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Abstract

2-deoxy-2-(18Fluorine)-fluoro-D-glucose (FDG) PET/CT is an integral part of lung carcinoma staging and frequently 
used in the assessment of solitary pulmonary nodules. However, a limitation of conventional three-dimensional PET/
CT when imaging the thorax is its susceptibility to motion artefact, which blurs the signal from the lesion resulting in 
inaccurate representation of size and metabolic activity. Respiratory gated (four-dimensional) PET/CT aims to negate 
the effects of motion artefact and provide a more accurate interpretation of pulmonary nodules and lymphadenopathy. 
There have been recent advances in technology and a shift from traditional hardware to more streamlined software 
methods for respiratory gating which should allow more widespread use of respiratory-gating in the future. The purpose 
of this article is to review the evidence surrounding four-dimensional PET/CT in pulmonary lesion characterisation.
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Introduction
2-deoxy-2-(18Fluorine)-fluoro-D-glucose (FDG) PET/CT 
provides functional and anatomical information for char-
acterisation of pulmonary nodules and staging of patients 
with lung carcinoma.1–3 The major incremental value of 
FDG PET/CT is in stratifying optimal patient manage-
ment by detecting occult metastatic disease.4 Furthermore, 
FDG PET/CT has a role in the assessment of solid solitary 
pulmonary nodules with high reported sensitivity (95%) 
and specificity (82%).1 This is reflected in the latest British 
Thoracic Society pulmonary nodule guidelines, which 
stratify patients with a >10% risk of malignancy to further 
assessment with FDG PET/CT.1,5 Use of a 4-point qualita-
tive scale of nodule FDG activity, compared to physiological 
mediastinal blood pool (MBP) uptake is advocated, with 
post-test risk stratification incorporating this information 
using the Herder model.6 Optimal patient management is 
then defined; with a risk of malignancy >70% proceeding 
to treatment, 10–70% having a biopsy and <10% having CT 
surveillance.2

PET imaging is time-averaged covering many breathing 
cycles, whereas CT imaging represents a snapshot of part 
of one breathing cycle. Therefore, PET imaging is suscep-
tible to movement and attenuation correction artefacts, 
particularly in thoracic or upper abdominal imaging due 

to respiratory motion. This can cause blurring of areas 
of interest resulting in inaccuracies in the assessment 
of standardised uptake value (SUV), which in turn can 
affect lesion characterisation and interpretation of staging. 
These effects can be confounded by the inherent spatial 
resolution of PET/CT, with smaller lesions not being as 
accurately assessed. The use of respiratory gated (four-di-
mensional, 4D) PET/CT aims to negate the effects of motion 
artefact and allow more accurate interpretation of pulmo-
nary nodules and lymphadenopathy. An example of this is 
illustrated in Figure 1; a right lower lobe bronchus lesion is 
more accurately depicted on the gated study compared to 
the non-gated study. 4D PET/CT has the potential to aid 
in the detectability and quantification of upper abdominal 
lesions in the liver and pancreas as they are also susceptible 
to breathing artefact.7–14

The aim of this article is to review the literature surrounding 
the use of respiratory-gated 4D PET/CT in pulmonary 
lesion characterisation.

Respiratory-gated PET/CT
Respiratory-gating has traditionally been achieved by 
defining a patient’s respiratory cycle and reconstructing 
the image data into subdivisions or “bins” of the range of 
amplitude (amplitude-based gating) or the breathing cycle 
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Figure 1. Ungated (a) and gated coronal PET images (b) and ungated (c) and gated (d) coronal fused PET/CT images of the tho-
rax demonstrating a lesion in the right lower lobe bronchus (arrows). The lesion in the ungated images (a,c) is elongated in the  
superior/inferior plane when compared to the gated images (b, d). The tracer activity within the lesion is more avid on the gated 
study compared to the non-gated study, the SUVmax being 15.3 and 4.8 respectively. SUV, standardised uptake value.

