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Abstract.

Objective. A major challenge in non-stationary signal analysis is reliable
estimation of correlation. Neurophysiological recordings can be many minutes
in duration with data that exhibits correlation which changes over different time
scales. Local smoothing can be used to estimate time-dependency, however, an
effective framework needs to adjust levels of smoothing in response to changes
in correlation. Approach. Here we present a novel data-adaptive algorithm,
the z-tracker, for estimating local correlation in segmented data. The algorithm
constructs single segment coherence estimates using multi-taper windows. These
are subject to adaptive Kalman filtering/smoothing in the z-domain to construct
a local coherence estimate for each segment. The error residual for each segment
determines the levels of process noise, allowing the filter to adapt rapidly to
sudden changes in correlation while applying greater smoothing to data where
the correlation is consistent across segments. The method is compared to wavelet
coherence, calculated using orthogonal Morse wavelets. Main Results. The
performance of the z-tracker is quantified against Morse wavelet coherence using
a Mean Square Deviation (MSD) metric. The z-tracker has significantly lower
MSD than the wavelet estimate for time-varying coherence over long time scales
(~ 10 — 20 sec), whereas the wavelet has lower MSD for coherence varying over
short time scales (~ 1 — 2 sec). The z-tracker also has a lower MSD for slowly
varying coherence with occasional step changes. The method is applied to detect
changes in coherence in paired LFP recordings from rat prefrontal cortex and
amygdala in response to a pharmacological challenge. Significance. The z-tracker
provides an effective and efficient method to estimate time varying correlation in
multivariate data, leading to better characterisation of neurophysiology signals
where correlation is subject to slow modulation over time. A number of
suggestions are included for future refinements.

Keywords: Non-stationary, time-frequency, Morse wavelet, Kalman filter, spectra, co-

herence.
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1. Introduction

Large data sets are routinely collected in neuroscience.
These can be subject to a wide range of statistical
analysis to address basic questions relating to
underlying features in the data or to test specific
hypotheses. One question that is commonly asked in
the case of multivariate random processes - is there
any correlation between the signals? Here we present
a new technique that can be used to undertake an
exploratory analysis of time-varying correlation. The
method relies on segmentation of the data into short
non-overlapping segments, an approach often used in
multi-taper (MT) and other spectral analysis methods.
It provides a rapid, quantitative characterisation of the
correlation structure on a segment by segment basis.
This is achieved using smoothing within each segment
through application of multi-taper spectral estimates,
combined with local smoothing across segments by
using Kalman filtering/smoothing. The approach can
readily be undertaken as an addition to a bivariate
spectral analysis, here we demonstrate its application
to neurophysiological data.

The concept of time-frequency analysis is well es-
tablished [20, 23]. Two broad classes of methods can be
identified, spectrograms and wavelets. Spectrograms
involve segmentation of data into short segments us-
ing a sliding data window to extract local features
[2, 51, 52], these are closely related to classical spectral
estimation based on overlapping data windows [50].
Wavelet methods are increasingly used [1, 8, 48, 52].
Much of the wavelet work uses continuous wavelets, a
popular choice is the complex Morlet wavelet [48] how-
ever analytic wavelets can also be used to estimate co-
herence and phase for bivariate data [29, 30, 36]. The
Morse family of analytic wavelets has theoretical and
practical advantages over Morlet wavelets [28]. Sta-
tistical properties of coherence estimates using tempo-
rally smoothed Morlet wavelets [17] and analytic Morse
wavelets [18] have been derived, allowing rigorous hy-
pothesis testing on wavelet coherence estimates. In
this study we use wavelet coherence estimates as the
benchmark against which to compare the performance
of our approach, in particular coherence based on an-
alytic Morse wavelets [8, 17].

Our method combines multi-taper analysis [38, 46]
with Kalman filtering [27] to allow rapid screening
of long data sets for correlated activity.  Multi-
taper methods are well established for spectral and
coherence analysis of neural signals [16]. Novelty is
in the combined application of multi-taper spectral
analysis with a Kalman filtering/smoothing algorithm
[25] which adjusts the level of smoothing in a data
adaptive manner based on the Kalman filter residual
error term. Higher levels of local smoothing are applied
to data with low residual errors. In contrast large

residuals, resulting from a sudden change in correlation
structure, have a larger Kalman gain allowing the
algorithm to adapt to sudden changes in the correlation
structure. The algorithm operates in the z domain,
thus we refer to the approach as the z-tracker.

The z-tracker is a non-parametric approach, using
Kalman filtering applied to single segment coherence
estimates derived from Fourier transforms. In [3] a
non-parametric approach is described which uses a
Bayesian framework to apply temporal smoothing to
a small number of pre-specified frequencies using fixed
interval smoothing [42]. The z-tracker described here
uses the same approach to smoothing. Parametric
approaches have been considered to estimate time
varying coherence. In [34] adaptive estimation of
multivariate auto-regressive model parameters was
used to construct time-varying coherence estimates. In
[33] this was extended to use Kalman filter estimates of
a multivariate state-space signal model to study time
dependency in local field potential interactions.

The z-tracker is applied to surrogate data with
a known correlation structure and the performance is
compared with Morse wavelet coherence estimates, and
quantified empirically using a mean square deviation
(MSD) metric to assess accuracy of estimates, and
comparison of the Kalman filter mean square error
(MSE) with the variance of the Morse wavelet
estimates, based on their known degrees of freedom
[17]. Three scenarios are considered for the surrogate
data: 1) Slowly varying coherence, time scale ~ 10—20
sec, 2) Rapidly varying coherence, time scale ~ 1 — 2
sec, and 3) Slowly varying coherence with occasional
step changes. The motivation for these three scenarios
is the wide range of time scales over which interactions
in brain activity can alter [44]. We find that the
z-tracker is more accurate, with a lower MSD than
the Morse wavelet coherence in scenarios 1 and 3,
whereas the Morse wavelet estimate has lower MSD
in scenario 2. We further empirically compare the
performance on uncorrelated surrogate data and find
the performance of the two approaches similar as
assessed using the MSD. To illustrate application of the
method to experimental data we apply the z-tracker
to in vivo electrophysiological recordings of local field
potentials from anaesthetised rat.

