within five days of the end of chronic treatment. After behavioural work was 

complete, animals were used for other experiments prior to sacrifice, therefore 

ensuring that as much data was obtained as possible from the cohort. 
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2.2 Chronic drug treatment 

Amphetamine (Sigma Aldrich, UK) was prepared as a stock solution in distilled water 

and frozen at -20 °C until use. Immediately prior to use it was defrosted and diluted 

1:10 into apple juice (Just Juice, DME, Middlesex, UK) to give the final concentration 

for oral administration. Drugs were administered per os rather than by injection to 

more closely reflect how these drugs are taken by humans [41]. A vehicle control was 

also used, consisting of the same volume of distilled water, also previously frozen, 

diluted 1:10 into apple juice immediately prior to use. Dosing was achieved using a 

pipette [42], administering a volume of 1 ȝL/g (i.e. a rat of 100 g received 100 ȝL). 

This method of administration allows precise administration in the microlitre range, 

and has fewer health risks compared to oral gavage, which can result in damage to the 

oesophagus, or accidental drug delivery to lungs [43]. Prior to chronic treatment 

animals were habituated to oral administration using 200 µl of apple juice for 5 days. 

Drugs were then administered every day for 4 weeks (excluding weekends) for a total 

of 20 days [44]. All treatment took place in the holding room, after daily weighing of 

the rats (to determine dose and monitor health status), at the start of the dark phase. 

 

Three doses of amphetamine were used: 10 mg/kg, 5 mg/kg, and 2 mg/Kg. These 

doses were selected to ensure some clinical relevance. Doses of amphetamine that are 

used clinically range from 5 to 60 mg [45, 46] and these are thought to result in blood 

plasma concentrations between 120 and 140 ng/ml in people receiving treatment for 

ADHD [47, 48]. When administered orally to rats, a dose 0.067 mg/ml gives a peak 

plasma concentration of 4 ng/ml [49] and, therefore, assuming a linear scaling, a dose 

of 2 mg/Kg would amount to a blood plasma level of approximately 120 ng/ml. It was 
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on this basis that our lower dose was chosen. We then selected two higher doses to 

allow comparison with other existing literature. Whilst this approach makes 

assumptions about linear scaling, it is generally accepted that the use of blood plasma 

levels is preferable to extrapolation on a milligram per kilogram basis from clinical 

doses when translating from humans to laboratory animals [41]. The drug treatment 

was performed blind, with randomly assigned letters representing each group, and 

dose was only revealed after completion of all analyses.  

2.3 Orienting behaviour 

Orienting behaviour was assessed (N=52, 224 ± 4.5 g; Vehicle N=14, 2 mg/Kg = 13, 

5 mg/Kg = 12 and 10 mg/Kg = 13) as outlined in previous studies [20, 37, 38] at the 

end of the treatment period with all habituation and testing completed within three 

days. All testing was carried out between the hours of 9am and 5pm and, therefore, in 

the dark active phase, in a dimly red-lit room in the presence of white noise. Olfactory 

cues were removed from testing equipment using alcohol between trials to remove 

any extraneous cues that could affect behaviour. Prior to testing, animals were 

habituated to the testing space, a circular plastic arena (2.5 m diameter) with a 

centrally located light (green LED, 20 mcd) sealed within a clear Perspex cylinder, for 

two days prior to testing. On each habituation day, the animal was placed in the arena 

for 15 minutes with the stimulus light remaining off for the entire period. Testing 

began on the third day with the animal placed in the arena and the video camera 

started. After 5 minutes, the light was remotely switched on for a period of 5 s. This 

was repeated for a total ten stimulus presentations. The stimuli occurred at 5-min 

intervals, randomised to jitter around the 5 min by ±1 min to prevent the animal from 

anticipating stimulus onset. Behaviour was recorded throughout using a Samsung VP-
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HMX20C camcorder for later offline analysis. The 5 s during the light stimulus were 

analysed to determine whether an animal had oriented to the stimulus. An animal was 

deemed to have oriented if it physically interacted with the stimulus casing, oriented 

its head towards the stimulus or looked at the stimulus. In addition to whether a 

response occurred, the duration of any response to the stimulus during the 5 s in 

which it was on was measured for each of the ten stimuli. As well as examining 

behaviour within the 5 s while the stimulus was on, the 5 s pre- and post-stimulus 

periods were also examined to assess whether the animals were affected by the 

stimulus when it was not actually on. That is, if their behaviour was a general 

behaviour directed towards the stimulus object rather than a response to the sensory 

stimulus itself (i.e. the light), that is a result of arousal rather than attention.  