Figure 2. Representation of amplitude-based gating (a) and 
phase-based gating (b). The dotted lines demonstrate an 
example data “bin” incorporating the end expiratory phase of 
the respiratory cycle.

duration (phase-based gating)(Figure 2).15 The gated PET bins 
are amplitude-matched or phase-matched to the appropriate 
gated CT bins for attenuation correction. If the gated PET and 
CT data are not precisely matched, the quantitative accuracy of 
the PET reconstruction can be adversely affected.

Established hardware-based respiratory gating techniques typi-
cally track a patient’s breathing cycle using external sensors.16 
These hardware gating techniques include: an elastic belt with 
associated pressure monitoring which fits over the chest; 
measurement of displacement of infrared markers placed on 
patient’s chest wall; real time spirometry recording and moni-
toring of temperature change within the airways.16

When reconstructing data to create the gated study, a decision 
on how much data is included must be made. By reconstructing 
data using a small percentage of the respiratory cycle, fewer 
counts are sampled and as such, there is potential to either miss 
lesions or require a longer scan time. However, sampling too 
large a portion of the respiratory cycle potentially incorporates 
motion artefact into the imaging negating the effects of respira-
tory-gating. Phantom studies have reported variations in lesion 
volumes depending on the number of data bins or amount of 
data used.17 One of the limitations of the established gated recon-
structions is its ability to handle irregular breathing patterns. 
Amplitude-gating has been demonstrated to be superior to 
phase-based gating in these patients.18 In addition, coaching 
patients before/whilst they are on the scanner can improve the 
regularity of their breathing cycle.19 Breath-hold techniques can 
be employed as a way of reconstructing data from the expiratory 
phase of the respiratory cycle however this is limited by patient 
co-operation. Software developments, such as Q.Freeze (GE 
Healthcare), have been introduced to overcome the issue of low 
counts in individual 4D gated bins.20–22 Q.Freeze applies Optical 
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Table 1. Percentage difference of SUVmax at 3D PET/CT compared to 4D PET/CT reported by different studies

Authors Number of lesions Type of gating Pre/post 
treatment

Difference in SUVmax 
(4D  vs  3D) p-value

Aristophanous et al28 16 Phase Pre 25% (median) <0.0001

Post 18% (median) 0.003

Chang et al29 21 Amplitude Pre 27% <0.05

Farid et al30 32 Phase Pre 38% <0.0001

Grootjans et al31 83 Amplitude 20% Pre 9.2% <0.0001

35% 7.4% <0.0001

50% 6.2% <0.0001

Guerra et al32 206 Phase Pre 30.8% <0.0001

Huang et al20 6 MF Pre 24.7% 0.04

Nehmeh et al33 5 Phase Pre 62.9% Not reported

Suzawa et al34 50 Phase Pre 14.8% <0.001

Van Elmpt et al35 26 Phase Pre 4.9% <0.001

Amplitude Pre 6.9% <0.001

Vicente et al36 42 Phase Pre 83.3% <0.05

Vicente et al37 57 Phase (average) Pre 48.8% Not reported

Phase (best) Pre 71.9% Not reported

Werner et al38 23 Phase Pre 22.38% <0.001

3D, three-dimensional; 4D, four-dimensional; MF, motion freeze; PET, positron emission tomography; SUV, standardised update value.

Flow techniques to merge and register count data from all the 
acquired gated bins to recover a motion-corrected lesion image 
with good count statistics. A further development has been data-
driven gating or software gating which aims to eliminate the need 
for hardware tracking of external respiratory motion. Software 
gating involves direct mathematical modelling of the motion of 
tissues or lesions based on the PET list mode data.23 Various soft-
ware techniques have been investigated, including centre of mass 
analysis, spectral analysis and principal component analysis.