Section 2 describes the z-tracker algorithm, with
construction of single segment coherence estimates in
section 2.1, adaptive Kalman filtering and smoothing
in section 2.2, and the method for obtaining estimates
of the variance and bias of single segment z estimates
in section 2.3. Section 2.4 briefly describes the wavelet
coherence measure used to benchmark the performance
of the z-tracker. Section 3.1 describes the generation of
surrogate data, sections 3.2 to 3.4 illustrate the three
scenarios for changing correlation structure, section 3.5
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considers how the Kalman filter error estimate can be
used to construct point-wise confidence limits, section
3.6 examines the performance of the z-tracker on
uncorrelated surrogate data, and results from analysis
of in vivo experimental data are presented in section
3.7. Section 3.8 discusses briefly the computational
complexity of the z-tracker and wavelet approaches.
Conclusions and discussion are in section 4.

2. Methods

The z-tracker is a two stage process. First single
segment coherence estimates are constructed using MT
estimates [38], second these single segment estimators
are subject to Kalman filtering and smoothing [11]
which provides local estimates of the coherence while
reducing the statistical variability. ~ An empirical
approach for setting point-wise confidence limits
using the Kalman filter error estimate is described.
We briefly introduce the Morse wavelet coherence
estimator as the benchmark against which the z-tracker
is compared for the simulations described in section 3.

In this study bivariate random processes, (z,y),
are assumed to be oscillatory or sigma-oscillatory
processes. An example of an oscillatory process,
Zt, 1S 2z = gwx¢, where x; is a process stationary
to second order, and g; a deterministic real-valued
modulating function whose Fourier transform has a
maximum at zero frequency. Such processes are also
referred to as uniformly modulated processes [40, Ch
6], the spectrum of z; is uniformly modulated at all
frequencies compared to the spectrum of x;. The
coherence between two uniformly modulated processes
does not vary over time [49], thus they are not suitable
for modelling time-varying coherence. A sigma-
oscillatory process is one which can be modelled as a
sum of oscillatory processes at each time point. The
coherence between an oscillatory process and sigma-
oscillatory process or between two sigma-oscillatory
processes can vary over time [19]. We use surrogate
data with one oscillatory and one sigma-oscillatory
process to test the performance of the z-tracker in
section 3, the generation of these processes is described
in section 3.1.

2.1. Single segment coherence estimators

The data for each process (x,y) is split into L non-
overlapping segments of T points. The choice of
segment length 7T is important, and is discussed in
the results. In order to construct coherence estimates
from single segments a MT approach is used [46].
A standard periodogram method would not work,
coherence constructed from a single segment would
be identically 1 at all frequencies. The MT method
applies a series of orthogonal tapers to single segments

[3 ] The MT Fourier transform of a single segment, [,
= .., L of length T' from process z is

IT-1
di" O =VT Y e ™ (1)
t=(1—-1)T

Here hyp is the orthogonal taper of order k, where
k =0,...,K —1, K is the total number of tapers
applied, and the \; are the Fourier frequencies, j =
0,...,T/2. The orthogonal tapers used in MT spectral
estimation are derived from Slepian sequences [38, 46].
The /T multiplier is incorporated as a data window
normalisation factor [4] to preserve the scaling on
spectral estimates [24]. A similar expression gives
dT(mt)()\ ). An MT cross-spectral estimate for a
smgle segment is

K-
= r Z oG D dg (0, 0).(2)
The symbol, denotes an estimate, the overbar indi-
cates a complex conjugate. Smoothing is incorporated
in equation 2 through application of orthogonal tapers
to the same segment. A similar approach gives the es-
timates fir”(\;,1) and f{5"(X;,1). These estimates
can be combined to give a Smgle segment coherence
estimate for segment [

[y O, DI
SO0 £ g0

The number of tapers K is determined from the
time x half-bandwidth product, NW, according to
the relationship K ~ 2NW — 1 [38]. In the z
tracker analysis NW is fixed at NW = 1.5 and
K = 2, this is the smallest value of K which will
give coherence estimates not equal to 1. Although
we have constructed coherence estimates from single
segments of data, these have poor statistical properties
(examined in section 2.3) so further smoothing is
required. In the z-tracker framework this additional
smoothing uses Kalman filtering and smoothing.

RGN, DI = (3)

2.2. Kalman filtering and adaptive spectral tracking

The first step is application of the variance stabilis-
ing z-transform [5, 7, 43]. This transform dispropor-
tionately increases values of coherence closer to 1, the
effect of which is to generate an estimate (in the z do-
main) that has a distribution closer to a normal dis-
tribution [47], matching more closely the assumptions
for Kalman filtering. Kalman filtering and smooth-
ing are applied to the z-transformed coherence, once
filtering/smoothing is complete an inverse transform
is applied to convert back to the coherence domain.
Since Kalman filtering/smoothing is applied in the z-
domain we refer to the approach as the z-tracker. The
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z-transform is applied to the magnitude square root of
the coherence, called coherency [7], as

2a (0, 1) = tanh ™ RED (A, 1) (4)

The z-tracker operates in the z-domain, taking
as input the real-valued 23(,21t)()\j, l) for each segment.
The Kalman filter uses a state model that assumes the
coherence is constant between segments. Smoothing
is incorporated using fixed interval smoothing over
all available segments [42]. Smoothing can overcome
the tracking delay associated with estimates based
only on Kalman filtering and further reduces the
variability of coherence estimates by conditioning the
estimate locally on segments before and after the
current segment. Smoothing requires access to the
complete record, this is normal in electrophysiological
signal analysis, but would have implications for real
time applications. Section 3 compares filtered and
smoothed estimates using simulated data. Full details
of the Kalman filtering and smoothing steps are given
in Appendix A.

The adaptive algorithm determines an appropriate
variance for the process noise, q;, at each step in the
forward pass based on the values of the measurement
residual in the Kalman filter. In our case this
measurement residual for segment [ is e; = (z;—x} ), see
equation A.3. This residual represents the difference
between the actual and estimated measurements and
can be used as an indicator of the system encountering
unexpected data. The approach adopted here is the
same as [10], following [25].

The adaptive algorithm compares the residual
variance with the residual variance assuming no
process noise. [25] proposes using ||e;||? as an indicator
of E{e?}. In our case 7, x; and e; are vectors over
the frequency range of interest. The residual variance
with no process noise, E{e?|qg = 0}, is derived from
the Kalman filter equations A.1 and A.2 with the
assumption that w; = 0 [25]. In our case

E{eflg=0} =P 1+ (5)

From this the instantaneous process noise variance
denoted by ¢, can be calculated as the excess of the
residual variance over the estimated residual variance
with no process noise

=6 (]TV.’ ~ (P +n>) : (6)

Here ©() is the Heaviside function, the superscript T'
refers to a matrix transpose and N is the number of
points in the error vector used to estimate the residual
variance.

