UNIVERSITY of York

This is a repository copy of Targeted metatranscriptomics of compost derived consortia reveals a GH11 exerting an unusual exo-1,4- $\beta$ -xylanase activity.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/126688/</u>

Version: Accepted Version

#### Article:

Mello, Bruno, Alessi, Anna, Riaño-Pachón, Diego et al. (6 more authors) (2017) Targeted metatranscriptomics of compost derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity. Biotechnology for biofuels. 254. ISSN 1754-6834

https://doi.org/10.1186/s13068-017-0944-4

#### Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

#### Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

### **1** Supplementary Information

### 2 Figure legends

3 Fig. S1

4 Rarefaction analysis of metatranscriptome sequencing depth from sugarcane bagasse composting community by two methods. The first is based 5 on the assumption that the sequencing depth affects the statistics. Therefore, when sequencing becomes redundant, the statistics will be stable 6 [94]. The second method extracts k-mers from each read and checks if it has been seen before. For each 25,000 reads, a point is plotted with the 7 percentage of new reads versus the number of reads processed. The sequencing is saturated after zero is reached. **a** The predicted expression 8 level using the entire and rarefactioned libraries were compared at different sequencing depths. At 90% rarefaction, most of the genes have less 9 than 10% fragments per kilobase of transcript per million (FPKM) relative error, but there are still genes with more than 90% relative error. **b** 10 Percentage of unique k-mers as more reads are sequenced. Based on both methods, the sequencing saturation was not reached.

#### 12 Fig. S2

Phylogenetic assignment of the expressed CAZymes in sugarcane bagasse composting community through time using the Lowest Common Ancestor algorithm. **a** Relative expression of bacterial phyla. The abundance of genes assigned to Bacteroidetes showed an increase from 29% to 44% during 5-week trail, in contrast to genes originating from Proteobacteria that showed opposite trend by decreasing from 42% to 24%. The 16 phylum Firmicutes showed a gradual increase from 1% to 5%. **b** Eukaryotic kingdoms. The expression of CAZymes from non-fungal kingdoms

17 highly grew over time. The total expression of each domain is represented by the gray line.

18

19 Fig. S3

20 Biochemical characterization of the compost7\_GH6, compost13\_GH10 and compost21\_GH11 proteins derived from sugarcane bagasse

21 composting community. Effect of a pH and b temperature on enzyme activity. c Substrate specificity examined towards an array of

22 polysaccharides. **d** Residual activity after incubation in the studied temperature.

23

# 24 Fig. S4

25 Thermal stability of compost7\_GH6 protein examined at different pH values as assessed by ThermoFluor.

26

27

28

29

30

# 31 Tables

# 32 Table S1

| Growth<br>weeks | Relative percentage of fungi to bacteria rDNA |  |  |  |  |
|-----------------|-----------------------------------------------|--|--|--|--|
| 0               | $11 \pm 2$                                    |  |  |  |  |
| 1               | $4.8 \pm 0.4$                                 |  |  |  |  |
| 2               | $9 \pm 1$                                     |  |  |  |  |
| 3               | $21 \pm 3$                                    |  |  |  |  |
| 4               | $20 \pm 3$                                    |  |  |  |  |
| 5               | $22 \pm 1$                                    |  |  |  |  |

34 Relative abundance of rDNA amplified from fungal and bacterial specific regions.

### 35

33

# 36 Table S2

37

| ID               | Length<br>(AA) | Completeness |             |        | Alignme             |                     |                              |            |               |
|------------------|----------------|--------------|-------------|--------|---------------------|---------------------|------------------------------|------------|---------------|
|                  |                |              | e-<br>value | Length | Identity/Gap<br>(%) | Accession<br>number | Taxonomy                     | Expression | Characterized |
| Compost<br>1_GH5 | 326            | 3' partial   | 0.0         | 326    | 52 / 1              | gi 919149142        | Teredinibacter sp.           | Ν          | -             |
| Compost<br>2_GH5 | 239            | internal     | 3.2E-08     | 233    | 37 / 1              | gi 775268352        | Acidisphaera<br>rubrifaciens | Ν          | -             |