Quantification & assessment of gated 
imaging: established techniques
Quantification of metabolic activity within pulmonary lesions 
using SUV can help determine the probability of malignancy.2 
There is increasing interest in personalizing radiotherapy for 
individual patients with image-guided treatment planning and 
the potential for dose painting, which involves boosting radio-
therapy doses to lung tumour subvolumes which are more 
metabolically active.24,25 Recent technological advances in 
radiotherapy delivery with the use of volumetric modulated arc 
therapy have facilitated this. Consequently, the use of respirato-
ry-gated PET/CT may be beneficial for more accurate represen-
tation of the metabolic activity within lung tumours by retrieving 
signal lost by movement. At present, there is a lack of evidence 
to support the routine use of 4D PET/CT for radiotherapy plan-
ning of thoracic and upper abdominal tumours due to the largely 
retrospective, single-centre nature of published data and absence 
of outcome data. A more detailed description of the use 4D 
PET/CT for radiotherapy planning in lung cancer is beyond the 
scope of this paper but this has been reviewed elsewhere.26 The 

potential use has also been demonstrated in radiotherapy plan-
ning of liver tumours.27

Multiple studies have demonstrated higher SUVmax of pulmo-
nary lesions on 4D PET/CT compared to non-gated (3D) PET/
CT (Table  1), the majority demonstrating statistical significance. 
Grootjans et al studied the use of optimal respiratory-gating (ORG) 
4D PET/CT compared to 3D PET/CT in 83 lung lesions.31 ORG 
is an amplitude-based method which can be configured with 
different amounts of data included in the reconstruction with dedi-
cated software determining the required amplitude to achieve this. 
The authors used this method to investigate different percentages of 
data or duty cycles (20, 35 and 50%) when compared to 3D PET/CT 
and the effect this had on SUV of pulmonary lesions. They reported 
a significant increase in mean SUVmax at 4D PET/CT compared to 
the non-gated study: 6.2 ± 12.2, 7.4 ± 13.3 and 9.2 ± 14% for the 20, 
35 and 50% duty cycles respectively.31 Lesions were split into three 
categories: mediastinum and hila, upper lobe and middle and lower 
lobes. The largest difference in mean SUVmax was in the middle 
and lower group, however, all categories demonstrated significantly 
increased mean SUV. In mediastinal and hila lesions, there was 
a significant increase in mean SUV for all cycles, whereas in the 
upper lobe only the 20% cycle had a significant increase in mean 
SUV. This demonstrates the effect of tumour motion on perceived 
SUV.

A larger study by Salavati et al involving 106 lung lesions in 55 
patients used a phase-based reconstruction.39 They divided the 
respiratory cycle into four different phases and compared these 
with a non-gated study. They found that there was an increase 
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in SUVmax in the 4D reconstructions compared to 3D PET/CT 
but this was not significant.39 They also reported no significant 
difference between SUVmax when comparing between the 4 
different data bins of the respiratory cycle. However, if a partial 
volume algorithm was applied to the lesions the SUVmean was 
significantly increased when compared to studies without the 
algorithm. They also found that there was a more of a significant 
difference in lesions smaller than 3 cm.39 This highlights the idea 
that partial voluming may play a greater role in loss of detected 
activity than motion artefact when imaging small lesions.

When comparing amplitude-based ORG reconstruction with 
phase-gated reconstruction in 26 patients, Van Elmpt et al 
showed significantly higher average SUVmax with both methods 
compared to 3D PET/CT.35 There was no significant difference 
in SUVmax when comparing phase-gated and optimal-gated 4D 
PET/CT, however average SUV at optimal-gated 4D PET was 
significantly higher when >2.5 SUV was used as the threshold 
for tumour delineation. There was no significant difference in 
average SUV when a 40% SUV threshold was used to delin-
eate lesions. They evaluated the level of noise present on studies 
by defining a region of interest in the contralateral lung and 
calculated standard deviations of SUVs within this area. This 
demonstrated that image noise was significantly greater on 
gated compared to non-gated studies, which is expected as the 
reconstructions are formed from fewer counts. Optimal-gated 
reconstruction was significantly less noisy than phased-based 
reconstruction which may be because ORG was performed using 
35% of source data compared to 12.5% used in the phased-based 
study (the respiratory cycle was split into 8 separate data bins). 