As pointed out by [25] this single value ¢ is
likely to be of limited use, as it is based on only
a single residual. To overcome this issue we use
additional smoothing based on the same approach as

the univariate case [10]. A smoothed version of the
process noise for segment [ denoted as ¢;, is determined
according to

g=aqg-1+(1—-a)g (7)

where the parameter o (o < 1) controls the
exponential smoothing to generate ¢;. This noise
process is initialised as g1 = 0. The value of « has
to be specified in advance, section 3 compares the
performance of the z-tracker for a range of o values
using simulated data with known target coherence.

Tracking (equations A.3-A.4) or smoothing (equa-
tions A.7-A.8) generates a filtered or smoothed esti-
mate, respectively, in the z-domain. The final coher-
ence estimate for each segment is obtained by applying
the bias correction, in the z-domain using the bias cor-
rection look up table (described in section 2.3) followed
by mapping back to the coherence domain. Bias cor-
rection is applied separately at each frequency, A;, and
each segment, [, as

|Rye(Ng, DP = tanh (240 (g, 1) = B (250 (3, D))" (8)

where the function B(-) refers to the bias correction
defined in section 2.3.

The Kalman filter error term is used to approx-
imate the variance of the filtered/smoothed estimate
as

var{Z,; (A\;,1)} = P. 9)

From this 95% point-wise confidence limits in the z-
domain can be added to the bias corrected estimate of
z as +1.96+/PF;, these can be mapped to the coherence
domain for plotting.

An algorithmic level description of the z-tracker is
given in Appendix B.

2.3. Variance and Bias of z-transformed single
segment multi-taper coherency estimates

The variance and bias associated with coherence
estimates have been widely documented [5, 7, 13, 14,
47], and approximate expressions for these are available
[5, 47]. Expressions for the distribution of coherence
are given in [7, 14, 21], these use the hypergeometric
function with true coherence as an argument. The
standard approximations for variance and bias are
the result of using simulation studies [15, 21]. The
approximation for the variance is var {25;”” (Aj, l)} =

1

2(K—1)°
u(sed iil the coherence estimate [5, 47]. This expression
has been applied to z-transformed coherence estimates
constructed using average periodograms from non-
overlapped segments, where K is the number of
segments. For large K the approximation ﬁ is

sometimes used [24]. The bias of z-transformed

where K is the number of independent terms
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coherence estimates is usually approximated as ﬁ
[5, 47].

For the estimate in equation 4 with K = 2 the
above approximations give var {2} = 0.5, and a bias
of 0.5. However, these approximations are only valid
when the true coherence is within the range 0.4 to 0.95
and a minimum of K = 10 segments (or orthogonal
tapers) have been used in constructing the coherence
estimate [21]. Further results are given in [13] for K in
the range 32 to 64 which highlight that the variance is
not constant over all values of coherence.

In the Kalman filter, the noise variance for
each segment, r;, is taken as the variance of the z-
transformed single segment MT estimate in equation
4. We adopt the approach of [21] and undertake
a simulation study to evaluate the variance of and
bias in equation 4. Results are shown in figure 1
using 101 target z values linearly spaced from 0 to 3
(0 to 0.99 coherence) with 10000 repetitions at each
value. Bivariate data was generated as described in
section 3.1 using a single segment of 7' = 1024 points.
Coherence estimates were constructed using equation
3, with NW = 1.5, K = 2. The variance was taken as
the variance over all frequencies and repetitions at each
target z, the bias as the difference between the mean
over all frequencies and repetitions and the target value
of z.

var{z}
0.6¢

0.5}

04r

0.3

1.5 2 2.5 3 3.5
Bias in z

= b

0.9}
0.87
0.7t
0.6¢
0.5t

3.5

[y
=
(6)]
N
N
(6)]
w

N>

Figure 1. Plot of var{%} and bias against 2. Results of Monte-
Carlo study to determine (Top) variance, and (Bottom) bias of
2. Results are plotted against Z. See text for details.

The bias and variance are plotted against the
estimated value of z (figure 1). When applied in
practice the variance has to be derived from the

estimated value of z, as the true (target) values will
be unknown. The target range, 0 < z < 3, is therefore
mapped to an estimated range 1 < 2 < 3.5. The z-
tracker estimation procedure uses the values in figure
1 stored in two look up tables, one for r; and one for
bias correction. The scalar value of r; used for each
segment is achieved by using the mean of Z over the
frequencies of interest. Bias correction is applied as a
final step after filtering or smoothing with bias applied
separately at each frequency in the z-domain.

2.4. Morse wavelet coherence

The z-tracker estimates are compared against Morse
wavelet coherence estimates applied to the same
data. The Morse wavelet estimates are constructed as
described in [8]. The two processes, (x,y) are subject
to continuous wavelet transform (CWT) using a pre-
specified number, K, of orthogonal Morse wavelets at
each scale. No segmentation of the data is required
for CWT analysis, in contrast to the segmentation
required for the z-tracker. In this study we use K =5
and K = 10. The value K = 10 is typical of that
used in Morse wavelet analysis [17] and is similar to
the complex degrees of freedom that can be achieved
with temporal smoothing in Morlet wavelet coherence
estimates [18]. In [8] K = 9 was used in analysis
of intracellular recordings. Including estimates with
K =5 allows the effects of different levels of smoothing
to be assessed. Morse wavelet parameters are § = 9
and v = 3, as recommended in [30]. Scales for analysis
are specified logarithmically as a number per octave,
in this study we use 6 scales/octave, specified as a
maximum scale (minimum frequency) and number of
octaves.

3. Results

3.1. Surrogate data

The performance of the z-tracker is assessed using
surrogate data. The surrogate data has coherence
which is constant across frequencies and varies over
time. The two signals are generated using the model
in [19] as

(10)
(11)
where & and €; are independent white noise processes
with zero mean and unit variance. The target time

d2

W [19} FOI'
target coherence in the range [0, 1], the coefficients to
generate the surrogate data are

Ty =&
Yo = Brxy + diee

varying coherence is |yuy:t(A)]? =1 —

ﬂt = Wa:y,t()‘) (12)
di = \/1 = Prays (V]2 (13)
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As defined in equations 10 and 11, z; is a discrete time
second-order stationary process with unit variance at
all ¢, and ¥, is a sigma-oscillatory process formed from
the sum of two uniformly modulated processes.