2.4 Air-righting 

To test air-righting, each rat (N=50, 219 ± 4.9 g; Vehicle N=14, 2 mg/Kg = 13, 5 

mg/Kg = 11 and 10 mg/Kg = 12) was dropped onto a soft cushion from heights of 50 

and 10 cm. Drops were repeated 4 times at each height and heights were alternated to 

prevent the rats from using tactile landing cues to judge the appropriate righting 

speed, and ensuring only visual cues are used for modulating righting speed [39]. 

Prior to being dropped, the animals were held by the shoulders and pelvis in a supine 

position and were not released until they ceased struggling. All trials were recorded 

using a Samsung VP-HMX20C camcorder at a frame rate of 50 fps. The footage was 

then analysed frame by frame to obtain: i) the number of trials for which each animal 

could successfully right at each drop height ii) the average latency from the animals’ 

release to successful air-righting across the four trials at each height, and iii) the plane 

in which the rotation took place (whether the animals turned longitudinally or 
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laterally). Plane was included as a dependent variable because previous studies in 

animals with different types of SC lesion revealed variation in the plane of righting 

[50].  

To ascertain whether any differences in air-righting reflexes between groups were 

specific to air-righting, as opposed to differences in reflex behaviour between the drug 

groups, static supine reflexes were also assessed. For this assessment, animals were 

held supine against a flat surface and released. This test was repeated 4 times for each 

animal. As with the air-righting, all trials were digitally recorded using a Samsung 

VP-HMX20C camcorder. The same measures were collected i.e. whether the animal 

could right, the plane of righting and the latency to right. Both measures of righting 

were collected within three days of the end of the treatment period. 

2.5 Statistical analysis  

Specific statistical tests are detailed in the results section. In all cases where 

parametric tests were used, data was confirmed as suitable using Kolmogorov-

Smirnov test and measures of skewness and kurtosis prior to analysis. In reporting the 

outcome of statistical tests, we have provided both the effect size and observed power 

in addition to statistical significance. The effect size provides a measure of the 

magnitude of the difference between groups in an analysis and it can be considered 

the main finding of a quantitative study [51]. The p-value provides information about 

whether an effect exists but the effect size reveals the size of the effect and it is 

becoming increasing recognised that both values should be reported [51, 52]. In the 

present study phi (ĳ) is reported for Chi-Square analyses, where a value of 0.1 is 

considered a small effect, 0.3 a medium effect and 0.5 a large effect, corresponding to 

15%, 33% and 47% of non-overlap between groups respectively. For ANOVA 



Turner et al. 

12 | P a g e 

 

analyses, partial-eta squared (Ș2) is provided for effect size where values of 0.01, 

0.06, and 0.14 indicate small, medium, or large effects and the overlaps outlined 

above. Observed statistical power is provided to show the probability of rejecting a 

false null hypothesis. It is generally accepted that power should be at least 0.8. 

3. Results 

3.1 Orienting behaviour 

Chi-Square analysis revealed that there was no significant relationship between the 

dose given (Vehicle N=14, 2 mg/Kg = 13, 5 mg/Kg = 12 and 10 mg/Kg = 13) and 

whether the animal responded to the first stimulus (Ȥ2 (3) = 1.46; p=0.691; ĳ = 0.168, 

Observed power = 0.82). This indicates that initial visual responsiveness i.e. response 

to a novel stimulus, was unaffected by treatment with amphetamine. To examine 

whether there was a difference in the number of stimuli oriented towards, we 

calculated the number of stimuli responded to before the animal ceased orienting to 

the visual stimulus. These data were analysed using a One-Way ANOVA. As shown 

in Figure 1 there was a dose-dependent decrease in the number of stimuli oriented 

towards, indicating amphetamine was suppressing this behaviour, however, this trend 

failed to achieve significance (F(3, 48)=1.44; p=0.244; Ș2 = 0.082, Observed power = 

0.36). In the 5 s periods either side of the stimulus light being on, animals were not 

responsive to the stimulus object and this remained the case for all stimulus 
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presentations.