Lesion characterisation
As discussed, respiratory-gating has been shown to increase 
SUV of lesions when compared to 3D PET/CT. However, SUV is 
susceptible to multiple other factors including the phase of respi-
ration during which attenuation correction CT is performed,40,41 
the time interval between injection of tracer and image acquisi-
tion,42 scanner make and model and patient’s blood glucose and 
body weight.43,44 Variability in SUV can also be introduced into 
4D PET/CT by using a non-gated CT for attenuation correction.45 
Consequently, quantitative assessment using SUV at 4D PET/CT 
may not necessarily correlate with a greater accuracy in pulmonary 
nodule characterisation. The idea that SUVmax by itself cannot 
predict malignancy was demonstrated by Farid et al who studied 
classification of 32 pulmonary nodules, <2 cm in size, with 4D and 
3D PET/CT using a >2.5 SUV threshold for diagnosing malig-
nancy.30 The study demonstrated that whilst there was a significant 
difference in SUVmax between 3D and 4D PET/CT, there was no 
significant difference between SUVmax of benign and malignant 
lesions. Malignant lesions had a mean SUVmax of 3.8 measured on 
4D PET/CT, whereas benign nodules had a SUVmax of 3.2. They 
concluded that SUV could not reliably distinguish between benign 
and malignant aetiology on 4D PET/CT.

Four further studies have examined the role of respiratory-gated 
PET/CT in characterisation of pulmonary nodules and lymph 
nodes. Guerra et al evaluated 206 lung lesions using both 3D and 
4D PET/CT.32 They reported a mean SUVmax of 5.2 ± 5.1 at 3D 

PET/CT and 6.8 ± 6.1 at 4D PET/CT (p < 0.0001), with an average 
SUV increase of 30.8%. Lesions were defined as either positive, 
negative or equivocal based on both gated and non-gated PET/
CT by comparing lesion activity with physiological MBP activity. 
Nodules were considered positive, if lesion uptake was visually 
significantly higher than MBP activity, negative if there was 
no significant visible uptake and equivocal if neither positive 
or negative criteria were met. There were 70 negative lesions at 
3D PET/CT; after review of the 4D PET/CT, 3 were reclassified 
as positive and 2 were considered equivocal. 30/50 equivocal 
lesions at 3D PET/CT became positive at 4D PET/CT and 14/50 
were considered negative. Histological data was available for 154 
lesions; this led to the sensitivity, specificity and accuracy (with 
equivocal lesions removed) for 3D PET as 96.6, 71.6 and 85.7%, 
and 4D PET as 98.8, 90.8 and 95.3%, respectively. This study 
illustrates the potential for qualitative assessment at 4D PET/CT 
to improve characterisation of lung lesions.

Two studies by Vicente et al also looked at sensitivity of 4D 
PET/CT for determining malignancy in lung nodules compared 
to 3D PET/CT. The first studied characteristics of 57 pulmo-
nary lesions in 37 patients with both 3D and 4D PET/CT.37 29 
patients had a history of previous malignancy. 4D PET/CT data 
was divided into equal 2-min bins with lesions interpreted on 
a “best-bin”, where the highest SUVmax was demonstrated and 
an average SUVmax taken from all bins (average-bin). Their 
results demonstrated an increase in SUVmax on 4D PET/CT 
with the greatest percentage difference demonstrated in the 
best-bin 4D PET/CT. They reported no significant difference in 
SUVmax compared to lesion location. Histological correlation 
was available in 19 lesions, the remaining lesions were defined 
as malignant or benign based on radiological/clinical follow 
up. 4D PET/CT was associated with more false-positives than 
3D PET/CT (six for best-bin, five for average-bin 4D PET/CT 
vs one from the 3D PET/CT study). The sensitivity, specificity, 
positive-predictive value and negative-predictive value were 
37.8, 95, 93, and 45% respectively for 3D PET/CT and 70.3, 70, 
81.2, and 56% respectively for 4D best-bin PET/CT and 51.3, 
75, 79.2 and 45.4% respectively for average-bin 4D PET/CT. 
However, diagnostic accuracy of 3D and 4D PET/CT (either 
best-bin or average-gated), was not significantly different when 
using receiver operating curve analysis.