| Compost<br>3_GH5        | 325 | 5' partial | 6.4E-24 | 341 | 47 / 7 | gi 737251030  | Acidobacteriaceae<br>bacterium  | Ν | - |
|-------------------------|-----|------------|---------|-----|--------|---------------|---------------------------------|---|---|
| Compost<br>4_GH5        | 366 | 5' partial | 4.7E-22 | 330 | 48 / 1 | gi 931376366  | Coxiella sp.                    | Ν | - |
| Compost<br>5_GH5_5      | 355 | 5' partial | 5.1E-24 | 335 | 43/2   | gi 931376366  | Coxiella sp.                    | Ν | - |
| Compost<br>6_GH6        | 284 | 3' partial | 7.7E-30 | 264 | 77 / 1 | gi 653077963  | Marinimicrobium<br>agarilyticum | Y | Ν |
| Compost<br>7_GH6        | 390 | 5' partial | 0.0     | 373 | 49/3   | gi 1005329896 | Sorangium cellulosum            | Y | Y |
| Compost<br>8_GH6        | 273 | 3' partial | 2.2E-20 | 246 | 74 / 1 | gi 653077963  | Marinimicrobium<br>agarilyticum | Y | N |
| Compost<br>9_GH6        | 324 | internal   | 0.0     | 326 | 48/3   | gi 546309190  | Chondrus crispus                | Y | N |
| Compost<br>10_GH6_<br>5 | 377 | internal   | 0.0     | 380 | 48 / 1 | gi 546309190  | Chondrus crispus                | Ν | - |
| Compost<br>11_GH7       | 445 | 5' partial | 0.0     | 438 | 68 / 0 | gi 761948412  | Cylindrobasidium<br>torrendii   | Ν | - |
| Compost<br>12_GH9       | 514 | 5' partial | 7.3E-28 | 456 | 49 / 2 | gi 797005938  | Teredinibacter sp.              | Ν | - |
| Compost<br>13_GH10      | 287 | 5' partial | 0.0     | 285 | 91/0   | gi 769243366  | Sorangium cellulosum            | Y | Y |
| Compost<br>14_GH10      | 334 | 5' partial | 0.0     | 327 | 95 / 0 | gi 1005175543 | Sorangium cellulosum            | Ν | - |
| Compost<br>15_GH10      | 274 | complete   | 2.0E-44 | 269 | 50 / 5 | gi 797008181  | Teredinibacter sp.              | Y | Ν |

| Compost<br>16_GH10      | 306 | internal   | 0.0     | 295 | 38/8    | gi 1310760   | Clostridium<br>thermocellum     | Ν | - |
|-------------------------|-----|------------|---------|-----|---------|--------------|---------------------------------|---|---|
| Compost<br>17_GH10<br>5 | 258 | internal   | 0.0     | 264 | 52/4    | gi 161162172 | Sorangium cellulosum            | Ν | - |
| Compost<br>18_GH11      | 253 | complete   | 0.0     | 256 | 78/2    | gi 902716143 | Cellvibrio sp.                  | Ν | - |
| Compost<br>19_GH11      | 244 | complete   | 0.0     | 239 | 85 / 0  | gi 902716143 | Cellvibrio sp.                  | Ν | - |
| Compost<br>20_GH11      | 183 | 5' partial | 1.4E-31 | 184 | 38 / 5  | gi 595588127 | Neocallimastix<br>patriciarum   | Ν | - |
| Compost<br>21_GH11      | 227 | internal   | 9.8E-45 | 229 | 77 / 0  | gi 653077723 | Marinimicrobium<br>agarilyticum | Y | Y |
| Compost<br>22_GH12      | 263 | 5' partial | 6.3E-18 | 269 | 25 / 21 | gi 496168814 | Haloterrigena salina            | Ν | - |
| Compost<br>23_GH12      | 250 | complete   | 1.1E-11 | 364 | 29 / 43 | gi 797011013 | Teredinibacter sp.              | Ν | - |
| Compost<br>24_GH12      | 203 | internal   | 1.1E-18 | 162 | 27 / 30 | gi 493937532 | Halosimplex<br>carlsbadense     | Ν | - |
| Compost<br>25_GH45      | 310 | 5' partial | 0.0     | 241 | 46 / 6  | gi 121816    | Cellvibrio japonicus            | Ν | - |
| Compost<br>26_GH45      | 200 | 5' partial | 0.0     | 222 | 49 / 10 | gi 665990613 | Alteromonadaceae<br>bacterium   | Ν | - |
| Compost<br>27_GH48      | 449 | internal   | 0.0     | 452 | 96 / 0  | gi 502883342 | Cellulomonas flavigena          | Ν | - |
|                         |     |            |         |     |         |              |                                 |   |   |

40 Parameters of the 27 targets selected for cloning. Some targets had one or both ends missing during sequencing/assembly. However, the

41 predicted domain was fully present. The genes expressed in *E. coli* soluble fraction that were successfully characterized are highlighted.

42

43