 

Figure 1: A univariate scatter plot showing the number of stimuli responded to for 
individual animals in each of the four groups. The black bar represents the mean in all 
cases. 

Response duration data were then analysed with a Mixed Measures ANOVA with 

STIMULUS PRESENTATION as the within-subjects variable and DOSE as the 

between-subjects variable. There was a main effect of STIMULUS PRESENTATION 

(F(9, 432)=3.08; p=0.001; Ș2 =0.06, Observed power = 0.976) as response duration 

decreased with repeated stimulus presentation (Figure 2). There was, however, no 
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significant main effect of DOSE (F(1, 3)=0.44; p=0.726; Ș2 =0.03, Observed power = 

0.132) or interaction effect (F(27, 432)=0.88; p=0.644; Ș2 =0.05, Observed power = 

0.779). 

Figure 2: Response duration across stimulus presentation given as mean ± SEM.  

3.2 Air-righting 

All animals successfully air-righted when dropped from 50 cm for every trial, so no 

inferential statistics were conducted on these data. At the 10 cm height, there was a 

reduction in the percentage of trials where righting was successful (Figure 3) but a 

Chi-Square analysis revealed that there was no significant relationship between the 

dose received (Vehicle N=14, 2 mg/Kg = 13, 5 mg/Kg = 11 and 10 mg/Kg = 12) and 

the ability to right at a 10cm drop height (Ȥ2 (12) = 10.33; p=0.587; ĳ = 0.262, 

Observed power = 0.83).  
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Figure 3  A univariate scatter plot showing the percentage of trials each animal righted 
successfully on for the different groups. The black bar indicates the mean percentage for 
the group. 

All animals righted in the longitudinal plane and, therefore, no inferential statistics 

were conducted. Latency data were analysed with a Mixed Measures ANOVA with 

HEIGHT as the within-subjects variable and DOSE as the between-subjects variable. 

The analyses revealed a significant main effect of HEIGHT (F(1, 44)=127.69; 

p<0.001; Ș2 =0.744, Power=1.00) with, unsurprisingly, animals dropped from the 

greater height having a longer latency to right overall (see Figure 3). There was also a 

significant main effect of DOSE (F(3, 44)=4.03; p=0.013; Ș2 =0.215, Observed power 
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= 0.81). Post-hoc Tukey tests revealed there was a significant difference between the 

2 mg/Kg and 10 mg/Kg doses (p=0.01), with the latter having a shorter latency to 

right. Finally, there was a significant HEIGHT x DOSE interaction (F(3, 44)=5.09; 

p=0.004; Ș2 =0.258, Observed power = 0.90). To establish what drove this interaction 

we conducted a series of restricted Mixed Measures ANOVAs using just the vehicle 

group and one amphetamine dose. A significant interaction was found for the vehicle 

and 10 mg/Kg comparison (F(1, 23)=12.13; p=0.002; Ș2 =0.345, Observed power = 

0.92). However, there was also a trend towards significance for the vehicle and 5 

mg/kg interaction (F(1, 21)=3.54; p=0.075; Ș2 =0.144, Observed power = 0.44). 

Notably this comparison had lower power, which may explain why significance was 

not reached. Examination of the data in Figure 4 confirm that the animals treated with 

10 mg/Kg amphetamine are less able to modulate the latency of their righting by 

height compared with the vehicle group, in line with our hypothesis. The 5 mg/Kg had 

an intermediate ability to modulate their latency between the vehicle and 10 mg/Kg 

group. 
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Figure 4: Latency to right from the different heights shows that animals treated with 10 
mg/kg amphetamine are less able to modulate their righting latency by height. 