The second study by Vicente et al reviewed 42 lesions in 28 
patients with minimal uptake (<2.5 SUV) not regarded as malig-
nant on standard PET/CT and assessed 4D PET/CT (best-bin) 
characterisation of these lesions.36 Mean SUVmax % difference 
between 3D and 4D studies was 83.3% with significantly higher 
SUVmax changes in smaller lesions compared to larger lesions. 
This lead to 17/42 lesions being recharacterized as malignant on 
4D PET/CT, of which 12 (71%) were true-positive and 5 (29%) 
were false-positive. False-negatives were reduced from 23 on the 
3D study to 11 on the 4D study. Overall, the sensitivity, spec-
ificity, positive-predictive value, negative-predictive  value and 
accuracy for lesions on 4D PET/CT which were not avid on 3D 
PET/CT was reported as 52, 74, 70, 56 and 62% respectively. As 
with other studies, this indicates that 4D PET/CT may improve 
the accuracy of lung nodule characterisation.
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Callahan et al studied the impact of 4D PET/CT on classifica-
tion of solitary lung nodules, using a 5-point classification, in 20 
patients.46 They reported no change in characterisation of lesions 
initially classified as benign or malignant but demonstrated a 
slight increase in sensitivity (73–75%), specificity (56–63%) and 
accuracy (65–70%) of 4D PET/CT compared to 3D PET/CT for 
pulmonary lesions initially deemed indeterminate (2–3 times 
reference lung tissue but less than blood pool, SUV 1.5–2).46 
These findings did not reach statistical significance and they 
concluded that use of 4D PET/CT may aid in the measurement 
of SUV and visualisation of lesions but did not improve differen-
tiation between inflammatory processes and malignancy.

Impact on staging
Grootjans et al compared the ability of 4D and 3D PET/CT to 
accurately Stage 55 histologically proven lung carcinomas.47 
PET/CT studies were blinded and read by two nuclear medicine 
physicians independently and staged using the tumour, node, 
metastasis (TMN) classification. Respiratory-gating resulted in 
five and eight more lesions being detected, depending on the 
reader, but these did not affect the T or M staging. A change in N 
stage was observed in four and seven patients, between readers 
1 and 2, this was supported histologically in one case, histolog-
ically and radiologically in two cases and radiologically in one 
case. The follow-up data for the remaining patients was not avail-
able. These changes to staging did not alter the decision between 
radical or palliative treatment, but in three cases where positive 
lymph nodes were identified neoadjuvant chemotherapy was 
given prior to surgery. This relatively small study suggests that 
4D PET/CT may be of value when staging malignancy compared 
to 3D PET/CT. However, evidence is limited and it is not possible 
to draw a definite conclusion. A comparative study of endobron-
chial ultrasound-guided biopsy vs 4D PET/CT would be useful 
in assessing its benefits.

The clinical benefit of respiratory gated imaging depends on the 
size, location, avidity and mobility of lesions. Also, efficacy is 
undermined because most PET/CT systems only have an option 
for phase-gated imaging, which has been shown to be less robust 
than amplitude gating, and fails to track shallow or irregular 
breathing appropriately.48 However, the multicentre studies with 
larger patient numbers e.g. Guerra et al, which best represent 
the range of lung lesions encountered and have protocol stan-
dardisation, show 4D has improved lesion detection accuracy 
and image quantification relative to 3D imaging.32 A recent 
multicentre study investigating liver lesions has found similar 
results, indicating that 4D gated imaging is broadly applicable 
to lesions affected by respiratory motion.49 The benefits may be 
increased and better demonstrated with improved patient selec-
tion, protocol standardisation and larger scale multicentre trials.