We consider three forms of target coherence 1)
Linear increase and decrease over range [0,1] with
time scale 20 seconds, 2) Linear increase and decrease
over [0,1] with time scale 2 seconds, and 3) Linear
increase with the same increment per time step as in 1)
with randomly occurring step decreases in coherence,
from values above |v;,.t(A\)|*> = 0.8 to values below
[Yzy:¢(A)[> = 0.2. These scenarios are chosen to
investigate different aspects in the performance of the
z-tracker. Scenario 1) has slow time-varying coherence
representing a situation where we would expect the
z-tracker to perform well. Scenario 2) has coherence
varying over a much more rapid time scale, which
may represent more of a challenge for the z-tracker.
Scenario 3) combines time varying coherence over the
same time-frame as 1) with sudden changes, we would
expect the adaptive nature of the estimator to cope
well with these occasional changes and would expect a
similar level of performance to scenario 1).

Data for each scenario is generated using equations
10, 11. Scenarios 1) and 2) use a total of 200000 time
points for each trial, this is equivalent to 200 seconds
at the assumed sampling rate of 1 ms. Scenario 3)
generates data over 10 ramp sections with timings for
each step decrease determined randomly, the example
presented here uses 86589 time points, or 86.5 seconds.
For each configuration 100 repeat trials are generated
and, unless stated, metrics are aggregated over these
100 trials.

3.2. Scenario 1. Twenty second linear
increase-decrease in target coherence.

Figure 2 shows the target and estimated coherence for
three estimates: 1) z-tracker with @ = 0.1, T = 128,
tracking only, 2) z-tracker a« = 0.9, T = 128 with
smoothing, and 3) MWT coherence with K = 10
using 6 scales per octave over the frequency range
[8,256] Hz, a total of 31 scales. Z-tracker estimates
are averaged over 31 frequencies covering the first half
of the frequency range [7.8, 250] Hz, the MWT estimate
is averaged over all 31 scales. The time for the z-
tracker estimate for each segment is assigned as the
centre point of each segment. The same temporal
decimation is used for plotting the MWT estimate.
Thus, both z-tracker and MWT coherence estimates
have the same frequencies in their respective averages
and use the same number of time points. Also included
are the upper and lower 95% point-wise confidence
limits. Averaging for coherence and confidence limits
is done in the z-domain. The choice of a = 0.1,
tracking and a = 0.9, smoothing represent the two

extremes in terms of the level of smoothing applied to
the single segment coherence estimates. Qualitatively
the additional smoothing in the latter estimate is clear
in figure 2. Also visible in the tracking only estimate is
the lag introduced by the Kalman filter, the estimated
coherence can lag slightly behind the target coherence
in figure 2 (top).

z-tracker: a=0.1, Track

0 10 20 30 40

Figure 2. Single trial coherence estimates with target coherence
modulated over range [0 1] with 20 second time scale. Estimates
shown for 40 of the 200 seconds. (Top) z-tracker estimate o =
0.1, T = 128, tracking only, averaged using 31 frequencies over
range [7.8,250] Hz. (Middle) z-tracker estimate o« = 0.9, T =
128, smoothed and averaged over same frequency range. (Lower)
Multiwavelet estimate with K = 10 averaged using 31 scales over
frequency range [8,256] Hz at 6 scales/octave. In all cases small
dots and large dots indicate target and estimated coherence for
each time point, respectively. Solid lines are average upper and
lower point-wise confidence limits for estimates.

The three estimates in figure 2 all capture the
modulation of coherence over the 20 second time scale
using an average over half of the full frequency range.
Such extensive averaging in neurophysiological signal
analysis is not that common. Figure 3, using the
same layout and parameters as figure 1, shows the
coherence estimates for a single frequency, using the
median frequency for both the z-tracker and MWT
estimates. While less reliable than the estimates
incorporating averaging over frequencies these single
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frequency estimates still capture the modulation of the
target coherence over the 20 second time frame.

z-tracker: «=0.1, Track

0.5

0 10 20 30 40

Figure 3. Single trial, single frequency coherence estimates for
20 second coherence modulation. Same layout and parameters
as figure 2.

The performance of the z-tracker is quantified
using an MSD metric calculated from the estimated
and target coherence at each time point. First we
consider the effect of changing the segment length
T. Figure 4 shows boxplots of the MSD, generated
as a single MSD measure for each of the 100 trials
from the z-tracker coherence estimate averaged over all
frequencies and over all segments. Box plots are shown
using a standard layout [32], with boxes extending from
the 25th to 75th percentiles and a horizontal line at
the median. Vertical lines with whiskers indicate the
extremes of the data. Individual outliers are shown as
'4+’. Notches are included which indicate approximate
95% confidence limits for the median, allowing visual
comparison of different configurations.

It is clear that the MSD decreases monotonically
as T reduces. Thus, for the broad-band target
coherence in this example, frequency resolution can
be sacrificed to obtain a more accurate estimate using
shorter segment lengths. We did not consider segment
lengths smaller than T' = 128, the frequency resolution

z-tracker MSD - effect of T

0.09 |

0.08 |

0.07 1

0.06 |

0.05

0.04 r

0.03 ¢t

T=128
T=256
T=512
T=1024

Figure 4. Box plots of the MSD between target and estimated
coherence for the z-tracker applied to the 20 second ramp
increase/decrease data. Other parameters are o = 0.9 with
smoothed estimates. Box plots constructed from 100 repeats
with MSD calculated for average over all frequencies and over
all segments for each trial.

for the assumed sampling rate of 1000/sec is ~ 8 Hz,
which is towards the upper end of that typically used
in Fourier based analyses of neurophysiological data.

Next we consider a fixed segment length, 7" = 128,
and look at the effects of varying « in equation 7. The
range of values is 0 < o < 1, we use the four values
0.1, 0.37, 0.61, 0.9. Low values of « give greater weight
to the instantaneous process noise, making the filter
more responsive to the residual error. Larger values
of a give greater weight to previous data providing
more smoothing. The intermediate values represent
time constants of 1 and 2 time bins respectively in the
exponential smoothing applied in equation 7.