Analysis of static righting behaviour revealed that all animals successfully righted on 

every trial and in the longitudinal plane and, therefore, no inferential statistics were 

conducted on these measures. Latency to right data was deemed suitable for 

parametric tests and then analysed with a One Way ANOVA, which showed that there 

was no significant difference between the groups (F(3,49)=0.796, p=0.503, Ș2 = 

0.049, Observed power = 0.70). 

4. Discussion 

We reasoned that heightened activity in the SC was linked to increased distractibility 

and that chronic treatment with amphetamine, known to reduce distractibility, would 

impact on collicular activity and that this would result in a change to collicular-

dependent behaviour. Specifically, we hypothesized that treatment with amphetamine 

would reduce orienting to repeated visual stimuli and reduce the ability to modulate 

air-righting according the drop height. The results of the present study partially 

support this hypothesis.  

 

On the orienting task we found no difference between the treatment groups in terms of 

the initial response to visual stimuli. This is consistent with previous visual orienting 

research using acute amphetamine administration [53]. Our hypothesis focussed on 

the subsequent reduced orienting and the present study showed a dose-dependent 

decrease in the number of stimuli responded after the initial response. Whilst this 

dose-dependent effect did not reach statistical significance, the analyses indicated a 

medium-to-large effect size and reduced power, suggesting that there may be 
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differences between the groups but that the power of the analysis prevented this 

reaching significance. Certainly, the overall pattern of results were in line with studies 

showing a decrease in collicular activity in the presence of amphetamine [26, 31, 32]. 

Previous research has shown that with very salient stimuli, orienting behaviours can 

occur in the presence of collicular lesions [53]. Whilst this seems unlikely here 

because the previous stimuli classed as salient were moving (ours were not), it is 

possible that our stimulus was too salient to see significant suppression of the 

response in the presence of the selected doses of amphetamine. Another possible 

explanation for the lack of effect of amphetamine on the number of orienting 

responses is that when administered chronically, cortical effects mask those within the 

colliculus itself. Previous research has shown that acute systemic amphetamine, whilst 

depressing visual responses in the colliculus [31, 32] also causes cortical 

desynchronization [54] which would have a faciliatory effect on the colliculus, thus 

potentially counteracting the direct depressive effects. However, to date, no one has 

investigated whether such cortical effects occur with chronic amphetamine 

administration and this may, therefore, warrant further investigation. It is also possible 

that with repeated administration the SC effectively desensitized to the depressive 

effects of amphetamine. This would seem unlikely given the known sensitization that 

occurs to repeated administration of amphetamine in other paradigms [55] but it 

cannot be ruled out without further investigation.  

 

As expected the duration of response did decrease with repeated stimulus presented, 

with results indicating a significant difference over time and a medium effect size. 

There were no significant differences between the different doses, and the effect size 

indicated only small effect size but also a low power. There was also no significant 
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interaction, found between stimulus presentation and dose, despite reasonable 

statistical power. These results indicate that the duration of the response is unaffected 

by amphetamine administration in the current paradigm, but these duration measures 

could, of course, be impacted by cortical activation or desensitization as outlined 

above.  

Data from the air-righting experiment revealed that all animals, irrespective of dose 

received, were equally capable of righting from both heights. This is perhaps not 

surprising given the ability to right per se is not dependent on the SC, only the ability 

to modulate righting by height is. Rather the vestibular system is responsible for 

overall righting [39] and there is evidence that amphetamine does not impact on this 

system [56]. In addition, there was no alteration to the plane in which righting 

occurred. Previous work with SC-lesioned animals suggested plane changes do occur 

in these circumstances [50]. The fact that they were not apparent in the present study 

is perhaps unsurprising given that the colliculus was not removed, rather its activity 

was just likely suppressed by amphetamine [31, 32, 57].  