Quantification & assessment of gated 
imaging: novel techniques 
Q.Freeze
Bouyeure-Petit et al21 and Minamimoto et al22 have recently 
investigated the current commercial version of Q.Freeze 
in phantom and patient studies. Initial results show that in 
phantom studies Q.Freeze is effective in restoring sphere object 

quantification (e.g. max SUV) in moving objects irrespective 
of breathing parameters. However, a minimum scan time of 4 
min per PET bed position is required to control noise and static 
objects may be oversmoothed. The results from patient studies 
were less encouraging, as no significant differences in quantita-
tive parameters were observed between Q.Freeze and ungated 
images. Further investigation is warranted, as results may have 
been impaired by limited patient numbers and lesion selection. 

Software gating
Although there have been a number of proof-of-concept studies 
investigating software gating,22 only two notable studies have 
compared the performance of software and hardware gating in 
relatively large clinical patient groups.50,51 Buther et al compared 
belt-gated FDG-PET/CT scans against a range of software gating 
solutions in a group of 48 patients with abdominal or thoracic 
lesions.50 Hardware and software gated images were superior 
to non-gated images and equivalent to each other in terms of 
lesion respiratory shifts, increase in SUV and reduction in lesion 
volume (compared to ungated images) and visual assessment 
of clinical reporters. Kesner et al reported a similar result in a 
group of 116 patients with pulmonary nodules using a previ-
ously reported software gating technique;51 software gating was 
preferred to hardware gating by clinical reporters in most cases.52

A problem with hardware gating is the overhead of extra acquisition 
and reconstruction time and equipment set up, coupled with often 
unpredictable and variable clinical value depending on factors such 
as lesion location and mobility. Recent studies indicate software 
solutions are capable of performing to a similar standard as estab-
lished hardware solutions, but with the benefit of eliminating the 
overhead (excepting some additional image reconstruction time). 
This would allow gating to be applied routinely with minimal effect 
on established imaging workflows, allowing improved lesion detec-
tion and quantification, particularly in the subset of patients with 
small and mobile lesions near the diaphragm where there is likely 
to be the greatest clinical value.

However, quantitative challenges remain for software gating 
solutions related to matching PET and CT imaging (for purposes 
of attenuation corrections and localisation). A recent article by 
Cuplov et al highlights significant changes in lung volume and 
density during the breathing cycle related to variable composi-
tion of air and fluids.53 In a group of six lung cancer patients, 
volume/density correction techniques, such as air fraction 
correction, were shown to explain and correct for observed vari-
ation in activity concentration between PET respiratory gates. 

Bayesian penalized likelihood (BPL) PET 
reconstruction (Q.Clear, GE Healthcare)
BPL PET reconstructions have been introduced into clinical 
practice, which offer the advantages of time-of-flight reconstruc-
tion, iterative convergence, image noise control and spatial reso-
lution recovery. Recent studies investigating BPL reconstructions 
in lung lesions have found improved visual lesion conspicuity 
and significantly increases in signal-to-noise ratio and maximum 
SUV.54–56 Only one study, Vallot et al, incorporated a correc-
tion for respiratory motion; however it is unclear whether this 
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provides additional clinical benefit.56 Further studies with gated 
BPL reconstructions are warranted.

Texture analysis
The ability to assess heterogeneity or “texture” of lung tumours 
may add key information aiding both lesion characterisation and 
treatment planning and is a current area of active investigation. 
Textural analysis of PET data involves mapping of tracer activity 
within different voxels. This data can be analysed using statis-
tical methods, model-based methods or by transform-based 
methods. Each method can lead to the derivation of multiple 
different orders of parameters.57 The purest form of textural anal-
ysis is based on the statistical method with histogram analysis of 
SUV leading to parameters such as the mean, kurtosis, skewness, 
energy, entropy and standard deviation.57,58 These are known as 
first order parameters, from which a multitude of higher-order 
parameters can be derived.