Figure 5 shows the MSD for the z-tracker using
these four values of « for tracking and smoothing, and
the MSD for MWT estimates using K = 5 and K = 10.
The MSD for each trial is calculated as the average
coherence over the same 31 frequencies/scales as used
in figure 2 and over all 1562 segments. A number of
conclusions can be drawn from figure 5. The MSD for
smoothed z-tracker estimates is around 37% smaller
than that for the tracking based estimate for the same
value of a. There is a steady improvement in MSD as
the value of « increases for both tracked and smoothed
z-tracker estimates. The MSD for MWT improves
considerably for K = 10 compared to K = 5, the MSD
for K = 10 is comparable to that for the tracked MSD
estimates. For this data the lowest MSD is obtained
using the z-tracker with configuration 7' = 128, « = 0.9
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with smoothed estimate. This has an MSD that is
around 40% smaller than the MWT estimate with
K =10.

MSD: z-tracker and MWT, 20 sec ramp.
0.1 +

0.09 f %
0:07-; % % % %

0.06 +
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Figure 5. Box plots of the MSD between target and estimated
coherence for z-tracker and MW'T coherence estimates applied to
the 20 second ramp increase/decrease data. Other parameters
are T = 128 for the z-tracker and K = 5, K = 10 for the
MWT estimates. Box plots constructed from 100 repeats with
MSD calculated for average over 31 frequencies/scales for the
z-tracker/MWT and over all 1562 segments for each trial. MSD
shown for four values of a, with the suffix T indicating tracking
and the suffix S indicating smoothing.

Single frequency MSD plots are shown in figure 6
for z-tracker with T" = 128, a = 0.9 with smoothing
and for MWT with K = 10. Frequency dependent
effects can be seen for both types of estimate, the MSD
is larger for the lowest frequency shown in the z-tracker,
this is also the fundamental frequency in the single
segment multi-taper coherence estimates. For MWT
estimates the MSD tends to have smaller variability as
the frequency increases. The single frequency MSD for
the MWT estimate is around 7% lower than that for
the z-tracker.

3.3. Scenario 2. Two second linear increase-decrease
in target coherence.

This section describes a similar analysis to section
3.2 applied to surrogate data using a 2 second cycle
time for the linear increase and decrease in the
target coherence. Each trial has 200000 data points,
assumed duration 200 seconds, which includes 100
repetitions of the two second triangular coherence
modulation. Figure 7 shows z-tracker and MWT
coherence estimates over the first 10 seconds using
averaging over frequencies with the same parameters

MSD - z-tracker, single frequency
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Figure 6. Single frequency MSD box plots for (Upper) z-

tracker, and (Lower) MWT coherence estimates applied to the 20
second ramp increase/decrease data. For the z-tracker T = 128,
a = 0.9, with smoothing. For MWT estimates K = 10. Box
plots constructed from 100 repeats with MSD calculated for
individual frequencies using average over all 1562 segments/time
points for each trial. MSD shown using same vertical axes.

and layout as figure 2. Figure 8 shows single frequency
plots using the same layout as figure 3.

MSD box plots using the average across frequen-
cies are shown in figure 9 using the same parameters
and layout as figure 5. MSD box plots for single fre-
quencies are shown in figure 10 using the same param-
eters and layout as figure 6.

The z-tracker does not perform as well on scenario
2.  This is due to the more rapid modulation of
the target coherence with only 15 segments for each
2 second modulation window. In figures 7 and 8
both tracking and smoothing z-tracker estimates detect
the modulation of coherence over the 2 second time
window. The smoothed estimate in figure 7(centre)
has a reduced range of coherence values compared
to the MWT estimate, suggesting the z-tracker may
be applying too much smoothing for this data. The
confidence band for the single frequency z-tracker
estimate with smoothing, figure 8(centre) appears to
have wider point-wise confidence intervals than those
for the MWT estimate. Quantitatively the MWT
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Figure 7. Single trial coherence estimates with target coherence
modulated over range [0 1] with 2 second time scale, averaged
over frequencies. Estimates shown for 10 of the 200 seconds.
Parameters and layout same as figure 2.

has a lower MSD than the z-tracker (figure 9), the
MWT estimate with K = 10 has an MSD that is 23%
lower than the z-tracker with a = 0.9 with smoothing.
The MSD values are larger (160% for z-tracker; 21%
for MWT) than those for scenario 1 in figure 5.
The MWT estimate has a clear frequency dependent
effect for single frequency MSD metrics, figure 10
(lower), reflecting the scale dependent time-frequency
bandwidths of the continuous wavelets. The single
frequency MSD for the z-tracker, figure 10 (upper),
is similar to scenario 1 in terms of any frequency
dependency.

3.4. Scenario 8. Linear increase and step decrease in
target coherence.

This scenario considers the ability of the z-tracker and
MWT estimates to detect changes in coherence over
different time scales. In this case the target coherence
consists of slow increases and step decreases. The
increase has the same rate of change as in scenario
1, the step decrease occurs over 1 time step, 1 ms.
The transition points are determined randomly, with a
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Figure 8. Single trial, single frequency coherence estimates for
2 second coherence modulation. Same layout and parameters as
figure 3.
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Figure 9. Box plots of the MSD between target and estimated
coherence for z-tracker and MW'T coherence estimates applied to
the 2 second ramp increase/decrease data with averaging across
frequencies. Same layout and parameters as figure 5.
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Figure 10. Box plots of the MSD between target and estimated
coherence for z-tracker and MW'T coherence estimates applied to
the 2 second ramp increase/decrease data for single frequencies.
Same layout and parameters as figure 6. MSD shown using same
vertical axes plotting.

uniform distribution in target coherence of [0.8, 1.0] for
the end of the ramp and [0, 0.2] for the end of the step
decrease. Each trial contains 10 repetitions with 86588
data points, 86.6 seconds. Figure 11 shows z-tracker
and coherence estimates for 20 seconds from one trial
using averaging over frequencies. The z-tracker and
wavelet estimates both capture the slow increase and
sudden decrease in target coherence. The smoothing
over segments in the z-tracker estimate, with a = 0.9
can be seen prior to the onset of the step decrease.

MSD metrics, calculated using the same approach
as scenarios 1 and 2 from 100 trials, are shown in figure
12. These indicate that the z-tracker, with smoothing,
has lower MSD than the MWT estimates, and for this
configuration a lower value of a can reduce the MSD.
A lower value of « is likely to improve the performance
of the z-tracker around the step changes in the target
coherence.

z-tracker: a=0.1, Track

0 5 10 15 20

Figure 11. Single trial coherence estimates with coherence
modulated with slow increase and step decrease with averaging
across frequencies. The increase in target coherence has the same
rate as scenario 1, figure 2, the step decrease occurs over 1 time
step, 1 ms. Parameters and layout same as figure 2.