 

In line with previous studies, we found that animals dropped from a lower height 

righted with a shorter latency [21, 39, 40, 50]. This relationship was similar for all 

drug doses. However, in support of our hypothesis, animals treated with a high dose 

of amphetamine were unable to modulate their righting latency according to height as 

effectively as those in the control group– a key collicular-dependent behaviour. This 

effect was shown to be large for both the 5 mg/Kg and 10 mg/Kg group (effect sizes 

of 0.144 and 0.345 respectively), although only the latter reached statistical 

significance. This is likely to be due to the reduced power of the analysis for the 5 

mg/Kg group., although cortical activation countering collicular effects, as described 
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above, cannot be ruled out. The fact that we do see effects of the drug on the ability to 

modulate righting by height does suggest there is still an impact on the colliculus at 

the higher dose at least, indicating desensitization is unlikely to explain the lack of 

effects on orienting. There was no effect for the 2 mg/Kg dose, which is the most 

closely associated with typical therapeutic doses of amphetamine. This could suggest 

that the action of amphetamine reported here is unlikely to underlie the therapeutic 

effects of amphetamine. However, to be sure of this further research, with additional 

dose validation using blood plasma levels is necessary. 

 

It is unclear exactly how suppression of activity in the colliculus by amphetamine 

would impact on the height-dependent modulation, however, it is possible to 

speculate that amphetamine is affecting the time-to-impact calculation that is believed 

to be computed in the colliculus [58, 59]. The details of such a calculation are unclear 

but it is suggested that it involves binocular collicular cells in other species [59] and 

such cells are known to exist in rats [60-63]. Furthermore, acute injections of 

amphetamine have been shown to alter receptive field size in the visually-responsive 

layers of the SC [64]. When administered acutely, the amphetamine-induced changes 

in the receptive field diminished after eight hours [64]. However, it is plausible that, 

following a chronic treatment schedule, effects on the receptive fields would be 

longer lasting. It is therefore possible to speculate that amphetamine induced increases 

in receptive field size result in an impaired calculation and reduced ability to right in a 

height-dependent manner. Such longer lasting effects are in line with research 

investigating the impact of similar amphetamine treatment on other brain structures, 

where changes are found to persist for 3.5 months after treatment cessation [35, 36]. 

This research also suggests that chronic amphetamine treatment can increase dendritic 
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spines and branching, something which has been positively correlated with receptive 

field size in the colliculus [65]. It may be helpful to next examine exactly how long 

after treatment stops these changes persist for because clinical literature is currently 

unclear about the presence and timing of a possible rebound effect, i.e. the return of 

symptoms after stopping amphetamine treatment in ADHD [66]. 

Despite the findings showing that chronic treatment with amphetamine can impair 

some collicular-dependent behaviours, it is important to acknowledge the limitations 

of the present study. Firstly, whilst every effort has been made to ensure doses are 

therapeutically relevant and administered using an appropriate method to best mirror 

human use, we did not measure blood plasma levels, something that should be 

considered in future research. Secondly, for some of the reported analyses the 

observed power was less than the recommended 0.8. Specifically, this affected our 

analysis of the orienting task for the number of stimuli oriented to (Observed power = 

0.36), and the main effect of dose (Observed power = 0.132) and interaction effect in 

the response duration (Observed power = 0.779), although the latter was only just 

short of the required power. In the air-righting analyses, all key comparisons for 

testing the hypothesis were sufficiently powered, except for the restricted ANOVA 

comparing the control and 5 mg/Kg in terms of their ability to modulate their righting 

by height. Given the lower power on these analyses, there is an increased risk of Type 

II errors, and therefore an increased possibility of the null hypothesis being false, but 

not rejected. As such, the lack of power does not negate the study results but rather 

indicates, we may have underestimated the impact of amphetamine on the collicular 

dependent behaviours. Finally, we have suggested that the effect of air-righting may 

be underpinned by changes in the receptive field size. This explanation is based on 
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current literature and future research may consider direct measuring of receptive 

fields in animals chronically treated with amphetamine. 

5. Conclusions  

Heightened distractibility is associated with several conditions and is most notably a 

core symptom of ADHD where it is often treated with psychostimulants including 

amphetamine. In the present study we have demonstrated that chronic treatment with 

amphetamine can alter collicular-dependent modulation of air-righting in the days 

following treatment cessation in a manner consistent with amphetamine’s acute ability 

to suppress activity in the visually-responsive superficial layers of the colliculus. We 

suggest that the mechanism of this effect may be increased receptive field size, 

altering the collicular time-to-impact calculations. 
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