Grootjans et al studied 60 lung cancer patients, with lesions 
greater than 3 cm3, using 3D PET/CT (using 35% of the data) 
and amplitude-based 4D PET/CT.59 They analysed lesion texture 
by studying four parameters: entropy and dissimilarity, which 
represent variations in intensity or disorganisation within 
lesions, and zone percentage and high-intensity emphasis, which 
describe heterogeneity. When the cohort was analysed, there was 
no significant difference in textural analysis between non-gated 
and 4D studies. When dividing the lesions into three geograph-
ical zones, middle- and lower-zone lesions demonstrated a 
significant difference between gated and non-gated studies in all 
textural parameters apart from entropy. There was no significant 
difference in upper lobe lesions, likely due to them being less 
susceptible to motion artefact, and between different histological 
subtypes of tumour. None of the four textural parameters were, 
however, significant in the prediction of overall survival, this was 
attributed to the relatively small number of patients.

Yip et al also studied the heterogeneity of 35 lesions with both 
non-gated and respiratory-gated PET/CT in five different phase 
bins.60 They reported that 4D PET/CT significantly increased the 
long run low grey-level emphasis (LRLG) (51–2%, p = 0.02) and 
busyness (57–19%, p  = 0.01), and decreased maximal correla-
tion coefficient (MCC) (51–2%, p =  7.561023) and coarseness 
(55–10%, p =  0.05) compared to 3D-PET. LRLG measures the 
joint probability of long runs and low grey values, busyness is 
the comparison of single voxels and their surroundings, MCC is 
a measure of statistical relationship between voxels, and coarse-
ness is a measure of uniformity within the defined area with 
coarse images having larger areas of uniformed intensity. Their 
data suggest that 4D PET/CT may allow superior delineation of 

intralesional heterogeneity, whereas 3D PET/CT is more suscep-
tible to motion-related blurring. When comparing separate 
phase bins there was little difference in coarseness, MCC and 
LRLG between the data sets. There was variation with busyness 
put down to its predisposition to be affected by tumour motion.

Oliver et al expanded on the theme of heterogeneity in PET/CT 
by studying 56 different imaging features, consisting of shape and 
textural descriptors, in 23 patients with lung carcinoma using 3D 
and 4D PET/CT.61 They reported that features associated with 
the greatest difference (>50%) between gated and non-gated 
studies were minimum intensity, mean intensity, range of inten-
sity, long run low level grey-level emphasis, shape of the distri-
bution of intensity and total summed intensity, whereas features 
least affected by movement artefact (<5%) were those concerned 
with how spherical the signal was, how disorganized the data is, 
the short and long run distribution and run percentage disrup-
tion. They also demonstrated a difference in range of intensities 
with no significant difference in entropy.61

These studies include relatively small numbers of patients and, 
therefore, no definitive conclusions can be drawn regarding 4D 
PET/CT textural analysis. However, there appears to be signif-
icant differences in textural features between 3D and 4D PET/
CT. A study comparing 4D PET/CT textural features of lung 
lesions with histological classification has not yet been reported. 
Another potential use of textural analysis would include dose 
painting, but this would require a study to create treatment plan-
ning protocols for lesions and develop a measurement of follow 
up and response.

Future Perspectives
The recent advances in data driven gating permit a fully auto-
mated, operator independent process, which requires minimal 
changes to current clinical image acquisition procedures. This 
shows great promise for translation into routine clinical imaging. 
However, these newer techniques need to be standardized and 
validated within a multicentre trial before the likely clinical 
benefits in thoracic (and upper abdominal) lesion characterisa-
tion can be fully realized.

Conclusion
Established hardware PET/CT gating has a role in lesion detec-
tion and characterisation, but it is underutilized due to prac-
tical limitations and an unclear patient management pathway. 
However, newer developments such as software gating, BPL 
reconstructions and texture analysis show promise to over-
come practical limitations allowing wider accessibility and give 
improved image quantification and higher image quality.
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