3.5. Using P; to characterize the variability of
z-tracker estimates.

The coherence estimates in figures 2-3, 7-8, 11 include
point-wise confidence limits. These help characterise
the variability associated with different estimates.
For the z-tracker confidence limits are derived from
the Kalman filter output, equation 9. This section
examines how P; changes with the different z-tracker
configurations for scenario 1, and compares the
Kalman filter error P, with var{z} for the two MWT
estimates. Figure 13 shows box plots of the median
P, for the 8 configurations of the z-tracker used on
scenario 1, for each of the 100 trials a single P,
the median, is used. These show that, as might be
expected, the error is reduced for smoothing compared
to tracking. For comparison the fixed values of var{z}
for the two MWT estimates are included, these suggest
the variability in tracking estimates is similar to that
for the MWT estimate with K = 5, whereas the
variability in smoothing estimates is similar to an

MWT estimate with K = 10.
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Figure 12. Box plots of the MSD between target and estimated
coherence for z-tracker and MWT coherence estimates applied
to the slow ramp increase and step decrease data with averaging
across frequencies. Same layout and parameters as figure 5.
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Figure 13. Box plots of the median P; for the 100 repeat runs in
scenario 1 using the 20 second ramp increase/decrease in target
coherence. Horizontal lines for the MWT estimates show the
fixed values of var{z} for K =5 and K = 10.

Using a single value of P, to represent the
variability for each run does not provide any
information regarding the distribution across segments
in each trial. Figure 14 shows a histogram of the
distribution of P, for a single trial in scenario 1 across
the 1562 segments with 7' = 128 and o = 0.9 with
smoothing. The distribution has a positive skew, this
is likely to reflect the adaptive nature of the Kalman
filtering. When a large residual triggers an increase in
the filter gain the error will also increase transiently.
For the MWT estimate with K = 10, var{Z} = 0.56,
this is close to the peak in the distribution of P;.

P, over segments, a=09S
0.14 1
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0.1 1
0.08 A
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P,

Figure 14. Normalised histogram of P; over 1562 segments in a
single trial for scenario 1 with configuration oo = 0.9, smoothing.
The value of var{2} for the MWT estimate with K = 10 is 0.56.

3.6. Testing for zero coherence.

An important aspect of coherence analysis is testing for
a null hypothesis of zero coherence. In this section we
examine the behaviour of the z-tracker when applied
to surrogate data with no correlation. Simulated data
of length 200000 samples, assumed sampling rate 1 ms,
generated using equations 10, 11 with 8; = 0 and d; =
1 gives a target coherence of zero, for all frequencies.
Figure 15 compares the z-tracker coherence estimate,
T = 128 a = 0.9 using smoothing, with the MWT
estimate using K = 10 for a single trial, with
coherence averaged over 31 frequencies covering the
same frequency range in both cases. For comparison
both plots have 80% of average coherence values less
than 0.1. Indicative single frequency estimates are
shown in figure 16, using the median frequency value
for each estimate. The horizontal lines are the upper
95% confidence limit for each estimate, the value of
0.33 for the z-tracker was determined empirically using
100 repeat runs and estimating the confidence limit
from the 5% point of the distribution taken across
repeat runs and across frequencies. The confidence
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limit for the MWT estimate uses the expression in [8].
Both estimates exhibit a similar range of values, with
no obvious bias over time from the z-tracker estimate.

z-tracker: a=0.9, Smooth
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Figure 15. Single trial z-tracker (T = 128, a = 0.9 with

smoothing) and MWT (K = 10) coherence estimates for
uncorrelated stationary Gaussian data. Estimates are averaged
over 31 frequencies, using the same frequencies as figure 2.

Determined empirically for each z-tracker config-
uration, using the approach of taking the 5% point of
the distribution of estimated coherence values across
100 repeat runs and across all frequencies, gives a
range of values for the 95% confidence limit of 0.475 for
T =128, a = 0.1 with tracking to 0.25 form T" = 1024,
a = 0.9 with smoothing. These empirical confidence
limits decrease as T is increased and as « is increased
and are lower for smoothing than tracking. For com-
parison using the expression in [8] to determine con-
fidence limits, using the complex degrees of freedom
for each MWT estimates give 95% confidence limits of
0.53 for K = 5 and 0.28 for K = 10. Although ex-
pressions to estimate the complex degrees of freedom
of the z-tracker have not been developed, this compar-
ison suggests that the two approaches, with parameter
values as used in the present study, have similar ranges
for their complex degrees of freedom.

To quantify the relative performance of the z-
tracker against the benchmark MWT estimate, figure
17 shows boxplots of MSD estimates generated as a
single MSD measure for each of the 100 trials for two
z-tracker estimates (T = 128 and 7" = 1024, both

z-tracker: «=0.9, Smooth
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Figure 16. Indicative single frequency coherence estimates,

using the median frequency for the same data and same analysis
parameters as in figure 16. Upper trace is z-tracker estimate,
Lower trace is MWT estimate. The horizontal dashed lines
are the upper 95% confidence limits for a null hypothesis of
uncorrelated data, determined empirically for the z-tracker and
using the expression in [8] for the MWT estimate.

with @ = 0.9) and two MWT (K = 5 and K = 10)
estimates.

The box plots in figure 17 suggest that the
performance of the z-tracker on uncorrelated data is
similar to that of MWT based estimates. For this data
a longer segment length leads to lower MSD values for
the z-tracker.

3.7. Experimental data.

This section illustrates application of the z-tracker
to local field potentials (LFP) recorded from the
medial prefrontal cortex (mPFC) and basolateral
amygdala (BLA) in anaesthetised rat as part of a
study investigating neural interactions in response
to systemic application of a benzodiazepine receptor
partial inverse agonist which mimics stress responses.
The data and comparative analysis of coupling between
the two LFPs before and after application of the
agonist is described in [45]. Here we analyse the
correlation between the two LFP signals over 990
seconds of data which starts ~ 3.5 minutes before the
injection of the first dose of the agonist (a total of 4
doses were administered). Using ordinary coherence
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Figure 17. Box plots of the MSD for target coherence of zero
for two z-tracker (T" = 128 and T = 1024) and two MWT
(K =5 and K = 10) coherence estimates. Other parameters are
a = 0.9 with smoothing for the z-tracker estimates. Box plots
constructed from 100 repeats with MSD calculated for average
over 31 frequencies/scales for the z-tracker/MWT and over all
1562 segments for T = 128 z-tracker and over all 195 segments
for T = 1024 z-tracker. MSD for MWT use 195 time points
matching the midpoint of segments for the T" = 1024 z-tracker.

estimates it was found that the mPFC-BLA coherence
after the final dose was significantly lower than the
coherence prior to the first dose at frequencies <2Hz
[45]. The aim in applying the z-tracker to this data is
to get additional insight into the time scales of these
changes in coherence. Figure 18 shows the z-tracker
coherence estimate over the 990 second record with
configuration T = 1024, o = 0.9 with smoothing.
The choice of T' is motivated by the need to examine
frequencies <2Hz, and the choice of « is motivated by
the MSD results in figure 5.

A reduction in the coherence after the first dose
of the agonist can be seen in the heat map in figure
18(Upper). The section at frequency 0.98Hz, the
lowest frequency bin, figure 18(Lower), quantifies this
change over time. Following each dose of the agonist
there is a marked reduction in coherence, this is most
prominent following the first dose, when the coherence
is abolished around 330 seconds. Following the final
dose there is no obvious reduction in coherence. Prior
to the first dose the mean coherence at 1 Hz is 0.78,
the mean coherence from 60 seconds after the last dose
until the end of the record is 0.64. Thus, for this
example, the z-tracker is able to give additional insight
into changes in coherence over time, and appears to
detect changes in single frequency components, figure
18(Lower).

3.8. Computational complexity of z-tracker and
multiwavelet algorithms.

One factor in the choice of algorithm to use to
estimate time-varying coherence is the computational
complexity of the different approaches. Here we
consider briefly the computation time of the two
methods, focusing on a comparison of the time to
compute the necessary Fourier transforms using an
FFT algorithm, and using a comparison of the run time
on the same data.

The algorithms are implemented in MATLAB [31],
which uses an FFT algorithm with computing time
of order O(Nlog N) for an FFT with N points, this
is independent of the value of N [22]. Using this
expression we can compare the computational time
to compute the Fourier coefficients for the z-tracker
and MWT algorithms. The MWT algorithm uses
an FFT based convolution to calculate the wavelet
coefficients at each scale, this is achieved with an
inverse Fourier transform, we assume the computation
time for forward and inverse Fourier transforms is the
same. The following comparison is based on scenario 1,
section 3.2, which uses bivariate data of length 2 x 10°
points. Considering the z-tracker with segment size
T = 128 and L = 1562 segments, a bivariate analysis
for single segment coherence estimates with K = 2
multitaper windows will have computing time of order
O(4LT logT) = O (3.9 x 105). The MWT estimate,
using K = 10 orthogonal Morse wavelets applied to
the complete record N = 2 x 10° using N, = 31 scales
will require Fourier transforms with computing time
of order O (2N, (K +1) NlogN) = O (1.6 x 10%).
These figures suggest that the z-tracker will be 2-3
orders of magnitude faster in execution time than the
multiwavelet analysis. However, the z-tracker has a
number of additional steps that must be performed
for each segment according to the algorithm in section
2.2. In a comparison of execution times in MATLAB,
comparing 100 runs on scenario 1 data, the z-tracker is
about 50 times faster than the multiwavelet analysis.
Thus, if execution time is an important factor in any
analysis the z-tracker may be preferred to multiwavelet
analysis.

4. Discussion

This paper has introduced the z-tracker algorithm
for estimating coherence in segmented bivariate data
with large numbers of segments. The method
combines multi-taper spectral estimates with Kalman
filtering /smoothing to estimate coherence locally for
each segment using a combination of multiple windows
and local smoothing over segments. The Kalman
filter uses adaptive filtering [25] where the process
noise variance, ¢;, is inflated in response to larger
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Figure 18. Analysis of in-vivo recording of local field potentials from mPFC and BLA in anaesthetized rat during an experiment
to mimic increased stress pharmacologically. Four doses of a stress agent were applied at 216, 420, 602 and 840 seconds into the
recording. (Upper) Heat map of z-tracker coherence estimate over the 990 second record, T'= 1024, a = 0.9 with smoothing, using
966 segments. Colour bar to the right indicates coherence magnitude. (Lower) Section with coherence estimate at lowest frequency
bin, 0.98 Hz. Solid line indicates coherence estimate, grey lines are upper and lower 95% point-wise confidence limits. Vertical

dotted lines indicate times at which stress agent was administered.

than expected residual terms. This allows the filter
to respond rapidly to sudden increases or decreases
in the correlation. In contrast if the correlation is
relatively constant or slowly changing the Kalman filter
can apply greater levels of local smoothing, helping to
reduce variability.

The performance of the z-tracker was explored
using surrogate data and compared with wavelet
coherence using an MSD metric. For data with slowly
varying target coherence, including occasional step
changes, the z-tracker exhibited a lower MSD than
MWT coherence. For more rapidly changing target
coherence a MWT estimate gave a lower MSD than
the z-tracker. The two parameters to consider in a
z-tracker analysis are the segment size, T, and the
smoothing to apply to the Kalman filter noise sequence,
using parameter «, with larger « resulting in greater
smoothing. Using shorter segment sizes reduced the
MSD as did a larger value of a. An exception to this
was data with sudden changes in coherence, when a
smaller value of a gave a lower MSD. In addition, when
testing for zero coherence increasing the segment size
reduced the MSD. Analysis of in wvivo experimental
LFP data demonstrated the potential of the method
to provide insight into modulation of coherence over
time.

To our knowledge this is the first attempt

at combining multi-taper spectral estimates with
adaptive Kalman filtering to estimate correlation over
time. It builds on our earlier work using adaptive
Kalman filtering in the univariate case for spectral
estimation [10] and non-adaptive Kalman filtering
with Periodogram based spectral estimates. Auto
and cross spectral estimates were tracked separately
over segments with Kalman filtering/smoothing, and
combined to estimate coherence for each segment
[9]. The advantage of the z-tracker is that only a
single set of frequency components are used in the
Kalman filtering step. In addition the assumption of
constant variance for the log, of the real and imaginary
components of the cross spectrum used in [9] apply
only when the coherence is zero, this may introduce
an additional bias into estimates which have non-zero
coherence. This does not apply to the z-tracker which
instead works with a single set of frequency values in
the z domain.

Several aspects of the z-tracker are worthy of
further study. We have used only one configuration for
estimation of the single segment coherence estimates
in equation 3, with NW = 1.5, K = 2, the bias
and variance lookup tables apply only to this case.
Further lookup tables could be generated for increased
K to give added flexibility. The ability of the z-tracker
to respond to rapidly changing coherence between
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segments uses increased process noise variance to
increase the Kalman gain, this is triggered by larger
than expected residual, equation 6. In the estimation
of ¢q; we used all frequency points (apart from zero and
nyquist), in some cases it may be more appropriate to
use a restricted range of points to estimate the residual
variance.

This study considers only time series data.
Extending the approach to point-process data would
open up further applications in, for example, analysis
of multielectrode array recordings of single unit data.
A possible route here would be to consider the
approach to point-process analysis in [24], which allows
analysis of time series and point process data in a
combined framework.

The z-tracker uses an empirical approach in
the z-domain with coherence estimates and point-
wise confidence limits derived from the Kalman filter
output. Confidence limits for a null hypothesis of
zero coherence are derived empirically using mote-carlo
methods. The success of the method will rely, in part,
on the accuracy of the assumptions made regarding
the applicability of the Kalman filter in the z-domain.
Comparison with the multiwavelet coherence suggests
these assumptions are reasonable. One advantage
of wavelet coherence is the theoretical work which
has derived expressions for the statistical distribution
facilitating hypothesis testing [17].  Further work
is required to develop a similar level of statistical
rigour for the z-tracker. A possible approach is to
re-formulate the z-tracker as a weighted overlapping
segment average (WOSA) estimate, as used for
temporally smoothed wavelet coherence estimates
[18].  Our recommendations for the choice of z-
tracker parameter o are based on an MSD metric.
An alternative theoretical treatment could consider
a likelihood expansion of the Kalman filter state
and observation models to choose a using maximum
likelihood over the range for «, e.g. [37].

The z-tracker provides a computationally efficient
approach, around 50 times faster in our MATLAB
implementation, for analysis of correlation in long
records which can be sectioned into short segments.
Applications include comparison of baseline activity
vs stimulus-induced changes in activity as in figure
18. The method is also suitable for more exploratory
analyses, for example investigating the consistency
of correlation over time. In experiments involving
repeat trials over time the method could be used to
characterise changes in coherence from trial-to-trial,
with the Kalman filter error used to quantify the
uncertainty across trials. The data adaptive nature of
the algorithm should also open up new approaches in
coherence estimation for non-stationary data in other
fields.

5. Software toolbox

A software toolbox in MATLAB to undertake the
analysis in this paper is freely available at http://
www.neurospec.org/. The software includes a user
guide and example scripts.
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Appendix A. Kalman filtering and smoothing.

This Appendix provides an overview of the Kalman
filtering and smoothing equations as applied to the
single segment coherence estimates. The Kalman filter
state and observation equations are [11, 26]

(A.1)
(A.2)

Here x; is the (unknown) vector of z-transformed
coherence at segment [ and z; is the vector containing
the single segment z-transformed estimate, equation
4, over the frequency range of interest. The vectors
w; and v; are the process and observation noise with
covariance matrices Q; and R, respectively. A number
of assumptions are made concerning the characteristics
of the state transition and observation matrices and the
noise processes. As in our previous work [9, 10] we set
¢, = H; =1, where I is the identity matrix, based on
the assumption that the spectral coherence is constant
from segment to segment. This random walk model
with process noise provides the flexibility to deal with a
range of correlation scenarios, including constant, and
slowly and rapidly changing correlation from segment
to segment. We assume the noise processes are zero
mean, and that the process and observation noise
covariance matrices can be represented as Q; = ¢l
and R; = r/1, respectively.

These assumptions mean that the state and
observation equations, A.1, A.2, process the coherence
at each frequency independently and with the same
Kalman gain, therefore the Kalman filter gain, K,
and error P; are constant across all frequencies and
can be reduced to scalar quantities, denoted K; and
Py, respectively.

The addition of process noise, w;, allows changes
in correlation to be detected [25]. This process
noise covariance, Q; = ¢I has to be specified at
each time step. In the original Optimal Spectral
Tracking framework, this was fixed throughout the
analysis to provide a trade-off between sensitivity and

Xi+1 = @yX; + Wi,
z; = H;x; + vy.
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variability [9]. In the current adaptive framework
the process noise is adjusted as each segment is
incorporated allowing the Kalman filter to adapt to
unusual data [10], or to apply more smoothing if the
data between segments is consistent. The observation
noise covariance, R; = I, is determined from the
uncertainty (variance) of the single segment estimator,
equation 4. Calculation of r; is described in section
2.3.

With the above assumptions, the estimate and
error for segment [, are given by [9]

x; =X] + Ki(z, — x7)
P=(1- Kl)Pzp~

(A.3)
(A4)

Here xJ is the vector of predicted or a-priori values
and P! is the a-priori error. The Kalman filter gain is
K; = PP(P? +r;)~'. In our formulation the predicted
error, P, and corrected error, P, apply to all values
in x} and x;, respectively. The prediction steps are

(A.5)
(A.6)

where g; is the variance of the process noise for segment
[. The filter is initialised as x; = zy, P, = r1. The
tracking process proceeds recursively from [ =2,... L
using equations A.3, A.4.

Kalman smoothing is incorporated using the
approach in [9, 42]. This implements a backward
smoothing pass over the segments, starting from the
final segment. Using %; and P, to represent the vector
of smoothed z-transformed coherency values and error,
respectively, for segment [ the backward smoothing is
implemented as

p —
xl+1_xl
Pllj;,_l:]Dl"’_ql

X =X, + Al(il-i-l — Xerl) (A7)
P =D+ A} (13l+1 - Pﬁu) (A.8)

where A; is the Kalman gain for the backward pass,
Ay = P (P,) . The smoothing process proceeds
recursively from [ = (L —1),...,1 using equations A.7,
A.8. The smoothing process is initialised as Zj = xp,
Py, = Py, the final segment is fully conditioned on all
available segments after tracking.

Appendix B. Algorithmic description of
z-tracker.

This Appendix contains an algorithmic level descrip-
tion of the z-tracker, with reference to the relevant
equations or sections.
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